code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') lowerCAmelCase = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = None # source code of `config_class` lowercase__ = inspect.getsource(SCREAMING_SNAKE_CASE ) lowercase__ = _re_checkpoint.findall(SCREAMING_SNAKE_CASE ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): lowercase__ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowercase__ = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: lowercase__ = ckpt_name break return checkpoint def _a ( ): """simple docstring""" lowercase__ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowercase__ = get_checkpoint_from_config_class(SCREAMING_SNAKE_CASE ) lowercase__ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '''\n'''.join(sorted(SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
110
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) SCREAMING_SNAKE_CASE__ : Optional[int] = "\\n Text data.\n Second line of data." SCREAMING_SNAKE_CASE__ : List[str] = "file" @pytest.fixture(scope='''session''' ) def __magic_name__ ( __lowerCAmelCase : Any ) -> int: __lowerCamelCase = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') __lowerCamelCase = bytes(__lowerCAmelCase , '''utf-8''' ) with zstd.open(__lowerCAmelCase , '''wb''' ) as f: f.write(__lowerCAmelCase ) return path @pytest.fixture def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Tuple: with open(os.path.join(tmpfs.local_root_dir , __lowerCAmelCase ) , '''w''' ) as f: f.write(__lowerCAmelCase ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ) -> List[Any]: __lowerCamelCase = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} __lowerCamelCase = input_paths[compression_format] __lowerCamelCase = tmp_path / '''cache''' __lowerCamelCase = DownloadConfig(cache_dir=__lowerCAmelCase , extract_compressed_file=__lowerCAmelCase ) __lowerCamelCase = cached_path(__lowerCAmelCase , download_config=__lowerCAmelCase ) with open(__lowerCAmelCase ) as f: __lowerCamelCase = f.read() with open(__lowerCAmelCase ) as f: __lowerCamelCase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Optional[int]: __lowerCamelCase = '''custom_cache''' __lowerCamelCase = '''custom_extracted_dir''' __lowerCamelCase = tmp_path / '''custom_extracted_path''' if default_extracted: __lowerCamelCase = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , __lowerCAmelCase ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__lowerCAmelCase ) ) __lowerCamelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __lowerCamelCase = xz_file __lowerCamelCase = ( DownloadConfig(extract_compressed_file=__lowerCAmelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__lowerCAmelCase ) ) __lowerCamelCase = cached_path(__lowerCAmelCase , download_config=__lowerCAmelCase ) assert Path(__lowerCAmelCase ).parent.parts[-2:] == expected def __magic_name__ ( __lowerCAmelCase : List[str] ) -> str: # absolute path __lowerCamelCase = str(Path(__lowerCAmelCase ).resolve() ) assert cached_path(__lowerCAmelCase ) == text_file # relative path __lowerCamelCase = str(Path(__lowerCAmelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__lowerCAmelCase ) == text_file def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Tuple: # absolute path __lowerCamelCase = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(__lowerCAmelCase ): cached_path(__lowerCAmelCase ) # relative path __lowerCamelCase = '''./__missing_file__.txt''' with pytest.raises(__lowerCAmelCase ): cached_path(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> List[Any]: __lowerCamelCase = get_from_cache(f'''tmp://{tmpfs_file}''' ) with open(__lowerCAmelCase ) as f: __lowerCamelCase = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCAmelCase ) def __magic_name__ ( ) -> int: with pytest.raises(__lowerCAmelCase ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> int: __lowerCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__lowerCAmelCase ): http_get('''https://huggingface.co''' , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Any ) -> str: __lowerCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__lowerCAmelCase ): ftp_get('''ftp://huggingface.co''' , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Dict ) -> Any: __lowerCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__lowerCAmelCase ): fsspec_get('''s3://huggingface.co''' , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): fsspec_head('''s3://huggingface.co''' )
339
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered") def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
339
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def snake_case ( UpperCAmelCase )-> Optional[int]: """simple docstring""" __A = os.path.join(args.tf_model_dir , 'parameters.json' ) __A = json.loads(open(UpperCAmelCase ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('.pt' ): __A = args.output + '.pt' __A = OrderedDict() with tf.device('/CPU:0' ): __A = tf.train.load_checkpoint(args.tf_model_dir ) __A = reader.get_variable_to_shape_map() for key_name in shapes.keys(): __A = reader.get_tensor(UpperCAmelCase ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): __A = int(key_name[9] ) elif key_name.startswith('pasts/out' ): __A = 8 __A = 'model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time __A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __A = torch.tensor(UpperCAmelCase ) elif key_name.startswith('model/moe' ): __A = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): __A = 'model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player __A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __A = torch.tensor(UpperCAmelCase ) elif key_name.endswith('/softmlp/kernel' ): __A = 'model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player __A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __A = torch.tensor(UpperCAmelCase ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): __A = key_name[-9:-7] for i in range(1_6 ): __A = 'model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) __A = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided __A = torch.tensor(UpperCAmelCase ) elif key_name.startswith('model/mlp' ): __A = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): __A = 'model.blocks.%d.feed_forward.mlp.wi.weight' % player __A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __A = torch.tensor(UpperCAmelCase ) elif key_name.endswith('/p1/bias' ): __A = 'model.blocks.%d.feed_forward.mlp.wi.bias' % player __A = vnp.copy() # same because it is one dimensional __A = torch.tensor(UpperCAmelCase ) elif key_name.endswith('/p2/kernel' ): __A = 'model.blocks.%d.feed_forward.mlp.wo.weight' % player __A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __A = torch.tensor(UpperCAmelCase ) elif key_name.endswith('/p2/bias' ): __A = 'model.blocks.%d.feed_forward.mlp.wo.bias' % player __A = vnp.copy() # same because it is one dimensional __A = torch.tensor(UpperCAmelCase ) elif key_name.startswith('model/ln' ): __A = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): __A = 'model.blocks.%d.feed_forward.norm.bias' % player __A = vnp.copy() # same because it is one dimensional __A = torch.tensor(UpperCAmelCase ) elif key_name.endswith('/g' ): __A = 'model.blocks.%d.feed_forward.norm.weight' % player __A = vnp.copy() # same because it is one dimensional __A = torch.tensor(UpperCAmelCase ) elif key_name.startswith('model/att' ): __A = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): __A = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum __A = state[:, 0, :, :] __A = state[:, 1, :, :] __A = state[:, 2, :, :] __A = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __A = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __A = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __A = 'model.blocks.%d.self_attn.self_attn.q_proj.weight' % player __A = torch.tensor(UpperCAmelCase ) __A = 'model.blocks.%d.self_attn.self_attn.k_proj.weight' % player __A = torch.tensor(UpperCAmelCase ) __A = 'model.blocks.%d.self_attn.self_attn.v_proj.weight' % player __A = torch.tensor(UpperCAmelCase ) elif key_name.endswith('/o/kernel' ): __A = 'model.blocks.%d.self_attn.self_attn.out_proj.weight' % player __A = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix __A = torch.tensor(UpperCAmelCase ) elif key_name.startswith('model/an' ): __A = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): __A = 'model.blocks.%d.self_attn.norm.bias' % player __A = vnp.copy() # same because it is one dimensional __A = torch.tensor(UpperCAmelCase ) elif key_name.endswith('/g' ): __A = 'model.blocks.%d.self_attn.norm.weight' % player __A = vnp.copy() # same because it is one dimensional __A = torch.tensor(UpperCAmelCase ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): __A = {'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] __A = 'model.%s.weight' % nlayer __A = vnp.copy() # same in embedded __A = torch.tensor(UpperCAmelCase ) if key_name.startswith('model/wte' ): __A = 'lm_head.weight' __A = vnp.copy() # same in embedded __A = torch.tensor(UpperCAmelCase ) elif key_name.startswith('model/wob' ): __A = 'final_logits_bias' __A = vnp.copy() # same in embedded __A = state.reshape((1, -1) ) __A = torch.tensor(UpperCAmelCase ) elif key_name == "model/dense/kernel": __A = 'model.last_project.weight' __A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __A = torch.tensor(UpperCAmelCase ) elif key_name == "model/dense_1/bias": __A = 'model.last_project.bias' __A = vnp.copy() # same because it is one dimensional __A = torch.tensor(UpperCAmelCase ) torch.save(UpperCAmelCase , args.output ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") a__ : str = parser.parse_args() convert_tf_gptsan_to_pt(args)
161
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() a__ : Any = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] a__ : Dict = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def snake_case ( UpperCAmelCase , UpperCAmelCase )-> List[str]: """simple docstring""" __A = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __A = int(re.match(R'.*layer_(\d*).*' , UpperCAmelCase )[1] ) layer_number -= 3 return f'h.{layer_number}.' + key def snake_case ( UpperCAmelCase )-> Any: """simple docstring""" if dtype == torch.bool: return 1 / 8 __A = re.search(R'[^\d](\d+)$' , str(UpperCAmelCase ) ) if bit_search is None: raise ValueError(f'`dtype` is not a valid dtype: {dtype}.' ) __A = int(bit_search.groups()[0] ) return bit_size // 8 def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> str: """simple docstring""" # Construct model if bloom_config_file == "": __A = BloomConfig() else: __A = BloomConfig.from_json_file(UpperCAmelCase ) if shard_model: __A = os.listdir(UpperCAmelCase ) __A = sorted(filter(lambda UpperCAmelCase : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase ) ) __A = {'weight_map': {}, 'metadata': {}} __A = 0 __A = None __A = BloomConfig() for j, file in enumerate(UpperCAmelCase ): print('Processing file: {}'.format(UpperCAmelCase ) ) __A = None for i in range(UpperCAmelCase ): # load all TP files __A = file.replace('model_00' , f'model_0{i}' ) __A = torch.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) , map_location='cpu' ) # Rename keys in the transformers names __A = list(temp.keys() ) for key in keys: __A = temp.pop(UpperCAmelCase ) if tensors is None: __A = temp else: for key in tensors.keys(): if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __A = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __A = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __A = tensors[key] / pretraining_tp torch.save( UpperCAmelCase , os.path.join( UpperCAmelCase , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): __A = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __A = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase ) ).zfill(5 ) ) __A = BloomConfig() __A = pytorch_dump_folder_path + '/' + CONFIG_NAME __A = total_size with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCAmelCase , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: __A = json.dumps(UpperCAmelCase , indent=2 , sort_keys=UpperCAmelCase ) + '\n' f.write(UpperCAmelCase ) else: __A = BloomModel(UpperCAmelCase ) __A = os.listdir(UpperCAmelCase ) __A = sorted(filter(lambda UpperCAmelCase : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase ) ) __A = None for i, file in enumerate(UpperCAmelCase ): __A = None for i in range(UpperCAmelCase ): # load all TP files __A = file.replace('model_00' , f'model_0{i}' ) __A = torch.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) , map_location='cpu' ) # Rename keys in the transformers names __A = list(temp.keys() ) for key in keys: __A = temp.pop(UpperCAmelCase ) if tensors is None: __A = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __A = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __A = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __A = tensors[key] / pretraining_tp __A = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert not other_keys.unexpected_keys, f'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: __A = set(other_keys.missing_keys ) else: __A = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) __A = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __A = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: __A = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCAmelCase ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) a__ : Tuple = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
161
1
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__=None ): """simple docstring""" __lowercase = {} for old_key in state_dict.keys(): __lowercase = old_key if "moe_layer.experts." in key: if expert_idx is not None: __lowercase = key.replace('''moe_layer.experts.0''' , F"ffn.experts.expert_{expert_idx}" ) else: __lowercase = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: __lowercase = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: __lowercase = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: __lowercase = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: __lowercase = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: __lowercase = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: __lowercase = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) __lowercase = state_dict[old_key] return new_dict def _A ( A__ , A__ , A__ , A__ , A__ = WEIGHTS_NAME ): """simple docstring""" __lowercase = [] __lowercase = 0 os.makedirs(A__ , exist_ok=A__ ) for expert in range(A__ ): __lowercase = switch_checkpoint_path + F"-rank-{expert}.pt" if os.path.isfile(A__ ): __lowercase = torch.load(A__ )['''model'''] remove_ignore_keys_(A__ ) __lowercase = rename_fairseq_keys(A__ , A__ ) __lowercase = os.path.join( A__ , weights_name.replace('''.bin''' , F"-{len(A__ )+1:05d}-of-???.bin" ) ) torch.save(A__ , A__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A__ )[0]].dtype ) # Add the last block __lowercase = os.path.join(A__ , weights_name.replace('''.bin''' , F"-{len(A__ )+1:05d}-of-???.bin" ) ) __lowercase = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = rename_fairseq_keys(A__ , A__ ) __lowercase = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A__ ) == 1: __lowercase = os.path.join(A__ , A__ ) torch.save(A__ , A__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A__ , A__ ) # Otherwise, let's build the index __lowercase = {} for idx, shard in enumerate(A__ ): __lowercase = weights_name.replace('''.bin''' , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" ) __lowercase = os.path.join(A__ , weights_name.replace('''.bin''' , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(A__ , os.path.join(A__ , A__ ) ) for key in shard: __lowercase = shard_file # Add the metadata __lowercase = {'''total_size''': total_size} __lowercase = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(A__ , A__ ) , '''w''' , encoding='''utf-8''' ) as f: __lowercase = json.dumps(A__ , indent=2 , sort_keys=A__ ) + '''\n''' f.write(A__ ) return metadata, index if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ , lowerCAmelCase__ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCAmelCase__ = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCAmelCase__ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
52
'''simple docstring''' def _A ( A__ = 1000 ): """simple docstring""" __lowercase , __lowercase = 1, 1 __lowercase = 2 while True: __lowercase = 0 __lowercase = fa + fa __lowercase , __lowercase = fa, f index += 1 for _ in str(A__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
52
1
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = len(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] SCREAMING_SNAKE_CASE__ = True for i in range(UpperCamelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: SCREAMING_SNAKE_CASE__ = True if a[i].islower(): SCREAMING_SNAKE_CASE__ = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
176
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=5_12, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(F'could not parse string as bool {string}' ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) __snake_case = parser.parse_args() __snake_case = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
176
1
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE): '''simple docstring''' __UpperCamelCase : List[str] = 42 __UpperCamelCase : Optional[int] = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
351
from __future__ import annotations import collections import pprint from pathlib import Path def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return "".join(sorted(SCREAMING_SNAKE_CASE_ ) ) def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return word_by_signature[signature(SCREAMING_SNAKE_CASE_ )] __UpperCAmelCase : str = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") __UpperCAmelCase : Tuple = sorted({word.strip().lower() for word in data.splitlines()}) __UpperCAmelCase : Union[str, Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __UpperCAmelCase : int = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
315
0
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: return x if y == 0 else greatest_common_divisor(_SCREAMING_SNAKE_CASE ,x % y ) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: return (x * y) // greatest_common_divisor(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def A ( _SCREAMING_SNAKE_CASE = 20 ) -> int: lowerCamelCase : List[Any] = 1 for i in range(1 ,n + 1 ): lowerCamelCase : List[str] = lcm(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) return g if __name__ == "__main__": print(f'''{solution() = }''')
48
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = { 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = """blip_2_vision_model""" def __init__( self , UpperCamelCase__=1408 , UpperCamelCase__=6144 , UpperCamelCase__=39 , UpperCamelCase__=16 , UpperCamelCase__=224 , UpperCamelCase__=14 , UpperCamelCase__="gelu" , UpperCamelCase__=0.00001 , UpperCamelCase__=0.0 , UpperCamelCase__=1e-10 , UpperCamelCase__=True , **UpperCamelCase__ , ) -> Optional[Any]: super().__init__(**UpperCamelCase__ ) lowerCamelCase : Dict = hidden_size lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : List[str] = num_hidden_layers lowerCamelCase : List[str] = num_attention_heads lowerCamelCase : Dict = patch_size lowerCamelCase : Tuple = image_size lowerCamelCase : Dict = initializer_range lowerCamelCase : Union[str, Any] = attention_dropout lowerCamelCase : Dict = layer_norm_eps lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : str = qkv_bias @classmethod def _lowercase ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : List[str] = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": lowerCamelCase : Optional[int] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Dict = """blip_2_qformer""" def __init__( self , UpperCamelCase__=3_0522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=0 , UpperCamelCase__="absolute" , UpperCamelCase__=2 , UpperCamelCase__=1408 , **UpperCamelCase__ , ) -> int: super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : Optional[int] = vocab_size lowerCamelCase : int = hidden_size lowerCamelCase : Dict = num_hidden_layers lowerCamelCase : Union[str, Any] = num_attention_heads lowerCamelCase : int = hidden_act lowerCamelCase : Optional[Any] = intermediate_size lowerCamelCase : Dict = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : Dict = max_position_embeddings lowerCamelCase : List[str] = initializer_range lowerCamelCase : List[str] = layer_norm_eps lowerCamelCase : int = position_embedding_type lowerCamelCase : Tuple = cross_attention_frequency lowerCamelCase : Optional[int] = encoder_hidden_size @classmethod def _lowercase ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : str = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": lowerCamelCase : int = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : List[str] = """blip-2""" lowerCamelCase_ : int = True def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=32 , **UpperCamelCase__ ) -> str: super().__init__(**UpperCamelCase__ ) if vision_config is None: lowerCamelCase : List[Any] = {} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values." ) if qformer_config is None: lowerCamelCase : List[Any] = {} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values." ) if text_config is None: lowerCamelCase : Any = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) lowerCamelCase : Optional[int] = BlipaVisionConfig(**UpperCamelCase__ ) lowerCamelCase : str = BlipaQFormerConfig(**UpperCamelCase__ ) lowerCamelCase : List[str] = text_config["model_type"] if "model_type" in text_config else "opt" lowerCamelCase : str = CONFIG_MAPPING[text_model_type](**UpperCamelCase__ ) lowerCamelCase : Optional[Any] = self.text_config.tie_word_embeddings lowerCamelCase : int = self.text_config.is_encoder_decoder lowerCamelCase : Optional[Any] = num_query_tokens lowerCamelCase : int = self.vision_config.hidden_size lowerCamelCase : Tuple = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase : Dict = 1.0 lowerCamelCase : List[Any] = 0.02 @classmethod def _lowercase ( cls , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ , ) -> str: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase__ , ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Tuple = copy.deepcopy(self.__dict__ ) lowerCamelCase : Tuple = self.vision_config.to_dict() lowerCamelCase : int = self.qformer_config.to_dict() lowerCamelCase : Optional[Any] = self.text_config.to_dict() lowerCamelCase : int = self.__class__.model_type return output
48
1
import operator as op def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Any =[] lowerCamelCase__: Optional[int] =lambda __a , __a : int(x / y ) # noqa: E731 integer division operation lowerCamelCase__: List[str] ={ "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " ) print("-" * (30 + len(__a )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__a ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(__a ) , sep=" | " ) else: lowerCamelCase__: List[Any] =stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(__a ) , sep=" | " ) lowerCamelCase__: List[str] =stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(__a ) , sep=" | " ) stack.append( str(opr[x](int(__a ) , int(__a ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(__a ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": __A = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
273
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __A = ["text", "image", "audio"] def lowerCAmelCase_ ( __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Tuple =[] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__a , __a ): inputs.append(create_inputs(__a ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def lowerCAmelCase_ ( __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Union[str, Any] =[] for output in outputs: if isinstance(__a , (str, AgentText) ): output_types.append("text" ) elif isinstance(__a , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__a , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class _SCREAMING_SNAKE_CASE : '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs")) self.assertTrue(hasattr(self.tool , "outputs")) lowerCamelCase__: Tuple =self.tool.inputs for _input in inputs: if isinstance(_input , UpperCAmelCase_): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) lowerCamelCase__: Optional[Any] =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: List[str] =create_inputs(self.tool.inputs) lowerCamelCase__: str =self.tool(*UpperCAmelCase_) # There is a single output if len(self.tool.outputs) == 1: lowerCamelCase__: Optional[Any] =[outputs] self.assertListEqual(output_types(UpperCAmelCase_) , self.tool.outputs) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Any: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description")) self.assertTrue(hasattr(self.tool , "default_checkpoint")) self.assertTrue(self.tool.description.startswith("This is a tool that")) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =create_inputs(self.tool.inputs) lowerCamelCase__: Dict =self.tool(*UpperCAmelCase_) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Tuple =[outputs] self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs)) for output, output_type in zip(UpperCAmelCase_ , self.tool.outputs): lowerCamelCase__: Any =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Any =create_inputs(self.tool.inputs) lowerCamelCase__: int =[] for _input, input_type in zip(UpperCAmelCase_ , self.tool.inputs): if isinstance(UpperCAmelCase_ , UpperCAmelCase_): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error lowerCamelCase__: Union[str, Any] =self.tool(*UpperCAmelCase_) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: str =[outputs] self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs))
273
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = (DDIMParallelScheduler,) UpperCamelCase__ = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def UpperCAmelCase_ ( self: int , **__lowerCamelCase: Dict ): '''simple docstring''' UpperCamelCase__: Any = { "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCamelCase ) return config def UpperCAmelCase_ ( self: int , **__lowerCamelCase: Optional[int] ): '''simple docstring''' UpperCamelCase__: str = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config(**__lowerCamelCase ) UpperCamelCase__: List[str] = scheduler_class(**__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: int = 10, 0.0 UpperCamelCase__: List[Any] = self.dummy_model() UpperCamelCase__: Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for t in scheduler.timesteps: UpperCamelCase__: Optional[Any] = model(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__: Tuple = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample return sample def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCamelCase ) UpperCamelCase__: Tuple = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase__: str = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def UpperCAmelCase_ ( self: Any ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCamelCase ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__lowerCamelCase , num_inference_steps=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCamelCase , eta=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Any = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config() UpperCamelCase__: str = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = self.scheduler_classes[0] UpperCamelCase__: Union[str, Any] = self.get_scheduler_config() UpperCamelCase__: Any = scheduler_class(**__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = 10, 0.0 scheduler.set_timesteps(__lowerCamelCase ) UpperCamelCase__: Tuple = self.dummy_model() UpperCamelCase__: Union[str, Any] = self.dummy_sample_deter UpperCamelCase__: Dict = self.dummy_sample_deter + 0.1 UpperCamelCase__: Dict = self.dummy_sample_deter - 0.1 UpperCamelCase__: int = samplea.shape[0] UpperCamelCase__: List[str] = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase__: Union[str, Any] = torch.arange(__lowerCamelCase )[0:3, None].repeat(1 , __lowerCamelCase ) UpperCamelCase__: str = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase__: Optional[int] = scheduler.batch_step_no_noise(__lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __lowerCamelCase ) UpperCamelCase__: Dict = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Tuple = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: str = self.full_loop() UpperCamelCase__: List[str] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Any = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Optional[int] = self.full_loop(prediction_type="v_prediction" ) UpperCamelCase__: List[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__: Any = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase__: Optional[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Tuple = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase__: Optional[int] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
149
import doctest from collections import deque import numpy as np class _a : """simple docstring""" def __init__( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: int = [2, 1, 2, -1] UpperCamelCase__: Dict = [1, 2, 3, 4] def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: str = len(self.first_signal ) UpperCamelCase__: Optional[Any] = len(self.second_signal ) UpperCamelCase__: str = max(__lowerCamelCase , __lowerCamelCase ) # create a zero matrix of max_length x max_length UpperCamelCase__: List[str] = [[0] * max_length for i in range(__lowerCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__lowerCamelCase ): UpperCamelCase__: Union[str, Any] = deque(self.second_signal ) rotated_signal.rotate(__lowerCamelCase ) for j, item in enumerate(__lowerCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal UpperCamelCase__: int = np.matmul(np.transpose(__lowerCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__lowerCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
149
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
64
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str ) -> str | Literal[False]: '''simple docstring''' __lowerCamelCase : Optional[int] = list(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = list(_lowerCamelCase ) __lowerCamelCase : Tuple = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 __lowerCamelCase : Optional[int] = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def lowercase_ ( _lowerCamelCase: list[str] ) -> list[str]: '''simple docstring''' __lowerCamelCase : List[Any] = [] while True: __lowerCamelCase : Dict = ["$"] * len(_lowerCamelCase ) __lowerCamelCase : Any = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): __lowerCamelCase : str = compare_string(binary[i] , binary[j] ) if k is False: __lowerCamelCase : str = "*" __lowerCamelCase : Union[str, Any] = "*" temp.append("X" ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi __lowerCamelCase : Tuple = list(set(_lowerCamelCase ) ) def lowercase_ ( _lowerCamelCase: int , _lowerCamelCase: Sequence[float] ) -> list[str]: '''simple docstring''' __lowerCamelCase : Union[str, Any] = [] for minterm in minterms: __lowerCamelCase : Union[str, Any] = "" for _ in range(_lowerCamelCase ): __lowerCamelCase : Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: int ) -> bool: '''simple docstring''' __lowerCamelCase : Tuple = list(_lowerCamelCase ) __lowerCamelCase : Optional[int] = list(_lowerCamelCase ) __lowerCamelCase : str = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowercase_ ( _lowerCamelCase: list[list[int]] , _lowerCamelCase: list[str] ) -> list[str]: '''simple docstring''' __lowerCamelCase : Optional[int] = [] __lowerCamelCase : str = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): __lowerCamelCase : List[str] = 0 __lowerCamelCase : Optional[Any] = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 __lowerCamelCase : List[Any] = j if count == 1: __lowerCamelCase : Optional[Any] = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): __lowerCamelCase : List[Any] = 0 temp.append(prime_implicants[i] ) while True: __lowerCamelCase : str = 0 __lowerCamelCase : Dict = -1 __lowerCamelCase : Tuple = 0 for i in range(len(_lowerCamelCase ) ): __lowerCamelCase : Union[str, Any] = chart[i].count(1 ) if count_n > max_n: __lowerCamelCase : Optional[int] = count_n __lowerCamelCase : List[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): __lowerCamelCase : Any = 0 def lowercase_ ( _lowerCamelCase: list[str] , _lowerCamelCase: list[str] ) -> list[list[int]]: '''simple docstring''' __lowerCamelCase : Dict = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): __lowerCamelCase : List[str] = prime_implicants[i].count("_" ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): __lowerCamelCase : Dict = 1 return chart def lowercase_ ( ) -> None: '''simple docstring''' __lowerCamelCase : Any = int(input("Enter the no. of variables\n" ) ) __lowerCamelCase : List[str] = [ float(_lowerCamelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] __lowerCamelCase : List[str] = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : str = check(_lowerCamelCase ) print("Prime Implicants are:" ) print(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Any = selection(_lowerCamelCase , _lowerCamelCase ) print("Essential Prime Implicants are:" ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
64
1
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __UpperCamelCase : Tuple = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') __UpperCamelCase : Optional[int] = F'''https://www.google.com/search?q={query}&num=100''' __UpperCamelCase : Optional[Any] = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: __UpperCamelCase : Union[str, Any] = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: __UpperCamelCase : str = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
106
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger('transformers.models.speecht5') UpperCAmelCase__ = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } UpperCAmelCase__ = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } UpperCAmelCase__ = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } UpperCAmelCase__ = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } UpperCAmelCase__ = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } UpperCAmelCase__ = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } UpperCAmelCase__ = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } UpperCAmelCase__ = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } UpperCAmelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCAmelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase__ = [] UpperCAmelCase__ = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] UpperCAmelCase__ = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] UpperCAmelCase__ = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] UpperCAmelCase__ = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Dict ) -> List[Any]: for attribute in key.split('''.''' ): _snake_case = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: _snake_case = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: _snake_case = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _snake_case = value elif weight_type == "weight_g": _snake_case = value elif weight_type == "weight_v": _snake_case = value elif weight_type == "bias": _snake_case = value elif weight_type == "running_mean": _snake_case = value elif weight_type == "running_var": _snake_case = value elif weight_type == "num_batches_tracked": _snake_case = value else: _snake_case = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ) -> List[str]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _snake_case , _snake_case = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple ) -> Optional[Any]: _snake_case = [] if task == "s2t": _snake_case = hf_model.speechta.encoder.prenet.feature_encoder _snake_case = MAPPING_S2T _snake_case = IGNORE_KEYS_S2T elif task == "t2s": _snake_case = None _snake_case = MAPPING_T2S _snake_case = IGNORE_KEYS_T2S elif task == "s2s": _snake_case = hf_model.speechta.encoder.prenet.feature_encoder _snake_case = MAPPING_S2S _snake_case = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(__lowerCamelCase , __lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue _snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) _snake_case = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _snake_case , _snake_case = key.split('''.*.''' ) if prefix in name and suffix in name: _snake_case = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _snake_case = True if "*" in mapped_key: _snake_case = name.split(__lowerCamelCase )[0].split('''.''' )[-2] _snake_case = mapped_key.replace('''*''' , __lowerCamelCase ) if "weight_g" in name: _snake_case = '''weight_g''' elif "weight_v" in name: _snake_case = '''weight_v''' elif "bias" in name: _snake_case = '''bias''' elif "weight" in name: _snake_case = '''weight''' elif "running_mean" in name: _snake_case = '''running_mean''' elif "running_var" in name: _snake_case = '''running_var''' elif "num_batches_tracked" in name: _snake_case = '''num_batches_tracked''' else: _snake_case = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _UpperCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple ) -> List[Any]: _snake_case = full_name.split('''conv_layers.''' )[-1] _snake_case = name.split('''.''' ) _snake_case = int(items[0] ) _snake_case = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , __lowerCamelCase : Union[str, Any]=None , ) -> Dict: if config_path is not None: _snake_case = SpeechTaConfig.from_pretrained(__lowerCamelCase ) else: _snake_case = SpeechTaConfig() if task == "s2t": _snake_case = config.max_text_positions _snake_case = SpeechTaForSpeechToText(__lowerCamelCase ) elif task == "t2s": _snake_case = 18_76 _snake_case = 6_00 _snake_case = config.max_speech_positions _snake_case = SpeechTaForTextToSpeech(__lowerCamelCase ) elif task == "s2s": _snake_case = 18_76 _snake_case = config.max_speech_positions _snake_case = SpeechTaForSpeechToSpeech(__lowerCamelCase ) else: raise ValueError(f'''Unknown task name: {task}''' ) if vocab_path: _snake_case = SpeechTaTokenizer(__lowerCamelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _snake_case = AddedToken('''<mask>''' , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) _snake_case = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _snake_case = SpeechTaFeatureExtractor() _snake_case = SpeechTaProcessor(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _snake_case = torch.load(__lowerCamelCase ) recursively_load_weights(fairseq_checkpoint['''model'''] , __lowerCamelCase , __lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(__lowerCamelCase ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) UpperCAmelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
288
0
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _lowerCamelCase : int = logging.getLogger(__name__) @dataclass(frozen=UpperCAmelCase__ ) class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None @dataclass(frozen=UpperCAmelCase__ ) class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = 42 def __init__( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : PreTrainedTokenizer , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : bool = False , ) ->Union[str, Any]: '''simple docstring''' A__ = hans_processors[task]() A__ = os.path.join( UpperCAmelCase__ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(UpperCAmelCase__) , UpperCAmelCase__ , ) , ) A__ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A__ , A__ = label_list[2], label_list[1] A__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A__ = cached_features_file + '''.lock''' with FileLock(UpperCAmelCase__): if os.path.exists(UpperCAmelCase__) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""") A__ = torch.load(UpperCAmelCase__) else: logger.info(f"""Creating features from dataset file at {data_dir}""") A__ = ( processor.get_dev_examples(UpperCAmelCase__) if evaluate else processor.get_train_examples(UpperCAmelCase__) ) logger.info('''Training examples: %s''' , len(UpperCAmelCase__)) A__ = hans_convert_examples_to_features(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) logger.info('''Saving features into cached file %s''' , UpperCAmelCase__) torch.save(self.features , UpperCAmelCase__) def __len__( self : List[str]) ->int: '''simple docstring''' return len(self.features) def __getitem__( self : Any , UpperCAmelCase__ : str) ->InputFeatures: '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE ( self : Any) ->Dict: '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = 42 def __init__( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : PreTrainedTokenizer , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] = 128 , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : bool = False , ) ->Optional[Any]: '''simple docstring''' A__ = hans_processors[task]() A__ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A__ , A__ = label_list[2], label_list[1] A__ = label_list A__ = processor.get_dev_examples(UpperCAmelCase__) if evaluate else processor.get_train_examples(UpperCAmelCase__) A__ = hans_convert_examples_to_features(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features) , desc='''convert examples to features'''): if ex_index % 10_000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(UpperCAmelCase__))) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A__ = tf.data.Dataset.from_generator( UpperCAmelCase__ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([]), '''input_ids''': tf.TensorShape([None, None]), '''attention_mask''': tf.TensorShape([None, None]), '''token_type_ids''': tf.TensorShape([None, None]), }, tf.TensorShape([]), ) , ) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' return self.dataset def __len__( self : Tuple) ->Any: '''simple docstring''' return len(self.features) def __getitem__( self : List[str] , UpperCAmelCase__ : int) ->InputFeatures: '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: '''simple docstring''' return self.label_list class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, Any]) ->Optional[Any]: '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase__ , '''heuristics_train_set.txt''')) , '''train''') def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any]) ->int: '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase__ , '''heuristics_evaluation_set.txt''')) , '''dev''') def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple) ->List[str]: '''simple docstring''' A__ = [] for i, line in enumerate(UpperCAmelCase__): if i == 0: continue A__ = '''%s-%s''' % (set_type, line[0]) A__ = line[5] A__ = line[6] A__ = line[7][2:] if line[7].startswith('''ex''') else line[7] A__ = line[0] examples.append(InputExample(guid=UpperCAmelCase__ , text_a=UpperCAmelCase__ , text_b=UpperCAmelCase__ , label=UpperCAmelCase__ , pairID=UpperCAmelCase__)) return examples def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: """simple docstring""" A__ = {label: i for i, label in enumerate(lowercase_ )} A__ = [] for ex_index, example in tqdm.tqdm(enumerate(lowercase_ ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) A__ = tokenizer( example.text_a , example.text_b , add_special_tokens=lowercase_ , max_length=lowercase_ , padding='''max_length''' , truncation=lowercase_ , return_overflowing_tokens=lowercase_ , ) A__ = label_map[example.label] if example.label in label_map else 0 A__ = int(example.pairID ) features.append(InputFeatures(**lowercase_ , label=lowercase_ , pairID=lowercase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features _lowerCamelCase : int = { """hans""": 3, } _lowerCamelCase : int = { """hans""": HansProcessor, }
231
from __future__ import annotations from collections import Counter from random import random class UpperCamelCase_ : '''simple docstring''' def __init__( self : Any) ->Optional[Any]: '''simple docstring''' A__ = {} def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str) ->None: '''simple docstring''' A__ = {} def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : float) ->None: '''simple docstring''' if nodea not in self.connections: self.add_node(UpperCAmelCase__) if nodea not in self.connections: self.add_node(UpperCAmelCase__) A__ = probability def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->list[str]: '''simple docstring''' return list(self.connections) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str) ->str: '''simple docstring''' A__ = 0 A__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> dict[str, int]: """simple docstring""" A__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowercase_ , lowercase_ , lowercase_ ) A__ = Counter(graph.get_nodes() ) A__ = start for _ in range(lowercase_ ): A__ = graph.transition(lowercase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
231
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'bloom' lowerCamelCase = ['past_key_values'] lowerCamelCase = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self : int,lowercase_ : Tuple=2_5_0_8_8_0,lowercase_ : Optional[int]=6_4,lowercase_ : int=2,lowercase_ : Union[str, Any]=8,lowercase_ : str=1E-5,lowercase_ : List[Any]=0.02,lowercase_ : List[Any]=True,lowercase_ : Union[str, Any]=1,lowercase_ : Optional[int]=2,lowercase_ : Any=False,lowercase_ : Any=0.0,lowercase_ : int=0.0,lowercase_ : Any=1,lowercase_ : Dict=False,**lowercase_ : Tuple,)-> Dict: '''simple docstring''' A__ = vocab_size # Backward compatibility with n_embed kwarg A__ = kwargs.pop('n_embed',lowercase_ ) A__ = hidden_size if n_embed is None else n_embed A__ = n_layer A__ = n_head A__ = layer_norm_epsilon A__ = initializer_range A__ = use_cache A__ = pretraining_tp A__ = apply_residual_connection_post_layernorm A__ = hidden_dropout A__ = attention_dropout A__ = bos_token_id A__ = eos_token_id A__ = slow_but_exact super().__init__(bos_token_id=lowercase_,eos_token_id=lowercase_,**lowercase_ ) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = version.parse('1.12' ) def __init__( self : Union[str, Any],lowercase_ : PretrainedConfig,lowercase_ : str = "default",lowercase_ : List[PatchingSpec] = None,lowercase_ : bool = False,)-> List[str]: '''simple docstring''' super().__init__(lowercase_,task=lowercase_,patching_specs=lowercase_,use_past=lowercase_ ) if not getattr(self._config,'pad_token_id',lowercase_ ): # TODO: how to do that better? A__ = 0 @property def snake_case__ ( self : Optional[int] )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' A__ = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowercase_,direction='inputs',inverted_values_shape=lowercase_ ) A__ = {0: 'batch', 1: 'past_sequence + sequence'} else: A__ = {0: 'batch', 1: 'sequence'} return common_inputs @property def snake_case__ ( self : Tuple )-> int: '''simple docstring''' return self._config.n_layer @property def snake_case__ ( self : Union[str, Any] )-> int: '''simple docstring''' return self._config.n_head @property def snake_case__ ( self : Tuple )-> float: '''simple docstring''' return 1E-3 def snake_case__ ( self : Union[str, Any],lowercase_ : "PreTrainedTokenizer",lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional["TensorType"] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = super(lowercase_,self ).generate_dummy_inputs( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) # We need to order the input in the way they appears in the forward() A__ = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A__ , A__ = common_inputs['input_ids'].shape # Not using the same length for past_key_values A__ = seqlen + 2 A__ = self._config.hidden_size // self.num_attention_heads A__ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) A__ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) A__ = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(self.num_layers ) ] A__ = common_inputs['attention_mask'] if self.use_past: A__ = ordered_inputs['attention_mask'].dtype A__ = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowercase_,lowercase_,dtype=lowercase_ )],dim=1 ) return ordered_inputs @property def snake_case__ ( self : List[str] )-> int: '''simple docstring''' return 1_3
7
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ReformerTokenizer lowerCamelCase = ReformerTokenizerFast lowerCamelCase = True lowerCamelCase = False lowerCamelCase = True def snake_case__ ( self : Any )-> str: '''simple docstring''' super().setUp() A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : Optional[int] )-> Optional[int]: '''simple docstring''' A__ = '<s>' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ ) def snake_case__ ( self : str )-> Tuple: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],'<unk>' ) self.assertEqual(vocab_keys[1],'<s>' ) self.assertEqual(vocab_keys[-1],'j' ) self.assertEqual(len(lowercase_ ),1_0_0_0 ) def snake_case__ ( self : Dict )-> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size,1_0_0_0 ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = 'I was born in 92000, and this is falsé.' A__ = tokenizer.tokenize(lowercase_ ) A__ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(lowercase_ ) A__ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) def snake_case__ ( self : int,lowercase_ : Optional[int]=1_5 )-> Optional[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A__ = self.rust_tokenizer_class.from_pretrained(lowercase_,**lowercase_ ) # Simple input A__ = 'This is a simple input' A__ = ['This is a simple input 1', 'This is a simple input 2'] A__ = ('This is a simple input', 'This is a pair') A__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' ) # Simple input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' ) # Simple input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' ) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' ) # Pair input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',) def snake_case__ ( self : List[Any] )-> Tuple: '''simple docstring''' pass def snake_case__ ( self : Dict )-> str: '''simple docstring''' A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ),[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2],) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ],) A__ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4],) A__ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ],) @cached_property def snake_case__ ( self : Optional[int] )-> Any: '''simple docstring''' return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' ) @slow def snake_case__ ( self : str )-> Tuple: '''simple docstring''' A__ = 'Hello World!' A__ = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7] self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) ) @slow def snake_case__ ( self : Optional[int] )-> str: '''simple docstring''' A__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) A__ = [ 1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 3_5, 2_8, 2_7_5, 3, 2_5_9, 2_9_7, 2_6_0, 8_4, 4, 3_5, 1_1_0, 4_4, 8, 2_5_9, 9_1, 2_6_8, 2_1, 1_1, 2_0_9, 2_7_4, 1_0_9, 2_6_6, 2_7_7, 1_1_7, 8_6, 9_3, 3_1_5, 2_5_8, 2_7_8, 2_5_8, 2_7_7, 2_5_8, 0, 2_5_8, 2_8_8, 2_5_8, 3_1_9, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 2_8_7, 2_5_8, 3_1_5, 2_5_8, 2_8_9, 2_5_8, 2_7_8, 9_9, 2_6_9, 2_6_6, 2_6_2, 8, 2_5_9, 2_4_1, 4, 2_1_7, 2_3_0, 2_6_8, 2_6_6, 5_5, 1_6_8, 1_0_6, 7_5, 1_9_3, 2_6_6, 2_2_3, 2_7, 4_9, 2_6, 2_8_2, 2_5, 2_6_4, 2_9_9, 1_9, 2_6, 0, 2_5_8, 2_7_7, 1_1_7, 8_6, 9_3, 1_7_6, 1_8_3, 2_7_0, 1_1, 2_6_2, 4_2, 6_1, 2_6_5, ] self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) ) @require_torch @slow def snake_case__ ( self : int )-> Any: '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence A__ = list(self.big_tokenizer.get_vocab().keys() )[:1_0] A__ = ' '.join(lowercase_ ) A__ = self.big_tokenizer.encode_plus(lowercase_,return_tensors='pt' ) A__ = self.big_tokenizer.batch_encode_plus([sequence, sequence],return_tensors='pt' ) A__ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) A__ = encoded_sequence['input_ids'].shape A__ = ReformerModel(lowercase_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase_ ) model(**lowercase_ ) @slow def snake_case__ ( self : int )-> Tuple: '''simple docstring''' A__ = {'input_ids': [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 A__ = [ 'This is a very simple sentence.', 'The quick brown fox jumps over the lazy dog.', ] self.tokenizer_integration_test_util( expected_encoding=lowercase_,model_name='google/reformer-crime-and-punishment',revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a',padding=lowercase_,sequences=lowercase_,)
7
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : str = 1 __lowerCAmelCase : int = 3 __lowerCAmelCase : int = (32, 32) __lowerCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(_a ) @property def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: """simple docstring""" def extract(*lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any] ): class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : Union[str, Any] = torch.ones([0] ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Optional[Any] ) -> Any: """simple docstring""" self.pixel_values.to(_a ) return self return Out() return extract def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: """simple docstring""" __lowerCAmelCase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : int = self.dummy_cond_unet __lowerCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_a , set_alpha_to_one=_a , ) __lowerCAmelCase : List[Any] = self.dummy_vae __lowerCAmelCase : Dict = self.dummy_text_encoder __lowerCAmelCase : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __lowerCAmelCase : Tuple = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) __lowerCAmelCase : List[Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __lowerCAmelCase : Optional[int] = '''A painting of a squirrel eating a burger''' __lowerCAmelCase : Union[str, Any] = torch.Generator(device=_a ).manual_seed(0 ) __lowerCAmelCase : Dict = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __lowerCAmelCase : Union[str, Any] = output.images __lowerCAmelCase : Optional[int] = torch.Generator(device=_a ).manual_seed(0 ) __lowerCAmelCase : int = sd_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=_a , )[0] __lowerCAmelCase : Dict = image[0, -3:, -3:, -1] __lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : Union[str, Any] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : int = self.dummy_cond_unet __lowerCAmelCase : int = PNDMScheduler(skip_prk_steps=_a ) __lowerCAmelCase : Dict = self.dummy_vae __lowerCAmelCase : int = self.dummy_text_encoder __lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __lowerCAmelCase : Tuple = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) __lowerCAmelCase : List[Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __lowerCAmelCase : Tuple = '''A painting of a squirrel eating a burger''' __lowerCAmelCase : List[Any] = torch.Generator(device=_a ).manual_seed(0 ) __lowerCAmelCase : List[Any] = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __lowerCAmelCase : int = output.images __lowerCAmelCase : int = torch.Generator(device=_a ).manual_seed(0 ) __lowerCAmelCase : Optional[Any] = sd_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=_a , )[0] __lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] __lowerCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : List[str] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: """simple docstring""" __lowerCAmelCase : int = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=_a ) assert isinstance(_a , _a ) assert isinstance(pipe.scheduler , _a ) assert pipe.safety_checker is None __lowerCAmelCase : Union[str, Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_a ) __lowerCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained(_a ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowerCAmelCase : List[str] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.dummy_cond_unet __lowerCAmelCase : Dict = PNDMScheduler(skip_prk_steps=_a ) __lowerCAmelCase : List[Any] = self.dummy_vae __lowerCAmelCase : str = self.dummy_text_encoder __lowerCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 __lowerCAmelCase : Union[str, Any] = unet.half() __lowerCAmelCase : Optional[int] = vae.half() __lowerCAmelCase : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk __lowerCAmelCase : List[Any] = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) __lowerCAmelCase : Union[str, Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __lowerCAmelCase : Optional[int] = '''A painting of a squirrel eating a burger''' __lowerCAmelCase : str = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase : int = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=_a ) __lowerCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __lowerCAmelCase : Union[str, Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __lowerCAmelCase : Optional[Any] = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) __lowerCAmelCase : Any = 40_03_66_03_46 __lowerCAmelCase : Tuple = 7 # without safety guidance (sld_guidance_scale = 0) __lowerCAmelCase : Any = torch.manual_seed(_a ) __lowerCAmelCase : Any = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) __lowerCAmelCase : Optional[int] = output.images __lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] __lowerCAmelCase : List[Any] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) __lowerCAmelCase : List[Any] = torch.manual_seed(_a ) __lowerCAmelCase : List[str] = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowerCAmelCase : List[str] = output.images __lowerCAmelCase : Dict = image[0, -3:, -3:, -1] __lowerCAmelCase : Dict = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=_a ) __lowerCAmelCase : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __lowerCAmelCase : Any = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __lowerCAmelCase : Tuple = '''padme amidala taking a bath artwork, safe for work, no nudity''' __lowerCAmelCase : Union[str, Any] = 27_34_97_17_55 __lowerCAmelCase : int = 7 __lowerCAmelCase : Optional[Any] = torch.manual_seed(_a ) __lowerCAmelCase : str = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) __lowerCAmelCase : str = output.images __lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] __lowerCAmelCase : List[str] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 __lowerCAmelCase : Union[str, Any] = torch.manual_seed(_a ) __lowerCAmelCase : Any = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowerCAmelCase : List[str] = output.images __lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] __lowerCAmelCase : Optional[int] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) __lowerCAmelCase : Any = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __lowerCAmelCase : Tuple = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) __lowerCAmelCase : Optional[Any] = 10_44_35_52_34 __lowerCAmelCase : Any = 12 __lowerCAmelCase : int = torch.manual_seed(_a ) __lowerCAmelCase : List[Any] = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) __lowerCAmelCase : str = output.images __lowerCAmelCase : str = image[0, -3:, -3:, -1] __lowerCAmelCase : Optional[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 __lowerCAmelCase : Union[str, Any] = torch.manual_seed(_a ) __lowerCAmelCase : Tuple = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowerCAmelCase : Any = output.images __lowerCAmelCase : Dict = image[0, -3:, -3:, -1] __lowerCAmelCase : Any = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
365
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : Union[str, Any] =MBartConfig lowerCamelCase : Optional[Any] ={} lowerCamelCase : Dict ="gelu" def __init__( self : str , lowerCAmelCase : Any , lowerCAmelCase : List[Any]=13 , lowerCAmelCase : List[str]=7 , lowerCAmelCase : List[str]=True , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Union[str, Any]=99 , lowerCAmelCase : List[str]=32 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : Any=37 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : Dict=20 , lowerCAmelCase : Any=2 , lowerCAmelCase : Union[str, Any]=1 , lowerCAmelCase : str=0 , ) -> Any: """simple docstring""" __lowerCAmelCase : str = parent __lowerCAmelCase : int = batch_size __lowerCAmelCase : int = seq_length __lowerCAmelCase : Tuple = is_training __lowerCAmelCase : Optional[int] = use_labels __lowerCAmelCase : str = vocab_size __lowerCAmelCase : List[str] = hidden_size __lowerCAmelCase : Dict = num_hidden_layers __lowerCAmelCase : int = num_attention_heads __lowerCAmelCase : Any = intermediate_size __lowerCAmelCase : Dict = hidden_dropout_prob __lowerCAmelCase : List[Any] = attention_probs_dropout_prob __lowerCAmelCase : Tuple = max_position_embeddings __lowerCAmelCase : Union[str, Any] = eos_token_id __lowerCAmelCase : Optional[Any] = pad_token_id __lowerCAmelCase : int = bos_token_id def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase : int = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCAmelCase : Tuple = prepare_mbart_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = TFMBartModel(config=lowerCAmelCase ).get_decoder() __lowerCAmelCase : Tuple = inputs_dict["""input_ids"""] __lowerCAmelCase : Optional[Any] = input_ids[:1, :] __lowerCAmelCase : Union[str, Any] = inputs_dict["""attention_mask"""][:1, :] __lowerCAmelCase : Tuple = inputs_dict["""head_mask"""] __lowerCAmelCase : Any = 1 # first forward pass __lowerCAmelCase : List[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) __lowerCAmelCase ,__lowerCAmelCase : List[str] = outputs.to_tuple() __lowerCAmelCase : Union[str, Any] = past_key_values[1] def snake_case_ (__A : str , __A : Union[str, Any] , __A : Tuple , __A : Tuple=None , __A : Optional[Any]=None , __A : Optional[Any]=None , __A : Optional[int]=None , __A : Optional[Any]=None , ) -> int: if attention_mask is None: __lowerCAmelCase : Dict = tf.cast(tf.math.not_equal(__A , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCAmelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCAmelCase : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] =(TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCamelCase : List[str] =(TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCamelCase : Union[str, Any] =( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase : str =True lowerCamelCase : Tuple =False lowerCamelCase : Dict =False def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = TFMBartModelTester(self ) __lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" lowerCamelCase : Union[str, Any] =[ " UN Chief Says There Is No Military Solution in Syria", ] lowerCamelCase : Tuple =[ "Şeful ONU declară că nu există o soluţie militară în Siria", ] lowerCamelCase : List[Any] ="facebook/mbart-large-en-ro" @cached_property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : int = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def SCREAMING_SNAKE_CASE ( self : Optional[Any] , **lowerCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.translate_src_text(**lowerCAmelCase ) self.assertListEqual(self.expected_text , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **lowerCAmelCase : int ) -> str: """simple docstring""" __lowerCAmelCase : Dict = self.tokenizer(self.src_text , **lowerCAmelCase , return_tensors="""tf""" ) __lowerCAmelCase : Union[str, Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __lowerCAmelCase : List[str] = self.tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) return generated_words @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: """simple docstring""" self._assert_generated_batch_equal_expected()
139
0
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a__: Union[str, Any] = logging.get_logger(__name__) a__: Any = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def UpperCamelCase__( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] )->List[Any]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: A__ = TOKENIZER_CLASSES else: A__ = {tokenizer_name: getattr(UpperCamelCase__ , tokenizer_name + '''Fast''' )} logger.info(f"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: A__ = TOKENIZER_CLASSES[tokenizer_name] A__ = True if checkpoint_name is None: A__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: A__ = [checkpoint_name] logger.info(f"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(f"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer A__ = tokenizer_class.from_pretrained(UpperCamelCase__ , force_download=UpperCamelCase__ ) # Save fast tokenizer logger.info(f"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: A__ , A__ = checkpoint.split('''/''' ) A__ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) elif add_prefix: A__ = checkpoint A__ = dump_path else: A__ = None A__ = dump_path logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: A__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] A__ = file_path.split(UpperCamelCase__ )[-1][0] if next_char == "/": A__ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) A__ = None logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) A__ = tokenizer.save_pretrained( UpperCamelCase__ , legacy_format=UpperCamelCase__ , filename_prefix=UpperCamelCase__ ) logger.info(f"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(UpperCamelCase__ ) logger.info(f"=> removing {file_name}" ) if __name__ == "__main__": a__: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) a__: Union[str, Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
193
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer a__: Optional[int] = logging.get_logger(__name__) a__: int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__: Optional[Any] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } a__: List[str] = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } a__: Optional[Any] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BertTokenizer def __init__( self,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=True,__lowerCamelCase="[UNK]",__lowerCamelCase="[SEP]",__lowerCamelCase="[PAD]",__lowerCamelCase="[CLS]",__lowerCamelCase="[MASK]",__lowerCamelCase=True,__lowerCamelCase=None,**__lowerCamelCase,): super().__init__( __lowerCamelCase,tokenizer_file=__lowerCamelCase,do_lower_case=__lowerCamelCase,unk_token=__lowerCamelCase,sep_token=__lowerCamelCase,pad_token=__lowerCamelCase,cls_token=__lowerCamelCase,mask_token=__lowerCamelCase,tokenize_chinese_chars=__lowerCamelCase,strip_accents=__lowerCamelCase,**__lowerCamelCase,) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''',__lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''',__lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''',__lowerCamelCase ) != tokenize_chinese_chars ): A__ = getattr(__lowerCamelCase,normalizer_state.pop('''type''' ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**__lowerCamelCase ) A__ = do_lower_case def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None ): A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = self._tokenizer.model.save(__lowerCamelCase,name=__lowerCamelCase ) return tuple(__lowerCamelCase )
193
1
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __UpperCAmelCase : Any = getLogger(__name__) def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int = 1_0_2_4 , SCREAMING_SNAKE_CASE_ : List[Any]="val" , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : Dict="summarization" , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : List[Any]=1 , SCREAMING_SNAKE_CASE_ : Dict = None , SCREAMING_SNAKE_CASE_ : str="" , **SCREAMING_SNAKE_CASE_ : Any , ): """simple docstring""" UpperCamelCase : Optional[int] = str(SCREAMING_SNAKE_CASE_ ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = Path(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = save_dir.joinpath(F"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE_ ).cuda() if fpaa: UpperCamelCase : str = model.half() # determine if we need to increase num_beams use_task_specific_params(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # update config with task specific params UpperCamelCase : Union[str, Any] = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCamelCase : List[str] = num_return_sequences UpperCamelCase : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCamelCase : Union[str, Any] = tokenizer.model_max_length if prefix is None: UpperCamelCase : List[str] = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' UpperCamelCase : List[Any] = SeqaSeqDataset( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , max_target_length=1_0_2_4 , type_path=SCREAMING_SNAKE_CASE_ , n_obs=SCREAMING_SNAKE_CASE_ , prefix=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCamelCase : Dict = ds.make_sortish_sampler(SCREAMING_SNAKE_CASE_ , distributed=SCREAMING_SNAKE_CASE_ , add_extra_examples=SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , collate_fn=ds.collate_fn ) UpperCamelCase : List[Any] = [] for batch in tqdm(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Any = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=SCREAMING_SNAKE_CASE_ , num_beams=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = batch['''ids'''] if num_return_sequences > 1: UpperCamelCase : Optional[Any] = chunks(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(SCREAMING_SNAKE_CASE_ ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return results, sampler.num_replicas def a ( ): """simple docstring""" UpperCamelCase : str = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=SCREAMING_SNAKE_CASE_ , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=SCREAMING_SNAKE_CASE_ , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=SCREAMING_SNAKE_CASE_ , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ ) parser.add_argument( '''--type_path''' , type=SCREAMING_SNAKE_CASE_ , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=SCREAMING_SNAKE_CASE_ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=SCREAMING_SNAKE_CASE_ , default=8 , required=SCREAMING_SNAKE_CASE_ , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=SCREAMING_SNAKE_CASE_ , default=-1 , required=SCREAMING_SNAKE_CASE_ , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=SCREAMING_SNAKE_CASE_ , default=1 , required=SCREAMING_SNAKE_CASE_ , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=SCREAMING_SNAKE_CASE_ , default=6_0_0 , required=SCREAMING_SNAKE_CASE_ , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ ) parser.add_argument('''--tgt_lang''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ ) parser.add_argument( '''--prefix''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) UpperCamelCase : List[Any] = time.time() UpperCamelCase , UpperCamelCase : Optional[Any] = parser.parse_known_args() UpperCamelCase : str = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE_ ) if generate_kwargs and args.local_rank <= 0: print(F"""parsed the following generate kwargs: {generate_kwargs}""" ) UpperCamelCase : Optional[Any] = Path(args.save_dir + '''_tmp''' ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) # this handles locking. UpperCamelCase : List[Any] = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(F"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCamelCase : Union[str, Any] = {} if args.src_lang is not None: UpperCamelCase : str = args.src_lang if args.tgt_lang is not None: UpperCamelCase : Optional[int] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase : Any = eval_data_dir( args.data_dir , SCREAMING_SNAKE_CASE_ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) if args.local_rank <= 0: UpperCamelCase : str = Path(args.save_dir ) save_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = gather_results_from_each_node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , args.sync_timeout ) UpperCamelCase : List[str] = combine_partial_results(SCREAMING_SNAKE_CASE_ ) if args.num_return_sequences > 1: UpperCamelCase : Tuple = save_dir.joinpath('''pseudolabel_results.json''' ) print(F"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return UpperCamelCase : List[str] = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(SCREAMING_SNAKE_CASE_ ) as f: UpperCamelCase : Union[str, Any] = [x.rstrip() for x in f.readlines()][: len(SCREAMING_SNAKE_CASE_ )] # Calculate metrics, save metrics, and save _generations.txt UpperCamelCase : List[Any] = '''translation''' in args.task UpperCamelCase : Dict = calculate_bleu if calc_bleu else calculate_rouge UpperCamelCase : List[Any] = '''bleu''' if calc_bleu else '''rouge''' UpperCamelCase : Dict = score_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = time.time() - start_time UpperCamelCase : int = round(runtime / metrics['''n_obs'''] , 4 ) UpperCamelCase : Tuple = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCamelCase : List[str] = save_dir.joinpath(F"""{args.type_path}_{metric_name}.json""" ) save_json(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , indent=SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) write_txt_file(SCREAMING_SNAKE_CASE_ , save_dir.joinpath(F"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(SCREAMING_SNAKE_CASE_ , save_dir.joinpath(F"""{args.type_path}.target""" ) ) else: shutil.rmtree(SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" UpperCamelCase : Union[str, Any] = [] for partial_result in partial_results: records.extend(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x["id"] ) UpperCamelCase : Union[str, Any] = [x['''pred'''] for x in records] return preds def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" UpperCamelCase : Union[str, Any] = time.time() logger.info('''waiting for all nodes to finish''' ) UpperCamelCase : int = None while (time.time() - start_wait) < timeout: UpperCamelCase : Optional[Any] = list(save_dir.glob('''rank_*.json''' ) ) if len(SCREAMING_SNAKE_CASE_ ) < num_replicas: continue try: # make sure all json files are fully saved UpperCamelCase : Union[str, Any] = lmap(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
315
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Union[str, Any] = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Union[str, Any] = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
315
1
'''simple docstring''' lowerCAmelCase: Optional[int] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCAmelCase: List[str] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCAmelCase: Tuple = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def lowerCamelCase__ ( _A , _A , _A ): assert len(str(_A ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: a : List[str] = year // 100 a : Dict = (5 * (century % 4) + 2) % 7 a : str = year % 100 a : Union[str, Any] = centurian % 12 a : Dict = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 a : List[Any] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) a : Tuple = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
297
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase__ ( _A , _A , _A ): if isinstance(_A , torch.Tensor ): return image elif isinstance(_A , PIL.Image.Image ): a : Any = [image] if isinstance(image[0] , PIL.Image.Image ): a : List[str] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] a : int = np.concatenate(_A , axis=0 ) a : int = np.array(_A ).astype(np.floataa ) / 255.0 a : str = image.transpose(0 , 3 , 1 , 2 ) a : str = 2.0 * image - 1.0 a : Optional[int] = torch.from_numpy(_A ) elif isinstance(image[0] , torch.Tensor ): a : Optional[Any] = torch.cat(_A , dim=0 ) return image def lowerCamelCase__ ( _A , _A , _A , _A=0.9995 ): if not isinstance(_A , np.ndarray ): a : Dict = True a : Optional[Any] = va.device a : Optional[int] = va.cpu().numpy() a : Union[str, Any] = va.cpu().numpy() a : Any = np.sum(va * va / (np.linalg.norm(_A ) * np.linalg.norm(_A )) ) if np.abs(_A ) > DOT_THRESHOLD: a : Any = (1 - t) * va + t * va else: a : Any = np.arccos(_A ) a : Tuple = np.sin(_A ) a : Optional[Any] = theta_a * t a : List[Any] = np.sin(_A ) a : Dict = np.sin(theta_a - theta_t ) / sin_theta_a a : int = sin_theta_t / sin_theta_a a : Any = sa * va + sa * va if inputs_are_torch: a : Dict = torch.from_numpy(_A ).to(_A ) return va def lowerCamelCase__ ( _A , _A ): a : Optional[int] = F.normalize(_A , dim=-1 ) a : str = F.normalize(_A , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase__ ( _A , _A ): for param in model.parameters(): a : int = value class a__( lowerCamelCase__ ): def __init__( self : str , __snake_case : AutoencoderKL , __snake_case : CLIPTextModel , __snake_case : CLIPModel , __snake_case : CLIPTokenizer , __snake_case : UNetaDConditionModel , __snake_case : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , __snake_case : CLIPFeatureExtractor , __snake_case : List[str]=None , __snake_case : List[str]=None , __snake_case : List[Any]=None , ): super().__init__() self.register_modules( vae=__snake_case , text_encoder=__snake_case , clip_model=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , feature_extractor=__snake_case , coca_model=__snake_case , coca_tokenizer=__snake_case , coca_transform=__snake_case , ) a : Optional[Any] = ( feature_extractor.size if isinstance(feature_extractor.size , __snake_case ) else feature_extractor.size['shortest_edge'] ) a : Optional[int] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __snake_case ) set_requires_grad(self.clip_model , __snake_case ) def lowercase_ ( self : int , __snake_case : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory a : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def lowercase_ ( self : Union[str, Any] ): self.enable_attention_slicing(__snake_case ) def lowercase_ ( self : Optional[Any] ): set_requires_grad(self.vae , __snake_case ) def lowercase_ ( self : Tuple ): set_requires_grad(self.vae , __snake_case ) def lowercase_ ( self : int ): set_requires_grad(self.unet , __snake_case ) def lowercase_ ( self : Union[str, Any] ): set_requires_grad(self.unet , __snake_case ) def lowercase_ ( self : int , __snake_case : Dict , __snake_case : str , __snake_case : Optional[int] ): # get the original timestep using init_timestep a : Optional[Any] = min(int(num_inference_steps * strength ) , __snake_case ) a : Union[str, Any] = max(num_inference_steps - init_timestep , 0 ) a : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase_ ( self : Dict , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Optional[Any]=None ): if not isinstance(__snake_case , torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(__snake_case )}""" ) a : Optional[Any] = image.to(device=__snake_case , dtype=__snake_case ) if isinstance(__snake_case , __snake_case ): a : Optional[int] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__snake_case ) ] a : Optional[Any] = torch.cat(__snake_case , dim=0 ) else: a : Union[str, Any] = self.vae.encode(__snake_case ).latent_dist.sample(__snake_case ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor a : List[str] = 0.18215 * init_latents a : str = init_latents.repeat_interleave(__snake_case , dim=0 ) a : Dict = randn_tensor(init_latents.shape , generator=__snake_case , device=__snake_case , dtype=__snake_case ) # get latents a : Dict = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case ) a : int = init_latents return latents def lowercase_ ( self : List[str] , __snake_case : Dict ): a : List[Any] = self.coca_transform(__snake_case ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): a : Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) a : Union[str, Any] = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def lowercase_ ( self : Tuple , __snake_case : Any , __snake_case : Optional[Any] ): a : List[Any] = self.feature_extractor.preprocess(__snake_case ) a : Optional[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() a : int = self.clip_model.get_image_features(__snake_case ) a : str = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__snake_case ) a : Tuple = image_embeddings_clip.repeat_interleave(__snake_case , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowercase_ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : List[Any] , ): a : Optional[Any] = latents.detach().requires_grad_() a : List[Any] = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual a : Any = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): a : int = self.scheduler.alphas_cumprod[timestep] a : Any = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a : List[str] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 a : Tuple = torch.sqrt(__snake_case ) a : str = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __snake_case ): a : List[Any] = self.scheduler.sigmas[index] a : Optional[int] = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor a : Union[str, Any] = 1 / 0.18215 * sample a : str = self.vae.decode(__snake_case ).sample a : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) a : Tuple = transforms.Resize(self.feature_extractor_size )(__snake_case ) a : List[str] = self.normalize(__snake_case ).to(latents.dtype ) a : List[str] = self.clip_model.get_image_features(__snake_case ) a : Tuple = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__snake_case ) a : int = spherical_dist_loss(__snake_case , __snake_case ).mean() * clip_guidance_scale a : List[str] = -torch.autograd.grad(__snake_case , __snake_case )[0] if isinstance(self.scheduler , __snake_case ): a : List[Any] = latents.detach() + grads * (sigma**2) a : Optional[int] = noise_pred_original else: a : List[Any] = noise_pred_original - torch.sqrt(__snake_case ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Optional[int] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] , __snake_case : Optional[str] = None , __snake_case : Optional[str] = None , __snake_case : Optional[int] = 5_12 , __snake_case : Optional[int] = 5_12 , __snake_case : float = 0.6 , __snake_case : Optional[int] = 50 , __snake_case : Optional[float] = 7.5 , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[float] = 1_00 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , __snake_case : float = 0.8 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , ): if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(__snake_case )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(__snake_case , torch.Generator ) and batch_size > 1: a : Dict = [generator] + [None] * (batch_size - 1) a : Any = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] a : List[str] = [x[0] for x in coca_is_none if x[1]] a : List[str] = ', '.join(__snake_case ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__snake_case ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) a : int = self.get_image_description(__snake_case ) if style_prompt is None: if len(__snake_case ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) a : Union[str, Any] = self.get_image_description(__snake_case ) # get prompt text embeddings for content and style a : Optional[Any] = self.tokenizer( __snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=__snake_case , return_tensors='pt' , ) a : Dict = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] a : Dict = self.tokenizer( __snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=__snake_case , return_tensors='pt' , ) a : Dict = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] a : Any = slerp(__snake_case , __snake_case , __snake_case ) # duplicate text embeddings for each generation per prompt a : Optional[Any] = text_embeddings.repeat_interleave(__snake_case , dim=0 ) # set timesteps a : int = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) a : Any = {} if accepts_offset: a : Optional[Any] = 1 self.scheduler.set_timesteps(__snake_case , **__snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) a , a : Tuple = self.get_timesteps(__snake_case , __snake_case , self.device ) a : Optional[int] = timesteps[:1].repeat(__snake_case ) # Preprocess image a : Optional[Any] = preprocess(__snake_case , __snake_case , __snake_case ) a : List[Any] = self.prepare_latents( __snake_case , __snake_case , __snake_case , text_embeddings.dtype , self.device , __snake_case ) a : str = preprocess(__snake_case , __snake_case , __snake_case ) a : Union[str, Any] = self.prepare_latents( __snake_case , __snake_case , __snake_case , text_embeddings.dtype , self.device , __snake_case ) a : Union[str, Any] = slerp(__snake_case , __snake_case , __snake_case ) if clip_guidance_scale > 0: a : Dict = self.get_clip_image_embeddings(__snake_case , __snake_case ) a : int = self.get_clip_image_embeddings(__snake_case , __snake_case ) a : List[str] = slerp( __snake_case , __snake_case , __snake_case ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. a : int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: a : Any = content_text_input.input_ids.shape[-1] a : List[Any] = self.tokenizer([''] , padding='max_length' , max_length=__snake_case , return_tensors='pt' ) a : List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt a : Dict = uncond_embeddings.repeat_interleave(__snake_case , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes a : Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. a : List[str] = (batch_size, self.unet.config.in_channels, height // 8, width // 8) a : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps a : int = torch.randn(__snake_case , generator=__snake_case , device='cpu' , dtype=__snake_case ).to( self.device ) else: a : Optional[int] = torch.randn(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) a : List[str] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler a : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a : Optional[Any] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a : Union[str, Any] = {} if accepts_eta: a : List[str] = eta # check if the scheduler accepts generator a : List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: a : Any = generator with self.progress_bar(total=__snake_case ): for i, t in enumerate(__snake_case ): # expand the latents if we are doing classifier free guidance a : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a : Dict = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual a : List[Any] = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample # perform classifier free guidance if do_classifier_free_guidance: a , a : List[str] = noise_pred.chunk(2 ) a : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: a : Optional[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) a , a : Union[str, Any] = self.cond_fn( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # compute the previous noisy sample x_t -> x_t-1 a : Any = self.scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor a : Tuple = 1 / 0.18215 * latents a : Optional[int] = self.vae.decode(__snake_case ).sample a : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) a : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a : str = self.numpy_to_pil(__snake_case ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__snake_case , nsfw_content_detected=__snake_case )
297
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase__ = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=None , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[int] ): super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if config is None: assert isinstance(self.model , __lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) _UpperCAmelCase = self.model.config else: _UpperCAmelCase = config _UpperCAmelCase = data_args _UpperCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , __lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _UpperCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase = label_smoothed_nll_loss def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int ): if self.optimizer is None: _UpperCAmelCase = ["""bias""", """LayerNorm.weight"""] _UpperCAmelCase = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _UpperCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase = Adafactor _UpperCAmelCase = {"""scale_parameter""": False, """relative_step""": False} else: _UpperCAmelCase = AdamW _UpperCAmelCase = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _UpperCAmelCase = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase = OSS( params=__lowerCAmelCase , optim=__lowerCAmelCase , **__lowerCAmelCase , ) else: _UpperCAmelCase = optimizer_cls(__lowerCAmelCase , **__lowerCAmelCase ) if self.lr_scheduler is None: _UpperCAmelCase = self._get_lr_scheduler(__lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__lowerCAmelCase ) return scheduler def lowerCAmelCase_ ( self : Optional[int] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase = model(**__lowerCAmelCase , labels=__lowerCAmelCase , use_cache=__lowerCAmelCase )[:2] else: # compute label smoothed loss _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = torch.nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = self.loss_fn(__lowerCAmelCase , __lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ): _UpperCAmelCase = inputs.pop("""labels""" ) _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return loss def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : nn.Module , __lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]] , __lowerCAmelCase : bool , __lowerCAmelCase : Optional[List[str]] = None , ): _UpperCAmelCase = self._prepare_inputs(__lowerCAmelCase ) _UpperCAmelCase = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) _UpperCAmelCase = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ): # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) _UpperCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase = tensor return padded_tensor
30
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __A : Optional[int] = logging.get_logger(__name__) def __UpperCamelCase ( _A : nn.ModuleList , _A : nn.ModuleList , _A : List[int] ) ->None: """simple docstring""" lowerCamelCase_ =nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_A ) == len(_A ), f'{len(_A )} != {len(_A )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __A : str = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __A : Optional[Any] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __UpperCamelCase ( _A : Dict , _A : List[Any] ) ->Optional[int]: """simple docstring""" try: lowerCamelCase_ =LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' f' {n_student}' ) return list(range(_A ) ) def __UpperCamelCase ( _A : Any , _A : List[Any] ) ->List[int]: """simple docstring""" if n_student > n_teacher: raise ValueError(f'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(_A ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __UpperCamelCase ( _A : Union[str, PreTrainedModel] , _A : Union[str, Path] = "student" , _A : Union[int, None] = None , _A : Union[int, None] = None , _A : Any=False , _A : Optional[Any]=None , _A : Optional[int]=None , **_A : Tuple , ) ->Tuple[PreTrainedModel, List[int], List[int]]: """simple docstring""" lowerCamelCase_ ="""encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(_A , _A ): AutoTokenizer.from_pretrained(_A ).save_pretrained(_A ) # purely for convenience lowerCamelCase_ =AutoModelForSeqaSeqLM.from_pretrained(_A ).eval() else: assert isinstance(_A , _A ), f'teacher must be a model or string got type {type(_A )}' lowerCamelCase_ =teacher.config.to_diff_dict() try: lowerCamelCase_ , lowerCamelCase_ =teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowerCamelCase_ =teacher_e if d is None: lowerCamelCase_ =teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): lowerCamelCase_ , lowerCamelCase_ =teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowerCamelCase_ , lowerCamelCase_ =teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowerCamelCase_ =teacher_e if d is None: lowerCamelCase_ =teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_A ) # Copy weights lowerCamelCase_ =teacher.config_class(**_A ) lowerCamelCase_ =AutoModelForSeqaSeqLM.from_config(_A ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowerCamelCase_ =student.load_state_dict(teacher.state_dict() , strict=_A ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowerCamelCase_ , lowerCamelCase_ =list(range(_A ) ), list(range(_A ) ) logger.info( f'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' f' {save_path}' ) student.save_pretrained(_A ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowerCamelCase_ =pick_layers_to_copy(_A , _A ) if d_layers_to_copy is None: lowerCamelCase_ =pick_layers_to_copy(_A , _A ) try: if hasattr( _A , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _A ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _A ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _A ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _A ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _A ) copy_layers(teacher.decoder.block , student.decoder.block , _A ) logger.info( f'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) lowerCamelCase_ ={ """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(_A ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
154
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Tuple = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
154
1
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') __A : str = logging.getLogger(__name__) @dataclass class __UpperCamelCase : SCREAMING_SNAKE_CASE = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE = field( default=__lowerCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) SCREAMING_SNAKE_CASE = field( default=__lowerCamelCase , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) SCREAMING_SNAKE_CASE = field( default=__lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE = field( default=__lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE = field( default=__lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class __UpperCamelCase : SCREAMING_SNAKE_CASE = field( default=__lowerCamelCase , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE = field( default=__lowerCamelCase , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) SCREAMING_SNAKE_CASE = field( default=__lowerCamelCase , metadata={"help": "Train language if it is different from the evaluation language."} ) SCREAMING_SNAKE_CASE = field( default=__lowerCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE = field( default=__lowerCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE = field( default=__lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) SCREAMING_SNAKE_CASE = field( default=__lowerCamelCase , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) SCREAMING_SNAKE_CASE = field( default=__lowerCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) SCREAMING_SNAKE_CASE = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) SCREAMING_SNAKE_CASE = field( default=__lowerCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) SCREAMING_SNAKE_CASE = field( default=__lowerCamelCase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) datasets.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: A = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: A = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A = train_dataset.features['''label'''].names if training_args.do_eval: A = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A = eval_dataset.features['''label'''].names if training_args.do_predict: A = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A = predict_dataset.features['''label'''].names # Labels A = len(__lowerCAmelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCAmelCase , idalabel={str(__lowerCAmelCase ): label for i, label in enumerate(__lowerCAmelCase )} , labelaid={label: i for i, label in enumerate(__lowerCAmelCase )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: A = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch A = False def preprocess_function(lowercase__ ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=__lowerCAmelCase , max_length=data_args.max_seq_length , truncation=__lowerCAmelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: A = min(len(__lowerCAmelCase ) , data_args.max_train_samples ) A = train_dataset.select(range(__lowerCAmelCase ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): A = train_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(__lowerCAmelCase ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: A = min(len(__lowerCAmelCase ) , data_args.max_eval_samples ) A = eval_dataset.select(range(__lowerCAmelCase ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): A = eval_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: A = min(len(__lowerCAmelCase ) , data_args.max_predict_samples ) A = predict_dataset.select(range(__lowerCAmelCase ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): A = predict_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function A = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase__ ): A = p.predictions[0] if isinstance(p.predictions , __lowerCAmelCase ) else p.predictions A = np.argmax(__lowerCAmelCase , axis=1 ) return metric.compute(predictions=__lowerCAmelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: A = default_data_collator elif training_args.fpaa: A = DataCollatorWithPadding(__lowerCAmelCase , pad_to_multiple_of=8 ) else: A = None # Initialize our Trainer A = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: A = None if training_args.resume_from_checkpoint is not None: A = training_args.resume_from_checkpoint elif last_checkpoint is not None: A = last_checkpoint A = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) A = train_result.metrics A = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCAmelCase ) ) A = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , __lowerCAmelCase ) trainer.save_metrics("train" , __lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) A = trainer.evaluate(eval_dataset=__lowerCAmelCase ) A = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCAmelCase ) A = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) A = trainer.predict(__lowerCAmelCase , metric_key_prefix="predict" ) A = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__lowerCAmelCase ) ) A = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.log_metrics("predict" , __lowerCAmelCase ) trainer.save_metrics("predict" , __lowerCAmelCase ) A = np.argmax(__lowerCAmelCase , axis=1 ) A = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(__lowerCAmelCase ): A = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
350
"""simple docstring""" __A : Dict = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __A : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] __A : List[Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
57
0
from math import loga def __lowercase ( a__ ) -> int: if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(a__ , a__ ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
257
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowercase ( ) -> List[str]: __SCREAMING_SNAKE_CASE = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ).convert('RGB' ) return image def __lowercase ( a__ ) -> Dict: __SCREAMING_SNAKE_CASE = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def __lowercase ( a__ , a__ , a__ ) -> int: __SCREAMING_SNAKE_CASE = dct.pop(a__ ) __SCREAMING_SNAKE_CASE = val def __lowercase ( a__ , a__ ) -> Optional[int]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __SCREAMING_SNAKE_CASE = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict __SCREAMING_SNAKE_CASE = torch.cat((q_bias, torch.zeros_like(a__ , requires_grad=a__ ), v_bias) ) __SCREAMING_SNAKE_CASE = qkv_bias def __lowercase ( a__ , a__ ) -> int: __SCREAMING_SNAKE_CASE = 3_64 if 'coco' in model_name else 2_24 __SCREAMING_SNAKE_CASE = BlipaVisionConfig(image_size=a__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=a__ ).to_dict() elif "opt-6.7b" in model_name: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=a__ ).to_dict() elif "t5-xl" in model_name: __SCREAMING_SNAKE_CASE = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __SCREAMING_SNAKE_CASE = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() __SCREAMING_SNAKE_CASE = BlipaConfig(vision_config=a__ , text_config=a__ ) return config, image_size @torch.no_grad() def __lowercase ( a__ , a__=None , a__=False ) -> Any: __SCREAMING_SNAKE_CASE = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) __SCREAMING_SNAKE_CASE = tokenizer('\n' , add_special_tokens=a__ ).input_ids[0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_blipa_config(a__ , eos_token_id=a__ ) __SCREAMING_SNAKE_CASE = BlipaForConditionalGeneration(a__ ).eval() __SCREAMING_SNAKE_CASE = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model_name_to_original[model_name] # load original model print('Loading original model...' ) __SCREAMING_SNAKE_CASE = 'cuda' if torch.cuda.is_available() else 'cpu' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = load_model_and_preprocess( name=a__ , model_type=a__ , is_eval=a__ , device=a__ ) original_model.eval() print('Done!' ) # update state dict keys __SCREAMING_SNAKE_CASE = original_model.state_dict() __SCREAMING_SNAKE_CASE = create_rename_keys(a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __SCREAMING_SNAKE_CASE = state_dict.pop(a__ ) if key.startswith('Qformer.bert' ): __SCREAMING_SNAKE_CASE = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __SCREAMING_SNAKE_CASE = key.replace('self' , 'attention' ) if "opt_proj" in key: __SCREAMING_SNAKE_CASE = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: __SCREAMING_SNAKE_CASE = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): __SCREAMING_SNAKE_CASE = key.replace('opt' , 'language' ) if key.startswith('t5' ): __SCREAMING_SNAKE_CASE = key.replace('t5' , 'language' ) __SCREAMING_SNAKE_CASE = val # read in qv biases read_in_q_v_bias(a__ , a__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hf_model.load_state_dict(a__ , strict=a__ ) assert len(a__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __SCREAMING_SNAKE_CASE = load_demo_image() __SCREAMING_SNAKE_CASE = vis_processors['eval'](a__ ).unsqueeze(0 ).to(a__ ) __SCREAMING_SNAKE_CASE = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(a__ ) # create processor __SCREAMING_SNAKE_CASE = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=a__ , image_std=a__ ) __SCREAMING_SNAKE_CASE = BlipaProcessor(image_processor=a__ , tokenizer=a__ ) __SCREAMING_SNAKE_CASE = processor(images=a__ , return_tensors='pt' ).pixel_values.to(a__ ) # make sure processor creates exact same pixel values assert torch.allclose(a__ , a__ ) original_model.to(a__ ) hf_model.to(a__ ) with torch.no_grad(): if "opt" in model_name: __SCREAMING_SNAKE_CASE = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits __SCREAMING_SNAKE_CASE = hf_model(a__ , a__ ).logits else: __SCREAMING_SNAKE_CASE = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits __SCREAMING_SNAKE_CASE = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) __SCREAMING_SNAKE_CASE = hf_model(a__ , a__ , labels=a__ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __SCREAMING_SNAKE_CASE = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=a__ ) assert torch.allclose(logits[0, :3, :3] , a__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": __SCREAMING_SNAKE_CASE = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=a__ ) else: # cast to same type __SCREAMING_SNAKE_CASE = logits.dtype assert torch.allclose(original_logits.to(a__ ) , a__ , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) __SCREAMING_SNAKE_CASE = '' __SCREAMING_SNAKE_CASE = tokenizer(a__ , return_tensors='pt' ).input_ids.to(a__ ) __SCREAMING_SNAKE_CASE = original_model.generate({'image': original_pixel_values} ) __SCREAMING_SNAKE_CASE = hf_model.generate( a__ , a__ , do_sample=a__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , a__ ) __SCREAMING_SNAKE_CASE = input_ids.shape[1] __SCREAMING_SNAKE_CASE = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=a__ ) __SCREAMING_SNAKE_CASE = [text.strip() for text in output_text] print('HF generation:' , a__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(a__ ) hf_model.save_pretrained(a__ ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ : Dict =argparse.ArgumentParser() lowerCAmelCase__ : Union[str, Any] =[ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) lowerCAmelCase__ : int =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
257
1
"""simple docstring""" import warnings from .generation import TFGenerationMixin class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.", _SCREAMING_SNAKE_CASE, )
215
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "xlm-roberta" def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-1_2 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> str: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) a =vocab_size a =hidden_size a =num_hidden_layers a =num_attention_heads a =hidden_act a =intermediate_size a =hidden_dropout_prob a =attention_probs_dropout_prob a =max_position_embeddings a =type_vocab_size a =initializer_range a =layer_norm_eps a =position_embedding_type a =use_cache a =classifier_dropout class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: a ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
215
1
import unittest from transformers import DonutProcessor a_ = "naver-clova-ix/donut-base" class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : List[str] = DonutProcessor.from_pretrained(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: """simple docstring""" UpperCamelCase_ : int = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } UpperCamelCase_ : List[Any] = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) UpperCamelCase_ : int = self.processor.tokenajson(lowerCamelCase_ ) self.assertDictEqual(lowerCamelCase_ , lowerCamelCase_ )
175
def a( A : list ) -> list: """simple docstring""" if any(not isinstance(A , A ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(A ) ): for i, (rod_upper, rod_lower) in enumerate(zip(A , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
227
0
def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" if not isinstance(UpperCamelCase_ ,UpperCamelCase_ ): raise TypeError('''only integers accepted as input''' ) else: snake_case = str(abs(UpperCamelCase_ ) ) snake_case = [list(UpperCamelCase_ ) for char in range(len(UpperCamelCase_ ) )] for index in range(len(UpperCamelCase_ ) ): num_transpositions[index].pop(UpperCamelCase_ ) return max( int(''''''.join(list(UpperCamelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
358
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'mgp-str' def __init__( self , __snake_case=[3_2, 1_2_8] , __snake_case=4 , __snake_case=3 , __snake_case=2_7 , __snake_case=3_8 , __snake_case=5_0_2_5_7 , __snake_case=3_0_5_2_2 , __snake_case=7_6_8 , __snake_case=1_2 , __snake_case=1_2 , __snake_case=4.0 , __snake_case=True , __snake_case=False , __snake_case=1E-5 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=False , __snake_case=0.02 , **__snake_case , ): super().__init__(**__snake_case ) snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = max_token_length snake_case = num_character_labels snake_case = num_bpe_labels snake_case = num_wordpiece_labels snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = mlp_ratio snake_case = distilled snake_case = layer_norm_eps snake_case = drop_rate snake_case = qkv_bias snake_case = attn_drop_rate snake_case = drop_path_rate snake_case = output_aa_attentions snake_case = initializer_range
213
0
'''simple docstring''' _lowercase : Optional[int] = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
93
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_a ) class SCREAMING_SNAKE_CASE__ ( _a ): _a = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _a = Features({'audio': Audio()} ) _a = Features({'labels': ClassLabel} ) _a = "audio" _a = "labels" def __lowercase ( self : List[str] , lowerCAmelCase : Optional[int] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) lowerCAmelCase = copy.deepcopy(self ) lowerCAmelCase = self.label_schema.copy() lowerCAmelCase = features[self.label_column] lowerCAmelCase = label_schema return task_template @property def __lowercase ( self : List[str] ): return { self.audio_column: "audio", self.label_column: "labels", }
155
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : int=False ): '''simple docstring''' try: UpperCamelCase__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase__ = default else: # KEY is set, convert it to True or False. try: UpperCamelCase__ = strtobool(UpperCamelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value lowercase = parse_flag_from_env("""RUN_SLOW""", default=False) def lowerCamelCase_ ( UpperCamelCase__ : Any ): '''simple docstring''' return unittest.skip('''Test was skipped''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Any ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests, '''test is slow''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available(), '''test requires only a CPU''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available(), '''test requires a GPU''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' return unittest.skipUnless(is_xpu_available(), '''test requires a XPU''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Any ): '''simple docstring''' return unittest.skipUnless(is_mps_available(), '''test requires a `mps` backend support in `torch`''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available(), '''test requires the Hugging Face suite''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' return unittest.skipUnless(is_bnb_available(), '''test requires the bitsandbytes library''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' return unittest.skipUnless(is_tpu_available(), '''test requires TPU''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1, '''test requires a GPU''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1, '''test requires a XPU''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1, '''test requires multiple GPUs''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1, '''test requires multiple XPUs''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available(), '''test requires safetensors''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available(), '''test requires DeepSpeed''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_torch_version('''>=''', '''1.12.0''' ), '''test requires torch version >= 1.12.0''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any]=None, UpperCamelCase__ : Union[str, Any]=None ): '''simple docstring''' if test_case is None: return partial(UpperCamelCase__, version=UpperCamelCase__ ) return unittest.skipUnless(is_torch_version('''>=''', UpperCamelCase__ ), F"""test requires torch version >= {version}""" )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available(), '''test requires Tensorboard''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available(), '''test requires wandb''' )(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available(), '''test requires comet_ml''' )(UpperCamelCase__ ) lowercase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available, '''test requires at least one tracker to be available and for `comet_ml` to not be installed''', )(UpperCamelCase__ ) class __lowercase ( unittest.TestCase ): '''simple docstring''' _A : Optional[int] = True @classmethod def A_ ( cls : Union[str, Any] ): UpperCamelCase__ = tempfile.mkdtemp() @classmethod def A_ ( cls : Tuple ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def A_ ( self : Optional[int] ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_a ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : List[Any] ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : Any , _a : Union[mock.Mock, List[mock.Mock]] ): UpperCamelCase__ = mocks if isinstance(_a , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase_ ( UpperCamelCase__ : Dict ): '''simple docstring''' UpperCamelCase__ = AcceleratorState() UpperCamelCase__ = tensor[None].clone().to(state.device ) UpperCamelCase__ = gather(UpperCamelCase__ ).cpu() UpperCamelCase__ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i], UpperCamelCase__ ): return False return True class __lowercase : '''simple docstring''' def __init__( self : Dict , _a : Tuple , _a : Any , _a : Optional[Any] ): UpperCamelCase__ = returncode UpperCamelCase__ = stdout UpperCamelCase__ = stderr async def lowerCamelCase_ ( UpperCamelCase__ : Optional[int], UpperCamelCase__ : List[str] ): '''simple docstring''' while True: UpperCamelCase__ = await stream.readline() if line: callback(UpperCamelCase__ ) else: break async def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : Optional[int]=None, UpperCamelCase__ : Optional[Any]=None, UpperCamelCase__ : str=None, UpperCamelCase__ : Any=False, UpperCamelCase__ : List[str]=False ): '''simple docstring''' if echo: print('''\nRunning: ''', ''' '''.join(UpperCamelCase__ ) ) UpperCamelCase__ = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=UpperCamelCase__, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=UpperCamelCase__, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase__ = [] UpperCamelCase__ = [] def tee(UpperCamelCase__ : List[Any], UpperCamelCase__ : Any, UpperCamelCase__ : List[Any], UpperCamelCase__ : Dict="" ): UpperCamelCase__ = line.decode('''utf-8''' ).rstrip() sink.append(UpperCamelCase__ ) if not quiet: print(UpperCamelCase__, UpperCamelCase__, file=UpperCamelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout, lambda UpperCamelCase__ : tee(UpperCamelCase__, UpperCamelCase__, sys.stdout, label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr, lambda UpperCamelCase__ : tee(UpperCamelCase__, UpperCamelCase__, sys.stderr, label='''stderr:''' ) ) ), ], timeout=UpperCamelCase__, ) return _RunOutput(await p.wait(), UpperCamelCase__, UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : Any=None, UpperCamelCase__ : Optional[int]=None, UpperCamelCase__ : int=180, UpperCamelCase__ : Tuple=False, UpperCamelCase__ : List[Any]=True ): '''simple docstring''' UpperCamelCase__ = asyncio.get_event_loop() UpperCamelCase__ = loop.run_until_complete( _stream_subprocess(UpperCamelCase__, env=UpperCamelCase__, stdin=UpperCamelCase__, timeout=UpperCamelCase__, quiet=UpperCamelCase__, echo=UpperCamelCase__ ) ) UpperCamelCase__ = ''' '''.join(UpperCamelCase__ ) if result.returncode > 0: UpperCamelCase__ = '''\n'''.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class __lowercase ( A ): '''simple docstring''' pass def lowerCamelCase_ ( UpperCamelCase__ : List[str], UpperCamelCase__ : List[Any]=False ): '''simple docstring''' try: UpperCamelCase__ = subprocess.check_output(UpperCamelCase__, stderr=subprocess.STDOUT ) if return_stdout: if hasattr(UpperCamelCase__, '''decode''' ): UpperCamelCase__ = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{" ".join(UpperCamelCase__ )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
35
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __lowercase : '''simple docstring''' _A : int = MBartConfig _A : str = {} _A : str = '''gelu''' def __init__( self : Tuple , _a : Dict , _a : Optional[Any]=13 , _a : List[Any]=7 , _a : Any=True , _a : List[Any]=False , _a : List[Any]=99 , _a : int=32 , _a : Optional[Any]=2 , _a : Optional[Any]=4 , _a : Any=37 , _a : Any=0.1 , _a : Any=0.1 , _a : Dict=20 , _a : Optional[Any]=2 , _a : List[str]=1 , _a : List[str]=0 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = eos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = bos_token_id def A_ ( self : Any ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase__ = prepare_mbart_inputs_dict(_a , _a , _a ) return config, inputs_dict def A_ ( self : Union[str, Any] , _a : Tuple , _a : Dict ): UpperCamelCase__ = TFMBartModel(config=_a ).get_decoder() UpperCamelCase__ = inputs_dict['''input_ids'''] UpperCamelCase__ = input_ids[:1, :] UpperCamelCase__ = inputs_dict['''attention_mask'''][:1, :] UpperCamelCase__ = inputs_dict['''head_mask'''] UpperCamelCase__ = 1 # first forward pass UpperCamelCase__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) UpperCamelCase__ , UpperCamelCase__ = outputs.to_tuple() UpperCamelCase__ = past_key_values[1] def lowerCamelCase_ ( UpperCamelCase__ : Dict, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[Any]=None, UpperCamelCase__ : Tuple=None, UpperCamelCase__ : Dict=None, UpperCamelCase__ : Tuple=None, UpperCamelCase__ : Tuple=None, ): '''simple docstring''' if attention_mask is None: UpperCamelCase__ = tf.cast(tf.math.not_equal(UpperCamelCase__, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: UpperCamelCase__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: UpperCamelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowercase ( A, A, unittest.TestCase ): '''simple docstring''' _A : List[str] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () _A : List[str] = (TFMBartForConditionalGeneration,) if is_tf_available() else () _A : List[Any] = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) _A : List[Any] = True _A : Any = False _A : List[Any] = False def A_ ( self : Any , _a : Tuple , _a : List[Any] , _a : Tuple , _a : List[str] , _a : List[Any] ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def A_ ( self : List[Any] ): UpperCamelCase__ = TFMBartModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=_a ) def A_ ( self : Tuple ): self.config_tester.run_common_tests() def A_ ( self : Optional[Any] ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_sentencepiece @require_tokenizers @require_tf class __lowercase ( unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] _A : Dict = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] _A : Dict = '''facebook/mbart-large-en-ro''' @cached_property def A_ ( self : Any ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def A_ ( self : str ): UpperCamelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def A_ ( self : Optional[int] , **_a : Optional[int] ): UpperCamelCase__ = self.translate_src_text(**_a ) self.assertListEqual(self.expected_text , _a ) def A_ ( self : List[str] , **_a : Dict ): UpperCamelCase__ = self.tokenizer(self.src_text , **_a , return_tensors='''tf''' ) UpperCamelCase__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase__ = self.tokenizer.batch_decode(_a , skip_special_tokens=_a ) return generated_words @slow def A_ ( self : Optional[Any] ): self._assert_generated_batch_equal_expected()
35
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _a ( UpperCAmelCase , UpperCAmelCase=0.9_99 , UpperCAmelCase="cosine" , ) -> Dict: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowerCamelCase__ : Union[str, Any] = [] for i in range(__lowerCamelCase ): lowerCamelCase__ : Tuple = i / num_diffusion_timesteps lowerCamelCase__ : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCamelCase ) / alpha_bar_fn(__lowerCamelCase ) , __lowerCamelCase ) ) return torch.tensor(__lowerCamelCase , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,lowerCAmelCase_ ): _UpperCAmelCase : Dict = [e.name for e in KarrasDiffusionSchedulers] _UpperCAmelCase : Dict = 2 @register_to_config def __init__( self : str , A : int = 1_0_0_0 , A : float = 0.0_00_85 , A : float = 0.0_12 , A : str = "linear" , A : Optional[Union[np.ndarray, List[float]]] = None , A : str = "epsilon" , A : str = "linspace" , A : int = 0 , ) ->str: if trained_betas is not None: lowerCamelCase__ : List[str] = torch.tensor(A , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCamelCase__ : Union[str, Any] = torch.linspace(A , A , A , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCamelCase__ : str = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCamelCase__ : Tuple = betas_for_alpha_bar(A ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) lowerCamelCase__ : Optional[int] = 1.0 - self.betas lowerCamelCase__ : Union[str, Any] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(A , A , A ) def __lowerCamelCase ( self : List[str] , A : Tuple , A : int=None ) ->Union[str, Any]: if schedule_timesteps is None: lowerCamelCase__ : Optional[Any] = self.timesteps lowerCamelCase__ : Optional[int] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCamelCase__ : List[str] = 1 if len(A ) > 1 else 0 else: lowerCamelCase__ : str = timestep.cpu().item() if torch.is_tensor(A ) else timestep lowerCamelCase__ : int = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCamelCase ( self : List[str] ) ->List[Any]: if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCamelCase ( self : Any , A : torch.FloatTensor , A : Union[float, torch.FloatTensor] , ) ->Optional[Any]: lowerCamelCase__ : Tuple = self.index_for_timestep(A ) if self.state_in_first_order: lowerCamelCase__ : Dict = self.sigmas[step_index] else: lowerCamelCase__ : List[str] = self.sigmas_interpol[step_index] lowerCamelCase__ : Union[str, Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCamelCase ( self : Optional[int] , A : int , A : Union[str, torch.device] = None , A : Optional[int] = None , ) ->str: lowerCamelCase__ : Union[str, Any] = num_inference_steps lowerCamelCase__ : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCamelCase__ : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , A , dtype=A )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCamelCase__ : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCamelCase__ : Any = (np.arange(0 , A ) * step_ratio).round()[::-1].copy().astype(A ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCamelCase__ : Any = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCamelCase__ : List[str] = (np.arange(A , 0 , -step_ratio )).round().copy().astype(A ) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'." ) lowerCamelCase__ : Dict = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCamelCase__ : int = torch.from_numpy(np.log(A ) ).to(A ) lowerCamelCase__ : str = np.interp(A , np.arange(0 , len(A ) ) , A ) lowerCamelCase__ : Union[str, Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCamelCase__ : str = torch.from_numpy(A ).to(device=A ) # interpolate sigmas lowerCamelCase__ : Optional[int] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() lowerCamelCase__ : List[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) lowerCamelCase__ : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(A ).startswith('''mps''' ): # mps does not support float64 lowerCamelCase__ : Optional[Any] = torch.from_numpy(A ).to(A , dtype=torch.floataa ) else: lowerCamelCase__ : Dict = torch.from_numpy(A ).to(A ) # interpolate timesteps lowerCamelCase__ : Any = self.sigma_to_t(A ).to(A , dtype=timesteps.dtype ) lowerCamelCase__ : Tuple = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() lowerCamelCase__ : Dict = torch.cat([timesteps[:1], interleaved_timesteps] ) lowerCamelCase__ : Dict = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCamelCase__ : str = defaultdict(A ) def __lowerCamelCase ( self : Union[str, Any] , A : Dict ) ->Dict: lowerCamelCase__ : Dict = sigma.log() # get distribution lowerCamelCase__ : int = log_sigma - self.log_sigmas[:, None] # get sigmas range lowerCamelCase__ : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) lowerCamelCase__ : Dict = low_idx + 1 lowerCamelCase__ : Optional[int] = self.log_sigmas[low_idx] lowerCamelCase__ : Tuple = self.log_sigmas[high_idx] # interpolate sigmas lowerCamelCase__ : Optional[int] = (low - log_sigma) / (low - high) lowerCamelCase__ : int = w.clamp(0 , 1 ) # transform interpolation to time range lowerCamelCase__ : List[Any] = (1 - w) * low_idx + w * high_idx lowerCamelCase__ : Union[str, Any] = t.view(sigma.shape ) return t @property def __lowerCamelCase ( self : Dict ) ->List[Any]: return self.sample is None def __lowerCamelCase ( self : List[str] , A : Union[torch.FloatTensor, np.ndarray] , A : Union[float, torch.FloatTensor] , A : Union[torch.FloatTensor, np.ndarray] , A : bool = True , ) ->Union[str, Any]: lowerCamelCase__ : Optional[int] = self.index_for_timestep(A ) # advance index counter by 1 lowerCamelCase__ : Optional[int] = timestep.cpu().item() if torch.is_tensor(A ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCamelCase__ : Dict = self.sigmas[step_index] lowerCamelCase__ : int = self.sigmas_interpol[step_index + 1] lowerCamelCase__ : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowerCamelCase__ : str = self.sigmas[step_index - 1] lowerCamelCase__ : Union[str, Any] = self.sigmas_interpol[step_index] lowerCamelCase__ : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCamelCase__ : Any = 0 lowerCamelCase__ : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCamelCase__ : Tuple = sigma_hat if self.state_in_first_order else sigma_interpol lowerCamelCase__ : Dict = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCamelCase__ : Any = sigma_hat if self.state_in_first_order else sigma_interpol lowerCamelCase__ : str = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCamelCase__ : List[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCamelCase__ : List[str] = sigma_interpol - sigma_hat # store for 2nd order step lowerCamelCase__ : Dict = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowerCamelCase__ : Optional[int] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowerCamelCase__ : List[str] = sigma_next - sigma_hat lowerCamelCase__ : Tuple = self.sample lowerCamelCase__ : Dict = None lowerCamelCase__ : Any = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A ) def __lowerCamelCase ( self : List[Any] , A : torch.FloatTensor , A : torch.FloatTensor , A : torch.FloatTensor , ) ->int: lowerCamelCase__ : Any = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(A ): # mps does not support float64 lowerCamelCase__ : Optional[Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCamelCase__ : List[str] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCamelCase__ : str = self.timesteps.to(original_samples.device ) lowerCamelCase__ : int = timesteps.to(original_samples.device ) lowerCamelCase__ : str = [self.index_for_timestep(A , A ) for t in timesteps] lowerCamelCase__ : Dict = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCamelCase__ : Dict = sigma.unsqueeze(-1 ) lowerCamelCase__ : Union[str, Any] = original_samples + noise * sigma return noisy_samples def __len__( self : List[str] ) ->Any: return self.config.num_train_timesteps
142
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = ShapEImgaImgPipeline UpperCamelCase__ = ['''image'''] UpperCamelCase__ = ['''image'''] UpperCamelCase__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCamelCase__ = False @property def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self :Any ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self :str ): '''simple docstring''' return 8 @property def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' torch.manual_seed(0 ) a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) a = CLIPVisionModel(__magic_name__ ) return model @property def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = CLIPImageProcessor( crop_size=224 , do_center_crop=__magic_name__ , do_normalize=__magic_name__ , do_resize=__magic_name__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) a = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } a = PriorTransformer(**__magic_name__ ) return model @property def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' torch.manual_seed(0 ) a = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } a = ShapERenderer(**__magic_name__ ) return model def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = self.dummy_prior a = self.dummy_image_encoder a = self.dummy_image_processor a = self.dummy_renderer a = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=__magic_name__ , clip_sample=__magic_name__ , clip_sample_range=1.0 , ) a = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ ( self :List[Any] , __magic_name__ :str , __magic_name__ :Tuple=0 ): '''simple docstring''' a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) if str(__magic_name__ ).startswith("""mps""" ): a = torch.manual_seed(__magic_name__ ) else: a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self :int ): '''simple docstring''' a = """cpu""" a = self.get_dummy_components() a = self.pipeline_class(**__magic_name__ ) a = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = pipe(**self.get_dummy_inputs(__magic_name__ ) ) a = output.images[0] a = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) a = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = torch_device == """cpu""" a = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__magic_name__ , relax_max_difference=__magic_name__ , ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = self.get_dummy_components() a = self.pipeline_class(**__magic_name__ ) a = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = 1 a = 2 a = self.get_dummy_inputs(__magic_name__ ) for key in inputs.keys(): if key in self.batch_params: a = batch_size * [inputs[key]] a = pipe(**__magic_name__ , num_images_per_prompt=__magic_name__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) a = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) a = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) a = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = torch.Generator(device=__magic_name__ ).manual_seed(0 ) a = pipe( __magic_name__ , generator=__magic_name__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
228
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : Optional[int] = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
301
1
import numpy as np def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ): __a : int = int(np.ceil((x_end - xa) / h ) ) __a : Any = np.zeros((n + 1,) ) __a : Optional[int] = ya __a : List[str] = xa for k in range(lowerCAmelCase__ ): __a : str = f(lowerCAmelCase__ , y[k] ) __a : str = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __a : List[Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __a : Optional[Any] = f(x + h , y[k] + h * ka ) __a : Dict = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
216
import colorsys from PIL import Image # type: ignore def __UpperCamelCase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : int ): __a : Any = x __a : List[Any] = y for step in range(lowerCAmelCase__ ): # noqa: B007 __a : List[Any] = a * a - b * b + x __a : Tuple = 2 * a * b + y __a : Optional[int] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __UpperCamelCase ( lowerCAmelCase__ : float ): if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def __UpperCamelCase ( lowerCAmelCase__ : float ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def __UpperCamelCase ( lowerCAmelCase__ : int = 8_0_0 , lowerCAmelCase__ : int = 6_0_0 , lowerCAmelCase__ : float = -0.6 , lowerCAmelCase__ : float = 0 , lowerCAmelCase__ : float = 3.2 , lowerCAmelCase__ : int = 5_0 , lowerCAmelCase__ : bool = True , ): __a : int = Image.new('''RGB''' , (image_width, image_height) ) __a : Dict = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates __a : Optional[Any] = figure_width / image_width * image_height __a : str = figure_center_x + (image_x / image_width - 0.5) * figure_width __a : str = figure_center_y + (image_y / image_height - 0.5) * figure_height __a : Tuple = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __a : Optional[int] = get_color_coded_rgb(lowerCAmelCase__ ) else: __a : Optional[Any] = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowercase__ =get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
216
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'Salesforce/blip-image-captioning-base' SCREAMING_SNAKE_CASE__ = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) SCREAMING_SNAKE_CASE__ = 'image_captioner' SCREAMING_SNAKE_CASE__ = AutoModelForVisionaSeq SCREAMING_SNAKE_CASE__ = ['image'] SCREAMING_SNAKE_CASE__ = ['text'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): requires_backends(self , ['''vision'''] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.pre_processor(images=_lowerCamelCase , return_tensors='''pt''' ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.model.generate(**_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.pre_processor.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase )[0].strip()
281
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Optional[Any] = logging.get_logger(__name__) snake_case : Dict = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'data2vec-vision' def __init__( self , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=224 , _lowerCamelCase=16 , _lowerCamelCase=3 , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=[3, 5, 7, 11] , _lowerCamelCase=[1, 2, 3, 6] , _lowerCamelCase=True , _lowerCamelCase=0.4 , _lowerCamelCase=256 , _lowerCamelCase=1 , _lowerCamelCase=False , _lowerCamelCase=255 , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) a :Tuple = hidden_size a :Any = num_hidden_layers a :Optional[int] = num_attention_heads a :Dict = intermediate_size a :List[Any] = hidden_act a :List[str] = hidden_dropout_prob a :Union[str, Any] = attention_probs_dropout_prob a :Any = initializer_range a :Any = layer_norm_eps a :Union[str, Any] = image_size a :int = patch_size a :Optional[int] = num_channels a :Union[str, Any] = use_mask_token a :Optional[Any] = use_absolute_position_embeddings a :Tuple = use_relative_position_bias a :List[Any] = use_shared_relative_position_bias a :Dict = layer_scale_init_value a :Optional[int] = drop_path_rate a :List[str] = use_mean_pooling # decode head attributes (semantic segmentation) a :str = out_indices a :Tuple = pool_scales # auxiliary head attributes (semantic segmentation) a :List[Any] = use_auxiliary_head a :List[Any] = auxiliary_loss_weight a :Optional[int] = auxiliary_channels a :List[str] = auxiliary_num_convs a :str = auxiliary_concat_input a :Union[str, Any] = semantic_loss_ignore_index class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): return 1e-4
281
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer _SCREAMING_SNAKE_CASE = False def lowercase_ ( self : str ) ->Optional[int]: super().setUp() snake_case__ : Optional[Any] = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] snake_case__ : List[Any] = dict(zip(_snake_case, range(len(_snake_case ) ) ) ) snake_case__ : Optional[Any] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] snake_case__ : Union[str, Any] = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} snake_case__ : List[str] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) snake_case__ : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(_snake_case ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(_snake_case ) ) def lowercase_ ( self : Any, **_snake_case : Optional[int] ) ->List[Any]: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname, **_snake_case ) def lowercase_ ( self : Optional[Any], _snake_case : List[str] ) ->Dict: snake_case__ : str = 'adapt act apte' snake_case__ : Tuple = 'adapt act apte' return input_text, output_text def lowercase_ ( self : List[str] ) ->List[Any]: snake_case__ : List[Any] = BlenderbotSmallTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) snake_case__ : Dict = 'adapt act apte' snake_case__ : Optional[Any] = ['adapt', 'act', 'ap@@', 'te'] snake_case__ : Any = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case, _snake_case ) snake_case__ : Any = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] snake_case__ : Any = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ), _snake_case ) def lowercase_ ( self : List[Any] ) ->Dict: snake_case__ : Dict = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1_3_8_4] snake_case__ : Union[str, Any] = 'I am a small frog.' snake_case__ : Tuple = tok([src_text], padding=_snake_case, truncation=_snake_case )['input_ids'] snake_case__ : Optional[int] = tok.batch_decode(_snake_case, skip_special_tokens=_snake_case, clean_up_tokenization_spaces=_snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def lowercase_ ( self : Any ) ->Optional[Any]: snake_case__ : Optional[Any] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) snake_case__ : Optional[Any] = 'I am a small frog .' snake_case__ : Union[str, Any] = '.' snake_case__ : List[Any] = tok(_snake_case )['input_ids'] snake_case__ : Optional[int] = tok(_snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
277
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """philschmid/bart-large-cnn-samsum""" _SCREAMING_SNAKE_CASE = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) _SCREAMING_SNAKE_CASE = """summarizer""" _SCREAMING_SNAKE_CASE = AutoTokenizer _SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM _SCREAMING_SNAKE_CASE = ["""text"""] _SCREAMING_SNAKE_CASE = ["""text"""] def lowercase_ ( self : Optional[Any], _snake_case : str ) ->Any: return self.pre_processor(_snake_case, return_tensors='pt', truncation=_snake_case ) def lowercase_ ( self : int, _snake_case : List[Any] ) ->Any: return self.model.generate(**_snake_case )[0] def lowercase_ ( self : int, _snake_case : int ) ->str: return self.pre_processor.decode(_snake_case, skip_special_tokens=_snake_case, clean_up_tokenization_spaces=_snake_case )
277
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase , lowercase=3 , lowercase=32 , lowercase=3 , lowercase=10 , lowercase=[10, 20, 30, 40] , lowercase=[1, 1, 2, 1] , lowercase=True , lowercase=True , lowercase="relu" , lowercase=3 , lowercase=None , ): _lowerCamelCase : List[str] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : Optional[Any] = image_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : List[Any] = embeddings_size _lowerCamelCase : Any = hidden_sizes _lowerCamelCase : Dict = depths _lowerCamelCase : Union[str, Any] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Optional[Any] = num_labels _lowerCamelCase : Tuple = scope _lowerCamelCase : Optional[Any] = len(lowercase ) def A_ ( self ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[str] = self.get_config() return config, pixel_values def A_ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = FlaxRegNetModel(config=lowercase ) _lowerCamelCase : str = model(lowercase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Tuple = self.num_labels _lowerCamelCase : Optional[Any] = FlaxRegNetForImageClassification(config=lowercase ) _lowerCamelCase : List[Any] = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase : Tuple = config_and_inputs _lowerCamelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A_ ( self ): _lowerCamelCase : Union[str, Any] = FlaxRegNetModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase ) def A_ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self ): return def A_ ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def A_ ( self ): pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def A_ ( self ): pass def A_ ( self ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = model_class(lowercase ) _lowerCamelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase ) def A_ ( self ): def check_hidden_states_output(lowercase , lowercase , lowercase ): _lowerCamelCase : str = model_class(lowercase ) _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(lowercase , lowercase ) ) _lowerCamelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase : List[str] = self.model_tester.num_stages self.assertEqual(len(lowercase ) , expected_num_stages + 1 ) _lowerCamelCase, _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Tuple = True check_hidden_states_output(lowercase , lowercase , lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase : Tuple = self._prepare_for_class(lowercase , lowercase ) _lowerCamelCase : Optional[int] = model_class(lowercase ) @jax.jit def model_jitted(lowercase , **lowercase ): return model(pixel_values=lowercase , **lowercase ) with self.subTest('JIT Enabled' ): _lowerCamelCase : str = model_jitted(**lowercase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowerCamelCase : Optional[int] = model_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case ( ): _lowerCamelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def A_ ( self ): return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def A_ ( self ): _lowerCamelCase : int = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) _lowerCamelCase : Union[str, Any] = self.default_image_processor _lowerCamelCase : Dict = prepare_img() _lowerCamelCase : Dict = image_processor(images=lowercase , return_tensors='np' ) _lowerCamelCase : List[str] = model(**lowercase ) # verify the logits _lowerCamelCase : Optional[int] = (1, 1000) self.assertEqual(outputs.logits.shape , lowercase ) _lowerCamelCase : Optional[Any] = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) )
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
1
'''simple docstring''' import math from collections.abc import Callable def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : float = xa lowercase__ : float = xa while True: if x_n == x_na or function(UpperCAmelCase ) == function(UpperCAmelCase ): raise ZeroDivisionError('''float division by zero, could not find root''' ) lowercase__ : float = x_na - ( function(UpperCAmelCase ) / ((function(UpperCAmelCase ) - function(UpperCAmelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na lowercase__ : Tuple = x_na lowercase__ : Optional[int] = x_na def __UpperCamelCase ( UpperCAmelCase ): return math.pow(UpperCAmelCase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
198
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = CTRLTokenizer SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Optional[Any] = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__ : str = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowercase__ : Tuple = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__ : Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[str]: lowercase__ : List[str] = '''adapt react readapt apt''' lowercase__ : Union[str, Any] = '''adapt react readapt apt''' return input_text, output_text def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Union[str, Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : Optional[Any] = '''adapt react readapt apt''' lowercase__ : Dict = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__ : Union[str, Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : int = tokens + [tokenizer.unk_token] lowercase__ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase )
198
1
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def a__ ( lowercase : str ) -> str: """simple docstring""" return "".join(sorted(lowercase ) ) def a__ ( lowercase : str ) -> list[str]: """simple docstring""" return word_by_signature[signature(lowercase )] lowercase__ : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') lowercase__ : Tuple = sorted({word.strip().lower() for word in data.splitlines()}) lowercase__ : Tuple = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowercase__ : Dict = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
287
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any]=13 , lowerCAmelCase__ : Union[str, Any]=7 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : str=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : str=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Optional[int]=512 , lowerCAmelCase__ : Dict=16 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Union[str, Any]=4 , ) -> Dict: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_choices def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_attention_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def snake_case__ ( self : List[str] ) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = True _UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = True _snake_case : Optional[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self : Dict ) -> List[Any]: '''simple docstring''' _UpperCamelCase = FlaxRobertaModelTester(self ) @slow def snake_case__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''roberta-base''' , from_pt=lowerCAmelCase__ ) _UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ )
287
1
'''simple docstring''' a__ : Union[str, Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> list[str]: """simple docstring""" __A = set() # keep track of all the paths to be checked __A = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __A = queue.pop(0 ) # get the last node from the path __A = path[-1] if node not in explored: __A = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __A = list(_A ) new_path.append(_A ) queue.append(_A ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_A ) # in case there's no path between the 2 nodes return [] def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> int: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __A = [start] __A = set(_A ) # Keep tab on distances from `start` node. __A = {start: 0, target: -1} while queue: __A = queue.pop(0 ) if node == target: __A = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_A ) queue.append(_A ) __A = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
161
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def __UpperCamelCase ( _A : Dict=None ) ->Dict: """simple docstring""" if subparsers is not None: lowerCamelCase_ =subparsers.add_parser("""tpu-config""" , description=_description ) else: lowerCamelCase_ =argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments lowerCamelCase_ =parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=_A , default=_A , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=_A , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=_A , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) lowerCamelCase_ =parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=_A , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=_A ) return parser def __UpperCamelCase ( _A : Tuple ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_A ): lowerCamelCase_ =load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowerCamelCase_ =defaults.command_file if not args.command and defaults.commands is not None: lowerCamelCase_ =defaults.commands if not args.tpu_name: lowerCamelCase_ =defaults.tpu_name if not args.tpu_zone: lowerCamelCase_ =defaults.tpu_zone if args.accelerate_version == "dev": lowerCamelCase_ ="""git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": lowerCamelCase_ ="""accelerate -U""" elif isinstance(parse(args.accelerate_version ) , _A ): lowerCamelCase_ =f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: lowerCamelCase_ =[f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _A ): lowerCamelCase_ =[line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowerCamelCase_ =["""cd /usr/share"""] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command lowerCamelCase_ ="""; """.join(_A ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowerCamelCase_ =["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(_A )}' ) return subprocess.run(_A ) print("""Successfully setup pod.""" ) def __UpperCamelCase ( ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =tpu_command_parser() lowerCamelCase_ =parser.parse_args() tpu_command_launcher(_A )
154
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A ={ '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
47
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') __A =logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Train language if it is different from the evaluation language.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCAmelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowerCamelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , lowerCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) datasets.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCamelCase_ = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = train_dataset.features["label"].names if training_args.do_eval: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = eval_dataset.features["label"].names if training_args.do_predict: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = predict_dataset.features["label"].names # Labels lowerCamelCase_ = len(lowerCamelCase__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase__ , idalabel={str(lowerCamelCase__ ): label for i, label in enumerate(lowerCamelCase__ )} , labelaid={label: i for i, label in enumerate(lowerCamelCase__ )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False def preprocess_function(lowerCamelCase__ ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=lowerCamelCase__ , max_length=data_args.max_seq_length , truncation=lowerCamelCase__ , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_train_samples ) lowerCamelCase_ = train_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): lowerCamelCase_ = train_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowerCamelCase__ ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_eval_samples ) lowerCamelCase_ = eval_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): lowerCamelCase_ = eval_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_predict_samples ) lowerCamelCase_ = predict_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): lowerCamelCase_ = predict_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function lowerCamelCase_ = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions , lowerCamelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCamelCase__ , axis=1 ) return metric.compute(predictions=lowerCamelCase__ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCamelCase__ , pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCamelCase__ , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , lowerCamelCase__ ) trainer.save_metrics("train" , lowerCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCamelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("eval" , lowerCamelCase__ ) trainer.save_metrics("eval" , lowerCamelCase__ ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = trainer.predict(lowerCamelCase__ , metric_key_prefix="predict" ) lowerCamelCase_ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowerCamelCase__ ) ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("predict" , lowerCamelCase__ ) trainer.save_metrics("predict" , lowerCamelCase__ ) lowerCamelCase_ = np.argmax(lowerCamelCase__ , axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(lowerCamelCase__ , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(lowerCamelCase__ ): lowerCamelCase_ = label_list[item] writer.write(F'{index}\t{item}\n' ) if __name__ == "__main__": main()
47
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''nat''' UpperCAmelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : Optional[int]=64 , UpperCAmelCase__ : Dict=[3, 4, 6, 5] , UpperCAmelCase__ : Dict=[2, 4, 8, 16] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : List[Any]=3.0 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Optional[Any]=1e-5 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Any , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = patch_size A__ = num_channels A__ = embed_dim A__ = depths A__ = len(UpperCAmelCase__) A__ = num_heads A__ = kernel_size A__ = mlp_ratio A__ = qkv_bias A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = drop_path_rate A__ = hidden_act A__ = layer_norm_eps A__ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A__ = int(embed_dim * 2 ** (len(UpperCAmelCase__) - 1)) A__ = layer_scale_init_value A__ = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase__) + 1)] A__ , A__ = get_aligned_output_features_output_indices( out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names)
14
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=10 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase="divided_space_time" , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = num_frames __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = attention_type __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __lowerCamelCase = (image_size // patch_size) ** 2 __lowerCamelCase = (num_frames) * self.num_patches_per_frame + 1 def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __lowerCamelCase = self.num_labels return config def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) # verify the logits shape __lowerCamelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCAmelCase__ = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerModelTester(self ) __lowerCamelCase = ConfigTester( self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = copy.deepcopy(__UpperCAmelCase ) if return_labels: if model_class in get_values(__UpperCAmelCase ): __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TimesformerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' if not self.has_attentions: pass else: __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: __lowerCamelCase = self.model_tester.seq_length __lowerCamelCase = self.model_tester.num_frames __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __lowerCamelCase = len(__UpperCAmelCase ) # Check attention is always last and order is fine __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(__UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __lowerCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def a__ ( ): __lowerCamelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' ,filename='''eating_spaghetti.npy''' ,repo_type='''dataset''' ) __lowerCamelCase = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __UpperCAmelCase ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_video() __lowerCamelCase = image_processor(video[:8] , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**__UpperCAmelCase ) # verify the logits __lowerCamelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
0
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( __A : str , __A : list[str] ) -> str: """simple docstring""" a_ : Union[str, Any] = '' for word_or_phrase in separated: if not isinstance(__A , __A ): raise Exception('join() accepts only strings to be joined' ) joined += word_or_phrase + separator return joined.strip(__A ) if __name__ == "__main__": from doctest import testmod testmod()
361
from string import ascii_uppercase UpperCAmelCase_ : Dict = {char: i for i, char in enumerate(ascii_uppercase)} UpperCAmelCase_ : Optional[int] = dict(enumerate(ascii_uppercase)) def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str ) -> str: """simple docstring""" a_ : Tuple = len(__A ) a_ : int = 0 while True: if x == i: a_ : Tuple = 0 if len(__A ) == len(__A ): break key += key[i] i += 1 return key def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str ) -> str: """simple docstring""" a_ : Optional[int] = '' a_ : Any = 0 for letter in message: if letter == " ": cipher_text += " " else: a_ : Optional[Any] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str ) -> str: """simple docstring""" a_ : Any = '' a_ : Optional[Any] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: a_ : Union[str, Any] = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def SCREAMING_SNAKE_CASE_ ( ) -> None: """simple docstring""" a_ : Tuple = 'THE GERMAN ATTACK' a_ : Dict = 'SECRET' a_ : Optional[Any] = generate_key(__A , __A ) a_ : Union[str, Any] = cipher_text(__A , __A ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(__A , __A )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
120
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE__ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowercase : def __init__( self , lowercase , lowercase=16 , lowercase=13 , lowercase=7 , lowercase=14 , lowercase=10 , lowercase=19 , lowercase=5 , lowercase=4 , lowercase=True , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=[1, 2, 3, 4, 5] , lowercase=25 , lowercase=5 , ) -> Any: lowerCAmelCase = d_model lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = prediction_length lowerCAmelCase = context_length lowerCAmelCase = cardinality lowerCAmelCase = num_time_features lowerCAmelCase = lags_sequence lowerCAmelCase = embedding_dimension lowerCAmelCase = is_training lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = context_length lowerCAmelCase = prediction_length + label_length lowerCAmelCase = label_length lowerCAmelCase = moving_average lowerCAmelCase = autocorrelation_factor def _snake_case ( self ) -> Optional[int]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def _snake_case ( self , lowercase ) -> Optional[int]: lowerCAmelCase = config.context_length + max(config.lags_sequence ) lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def _snake_case ( self ) -> str: lowerCAmelCase = self.get_config() lowerCAmelCase = self.prepare_autoformer_inputs_dict(lowercase ) return config, inputs_dict def _snake_case ( self ) -> Any: lowerCAmelCase , lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self , lowercase , lowercase ) -> Union[str, Any]: lowerCAmelCase = AutoformerModel(config=lowercase ).to(lowercase ).eval() lowerCAmelCase = model(**lowercase ) lowerCAmelCase = outputs.encoder_last_hidden_state lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = model.get_encoder() encoder.save_pretrained(lowercase ) lowerCAmelCase = AutoformerEncoder.from_pretrained(lowercase ).to(lowercase ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = model.create_network_inputs(**lowercase ) lowerCAmelCase , lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCAmelCase = encoder(inputs_embeds=lowercase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = model.get_decoder() decoder.save_pretrained(lowercase ) lowerCAmelCase = AutoformerDecoder.from_pretrained(lowercase ).to(lowercase ) lowerCAmelCase = decoder( trend=lowercase , inputs_embeds=lowercase , encoder_hidden_states=lowercase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _SCREAMING_SNAKE_CASE = (AutoformerForPrediction,) if is_torch_available() else () _SCREAMING_SNAKE_CASE = {'feature-extraction': AutoformerModel} if is_torch_available() else {} _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = AutoformerModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase ) def _snake_case ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _snake_case ( self ) -> str: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase = model_class(lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase ) lowerCAmelCase , lowerCAmelCase = model_class.from_pretrained(lowercase , output_loading_info=lowercase ) self.assertEqual(info["""missing_keys"""] , [] ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowercase ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def _snake_case ( self ) -> str: pass def _snake_case ( self ) -> int: lowerCAmelCase = inspect.signature(getattr(lowercase , """forward""" ) ) # The main input is the name of the argument after `self` lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , lowercase ) def _snake_case ( self ) -> int: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(lowercase ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(lowercase )] , lowercase ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = True lowerCAmelCase = getattr(self.model_tester , """seq_length""" , lowercase ) lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , lowercase ) lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , lowercase ) lowerCAmelCase = getattr(self.model_tester , """d_model""" , lowercase ) lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , lowercase ) lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase = True lowerCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCAmelCase = len(lowercase ) lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowercase , lowercase ) # decoder attentions lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(lowercase , (list, tuple) ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(lowercase , (list, tuple) ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + 2 , len(lowercase ) ) lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def _snake_case ( self ) -> Any: super().test_retain_grad_hidden_states_attentions() def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[str]="train-batch.pt" ): '''simple docstring''' lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE ) return batch @require_torch @slow class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowercase ) lowerCAmelCase = prepare_batch() with torch.no_grad(): lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , lowercase ) lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=lowercase ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowercase , atol=lowercase ) ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowercase ) lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , lowercase ) lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=lowercase ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowercase , atol=lowercase ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowercase ) lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , lowercase ) lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=lowercase ) lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , lowercase , rtol=1e-1 ) )
46
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): lowerCAmelCase = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): lowerCAmelCase = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] lowerCAmelCase = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(SCREAMING_SNAKE_CASE )-1}' ) if "norm" in key: lowerCAmelCase = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] lowerCAmelCase = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(SCREAMING_SNAKE_CASE )-1}' ) if "layer_norm1" in key: lowerCAmelCase = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: lowerCAmelCase = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find("""block""" ) + len("""block""" )] lowerCAmelCase = key.replace(F'block{idx}' , F'block.{int(SCREAMING_SNAKE_CASE )-1}' ) if "attn.q" in key: lowerCAmelCase = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: lowerCAmelCase = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: lowerCAmelCase = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: lowerCAmelCase = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: lowerCAmelCase = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: lowerCAmelCase = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: lowerCAmelCase = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) lowerCAmelCase = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find("""linear_c""" ) + len("""linear_c""" )] lowerCAmelCase = key.replace(F'linear_c{idx}' , F'linear_c.{int(SCREAMING_SNAKE_CASE )-1}' ) if "bot_conv" in key: lowerCAmelCase = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: lowerCAmelCase = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: lowerCAmelCase = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: lowerCAmelCase = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: lowerCAmelCase = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: lowerCAmelCase = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: lowerCAmelCase = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): lowerCAmelCase = key.replace("""module.last_layer_depth""" , """head.head""" ) lowerCAmelCase = value return new_state_dict def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) lowerCAmelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any]=False , SCREAMING_SNAKE_CASE : Union[str, Any]=None ): '''simple docstring''' lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase = GLPNImageProcessor() # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device("""cpu""" ) ) # rename keys lowerCAmelCase = rename_keys(SCREAMING_SNAKE_CASE ) # key and value matrices need special treatment read_in_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowerCAmelCase = GLPNForDepthEstimation(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # forward pass lowerCAmelCase = model(SCREAMING_SNAKE_CASE ) lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: lowerCAmelCase = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(F'Unknown model name: {model_name}' ) lowerCAmelCase = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=SCREAMING_SNAKE_CASE , ) image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) parser.add_argument( "--model_name", default="glpn-kitti", type=str, help="Name of the model in case you're pushing to the hub.", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
46
1
from typing import List from .keymap import KEYMAP, get_character def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Optional[Any]: """simple docstring""" def decorator(UpperCamelCase__ : Optional[int] ): __lowerCamelCase = getattr(UpperCamelCase__ , 'handle_key' , [] ) handle += [key] setattr(UpperCamelCase__ , 'handle_key' , UpperCamelCase__ ) return func return decorator def lowerCamelCase_ ( *UpperCamelCase__ : List[str] ) -> Dict: """simple docstring""" def decorator(UpperCamelCase__ : Union[str, Any] ): __lowerCamelCase = getattr(UpperCamelCase__ , 'handle_key' , [] ) handle += keys setattr(UpperCamelCase__ , 'handle_key' , UpperCamelCase__ ) return func return decorator class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __new__( cls , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = super().__new__(cls , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if not hasattr(lowerCamelCase__ , 'key_handler' ): setattr(lowerCamelCase__ , 'key_handler' , {} ) setattr(lowerCamelCase__ , 'handle_input' , KeyHandler.handle_input ) for value in attrs.values(): __lowerCamelCase = getattr(lowerCamelCase__ , 'handle_key' , [] ) for key in handled_keys: __lowerCamelCase = value return new_cls @staticmethod def lowercase_ ( cls ) -> int: '''simple docstring''' __lowerCamelCase = get_character() if char != KEYMAP["undefined"]: __lowerCamelCase = ord(lowerCamelCase__ ) __lowerCamelCase = cls.key_handler.get(lowerCamelCase__ ) if handler: __lowerCamelCase = char return handler(cls ) else: return None def lowerCamelCase_ ( cls : int ) -> List[Any]: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
348
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = rotary_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = None __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = FlaxGPTJModelTester(self ) def lowercase_ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @tooslow def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) __lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = False __lowerCamelCase = model.config.eos_token_id __lowerCamelCase = jax.jit(model.generate ) __lowerCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __lowerCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) __lowerCamelCase = fx_state with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) with torch.no_grad(): __lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowercase_ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
348
1
"""simple docstring""" def lowercase ( A_ )-> int: '''simple docstring''' a : int = hex_num.strip() if not hex_num: raise ValueError("No value was passed to the function" ) a : str = hex_num[0] == "-" if is_negative: a : str = hex_num[1:] try: a : int = int(A_ , 16 ) except ValueError: raise ValueError("Invalid value was passed to the function" ) a : str = "" while int_num > 0: a : List[Any] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("-" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
40
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : Tuple = { """google/switch-base-8""": """https://huggingface.co/google/switch-base-8/blob/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "switch_transformers" a_ = ["past_key_values"] a_ = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : List[Any] , __A : Any=3_2_1_2_8 , __A : Dict=7_6_8 , __A : Tuple=6_4 , __A : Any=2_0_4_8 , __A : List[str]=6_4 , __A : Union[str, Any]=1_2 , __A : Optional[int]=3 , __A : Optional[int]=1_2 , __A : str=3 , __A : int=1_2 , __A : List[str]=8 , __A : List[Any]=False , __A : Dict=0.0_1 , __A : List[str]="float32" , __A : int=False , __A : Optional[Any]=3_2 , __A : Dict=1_2_8 , __A : str=0.1 , __A : int=1e-6 , __A : Union[str, Any]=0.0_0_1 , __A : Any=0.0_0_1 , __A : Dict=1.0 , __A : Optional[Any]="relu" , __A : List[Any]=True , __A : List[str]=False , __A : int=True , __A : Dict=0 , __A : str=1 , **__A : str , ): snake_case__ : List[Any] = vocab_size snake_case__ : Tuple = d_model snake_case__ : List[str] = d_kv snake_case__ : List[Any] = d_ff snake_case__ : int = num_sparse_encoder_layers snake_case__ : Optional[int] = num_layers snake_case__ : List[str] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry snake_case__ : Tuple = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: snake_case__ : str = self.num_layers // self.num_sparse_encoder_layers else: snake_case__ : List[Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: snake_case__ : List[Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: snake_case__ : Optional[Any] = self.num_decoder_layers # HACK: this will create 0 sparse layers snake_case__ : str = num_heads snake_case__ : List[str] = num_experts snake_case__ : Dict = expert_capacity snake_case__ : Dict = router_bias snake_case__ : Union[str, Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) snake_case__ : Union[str, Any] = router_dtype snake_case__ : int = router_ignore_padding_tokens snake_case__ : Optional[int] = relative_attention_num_buckets snake_case__ : Optional[int] = relative_attention_max_distance snake_case__ : Optional[Any] = dropout_rate snake_case__ : List[Any] = layer_norm_epsilon snake_case__ : List[Any] = initializer_factor snake_case__ : int = feed_forward_proj snake_case__ : List[Any] = use_cache snake_case__ : str = add_router_probs snake_case__ : List[Any] = router_z_loss_coef snake_case__ : List[Any] = router_aux_loss_coef snake_case__ : Union[str, Any] = self.feed_forward_proj.split("-" ) snake_case__ : List[str] = act_info[-1] snake_case__ : Optional[Any] = act_info[0] == "gated" if len(__A ) > 1 and act_info[0] != "gated" or len(__A ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": snake_case__ : Tuple = "gelu_new" super().__init__( pad_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , **__A , )
286
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : float , snake_case_ : float ): return round(float(moles / volume ) * nfactor ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
286
1
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
161
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> float: """simple docstring""" __A = np.array([[1, item, train_mtch[i]] for i, item in enumerate(UpperCAmelCase )] ) __A = np.array(UpperCAmelCase ) __A = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , UpperCAmelCase ) ) , x.transpose() ) , UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> float: """simple docstring""" __A = (1, 2, 1) __A = (1, 1, 0, 7) __A = SARIMAX( UpperCAmelCase , exog=UpperCAmelCase , order=UpperCAmelCase , seasonal_order=UpperCAmelCase ) __A = model.fit(disp=UpperCAmelCase , maxiter=6_0_0 , method='nm' ) __A = model_fit.predict(1 , len(UpperCAmelCase ) , exog=[test_match] ) return result[0] def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> float: """simple docstring""" __A = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(UpperCAmelCase , UpperCAmelCase ) __A = regressor.predict(UpperCAmelCase ) return y_pred[0] def snake_case ( UpperCAmelCase )-> float: """simple docstring""" train_user.sort() __A = np.percentile(UpperCAmelCase , 2_5 ) __A = np.percentile(UpperCAmelCase , 7_5 ) __A = qa - qa __A = qa - (iqr * 0.1) return low_lim def snake_case ( UpperCAmelCase , UpperCAmelCase )-> bool: """simple docstring""" __A = 0 __A = 0 for i in list_vote: if i > actual_result: __A = not_safe + 1 else: if abs(abs(UpperCAmelCase ) - abs(UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) a__ : List[str] = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] a__ : Optional[int] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) a__ : List[Any] = Normalizer().fit_transform(data_input_df.values) # split data a__ : Dict = normalize_df[:, 2].tolist() a__ : Optional[int] = normalize_df[:, 0].tolist() a__ : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) a__ : Tuple = normalize_df[:, [1, 2]].tolist() a__ : Dict = x[: len(x) - 1] a__ : Any = x[len(x) - 1 :] # for linear regression & sarimax a__ : Tuple = total_date[: len(total_date) - 1] a__ : List[Any] = total_user[: len(total_user) - 1] a__ : List[Any] = total_match[: len(total_match) - 1] a__ : List[str] = total_date[len(total_date) - 1 :] a__ : List[str] = total_user[len(total_user) - 1 :] a__ : Tuple = total_match[len(total_match) - 1 :] # voting system with forecasting a__ : Optional[Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data a__ : List[str] = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
161
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''open-llama''' def __init__( self : Optional[int] , A_ : List[Any]=100000 , A_ : int=4096 , A_ : Any=11008 , A_ : List[str]=32 , A_ : Tuple=32 , A_ : Tuple="silu" , A_ : Optional[Any]=2048 , A_ : Any=0.02 , A_ : str=1E-6 , A_ : str=True , A_ : Any=0 , A_ : Tuple=1 , A_ : Dict=2 , A_ : str=False , A_ : Optional[Any]=True , A_ : Optional[int]=0.1 , A_ : List[Any]=0.1 , A_ : List[Any]=True , A_ : List[Any]=True , A_ : Optional[int]=None , **A_ : Tuple , ) -> List[Any]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = intermediate_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = initializer_range lowerCamelCase_ = rms_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = kwargs.pop( 'use_memorry_efficient_attention' , A_ ) lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_dropout_prob lowerCamelCase_ = use_stable_embedding lowerCamelCase_ = shared_input_output_embedding lowerCamelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , tie_word_embeddings=A_ , **A_ , ) def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , A_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"""got {self.rope_scaling}""" ) lowerCamelCase_ = self.rope_scaling.get('type' , A_ ) lowerCamelCase_ = self.rope_scaling.get('factor' , A_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(A_ , A_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}""" )
352
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = 42 class A( UpperCamelCase , UpperCamelCase ): '''simple docstring''' @register_to_config def __init__( self : Tuple , A_ : int = 32 , A_ : int = 64 , A_ : int = 20 , A_ : int = 768 , A_ : Optional[Any]=77 , A_ : Optional[int]=4 , A_ : float = 0.0 , A_ : str = "silu" , A_ : Optional[str] = None , A_ : Optional[str] = None , A_ : Optional[str] = "linear" , A_ : Optional[str] = "prd" , A_ : Optional[int] = None , A_ : Optional[int] = None , A_ : Optional[int] = None , ) -> List[Any]: """simple docstring""" super().__init__() lowerCamelCase_ = num_attention_heads lowerCamelCase_ = attention_head_dim lowerCamelCase_ = num_attention_heads * attention_head_dim lowerCamelCase_ = additional_embeddings lowerCamelCase_ = time_embed_dim or inner_dim lowerCamelCase_ = embedding_proj_dim or embedding_dim lowerCamelCase_ = clip_embed_dim or embedding_dim lowerCamelCase_ = Timesteps(A_ , A_ , 0 ) lowerCamelCase_ = TimestepEmbedding(A_ , A_ , out_dim=A_ , act_fn=A_ ) lowerCamelCase_ = nn.Linear(A_ , A_ ) if embedding_proj_norm_type is None: lowerCamelCase_ = None elif embedding_proj_norm_type == "layer": lowerCamelCase_ = nn.LayerNorm(A_ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) lowerCamelCase_ = nn.Linear(A_ , A_ ) if encoder_hid_proj_type is None: lowerCamelCase_ = None elif encoder_hid_proj_type == "linear": lowerCamelCase_ = nn.Linear(A_ , A_ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) lowerCamelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , A_ ) ) if added_emb_type == "prd": lowerCamelCase_ = nn.Parameter(torch.zeros(1 , 1 , A_ ) ) elif added_emb_type is None: lowerCamelCase_ = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) lowerCamelCase_ = nn.ModuleList( [ BasicTransformerBlock( A_ , A_ , A_ , dropout=A_ , activation_fn='gelu' , attention_bias=A_ , ) for d in range(A_ ) ] ) if norm_in_type == "layer": lowerCamelCase_ = nn.LayerNorm(A_ ) elif norm_in_type is None: lowerCamelCase_ = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) lowerCamelCase_ = nn.LayerNorm(A_ ) lowerCamelCase_ = nn.Linear(A_ , A_ ) lowerCamelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) lowerCamelCase_ = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , A_ , persistent=A_ ) lowerCamelCase_ = nn.Parameter(torch.zeros(1 , A_ ) ) lowerCamelCase_ = nn.Parameter(torch.zeros(1 , A_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self : str ) -> Dict[str, AttentionProcessor]: """simple docstring""" lowerCamelCase_ = {} def fn_recursive_add_processors(A_ : str , A_ : torch.nn.Module , A_ : Dict[str, AttentionProcessor] ): if hasattr(A_ , 'set_processor' ): lowerCamelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , A_ , A_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(A_ , A_ , A_ ) return processors def a__ ( self : List[Any] , A_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Dict: """simple docstring""" lowerCamelCase_ = len(self.attn_processors.keys() ) if isinstance(A_ , A_ ) and len(A_ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(A_ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(A_ : str , A_ : torch.nn.Module , A_ : Union[str, Any] ): if hasattr(A_ , 'set_processor' ): if not isinstance(A_ , A_ ): module.set_processor(A_ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , A_ , A_ ) for name, module in self.named_children(): fn_recursive_attn_processor(A_ , A_ , A_ ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" self.set_attn_processor(AttnProcessor() ) def a__ ( self : Dict , A_ : List[Any] , A_ : Union[torch.Tensor, float, int] , A_ : torch.FloatTensor , A_ : Optional[torch.FloatTensor] = None , A_ : Optional[torch.BoolTensor] = None , A_ : bool = True , ) -> str: """simple docstring""" lowerCamelCase_ = hidden_states.shape[0] lowerCamelCase_ = timestep if not torch.is_tensor(A_ ): lowerCamelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: lowerCamelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCamelCase_ = timesteps * torch.ones(A_ , dtype=timesteps.dtype , device=timesteps.device ) lowerCamelCase_ = self.time_proj(A_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowerCamelCase_ = timesteps_projected.to(dtype=self.dtype ) lowerCamelCase_ = self.time_embedding(A_ ) if self.embedding_proj_norm is not None: lowerCamelCase_ = self.embedding_proj_norm(A_ ) lowerCamelCase_ = self.embedding_proj(A_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowerCamelCase_ = self.encoder_hidden_states_proj(A_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) lowerCamelCase_ = self.proj_in(A_ ) lowerCamelCase_ = self.positional_embedding.to(hidden_states.dtype ) lowerCamelCase_ = [] lowerCamelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(A_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowerCamelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowerCamelCase_ = hidden_states[:, None, :] lowerCamelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowerCamelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(A_ , -1 , -1 ) additional_embeds.append(A_ ) lowerCamelCase_ = torch.cat( A_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowerCamelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowerCamelCase_ = F.pad( A_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) lowerCamelCase_ = hidden_states + positional_embeddings if attention_mask is not None: lowerCamelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 lowerCamelCase_ = F.pad(A_ , (0, self.additional_embeddings) , value=0.0 ) lowerCamelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowerCamelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: lowerCamelCase_ = self.norm_in(A_ ) for block in self.transformer_blocks: lowerCamelCase_ = block(A_ , attention_mask=A_ ) lowerCamelCase_ = self.norm_out(A_ ) if self.prd_embedding is not None: lowerCamelCase_ = hidden_states[:, -1] else: lowerCamelCase_ = hidden_states[:, additional_embeddings_len:] lowerCamelCase_ = self.proj_to_clip_embeddings(A_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=A_ ) def a__ ( self : Tuple , A_ : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
208
0
from __future__ import annotations UpperCAmelCase__ = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class lowercase_ : '''simple docstring''' def __init__( self : Dict , __UpperCAmelCase : dict[str, list[str]] , __UpperCAmelCase : str ) ->None: """simple docstring""" a = graph # mapping node to its parent in resulting breadth first tree a = {} a = source_vertex def __lowerCAmelCase ( self : Union[str, Any] ) ->None: """simple docstring""" a = {self.source_vertex} a = None a = [self.source_vertex] # first in first out queue while queue: a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__UpperCAmelCase ) a = vertex queue.append(__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->str: """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex a = self.parent.get(__UpperCAmelCase ) if target_vertex_parent is None: a = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(__UpperCAmelCase ) return self.shortest_path(__UpperCAmelCase ) + F"""->{target_vertex}""" if __name__ == "__main__": UpperCAmelCase__ = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
148
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 32 def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> str: return int(x / 2**20 ) class a : def __enter__( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero _UpperCAmelCase : Union[str, Any] = torch.cuda.memory_allocated() return self def __exit__( self , *A_ ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() _UpperCAmelCase : List[str] = torch.cuda.memory_allocated() _UpperCAmelCase : List[Any] = torch.cuda.max_memory_allocated() _UpperCAmelCase : Optional[int] = bamb(self.end - self.begin ) _UpperCAmelCase : str = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Accelerator , lowerCAmelCase: int = 16 , lowerCAmelCase: str = "bert-base-cased" , lowerCAmelCase: int = 320 , lowerCAmelCase: int = 160 , ) -> Any: _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) _UpperCAmelCase : List[Any] = load_dataset( "glue" , "mrpc" , split={"train": F'train[:{n_train}]', "validation": F'validation[:{n_val}]'} ) def tokenize_function(lowerCAmelCase: Optional[int] ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : Tuple = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase , max_length=lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCAmelCase : int = datasets.map( lowerCAmelCase , batched=lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase: Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase , collate_fn=lowerCAmelCase , batch_size=lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase , collate_fn=lowerCAmelCase , batch_size=lowerCAmelCase ) return train_dataloader, eval_dataloader def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: Optional[int] ) -> str: # Initialize accelerator _UpperCAmelCase : List[str] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : str = config["lr"] _UpperCAmelCase : int = int(config["num_epochs"] ) _UpperCAmelCase : Dict = int(config["seed"] ) _UpperCAmelCase : Optional[Any] = int(config["batch_size"] ) _UpperCAmelCase : Dict = args.model_name_or_path set_seed(lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_dataloaders(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Any = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase , return_dict=lowerCAmelCase ) # Instantiate optimizer _UpperCAmelCase : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCAmelCase : Tuple = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: _UpperCAmelCase : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : Optional[Any] = (len(lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCAmelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase , num_warmup_steps=0 , num_training_steps=lowerCAmelCase , ) else: _UpperCAmelCase : int = DummyScheduler(lowerCAmelCase , total_num_steps=lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase : Union[str, Any] = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over _UpperCAmelCase : Any = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCAmelCase : List[str] = 0 # Now we train the model _UpperCAmelCase : int = {} for epoch in range(lowerCAmelCase , lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowerCAmelCase ): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = outputs.loss _UpperCAmelCase : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) ) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) ) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) ) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) _UpperCAmelCase : Tuple = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'epoch-{epoch}'] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "peak_memory_utilization.json" ) , "w" ) as f: json.dump(lowerCAmelCase , lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( ) -> int: _UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=lowerCAmelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowerCAmelCase , ) parser.add_argument( "--output_dir" , type=lowerCAmelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--peak_memory_upper_bound" , type=lowerCAmelCase , default=lowerCAmelCase , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , ) parser.add_argument( "--n_train" , type=lowerCAmelCase , default=320 , help="Number of training examples to use." , ) parser.add_argument( "--n_val" , type=lowerCAmelCase , default=160 , help="Number of validation examples to use." , ) parser.add_argument( "--num_epochs" , type=lowerCAmelCase , default=1 , help="Number of train epochs." , ) _UpperCAmelCase : List[Any] = parser.parse_args() _UpperCAmelCase : Optional[int] = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": main()
351
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate SCREAMING_SNAKE_CASE_ = trt.Logger(trt.Logger.WARNING) SCREAMING_SNAKE_CASE_ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() if args.tokenizer_name: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) SCREAMING_SNAKE_CASE_ = args.per_device_eval_batch_size SCREAMING_SNAKE_CASE_ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = 'temp_engine/bert-fp32.engine' if args.fpaa: SCREAMING_SNAKE_CASE_ = 'temp_engine/bert-fp16.engine' if args.inta: SCREAMING_SNAKE_CASE_ = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') SCREAMING_SNAKE_CASE_ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network SCREAMING_SNAKE_CASE_ = [network.get_input(i) for i in range(network.num_inputs)] SCREAMING_SNAKE_CASE_ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: SCREAMING_SNAKE_CASE_ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) SCREAMING_SNAKE_CASE_ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) SCREAMING_SNAKE_CASE_ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[str] , lowerCAmelCase: Any , lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: List[str] , lowerCAmelCase: Dict , lowerCAmelCase: Optional[int] ) -> List[Any]: _UpperCAmelCase : Dict = np.asarray(inputs["input_ids"] , dtype=np.intaa ) _UpperCAmelCase : List[str] = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) _UpperCAmelCase : Union[str, Any] = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase ) # start time _UpperCAmelCase : Dict = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase ) for d_inp in d_inputs] + [int(lowerCAmelCase ), int(lowerCAmelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) cuda.memcpy_dtoh_async(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time _UpperCAmelCase : Any = time.time() _UpperCAmelCase : Any = end_time - start_time _UpperCAmelCase : Optional[int] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. SCREAMING_SNAKE_CASE_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE_ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. SCREAMING_SNAKE_CASE_ = raw_datasets['validation'].column_names SCREAMING_SNAKE_CASE_ = 'question' if 'question' in column_names else column_names[0] SCREAMING_SNAKE_CASE_ = 'context' if 'context' in column_names else column_names[1] SCREAMING_SNAKE_CASE_ = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). SCREAMING_SNAKE_CASE_ = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) SCREAMING_SNAKE_CASE_ = min(args.max_seq_length, tokenizer.model_max_length) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> Any: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace _UpperCAmelCase : Optional[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _UpperCAmelCase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=lowerCAmelCase , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _UpperCAmelCase : List[Any] = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _UpperCAmelCase : Tuple = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _UpperCAmelCase : Tuple = tokenized_examples.sequence_ids(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _UpperCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _UpperCAmelCase : Any = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples SCREAMING_SNAKE_CASE_ = raw_datasets['validation'] # Validation Feature Creation SCREAMING_SNAKE_CASE_ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) SCREAMING_SNAKE_CASE_ = default_data_collator SCREAMING_SNAKE_CASE_ = eval_dataset.remove_columns(['example_id', 'offset_mapping']) SCREAMING_SNAKE_CASE_ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any , lowerCAmelCase: Dict , lowerCAmelCase: str , lowerCAmelCase: Optional[Any]="eval" ) -> Union[str, Any]: # Post-processing: we match the start logits and end logits to answers in the original context. _UpperCAmelCase : Tuple = postprocess_qa_predictions( examples=lowerCAmelCase , features=lowerCAmelCase , predictions=lowerCAmelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: _UpperCAmelCase : Optional[int] = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: _UpperCAmelCase : Optional[Any] = [{"id": k, "prediction_text": v} for k, v in predictions.items()] _UpperCAmelCase : Optional[int] = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase , label_ids=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> List[str]: return trt.volume(engine.get_binding_shape(lowerCAmelCase ) ) * engine.get_binding_dtype(lowerCAmelCase ).itemsize # Allocate device memory for inputs and outputs. SCREAMING_SNAKE_CASE_ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer SCREAMING_SNAKE_CASE_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) SCREAMING_SNAKE_CASE_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) SCREAMING_SNAKE_CASE_ = cuda.mem_alloc(h_outputa.nbytes) SCREAMING_SNAKE_CASE_ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. SCREAMING_SNAKE_CASE_ = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(F''' Num examples = {len(eval_dataset)}''') logger.info(F''' Batch size = {args.per_device_eval_batch_size}''') SCREAMING_SNAKE_CASE_ = 0.0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = timeit.default_timer() SCREAMING_SNAKE_CASE_ = None for step, batch in enumerate(eval_dataloader): SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = outputs SCREAMING_SNAKE_CASE_ = torch.tensor(start_logits) SCREAMING_SNAKE_CASE_ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered SCREAMING_SNAKE_CASE_ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) SCREAMING_SNAKE_CASE_ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) SCREAMING_SNAKE_CASE_ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) SCREAMING_SNAKE_CASE_ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: SCREAMING_SNAKE_CASE_ = nested_truncate(all_preds, len(eval_dataset)) SCREAMING_SNAKE_CASE_ = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1000)) logger.info('Total Number of Inference = %d', niter) SCREAMING_SNAKE_CASE_ = post_processing_function(eval_examples, eval_dataset, all_preds) SCREAMING_SNAKE_CASE_ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'''Evaluation metrics: {eval_metric}''')
189
0
'''simple docstring''' import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): @property def snake_case ( self : int ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case ( self : Optional[int] ): """simple docstring""" __lowercase =ort.SessionOptions() __lowercase =False return options def snake_case ( self : Dict ): """simple docstring""" __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) __lowercase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default __lowercase =OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=__lowercase , feature_extractor=__lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowercase ) __lowercase ='A red cat sitting on a park bench' __lowercase =np.random.RandomState(0 ) __lowercase =pipe( prompt=__lowercase , image=__lowercase , mask_image=__lowercase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=15 , generator=__lowercase , output_type='np' , ) __lowercase =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
141
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } UpperCAmelCase = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = RealmTokenizer def __init__( self : int , __lowercase : Union[str, Any]=None , __lowercase : int=None , __lowercase : List[Any]=True , __lowercase : Any="[UNK]" , __lowercase : Union[str, Any]="[SEP]" , __lowercase : Union[str, Any]="[PAD]" , __lowercase : Tuple="[CLS]" , __lowercase : List[Any]="[MASK]" , __lowercase : Tuple=True , __lowercase : Union[str, Any]=None , **__lowercase : int , ): """simple docstring""" super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) __lowercase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , __lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __lowercase ) != tokenize_chinese_chars ): __lowercase =getattr(__lowercase , normalizer_state.pop('type' ) ) __lowercase =do_lower_case __lowercase =strip_accents __lowercase =tokenize_chinese_chars __lowercase =normalizer_class(**__lowercase ) __lowercase =do_lower_case def snake_case ( self : List[str] , __lowercase : Optional[Any] , **__lowercase : Any ): """simple docstring""" __lowercase =PaddingStrategy.MAX_LENGTH __lowercase =text __lowercase =kwargs.pop('text_pair' , __lowercase ) __lowercase =kwargs.pop('return_tensors' , __lowercase ) __lowercase ={ 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(__lowercase ): if batch_text_pair is not None: __lowercase =batch_text_pair[idx] else: __lowercase =None __lowercase =super().__call__(__lowercase , __lowercase , return_tensors=__lowercase , **__lowercase ) __lowercase =encoded_candidates.get('input_ids' ) __lowercase =encoded_candidates.get('attention_mask' ) __lowercase =encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(__lowercase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__lowercase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__lowercase ) __lowercase ={key: item for key, item in output_data.items() if len(__lowercase ) != 0} return BatchEncoding(__lowercase , tensor_type=__lowercase ) def snake_case ( self : List[str] , __lowercase : Tuple , __lowercase : Optional[int]=None ): """simple docstring""" __lowercase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self : List[str] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): """simple docstring""" __lowercase =[self.sep_token_id] __lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self : Dict , __lowercase : str , __lowercase : Optional[str] = None ): """simple docstring""" __lowercase =self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
141
1
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE_ = { """susnato/ernie-m-base_pytorch""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json""", """susnato/ernie-m-large_pytorch""": """https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json""", } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = "ernie_m" __snake_case : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : Optional[Any] ,lowerCamelCase__ : int = 250002 ,lowerCamelCase__ : int = 768 ,lowerCamelCase__ : int = 12 ,lowerCamelCase__ : int = 12 ,lowerCamelCase__ : int = 3072 ,lowerCamelCase__ : str = "gelu" ,lowerCamelCase__ : float = 0.1 ,lowerCamelCase__ : float = 0.1 ,lowerCamelCase__ : int = 514 ,lowerCamelCase__ : float = 0.02 ,lowerCamelCase__ : int = 1 ,lowerCamelCase__ : float = 1e-0_5 ,lowerCamelCase__ : str=None ,lowerCamelCase__ : str=False ,lowerCamelCase__ : str=0.0 ,**lowerCamelCase__ : Tuple ,) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = is_decoder SCREAMING_SNAKE_CASE = act_dropout
193
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { """configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegatronBertForCausalLM""", """MegatronBertForMaskedLM""", """MegatronBertForMultipleChoice""", """MegatronBertForNextSentencePrediction""", """MegatronBertForPreTraining""", """MegatronBertForQuestionAnswering""", """MegatronBertForSequenceClassification""", """MegatronBertForTokenClassification""", """MegatronBertModel""", """MegatronBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
193
1
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline snake_case__ : Dict = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": snake_case__ : Optional[int] = 'hopper-medium-v2' snake_case__ : Optional[int] = gym.make(env_name) snake_case__ : str = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) snake_case__ : str = env.reset() snake_case__ : Optional[int] = 0 snake_case__ : str = 0 snake_case__ : List[str] = 1000 snake_case__ : int = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy snake_case__ : str = pipeline(obs, planning_horizon=32) # execute action in environment snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = env.step(denorm_actions) snake_case__ : List[str] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' f' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) snake_case__ : int = next_observation except KeyboardInterrupt: pass print(f'Total reward: {total_reward}')
117
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: np.ndarray , lowerCamelCase: np.ndarray , lowerCamelCase: int , lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __A = cva.getAffineTransform(lowerCamelCase , lowerCamelCase ) return cva.warpAffine(lowerCamelCase , lowerCamelCase , (rows, cols) ) if __name__ == "__main__": # read original image snake_case__ : List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value snake_case__ : List[str] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape snake_case__ , snake_case__ : str = gray_img.shape # set different points to rotate image snake_case__ : Any = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) snake_case__ : str = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) snake_case__ : int = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) snake_case__ : List[str] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list snake_case__ : Optional[Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations snake_case__ : Optional[Any] = plt.figure(1) snake_case__ : Dict = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
117
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig UpperCAmelCase_ = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : List[str] = "albert" def __init__( self, __magic_name__=30000, __magic_name__=128, __magic_name__=4096, __magic_name__=12, __magic_name__=1, __magic_name__=64, __magic_name__=16384, __magic_name__=1, __magic_name__="gelu_new", __magic_name__=0, __magic_name__=0, __magic_name__=512, __magic_name__=2, __magic_name__=0.02, __magic_name__=1E-12, __magic_name__=0.1, __magic_name__="absolute", __magic_name__=0, __magic_name__=2, __magic_name__=3, **__magic_name__, ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=__magic_name__, bos_token_id=__magic_name__, eos_token_id=__magic_name__, **__magic_name__ ) UpperCamelCase__ : Union[str, Any] = vocab_size UpperCamelCase__ : Dict = embedding_size UpperCamelCase__ : Union[str, Any] = hidden_size UpperCamelCase__ : List[Any] = num_hidden_layers UpperCamelCase__ : List[str] = num_hidden_groups UpperCamelCase__ : Optional[Any] = num_attention_heads UpperCamelCase__ : Tuple = inner_group_num UpperCamelCase__ : Any = hidden_act UpperCamelCase__ : List[Any] = intermediate_size UpperCamelCase__ : Tuple = hidden_dropout_prob UpperCamelCase__ : List[str] = attention_probs_dropout_prob UpperCamelCase__ : Dict = max_position_embeddings UpperCamelCase__ : int = type_vocab_size UpperCamelCase__ : Tuple = initializer_range UpperCamelCase__ : Union[str, Any] = layer_norm_eps UpperCamelCase__ : List[Any] = classifier_dropout_prob UpperCamelCase__ : Optional[int] = position_embedding_type class lowercase__ ( __lowerCamelCase ): '''simple docstring''' @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase__ : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase__ : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
247
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available UpperCAmelCase_ = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
247
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __a = logging.get_logger(__name__) __a = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase__( __lowercase , __lowercase ): """simple docstring""" a :Optional[int] = 'swin' a :List[Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2_2_4 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : str=3 , SCREAMING_SNAKE_CASE_ : str=9_6 , SCREAMING_SNAKE_CASE_ : Optional[int]=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE_ : Optional[int]=[3, 6, 1_2, 2_4] , SCREAMING_SNAKE_CASE_ : Optional[int]=7 , SCREAMING_SNAKE_CASE_ : int=4.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : int=0.0 , SCREAMING_SNAKE_CASE_ : Dict=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=1e-5 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : Any , ) -> Union[str, Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = depths lowercase_ = len(SCREAMING_SNAKE_CASE_ ) lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase_ = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE_ ) - 1) ) lowercase_ = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(SCREAMING_SNAKE_CASE_ ) + 1 )] lowercase_ = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , stage_names=self.stage_names ) class lowercase__( __lowercase ): """simple docstring""" a :str = version.parse('1.11' ) @property def _lowercase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowercase ( self : Dict ) -> float: return 1e-4
30
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[int]]) -> bool: '''simple docstring''' __UpperCamelCase : Any = len(_lowerCamelCase) # We need to create solution object to save path. __UpperCamelCase : List[str] = [[0 for _ in range(_lowerCamelCase)] for _ in range(_lowerCamelCase)] __UpperCamelCase : Optional[int] = run_maze(_lowerCamelCase , 0 , 0 , _lowerCamelCase) if solved: print("\n".join(str(_lowerCamelCase) for row in solutions)) else: print("No solution exists!") return solved def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[int]] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[list[int]]) -> bool: '''simple docstring''' __UpperCamelCase : Tuple = len(_lowerCamelCase) # Final check point. if i == j == (size - 1): __UpperCamelCase : Optional[int] = 1 return True __UpperCamelCase : List[Any] = (not i < 0) and (not j < 0) # Check lower bounds __UpperCamelCase : List[str] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __UpperCamelCase : int = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __UpperCamelCase : Tuple = 1 # check for directions if ( run_maze(_lowerCamelCase , i + 1 , _lowerCamelCase , _lowerCamelCase) or run_maze(_lowerCamelCase , _lowerCamelCase , j + 1 , _lowerCamelCase) or run_maze(_lowerCamelCase , i - 1 , _lowerCamelCase , _lowerCamelCase) or run_maze(_lowerCamelCase , _lowerCamelCase , j - 1 , _lowerCamelCase) ): return True __UpperCamelCase : Tuple = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
232
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowercase =logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCAmelCase ): def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Dict: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( speech_model=snake_case , speech_processor=snake_case , vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , feature_extractor=snake_case , ) def lowerCAmelCase ( self , snake_case = "auto") -> Dict: '''simple docstring''' if slice_size == "auto": _UpperCAmelCase : str =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.enable_attention_slicing(snake_case) @torch.no_grad() def __call__( self , snake_case , snake_case=1_6_0_0_0 , snake_case = 5_1_2 , snake_case = 5_1_2 , snake_case = 5_0 , snake_case = 7.5 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , **snake_case , ) -> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] =self.speech_processor.feature_extractor( snake_case , return_tensors='pt' , sampling_rate=snake_case).input_features.to(self.device) _UpperCAmelCase : str =self.speech_model.generate(snake_case , max_length=4_8_0_0_0_0) _UpperCAmelCase : str =self.speech_processor.tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , normalize=snake_case)[ 0 ] if isinstance(snake_case , snake_case): _UpperCAmelCase : Optional[int] =1 elif isinstance(snake_case , snake_case): _UpperCAmelCase : Union[str, Any] =len(snake_case) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case)}.") # get prompt text embeddings _UpperCAmelCase : int =self.tokenizer( snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _UpperCAmelCase : Any =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _UpperCAmelCase : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}") _UpperCAmelCase : Union[str, Any] =text_input_ids[:, : self.tokenizer.model_max_length] _UpperCAmelCase : Dict =self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str =text_embeddings.shape _UpperCAmelCase : str =text_embeddings.repeat(1 , snake_case , 1) _UpperCAmelCase : Tuple =text_embeddings.view(bs_embed * num_images_per_prompt , snake_case , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _UpperCAmelCase : List[Any] =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _UpperCAmelCase : List[str] if negative_prompt is None: _UpperCAmelCase : List[Any] =[''] * batch_size elif type(snake_case) is not type(snake_case): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case)} !=" f" {type(snake_case)}.") elif isinstance(snake_case , snake_case): _UpperCAmelCase : Dict =[negative_prompt] elif batch_size != len(snake_case): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.') else: _UpperCAmelCase : Dict =negative_prompt _UpperCAmelCase : Tuple =text_input_ids.shape[-1] _UpperCAmelCase : Optional[int] =self.tokenizer( snake_case , padding='max_length' , max_length=snake_case , truncation=snake_case , return_tensors='pt' , ) _UpperCAmelCase : Optional[int] =self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCAmelCase : str =uncond_embeddings.shape[1] _UpperCAmelCase : Optional[int] =uncond_embeddings.repeat(1 , snake_case , 1) _UpperCAmelCase : Optional[Any] =uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase : Optional[Any] =torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _UpperCAmelCase : Optional[Any] =(batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _UpperCAmelCase : str =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _UpperCAmelCase : List[Any] =torch.randn(snake_case , generator=snake_case , device='cpu' , dtype=snake_case).to( self.device) else: _UpperCAmelCase : Dict =torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") _UpperCAmelCase : Optional[int] =latents.to(self.device) # set timesteps self.scheduler.set_timesteps(snake_case) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _UpperCAmelCase : Optional[Any] =self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase : int =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase : Optional[int] ='eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) _UpperCAmelCase : str ={} if accepts_eta: _UpperCAmelCase : Optional[int] =eta for i, t in enumerate(self.progress_bar(snake_case)): # expand the latents if we are doing classifier free guidance _UpperCAmelCase : int =torch.cat([latents] * 2) if do_classifier_free_guidance else latents _UpperCAmelCase : Optional[int] =self.scheduler.scale_model_input(snake_case , snake_case) # predict the noise residual _UpperCAmelCase : Dict =self.unet(snake_case , snake_case , encoder_hidden_states=snake_case).sample # perform guidance if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : Dict =noise_pred.chunk(2) _UpperCAmelCase : Optional[Any] =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : List[str] =self.scheduler.step(snake_case , snake_case , snake_case , **snake_case).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case) _UpperCAmelCase : Union[str, Any] =1 / 0.1_82_15 * latents _UpperCAmelCase : int =self.vae.decode(snake_case).sample _UpperCAmelCase : List[str] =(image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _UpperCAmelCase : Union[str, Any] =image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": _UpperCAmelCase : Tuple =self.numpy_to_pil(snake_case) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case)
242
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple ): '''simple docstring''' if isinstance(__lowerCamelCase , torch.Tensor ): return image elif isinstance(__lowerCamelCase , PIL.Image.Image ): _UpperCAmelCase : List[Any] =[image] if isinstance(image[0] , PIL.Image.Image ): _UpperCAmelCase : List[Any] =[np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _UpperCAmelCase : List[str] =np.concatenate(__lowerCamelCase , axis=0 ) _UpperCAmelCase : Optional[Any] =np.array(__lowerCamelCase ).astype(np.floataa ) / 2_55.0 _UpperCAmelCase : List[Any] =image.transpose(0 , 3 , 1 , 2 ) _UpperCAmelCase : str =2.0 * image - 1.0 _UpperCAmelCase : Optional[Any] =torch.from_numpy(__lowerCamelCase ) elif isinstance(image[0] , torch.Tensor ): _UpperCAmelCase : List[Any] =torch.cat(__lowerCamelCase , dim=0 ) return image def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int]=0.99_95 ): '''simple docstring''' if not isinstance(__lowerCamelCase , np.ndarray ): _UpperCAmelCase : Optional[Any] =True _UpperCAmelCase : int =va.device _UpperCAmelCase : List[Any] =va.cpu().numpy() _UpperCAmelCase : Tuple =va.cpu().numpy() _UpperCAmelCase : Any =np.sum(va * va / (np.linalg.norm(__lowerCamelCase ) * np.linalg.norm(__lowerCamelCase )) ) if np.abs(__lowerCamelCase ) > DOT_THRESHOLD: _UpperCAmelCase : Union[str, Any] =(1 - t) * va + t * va else: _UpperCAmelCase : Optional[int] =np.arccos(__lowerCamelCase ) _UpperCAmelCase : Tuple =np.sin(__lowerCamelCase ) _UpperCAmelCase : str =theta_a * t _UpperCAmelCase : List[Any] =np.sin(__lowerCamelCase ) _UpperCAmelCase : List[str] =np.sin(theta_a - theta_t ) / sin_theta_a _UpperCAmelCase : str =sin_theta_t / sin_theta_a _UpperCAmelCase : int =sa * va + sa * va if inputs_are_torch: _UpperCAmelCase : Union[str, Any] =torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) return va def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =F.normalize(__lowerCamelCase , dim=-1 ) _UpperCAmelCase : List[Any] =F.normalize(__lowerCamelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' for param in model.parameters(): _UpperCAmelCase : Dict =value class __magic_name__ ( lowerCAmelCase ): def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , ) -> List[Any]: '''simple docstring''' super().__init__() self.register_modules( vae=snake_case , text_encoder=snake_case , clip_model=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , feature_extractor=snake_case , coca_model=snake_case , coca_tokenizer=snake_case , coca_transform=snake_case , ) _UpperCAmelCase : List[Any] =( feature_extractor.size if isinstance(feature_extractor.size , snake_case) else feature_extractor.size['shortest_edge'] ) _UpperCAmelCase : str =transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std) set_requires_grad(self.text_encoder , snake_case) set_requires_grad(self.clip_model , snake_case) def lowerCAmelCase ( self , snake_case = "auto") -> List[Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCAmelCase : Union[str, Any] =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case) def lowerCAmelCase ( self) -> int: '''simple docstring''' self.enable_attention_slicing(snake_case) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' set_requires_grad(self.vae , snake_case) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' set_requires_grad(self.vae , snake_case) def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' set_requires_grad(self.unet , snake_case) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' set_requires_grad(self.unet , snake_case) def lowerCAmelCase ( self , snake_case , snake_case , snake_case) -> Tuple: '''simple docstring''' # get the original timestep using init_timestep _UpperCAmelCase : Union[str, Any] =min(int(num_inference_steps * strength) , snake_case) _UpperCAmelCase : Any =max(num_inference_steps - init_timestep , 0) _UpperCAmelCase : int =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=None) -> Optional[int]: '''simple docstring''' if not isinstance(snake_case , torch.Tensor): raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(snake_case)}") _UpperCAmelCase : str =image.to(device=snake_case , dtype=snake_case) if isinstance(snake_case , snake_case): _UpperCAmelCase : Optional[Any] =[ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(snake_case) ] _UpperCAmelCase : Tuple =torch.cat(snake_case , dim=0) else: _UpperCAmelCase : List[Any] =self.vae.encode(snake_case).latent_dist.sample(snake_case) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCAmelCase : Optional[int] =0.1_82_15 * init_latents _UpperCAmelCase : List[str] =init_latents.repeat_interleave(snake_case , dim=0) _UpperCAmelCase : Union[str, Any] =randn_tensor(init_latents.shape , generator=snake_case , device=snake_case , dtype=snake_case) # get latents _UpperCAmelCase : Optional[int] =self.scheduler.add_noise(snake_case , snake_case , snake_case) _UpperCAmelCase : List[Any] =init_latents return latents def lowerCAmelCase ( self , snake_case) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =self.coca_transform(snake_case).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): _UpperCAmelCase : str =self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype)) _UpperCAmelCase : Tuple =self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split('<end_of_text>')[0].replace('<start_of_text>' , '').rstrip(' .,') def lowerCAmelCase ( self , snake_case , snake_case) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Any =self.feature_extractor.preprocess(snake_case) _UpperCAmelCase : Optional[Any] =torch.from_numpy(clip_image_input['pixel_values'][0]).unsqueeze(0).to(self.device).half() _UpperCAmelCase : Dict =self.clip_model.get_image_features(snake_case) _UpperCAmelCase : int =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=snake_case) _UpperCAmelCase : List[str] =image_embeddings_clip.repeat_interleave(snake_case , dim=0) return image_embeddings_clip @torch.enable_grad() def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict =latents.detach().requires_grad_() _UpperCAmelCase : str =self.scheduler.scale_model_input(snake_case , snake_case) # predict the noise residual _UpperCAmelCase : int =self.unet(snake_case , snake_case , encoder_hidden_states=snake_case).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): _UpperCAmelCase : Optional[int] =self.scheduler.alphas_cumprod[timestep] _UpperCAmelCase : Any =1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase : str =(latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _UpperCAmelCase : Union[str, Any] =torch.sqrt(snake_case) _UpperCAmelCase : List[str] =pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , snake_case): _UpperCAmelCase : Optional[int] =self.scheduler.sigmas[index] _UpperCAmelCase : Tuple =latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler)} not supported") # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCAmelCase : Tuple =1 / 0.1_82_15 * sample _UpperCAmelCase : Optional[Any] =self.vae.decode(snake_case).sample _UpperCAmelCase : Tuple =(image / 2 + 0.5).clamp(0 , 1) _UpperCAmelCase : int =transforms.Resize(self.feature_extractor_size)(snake_case) _UpperCAmelCase : Optional[int] =self.normalize(snake_case).to(latents.dtype) _UpperCAmelCase : str =self.clip_model.get_image_features(snake_case) _UpperCAmelCase : str =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=snake_case) _UpperCAmelCase : Optional[int] =spherical_dist_loss(snake_case , snake_case).mean() * clip_guidance_scale _UpperCAmelCase : List[str] =-torch.autograd.grad(snake_case , snake_case)[0] if isinstance(self.scheduler , snake_case): _UpperCAmelCase : Optional[Any] =latents.detach() + grads * (sigma**2) _UpperCAmelCase : str =noise_pred_original else: _UpperCAmelCase : str =noise_pred_original - torch.sqrt(snake_case) * grads return noise_pred, latents @torch.no_grad() def __call__( self , snake_case , snake_case , snake_case = None , snake_case = None , snake_case = 5_1_2 , snake_case = 5_1_2 , snake_case = 0.6 , snake_case = 5_0 , snake_case = 7.5 , snake_case = 1 , snake_case = 0.0 , snake_case = 1_0_0 , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = 0.8 , snake_case = 0.1 , snake_case = 0.1 , ) -> List[str]: '''simple docstring''' if isinstance(snake_case , snake_case) and len(snake_case) != batch_size: raise ValueError(f"You have passed {batch_size} batch_size, but only {len(snake_case)} generators.") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if isinstance(snake_case , torch.Generator) and batch_size > 1: _UpperCAmelCase : List[str] =[generator] + [None] * (batch_size - 1) _UpperCAmelCase : Tuple =[ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _UpperCAmelCase : Tuple =[x[0] for x in coca_is_none if x[1]] _UpperCAmelCase : Union[str, Any] =', '.join(snake_case) # generate prompts with coca model if prompt is None if content_prompt is None: if len(snake_case): raise ValueError( f"Content prompt is None and CoCa [{coca_is_none_str}] is None." f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.") _UpperCAmelCase : Optional[int] =self.get_image_description(snake_case) if style_prompt is None: if len(snake_case): raise ValueError( f"Style prompt is None and CoCa [{coca_is_none_str}] is None." f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.") _UpperCAmelCase : List[str] =self.get_image_description(snake_case) # get prompt text embeddings for content and style _UpperCAmelCase : Optional[Any] =self.tokenizer( snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=snake_case , return_tensors='pt' , ) _UpperCAmelCase : Dict =self.text_encoder(content_text_input.input_ids.to(self.device))[0] _UpperCAmelCase : Optional[int] =self.tokenizer( snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=snake_case , return_tensors='pt' , ) _UpperCAmelCase : Tuple =self.text_encoder(style_text_input.input_ids.to(self.device))[0] _UpperCAmelCase : List[Any] =slerp(snake_case , snake_case , snake_case) # duplicate text embeddings for each generation per prompt _UpperCAmelCase : Optional[Any] =text_embeddings.repeat_interleave(snake_case , dim=0) # set timesteps _UpperCAmelCase : Any ='offset' in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) _UpperCAmelCase : int ={} if accepts_offset: _UpperCAmelCase : Union[str, Any] =1 self.scheduler.set_timesteps(snake_case , **snake_case) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) _UpperCAmelCase , _UpperCAmelCase : int =self.get_timesteps(snake_case , snake_case , self.device) _UpperCAmelCase : Dict =timesteps[:1].repeat(snake_case) # Preprocess image _UpperCAmelCase : int =preprocess(snake_case , snake_case , snake_case) _UpperCAmelCase : Tuple =self.prepare_latents( snake_case , snake_case , snake_case , text_embeddings.dtype , self.device , snake_case) _UpperCAmelCase : Optional[Any] =preprocess(snake_case , snake_case , snake_case) _UpperCAmelCase : List[Any] =self.prepare_latents( snake_case , snake_case , snake_case , text_embeddings.dtype , self.device , snake_case) _UpperCAmelCase : List[Any] =slerp(snake_case , snake_case , snake_case) if clip_guidance_scale > 0: _UpperCAmelCase : Optional[int] =self.get_clip_image_embeddings(snake_case , snake_case) _UpperCAmelCase : int =self.get_clip_image_embeddings(snake_case , snake_case) _UpperCAmelCase : Dict =slerp( snake_case , snake_case , snake_case) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _UpperCAmelCase : int =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _UpperCAmelCase : Union[str, Any] =content_text_input.input_ids.shape[-1] _UpperCAmelCase : List[str] =self.tokenizer([''] , padding='max_length' , max_length=snake_case , return_tensors='pt') _UpperCAmelCase : Union[str, Any] =self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt _UpperCAmelCase : List[Any] =uncond_embeddings.repeat_interleave(snake_case , dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase : Any =torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _UpperCAmelCase : str =(batch_size, self.unet.config.in_channels, height // 8, width // 8) _UpperCAmelCase : Union[str, Any] =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _UpperCAmelCase : int =torch.randn(snake_case , generator=snake_case , device='cpu' , dtype=snake_case).to( self.device) else: _UpperCAmelCase : Optional[int] =torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") _UpperCAmelCase : List[str] =latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase : str =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase : List[str] ='eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) _UpperCAmelCase : Union[str, Any] ={} if accepts_eta: _UpperCAmelCase : Optional[int] =eta # check if the scheduler accepts generator _UpperCAmelCase : Union[str, Any] ='generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: _UpperCAmelCase : Dict =generator with self.progress_bar(total=snake_case): for i, t in enumerate(snake_case): # expand the latents if we are doing classifier free guidance _UpperCAmelCase : Dict =torch.cat([latents] * 2) if do_classifier_free_guidance else latents _UpperCAmelCase : Optional[int] =self.scheduler.scale_model_input(snake_case , snake_case) # predict the noise residual _UpperCAmelCase : Optional[int] =self.unet(snake_case , snake_case , encoder_hidden_states=snake_case).sample # perform classifier free guidance if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : int =noise_pred.chunk(2) _UpperCAmelCase : Dict =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _UpperCAmelCase : Tuple =( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] =self.cond_fn( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : List[str] =self.scheduler.step(snake_case , snake_case , snake_case , **snake_case).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCAmelCase : Optional[Any] =1 / 0.1_82_15 * latents _UpperCAmelCase : Optional[int] =self.vae.decode(snake_case).sample _UpperCAmelCase : str =(image / 2 + 0.5).clamp(0 , 1) _UpperCAmelCase : Union[str, Any] =image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case)
242
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __snake_case ( ): lowerCamelCase_ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=UpperCAmelCase_ ) lowerCamelCase_ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=UpperCAmelCase_ ) env_command_parser(subparsers=UpperCAmelCase_ ) launch_command_parser(subparsers=UpperCAmelCase_ ) tpu_command_parser(subparsers=UpperCAmelCase_ ) test_command_parser(subparsers=UpperCAmelCase_ ) # Let's go lowerCamelCase_ = parser.parse_args() if not hasattr(UpperCAmelCase_ , "func" ): parser.print_help() exit(1 ) # Run args.func(UpperCAmelCase_ ) if __name__ == "__main__": main()
55
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowercase : str = Lock() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCamelCase_ : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCamelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCamelCase_ : Any = max(_lowercase , _lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowercase ) def lowercase_ ( _lowercase ) -> int: '''simple docstring''' lowerCamelCase_ : int = [] lowerCamelCase_ : Tuple = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCamelCase_ : str = Pipe() lowerCamelCase_ : List[Any] = Pipe() process_array_.append( Process( target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCamelCase_ : Optional[Any] = temp_rs lowerCamelCase_ : List[str] = temp_rr for i in range(1 , len(_lowercase ) - 1 ): lowerCamelCase_ : str = Pipe() lowerCamelCase_ : Any = Pipe() process_array_.append( Process( target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCamelCase_ : Dict = temp_rs lowerCamelCase_ : Tuple = temp_rr process_array_.append( Process( target=_lowercase , args=( len(_lowercase ) - 1, arr[len(_lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowercase ) ): lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase_ ( ) -> Any: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_lowercase ) lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase ) print('''Sorted List\n''' ) print(*_lowercase ) if __name__ == "__main__": main()
318
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[str] ): '''simple docstring''' UpperCAmelCase__ = """""" for word_or_phrase in separated: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise Exception("""join() accepts only strings to be joined""" ) joined += word_or_phrase + separator return joined.strip(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": from doctest import testmod testmod()
61
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) UpperCAmelCase_ = logging.getLogger(__name__) UpperCAmelCase_ = 'Hello world! cécé herlolip' UpperCAmelCase_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' UpperCAmelCase__ = BertAbsConfig( temp_dir=""".""" , finetune_bert=SCREAMING_SNAKE_CASE__ , large=SCREAMING_SNAKE_CASE__ , share_emb=SCREAMING_SNAKE_CASE__ , use_bert_emb=SCREAMING_SNAKE_CASE__ , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) UpperCAmelCase__ = torch.load(SCREAMING_SNAKE_CASE__ , lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : storage ) UpperCAmelCase__ = AbsSummarizer(SCREAMING_SNAKE_CASE__ , torch.device("""cpu""" ) , SCREAMING_SNAKE_CASE__ ) original.eval() UpperCAmelCase__ = BertAbsSummarizer(SCREAMING_SNAKE_CASE__ , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) UpperCAmelCase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs UpperCAmelCase__ = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE__ )) ) UpperCAmelCase__ = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) UpperCAmelCase__ = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE__ )) ) UpperCAmelCase__ = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase__ = encoder_input_ids UpperCAmelCase__ = decoder_input_ids UpperCAmelCase__ = UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = UpperCAmelCase__ = None UpperCAmelCase__ = UpperCAmelCase__ = None UpperCAmelCase__ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase__ = original(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] UpperCAmelCase__ = original.generator(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = new_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] UpperCAmelCase__ = new_model.generator(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) UpperCAmelCase_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
61
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int = logging.get_logger(__name__) _lowercase : Tuple = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'visual_bert' def __init__( self : int, lowerCamelCase : Union[str, Any]=3_0522, lowerCamelCase : int=768, lowerCamelCase : int=512, lowerCamelCase : Any=12, lowerCamelCase : Tuple=12, lowerCamelCase : int=3072, lowerCamelCase : Any="gelu", lowerCamelCase : Union[str, Any]=0.1, lowerCamelCase : Any=0.1, lowerCamelCase : Dict=512, lowerCamelCase : Union[str, Any]=2, lowerCamelCase : Any=0.02, lowerCamelCase : List[Any]=1E-12, lowerCamelCase : List[str]=False, lowerCamelCase : Tuple=True, lowerCamelCase : Optional[int]=1, lowerCamelCase : Optional[Any]=0, lowerCamelCase : Union[str, Any]=2, **lowerCamelCase : List[Any], )-> Any: super().__init__(pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : Dict =vocab_size lowerCamelCase__ : Tuple =max_position_embeddings lowerCamelCase__ : Dict =hidden_size lowerCamelCase__ : Dict =visual_embedding_dim lowerCamelCase__ : Union[str, Any] =num_hidden_layers lowerCamelCase__ : Optional[int] =num_attention_heads lowerCamelCase__ : Optional[int] =intermediate_size lowerCamelCase__ : str =hidden_act lowerCamelCase__ : List[Any] =hidden_dropout_prob lowerCamelCase__ : Optional[Any] =attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] =initializer_range lowerCamelCase__ : Any =type_vocab_size lowerCamelCase__ : Dict =layer_norm_eps lowerCamelCase__ : Tuple =bypass_transformer lowerCamelCase__ : List[Any] =special_visual_initialize
238
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowercase : List[Any] = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : str=None , ): """simple docstring""" if attention_mask is None: lowerCamelCase__ : Any =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__ : str =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__ : Dict =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : str =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str, lowerCamelCase : Tuple, lowerCamelCase : List[str]=13, lowerCamelCase : Dict=7, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : Union[str, Any]=False, lowerCamelCase : int=99, lowerCamelCase : Union[str, Any]=16, lowerCamelCase : List[str]=2, lowerCamelCase : int=4, lowerCamelCase : Tuple=4, lowerCamelCase : Optional[Any]="gelu", lowerCamelCase : List[str]=0.1, lowerCamelCase : str=0.1, lowerCamelCase : Optional[int]=32, lowerCamelCase : List[str]=2, lowerCamelCase : Tuple=1, lowerCamelCase : Optional[int]=0, lowerCamelCase : int=0.02, )-> Optional[Any]: lowerCamelCase__ : List[str] =parent lowerCamelCase__ : Dict =batch_size lowerCamelCase__ : Optional[int] =seq_length lowerCamelCase__ : Any =is_training lowerCamelCase__ : Optional[int] =use_labels lowerCamelCase__ : List[str] =vocab_size lowerCamelCase__ : List[Any] =hidden_size lowerCamelCase__ : List[Any] =num_hidden_layers lowerCamelCase__ : Tuple =num_attention_heads lowerCamelCase__ : List[Any] =intermediate_size lowerCamelCase__ : Union[str, Any] =hidden_act lowerCamelCase__ : Optional[Any] =hidden_dropout_prob lowerCamelCase__ : Tuple =attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] =max_position_embeddings lowerCamelCase__ : List[Any] =eos_token_id lowerCamelCase__ : Tuple =pad_token_id lowerCamelCase__ : Union[str, Any] =bos_token_id lowerCamelCase__ : List[Any] =initializer_range def snake_case ( self : Optional[Any] )-> str: lowerCamelCase__ : Dict =np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ), 3, self.vocab_size ) lowerCamelCase__ : Union[str, Any] =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.intaa )), -1 ) lowerCamelCase__ : Dict =shift_tokens_right(lowerCamelCase, 1, 2 ) lowerCamelCase__ : Optional[Any] =BlenderbotConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=lowerCamelCase, ) lowerCamelCase__ : List[str] =prepare_blenderbot_inputs_dict(lowerCamelCase, lowerCamelCase, lowerCamelCase ) return config, inputs_dict def snake_case ( self : str )-> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ : Any =self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self : int, lowerCamelCase : Tuple, lowerCamelCase : Dict, lowerCamelCase : Tuple )-> Optional[Any]: lowerCamelCase__ : Union[str, Any] =20 lowerCamelCase__ : Optional[int] =model_class_name(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =model.encode(inputs_dict['''input_ids'''] ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] =( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCamelCase__ : Any =model.init_cache(decoder_input_ids.shape[0], lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Dict =jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype='''i4''' ) lowerCamelCase__ : List[Any] =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) lowerCamelCase__ : int =model.decode( decoder_input_ids[:, :-1], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) lowerCamelCase__ : Optional[int] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' ) lowerCamelCase__ : Union[str, Any] =model.decode( decoder_input_ids[:, -1:], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=outputs_cache.past_key_values, decoder_position_ids=lowerCamelCase, ) lowerCamelCase__ : int =model.decode(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Dict =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''' ) def snake_case ( self : str, lowerCamelCase : str, lowerCamelCase : str, lowerCamelCase : str )-> List[str]: lowerCamelCase__ : List[Any] =20 lowerCamelCase__ : List[Any] =model_class_name(lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =model.encode(inputs_dict['''input_ids'''] ) lowerCamelCase__ , lowerCamelCase__ : str =( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCamelCase__ : Tuple =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ], axis=-1, ) lowerCamelCase__ : List[str] =model.init_cache(decoder_input_ids.shape[0], lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) lowerCamelCase__ : List[Any] =model.decode( decoder_input_ids[:, :-1], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) lowerCamelCase__ : List[str] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' ) lowerCamelCase__ : Optional[Any] =model.decode( decoder_input_ids[:, -1:], lowerCamelCase, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) lowerCamelCase__ : Optional[Any] =model.decode(lowerCamelCase, lowerCamelCase, decoder_attention_mask=lowerCamelCase ) lowerCamelCase__ : List[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''' ) @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' _a = 9_9 def snake_case ( self : Optional[int] )-> Optional[Any]: lowerCamelCase__ : Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=np.intaa, ) lowerCamelCase__ : Any =input_ids.shape[0] lowerCamelCase__ : Any =BlenderbotConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def snake_case ( self : Any )-> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] =self._get_config_and_data() lowerCamelCase__ : int =FlaxBlenderbotForConditionalGeneration(lowerCamelCase ) lowerCamelCase__ : str =lm_model(input_ids=lowerCamelCase ) lowerCamelCase__ : List[Any] =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape, lowerCamelCase ) def snake_case ( self : Tuple )-> Optional[Any]: lowerCamelCase__ : Union[str, Any] =BlenderbotConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) lowerCamelCase__ : Union[str, Any] =FlaxBlenderbotForConditionalGeneration(lowerCamelCase ) lowerCamelCase__ : List[Any] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.intaa ) lowerCamelCase__ : Optional[Any] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.intaa ) lowerCamelCase__ : Optional[int] =lm_model(input_ids=lowerCamelCase, decoder_input_ids=lowerCamelCase ) lowerCamelCase__ : List[str] =(*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape, lowerCamelCase ) def snake_case ( self : Union[str, Any] )-> Union[str, Any]: lowerCamelCase__ : Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.intaa ) lowerCamelCase__ : Optional[Any] =shift_tokens_right(lowerCamelCase, 1, 2 ) lowerCamelCase__ : str =np.equal(lowerCamelCase, 1 ).astype(np.floataa ).sum() lowerCamelCase__ : List[str] =np.equal(lowerCamelCase, 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape, input_ids.shape ) self.assertEqual(lowerCamelCase, n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0], 2 ).all() ) @require_flax class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase , lowerCAmelCase_ ): '''simple docstring''' _a = True _a = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _a = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def snake_case ( self : Union[str, Any] )-> List[str]: lowerCamelCase__ : str =FlaxBlenderbotModelTester(self ) def snake_case ( self : Optional[int] )-> int: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def snake_case ( self : List[str] )-> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def snake_case ( self : List[Any] )-> Tuple: lowerCamelCase__ , lowerCamelCase__ : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : List[Any] =self._prepare_for_class(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : int =model_class(lowerCamelCase ) @jax.jit def encode_jitted(lowerCamelCase : int, lowerCamelCase : Union[str, Any]=None, **lowerCamelCase : List[str] ): return model.encode(input_ids=lowerCamelCase, attention_mask=lowerCamelCase ) with self.subTest('''JIT Enabled''' ): lowerCamelCase__ : Any =encode_jitted(**lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCamelCase__ : Dict =encode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ), len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase, lowerCamelCase ): self.assertEqual(jitted_output.shape, output.shape ) def snake_case ( self : List[str] )-> Dict: lowerCamelCase__ , lowerCamelCase__ : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : Optional[Any] =model_class(lowerCamelCase ) lowerCamelCase__ : List[Any] =model.encode(inputs_dict['''input_ids'''], inputs_dict['''attention_mask'''] ) lowerCamelCase__ : Optional[int] ={ '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : Tuple ): return model.decode( decoder_input_ids=lowerCamelCase, decoder_attention_mask=lowerCamelCase, encoder_outputs=lowerCamelCase, ) with self.subTest('''JIT Enabled''' ): lowerCamelCase__ : Union[str, Any] =decode_jitted(**lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCamelCase__ : Optional[Any] =decode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ), len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase, lowerCamelCase ): self.assertEqual(jitted_output.shape, output.shape ) @slow def snake_case ( self : Tuple )-> Tuple: for model_class_name in self.all_model_classes: lowerCamelCase__ : int =model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__ : Union[str, Any] =np.ones((1, 1) ) * model.config.eos_token_id lowerCamelCase__ : Optional[Any] =model(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @unittest.skipUnless(jax_device != '''cpu''', '''3B test too slow on CPU.''' ) @slow def snake_case ( self : Optional[int] )-> Tuple: lowerCamelCase__ : List[Any] ={'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} lowerCamelCase__ : Optional[int] ={'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} lowerCamelCase__ : Tuple =FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''', from_pt=lowerCamelCase ) lowerCamelCase__ : int =BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) lowerCamelCase__ : str =['''Sam'''] lowerCamelCase__ : Union[str, Any] =tokenizer(lowerCamelCase, return_tensors='''jax''' ) lowerCamelCase__ : Tuple =model.generate(**lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : Tuple ='''Sam is a great name. It means "sun" in Gaelic.''' lowerCamelCase__ : Union[str, Any] =tokenizer.batch_decode(lowerCamelCase, **lowerCamelCase ) assert generated_txt[0].strip() == tgt_text
238
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __a ( snake_case__, snake_case__, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any]=False ): UpperCamelCase__ : List[Any] =super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): UpperCamelCase__ : int =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __a ( snake_case__ ): """simple docstring""" def __init__( self : Dict , lowercase_ : List[str] , lowercase_ : str=13 , lowercase_ : str=7 , lowercase_ : Optional[int]=True , lowercase_ : Dict=True , lowercase_ : Tuple=True , lowercase_ : Optional[Any]=True , lowercase_ : Optional[int]=99 , lowercase_ : str=32 , lowercase_ : Tuple=32 , lowercase_ : int=2 , lowercase_ : Dict=4 , lowercase_ : str=37 , lowercase_ : List[Any]="gelu" , lowercase_ : Any=0.1 , lowercase_ : str=0.1 , lowercase_ : List[Any]=512 , lowercase_ : int=16 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=0.0_2 , lowercase_ : Optional[Any]=3 , lowercase_ : Dict=4 , lowercase_ : List[Any]=None , ): UpperCamelCase__ : Any =parent UpperCamelCase__ : List[str] =batch_size UpperCamelCase__ : Any =seq_length UpperCamelCase__ : Optional[int] =is_training UpperCamelCase__ : str =use_input_mask UpperCamelCase__ : Optional[int] =use_token_type_ids UpperCamelCase__ : List[str] =use_labels UpperCamelCase__ : Tuple =vocab_size UpperCamelCase__ : List[Any] =hidden_size UpperCamelCase__ : Any =num_hidden_layers UpperCamelCase__ : List[str] =num_attention_heads UpperCamelCase__ : Any =intermediate_size UpperCamelCase__ : Tuple =hidden_act UpperCamelCase__ : List[Any] =hidden_dropout_prob UpperCamelCase__ : Union[str, Any] =attention_probs_dropout_prob UpperCamelCase__ : List[Any] =max_position_embeddings UpperCamelCase__ : Optional[Any] =type_vocab_size UpperCamelCase__ : Union[str, Any] =type_sequence_label_size UpperCamelCase__ : int =initializer_range UpperCamelCase__ : Union[str, Any] =num_labels UpperCamelCase__ : Union[str, Any] =num_choices UpperCamelCase__ : Any =scope UpperCamelCase__ : Optional[int] =embedding_size def _lowerCAmelCase ( self : int ): UpperCamelCase__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ : Optional[int] =None if self.use_input_mask: UpperCamelCase__ : Tuple =random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : Any =None if self.use_token_type_ids: UpperCamelCase__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ : int =None UpperCamelCase__ : int =None UpperCamelCase__ : Dict =None if self.use_labels: UpperCamelCase__ : Dict =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : Any =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ : Union[str, Any] =ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ : Dict =MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Any , lowercase_ : Any , lowercase_ : Dict , lowercase_ : List[str] ): UpperCamelCase__ : Optional[int] =TFMobileBertModel(config=lowercase_ ) UpperCamelCase__ : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase__ : Dict =model(lowercase_ ) UpperCamelCase__ : Optional[int] =[input_ids, input_mask] UpperCamelCase__ : str =model(lowercase_ ) UpperCamelCase__ : str =model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCAmelCase ( self : Dict , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : Union[str, Any] ): UpperCamelCase__ : List[Any] =TFMobileBertForMaskedLM(config=lowercase_ ) UpperCamelCase__ : Union[str, Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase__ : Optional[Any] =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : int , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : int ): UpperCamelCase__ : str =TFMobileBertForNextSentencePrediction(config=lowercase_ ) UpperCamelCase__ : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase__ : Any =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCAmelCase ( self : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Any ): UpperCamelCase__ : Tuple =TFMobileBertForPreTraining(config=lowercase_ ) UpperCamelCase__ : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase__ : List[str] =model(lowercase_ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCAmelCase ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Dict ): UpperCamelCase__ : int =self.num_labels UpperCamelCase__ : List[str] =TFMobileBertForSequenceClassification(config=lowercase_ ) UpperCamelCase__ : Any ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase__ : Union[str, Any] =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Any , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Any , lowercase_ : List[Any] ): UpperCamelCase__ : int =self.num_choices UpperCamelCase__ : Union[str, Any] =TFMobileBertForMultipleChoice(config=lowercase_ ) UpperCamelCase__ : Optional[Any] =tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ : int =tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ : Union[str, Any] =tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ : Union[str, Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCamelCase__ : Tuple =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Any ): UpperCamelCase__ : Tuple =self.num_labels UpperCamelCase__ : Optional[Any] =TFMobileBertForTokenClassification(config=lowercase_ ) UpperCamelCase__ : Dict ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase__ : List[Any] =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : str ): UpperCamelCase__ : Optional[int] =TFMobileBertForQuestionAnswering(config=lowercase_ ) UpperCamelCase__ : List[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase__ : Optional[Any] =model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : Optional[int] =self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) : List[str] =config_and_inputs UpperCamelCase__ : Any ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : Optional[int] =TFMobileBertModelTest.TFMobileBertModelTester(self ) UpperCamelCase__ : List[Any] =ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def _lowerCAmelCase ( self : int ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowercase_ ) def _lowerCAmelCase ( self : str ): UpperCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowercase_ ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowercase_ ) def _lowerCAmelCase ( self : Dict ): UpperCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowercase_ ) def _lowerCAmelCase ( self : str ): UpperCamelCase__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowercase_ ) def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowercase_ ) def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowercase_ ) def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowercase_ ) @slow def _lowerCAmelCase ( self : Dict ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: UpperCamelCase__ : Any =TFMobileBertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_tf class __a ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Dict ): UpperCamelCase__ : int =TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) UpperCamelCase__ : int =tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ : str =model(lowercase_ )[0] UpperCamelCase__ : Dict =[1, 6, 3_0522] self.assertEqual(output.shape , lowercase_ ) UpperCamelCase__ : Dict =tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1e-4 )
157
"""simple docstring""" from __future__ import annotations import math def _lowerCAmelCase ( UpperCAmelCase : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _SCREAMING_SNAKE_CASE : Union[str, Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def _lowerCAmelCase ( UpperCAmelCase : int ): '''simple docstring''' if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) UpperCamelCase__ : Union[str, Any] =[] for num in range(len(UpperCAmelCase ) ): UpperCamelCase__ : Tuple =0 while 2 * i * i <= odd_composites[num]: UpperCamelCase__ : Any =odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase ) == n: return list_nums return [] def _lowerCAmelCase ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
157
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCamelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase : Dict = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[PIL.Image.Image, np.ndarray] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Union[str, Any] , UpperCamelCase : PriorTransformer , UpperCamelCase : CLIPVisionModel , UpperCamelCase : CLIPImageProcessor , UpperCamelCase : HeunDiscreteScheduler , UpperCamelCase : ShapERenderer , ): '''simple docstring''' super().__init__() self.register_modules( prior=UpperCamelCase , image_encoder=UpperCamelCase , image_processor=UpperCamelCase , scheduler=UpperCamelCase , renderer=UpperCamelCase , ) def UpperCamelCase__ (self : str , UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : str , UpperCamelCase : Any ): '''simple docstring''' if latents is None: lowercase__ = randn_tensor(UpperCamelCase , generator=UpperCamelCase , device=UpperCamelCase , dtype=UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) lowercase__ = latents.to(UpperCamelCase ) lowercase__ = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Any=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f"cuda:{gpu_id}" ) lowercase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase , UpperCamelCase ) @property def UpperCamelCase__ (self : str ): '''simple docstring''' if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def UpperCamelCase__ (self : Tuple , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(UpperCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase , axis=0 ) if not isinstance(UpperCamelCase , torch.Tensor ): lowercase__ = self.image_processor(UpperCamelCase , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowercase__ = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase ) lowercase__ = self.image_encoder(UpperCamelCase )['''last_hidden_state'''] lowercase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase__ = image_embeds.repeat_interleave(UpperCamelCase , dim=0 ) if do_classifier_free_guidance: lowercase__ = torch.zeros_like(UpperCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase ) def __call__(self : str , UpperCamelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase : int = 1 , UpperCamelCase : int = 25 , UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : float = 4.0 , UpperCamelCase : int = 64 , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , ): '''simple docstring''' if isinstance(UpperCamelCase , PIL.Image.Image ): lowercase__ = 1 elif isinstance(UpperCamelCase , torch.Tensor ): lowercase__ = image.shape[0] elif isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase__ = len(UpperCamelCase ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase )}" ) lowercase__ = self._execution_device lowercase__ = batch_size * num_images_per_prompt lowercase__ = guidance_scale > 1.0 lowercase__ = self._encode_image(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # prior self.scheduler.set_timesteps(UpperCamelCase , device=UpperCamelCase ) lowercase__ = self.scheduler.timesteps lowercase__ = self.prior.config.num_embeddings lowercase__ = self.prior.config.embedding_dim lowercase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase , UpperCamelCase , UpperCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase__ = latents.reshape(latents.shape[0] , UpperCamelCase , UpperCamelCase ) for i, t in enumerate(self.progress_bar(UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) lowercase__ = self.prior( UpperCamelCase , timestep=UpperCamelCase , proj_embedding=UpperCamelCase , ).predicted_image_embedding # remove the variance lowercase__ ,lowercase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase__ ,lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase__ = self.scheduler.step( UpperCamelCase , timestep=UpperCamelCase , sample=UpperCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase ) lowercase__ = [] for i, latent in enumerate(UpperCamelCase ): print() lowercase__ = self.renderer.decode( latent[None, :] , UpperCamelCase , size=UpperCamelCase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase ) lowercase__ = torch.stack(UpperCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) lowercase__ = images.cpu().numpy() if output_type == "pil": lowercase__ = [self.numpy_to_pil(UpperCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase )
2
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase__: def __init__( self: str , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: str ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) __lowerCamelCase = model __lowerCamelCase = kwargs.get("""model_save_dir""" , UpperCamelCase_ ) __lowerCamelCase = kwargs.get("""latest_model_name""" , UpperCamelCase_ ) def __call__( self: Dict , **UpperCamelCase_: Any ): __lowerCamelCase = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase_ , UpperCamelCase_ ) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Tuple=None , UpperCamelCase_: Tuple=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) __lowerCamelCase = """CPUExecutionProvider""" return ort.InferenceSession(UpperCamelCase_ , providers=[provider] , sess_options=UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: Optional[int] ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name ) __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowerCamelCase = self.model_save_dir.joinpath(UpperCamelCase_ ) if src_path.exists(): __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: Optional[Any] , ): if os.path.isfile(UpperCamelCase_ ): logger.error(F'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) # saving model weights/files self._save_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[Union[bool, str, None]] = None , UpperCamelCase_: Optional[Union[str, None]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional["ort.SessionOptions"] = None , **UpperCamelCase_: int , ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase_ ): __lowerCamelCase = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) # load model from hub else: # download model __lowerCamelCase = hf_hub_download( repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , ) __lowerCamelCase = Path(UpperCamelCase_ ).parent __lowerCamelCase = Path(UpperCamelCase_ ).name __lowerCamelCase = OnnxRuntimeModel.load_model(UpperCamelCase_ , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) return cls(model=UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: Optional[int] , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: int , ): __lowerCamelCase = None if len(str(UpperCamelCase_ ).split("""@""" ) ) == 2: __lowerCamelCase, __lowerCamelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , **UpperCamelCase_ , )
12
0
from timeit import timeit UpperCAmelCase__ : Optional[Any] = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowerCamelCase__ ( a ) -> bool: _A: str = 0 _A: Optional[Any] = len(a ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowerCamelCase__ ( a ) -> bool: _A: int = len(a ) // 2 _A: List[Any] = len(a ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(a ) ) def lowerCamelCase__ ( a ) -> bool: if len(a ) <= 2: return True if s[0] == s[len(a ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def lowerCamelCase__ ( a ) -> bool: return s == s[::-1] def lowerCamelCase__ ( a ) -> None: _A: Optional[Any] = f"""all({name}(key) is value for key, value in test_data.items())""" _A: Dict = f"""from __main__ import test_data, {name}""" _A: Union[str, Any] = 50_00_00 _A: Dict = timeit(stmt=a , setup=a , number=a ) print(f"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"""{key:21} {value}""") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
359
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
"""simple docstring""" class __lowerCamelCase : '''simple docstring''' def __init__( self : Optional[int] , a_ : str = "" , a_ : bool = False ): lowerCAmelCase_ : List[Any] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : Union[str, Any] = is_leaf lowerCAmelCase_ : List[str] = prefix def lowerCamelCase ( self : Union[str, Any] , a_ : str ): lowerCAmelCase_ : int = 0 for q, w in zip(self.prefix , _snake_case ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowerCamelCase ( self : Optional[Any] , a_ : list[str] ): for word in words: self.insert(_snake_case ) def lowerCamelCase ( self : List[Any] , a_ : str ): if self.prefix == word: lowerCAmelCase_ : List[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=_snake_case , is_leaf=_snake_case ) else: lowerCAmelCase_ : Optional[Any] = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( _snake_case ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_snake_case ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : List[Any] = remaining_prefix lowerCAmelCase_ : Union[str, Any] = self.nodes[matching_string[0]] lowerCAmelCase_ : Dict = RadixNode(_snake_case , _snake_case ) lowerCAmelCase_ : Optional[int] = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(_snake_case ) def lowerCamelCase ( self : Any , a_ : str ): lowerCAmelCase_ : int = self.nodes.get(word[0] , _snake_case ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = incoming_node.match( _snake_case ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_snake_case ) def lowerCamelCase ( self : Optional[int] , a_ : str ): lowerCAmelCase_ : Optional[int] = self.nodes.get(word[0] , _snake_case ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Any = incoming_node.match( _snake_case ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_snake_case ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : List[Any] = list(self.nodes.values() )[0] lowerCAmelCase_ : str = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : int = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : str = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Dict = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : Optional[Any] = merging_node.nodes return True def lowerCamelCase ( self : Tuple , a_ : int = 0 ): if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __lowerCamelCase ( ) -> bool: """simple docstring""" lowerCAmelCase_ : Optional[int] = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : str = RadixNode() root.insert_many(__A ) assert all(root.find(__A ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def __lowerCamelCase ( ) -> None: """simple docstring""" assert test_trie() def __lowerCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase_ : Any = RadixNode() lowerCAmelCase_ : Union[str, Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(__A ) print("Words:" , __A ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
241
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Any = logging.get_logger(__name__) snake_case_ : Optional[Any] = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __snake_case ( a ): UpperCAmelCase__ : Optional[Any] = '''falcon''' UpperCAmelCase__ : List[Any] = ['''past_key_values'''] def __init__( self : Union[str, Any] , _snake_case : List[str]=65024 , _snake_case : int=4544 , _snake_case : int=32 , _snake_case : Any=71 , _snake_case : int=1e-5 , _snake_case : Dict=0.0_2 , _snake_case : int=True , _snake_case : List[Any]=0.0 , _snake_case : Tuple=0.0 , _snake_case : int=None , _snake_case : Tuple=False , _snake_case : Any=False , _snake_case : str=True , _snake_case : Any=True , _snake_case : List[str]=False , _snake_case : Tuple=11 , _snake_case : Dict=11 , **_snake_case : Optional[int] , ): """simple docstring""" UpperCAmelCase_ = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ = kwargs.pop('''n_embed''' , _snake_case) UpperCAmelCase_ = hidden_size if n_embed is None else n_embed UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_range UpperCAmelCase_ = use_cache UpperCAmelCase_ = hidden_dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ = alibi UpperCAmelCase_ = new_decoder_architecture UpperCAmelCase_ = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ = parallel_attn UpperCAmelCase_ = bias super().__init__(bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case) @property def lowerCamelCase ( self : List[Any]): """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" return not self.alibi
51
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> YolosConfig: """simple docstring""" _UpperCamelCase : int = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _UpperCamelCase : List[Any] = 192 _UpperCamelCase : Union[str, Any] = 768 _UpperCamelCase : int = 12 _UpperCamelCase : Any = 3 _UpperCamelCase : Optional[int] = [800, 1_333] _UpperCamelCase : Any = False elif yolos_name == "yolos_s_dWr": _UpperCamelCase : Optional[Any] = 330 _UpperCamelCase : Optional[int] = 14 _UpperCamelCase : Union[str, Any] = 6 _UpperCamelCase : Tuple = 1_320 elif "yolos_s" in yolos_name: _UpperCamelCase : str = 384 _UpperCamelCase : List[str] = 1_536 _UpperCamelCase : Any = 12 _UpperCamelCase : int = 6 elif "yolos_b" in yolos_name: _UpperCamelCase : Union[str, Any] = [800, 1_344] _UpperCamelCase : Union[str, Any] = 91 _UpperCamelCase : Any = "huggingface/label-files" _UpperCamelCase : Union[str, Any] = "coco-detection-id2label.json" _UpperCamelCase : List[Any] = json.load(open(hf_hub_download(lowercase_ ,lowercase_ ,repo_type="dataset" ) ,"r" ) ) _UpperCamelCase : Tuple = {int(lowercase_ ): v for k, v in idalabel.items()} _UpperCamelCase : List[str] = idalabel _UpperCamelCase : int = {v: k for k, v in idalabel.items()} return config def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase : List[str] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _UpperCamelCase : Any = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : List[str] = in_proj_weight[: config.hidden_size, :] _UpperCamelCase : int = in_proj_bias[: config.hidden_size] _UpperCamelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase : Union[str, Any] = in_proj_weight[-config.hidden_size :, :] _UpperCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if "backbone" in name: _UpperCamelCase : Tuple = name.replace("backbone" ,"vit" ) if "cls_token" in name: _UpperCamelCase : Optional[int] = name.replace("cls_token" ,"embeddings.cls_token" ) if "det_token" in name: _UpperCamelCase : Union[str, Any] = name.replace("det_token" ,"embeddings.detection_tokens" ) if "mid_pos_embed" in name: _UpperCamelCase : Optional[int] = name.replace("mid_pos_embed" ,"encoder.mid_position_embeddings" ) if "pos_embed" in name: _UpperCamelCase : List[Any] = name.replace("pos_embed" ,"embeddings.position_embeddings" ) if "patch_embed.proj" in name: _UpperCamelCase : Tuple = name.replace("patch_embed.proj" ,"embeddings.patch_embeddings.projection" ) if "blocks" in name: _UpperCamelCase : List[str] = name.replace("blocks" ,"encoder.layer" ) if "attn.proj" in name: _UpperCamelCase : Optional[Any] = name.replace("attn.proj" ,"attention.output.dense" ) if "attn" in name: _UpperCamelCase : Any = name.replace("attn" ,"attention.self" ) if "norm1" in name: _UpperCamelCase : Optional[int] = name.replace("norm1" ,"layernorm_before" ) if "norm2" in name: _UpperCamelCase : List[str] = name.replace("norm2" ,"layernorm_after" ) if "mlp.fc1" in name: _UpperCamelCase : Tuple = name.replace("mlp.fc1" ,"intermediate.dense" ) if "mlp.fc2" in name: _UpperCamelCase : Dict = name.replace("mlp.fc2" ,"output.dense" ) if "class_embed" in name: _UpperCamelCase : Any = name.replace("class_embed" ,"class_labels_classifier" ) if "bbox_embed" in name: _UpperCamelCase : Any = name.replace("bbox_embed" ,"bbox_predictor" ) if "vit.norm" in name: _UpperCamelCase : Any = name.replace("vit.norm" ,"vit.layernorm" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): _UpperCamelCase : Tuple = orig_state_dict.pop(lowercase_ ) if "qkv" in key: _UpperCamelCase : Any = key.split("." ) _UpperCamelCase : int = int(key_split[2] ) _UpperCamelCase : Optional[int] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _UpperCamelCase : Tuple = val[:dim, :] _UpperCamelCase : Optional[Any] = val[ dim : dim * 2, : ] _UpperCamelCase : Union[str, Any] = val[-dim:, :] else: _UpperCamelCase : Optional[int] = val[:dim] _UpperCamelCase : List[Any] = val[dim : dim * 2] _UpperCamelCase : Any = val[-dim:] else: _UpperCamelCase : Dict = val return orig_state_dict def lowercase__ ( ) -> torch.Tensor: """simple docstring""" _UpperCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCamelCase : Union[str, Any] = Image.open(requests.get(lowercase_ ,stream=lowercase_ ).raw ) return im @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = False ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = get_yolos_config(lowercase_ ) # load original state_dict _UpperCamelCase : Dict = torch.load(lowercase_ ,map_location="cpu" )["model"] # load 🤗 model _UpperCamelCase : int = YolosForObjectDetection(lowercase_ ) model.eval() _UpperCamelCase : Optional[Any] = convert_state_dict(lowercase_ ,lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by YolosImageProcessor _UpperCamelCase : Tuple = 800 if yolos_name != "yolos_ti" else 512 _UpperCamelCase : Tuple = YolosImageProcessor(format="coco_detection" ,size=lowercase_ ) _UpperCamelCase : Union[str, Any] = image_processor(images=prepare_img() ,return_tensors="pt" ) _UpperCamelCase : Dict = model(**lowercase_ ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.logits, outputs.pred_boxes _UpperCamelCase, _UpperCamelCase : Optional[int] = None, None if yolos_name == "yolos_ti": _UpperCamelCase : Optional[int] = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) _UpperCamelCase : int = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": _UpperCamelCase : Any = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) _UpperCamelCase : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": _UpperCamelCase : Dict = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) _UpperCamelCase : Tuple = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": _UpperCamelCase : Dict = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) _UpperCamelCase : Optional[int] = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": _UpperCamelCase : Any = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) _UpperCamelCase : Tuple = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(F'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] ,lowercase_ ,atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] ,lowercase_ ,atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: _UpperCamelCase : int = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) _UpperCamelCase : List[Any] = model_mapping[yolos_name] image_processor.push_to_hub(lowercase_ ,organization="hustvl" ) model.push_to_hub(lowercase_ ,organization="hustvl" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCamelCase__ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
310
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def __SCREAMING_SNAKE_CASE ( *__a : int , **__a : int ) -> List[Any]: pass @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = MODEL_FOR_OBJECT_DETECTION_MAPPING def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] , __a : Optional[int] , __a : str ) -> Optional[Any]: _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , image_processor=__a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : Union[str, Any] ) -> int: _UpperCamelCase : Any = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) import datasets _UpperCamelCase : str = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) _UpperCamelCase : List[Any] = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] _UpperCamelCase : List[Any] = object_detector(__a , threshold=0.0 ) self.assertEqual(len(__a ) , len(__a ) ) for outputs in batch_outputs: self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: pass @require_torch def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[str] = "hf-internal-testing/tiny-detr-mobilenetsv3" _UpperCamelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) _UpperCamelCase : Any = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = "facebook/detr-resnet-50" _UpperCamelCase : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : Union[str, Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : List[str] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : Dict = "facebook/detr-resnet-50" _UpperCamelCase : Optional[Any] = pipeline("object-detection" , model=__a ) _UpperCamelCase : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : Tuple = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: _UpperCamelCase : Tuple = 0.99_85 _UpperCamelCase : List[Any] = "facebook/detr-resnet-50" _UpperCamelCase : List[str] = pipeline("object-detection" , model=__a ) _UpperCamelCase : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__a ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = "Narsil/layoutlmv3-finetuned-funsd" _UpperCamelCase : int = 0.99_93 _UpperCamelCase : str = pipeline("object-detection" , model=__a , threshold=__a ) _UpperCamelCase : Union[str, Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
310
1
from functools import lru_cache def __snake_case ( _lowerCAmelCase : int ) -> set: A_ : str = 2 A_ : Tuple = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_lowerCAmelCase ) if n > 1: factors.add(_lowerCAmelCase ) return factors @lru_cache def __snake_case ( _lowerCAmelCase : int ) -> int: return len(unique_prime_factors(_lowerCAmelCase ) ) def __snake_case ( _lowerCAmelCase : list ) -> bool: return len(set(_lowerCAmelCase ) ) in (0, 1) def __snake_case ( _lowerCAmelCase : int ) -> list: A_ : Any = 2 while True: # Increment each value of a generated range A_ : Optional[Any] = [base + i for i in range(_lowerCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. A_ : Dict = [upf_len(_lowerCAmelCase ) for x in group] checker.append(_lowerCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(_lowerCAmelCase ): return group # Increment our base variable by 1 base += 1 def __snake_case ( _lowerCAmelCase : int = 4 ) -> int: A_ : int = run(_lowerCAmelCase ) return results[0] if len(_lowerCAmelCase ) else None if __name__ == "__main__": print(solution())
300
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> Optional[int]: A_ : Tuple = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> Dict: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) A_ : str = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight" ) A_ : List[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] A_ : Optional[Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] A_ : Optional[Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ) -> Any: A_ : Dict = dct.pop(_lowerCAmelCase ) A_ : List[Any] = val def __snake_case ( _lowerCAmelCase : List[str] ) -> int: if "handwritten" in checkpoint_url: A_ : Any = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Any = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" A_ : List[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> List[Any]: A_ : Optional[Any] = ViTConfig(image_size=384 , qkv_bias=_lowerCAmelCase ) A_ : Tuple = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: A_ : Tuple = 768 elif "large" in checkpoint_url: # use ViT-large encoder A_ : Optional[Any] = 1024 A_ : Union[str, Any] = 4096 A_ : Union[str, Any] = 24 A_ : List[Any] = 16 A_ : List[str] = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Dict = False A_ : int = "relu" A_ : Optional[int] = 1024 A_ : Any = True A_ : List[Any] = False A_ : Optional[int] = False # load HuggingFace model A_ : Union[str, Any] = ViTModel(_lowerCAmelCase , add_pooling_layer=_lowerCAmelCase ) A_ : str = TrOCRForCausalLM(_lowerCAmelCase ) A_ : List[str] = VisionEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) model.eval() # load state_dict of original model, rename some keys A_ : Optional[int] = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" , check_hash=_lowerCAmelCase )["model"] A_ : Dict = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): A_ : Dict = state_dict.pop(_lowerCAmelCase ) if key.startswith("decoder" ) and "output_projection" not in key: A_ : List[str] = val else: A_ : Optional[Any] = val # load state dict model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image A_ : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) A_ : Any = RobertaTokenizer.from_pretrained("roberta-large" ) A_ : Union[str, Any] = TrOCRProcessor(_lowerCAmelCase , _lowerCAmelCase ) A_ : List[str] = processor(images=prepare_img(_lowerCAmelCase ) , return_tensors="pt" ).pixel_values # verify logits A_ : Union[str, Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) A_ : Optional[int] = model(pixel_values=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) A_ : Tuple = outputs.logits A_ : Union[str, Any] = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: A_ : Union[str, Any] = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: A_ : str = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: A_ : Optional[Any] = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: A_ : Optional[int] = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _lowerCAmelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : List[str] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
300
1
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer __lowercase = logging.get_logger(__name__) class _lowercase ( __a ): """simple docstring""" lowercase__ = '''AutoTokenizer''' lowercase__ = ['''tokenizer'''] lowercase__ = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : int=None ) -> Optional[Any]: '''simple docstring''' super().__init__(UpperCamelCase__ ) __UpperCamelCase =speaker_embeddings @classmethod def UpperCAmelCase_ ( cls : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int]="speaker_embeddings_path.json" , **UpperCamelCase__ : List[Any] ) -> str: '''simple docstring''' if speaker_embeddings_dict_path is not None: __UpperCamelCase =get_file_from_repo( UpperCamelCase__ , UpperCamelCase__ , subfolder=kwargs.pop('''subfolder''' , UpperCamelCase__ ) , cache_dir=kwargs.pop('''cache_dir''' , UpperCamelCase__ ) , force_download=kwargs.pop('''force_download''' , UpperCamelCase__ ) , proxies=kwargs.pop('''proxies''' , UpperCamelCase__ ) , resume_download=kwargs.pop('''resume_download''' , UpperCamelCase__ ) , local_files_only=kwargs.pop('''local_files_only''' , UpperCamelCase__ ) , use_auth_token=kwargs.pop('''use_auth_token''' , UpperCamelCase__ ) , revision=kwargs.pop('''revision''' , UpperCamelCase__ ) , ) if speaker_embeddings_path is None: logger.warning( f"""`{os.path.join(UpperCamelCase__ , UpperCamelCase__ )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) __UpperCamelCase =None else: with open(UpperCamelCase__ ) as speaker_embeddings_json: __UpperCamelCase =json.load(UpperCamelCase__ ) else: __UpperCamelCase =None __UpperCamelCase =AutoTokenizer.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) return cls(tokenizer=UpperCamelCase__ , speaker_embeddings=UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : int="speaker_embeddings_path.json" , UpperCamelCase__ : List[str]="speaker_embeddings" , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Dict , ) -> Optional[int]: '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCamelCase__ , UpperCamelCase__ , '''v2''' ) , exist_ok=UpperCamelCase__ ) __UpperCamelCase ={} __UpperCamelCase =save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": __UpperCamelCase =self._load_voice_preset(UpperCamelCase__ ) __UpperCamelCase ={} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['''repo_or_path'''] , UpperCamelCase__ , f"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=UpperCamelCase__ , ) __UpperCamelCase =os.path.join(UpperCamelCase__ , f"""{prompt_key}_{key}.npy""" ) __UpperCamelCase =tmp_dict with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) super().save_pretrained(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCamelCase__ : str = None , **UpperCamelCase__ : Any ) -> List[str]: '''simple docstring''' __UpperCamelCase =self.speaker_embeddings[voice_preset] __UpperCamelCase ={} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) __UpperCamelCase =get_file_from_repo( self.speaker_embeddings.get('''repo_or_path''' , '''/''' ) , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , UpperCamelCase__ ) , cache_dir=kwargs.pop('''cache_dir''' , UpperCamelCase__ ) , force_download=kwargs.pop('''force_download''' , UpperCamelCase__ ) , proxies=kwargs.pop('''proxies''' , UpperCamelCase__ ) , resume_download=kwargs.pop('''resume_download''' , UpperCamelCase__ ) , local_files_only=kwargs.pop('''local_files_only''' , UpperCamelCase__ ) , use_auth_token=kwargs.pop('''use_auth_token''' , UpperCamelCase__ ) , revision=kwargs.pop('''revision''' , UpperCamelCase__ ) , ) if path is None: raise ValueError( f"""`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) __UpperCamelCase =np.load(UpperCamelCase__ ) return voice_preset_dict def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : Optional[dict] = None ) -> List[Any]: '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self : Tuple , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Tuple="pt" , UpperCamelCase__ : List[Any]=256 , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Union[str, Any]=False , **UpperCamelCase__ : List[Any] , ) -> Tuple: '''simple docstring''' if voice_preset is not None and not isinstance(UpperCamelCase__ , UpperCamelCase__ ): if ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): __UpperCamelCase =self._load_voice_preset(UpperCamelCase__ ) else: if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and not voice_preset.endswith('''.npz''' ): __UpperCamelCase =voice_preset + '''.npz''' __UpperCamelCase =np.load(UpperCamelCase__ ) if voice_preset is not None: self._validate_voice_preset_dict(UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ ) __UpperCamelCase =self.tokenizer( UpperCamelCase__ , return_tensors=UpperCamelCase__ , padding='''max_length''' , max_length=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) if voice_preset is not None: __UpperCamelCase =voice_preset return encoded_text
85
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : str ): """simple docstring""" __UpperCamelCase =0 # if input_string is "aba" than new_input_string become "a|b|a" __UpperCamelCase ='''''' __UpperCamelCase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__UpperCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __UpperCamelCase , __UpperCamelCase =0, 0 # length[i] shows the length of palindromic substring with center i __UpperCamelCase =[1 for i in range(len(__UpperCamelCase ) )] # for each character in new_string find corresponding palindromic string __UpperCamelCase =0 for j in range(len(__UpperCamelCase ) ): __UpperCamelCase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__UpperCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __UpperCamelCase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __UpperCamelCase =j - k + 1 # noqa: E741 __UpperCamelCase =j + k - 1 # update max_length and start position if max_length < length[j]: __UpperCamelCase =length[j] __UpperCamelCase =j # create that string __UpperCamelCase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
85
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a =logging.get_logger(__name__) a ={"""vocab_file""": """spiece.model"""} a ={ """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } a ={ """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } a ="""▁""" class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES _UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Tuple=True ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : List[str]=False ,SCREAMING_SNAKE_CASE__ : Any="[CLS]" ,SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" ,SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" ,SCREAMING_SNAKE_CASE__ : Any="[SEP]" ,SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" ,SCREAMING_SNAKE_CASE__ : Any="[CLS]" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="[MASK]" ,SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None ,**SCREAMING_SNAKE_CASE__ : Dict ,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __lowerCamelCase : Dict = ( AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__ ,normalized=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else mask_token ) __lowerCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE__ ,remove_space=SCREAMING_SNAKE_CASE__ ,keep_accents=SCREAMING_SNAKE_CASE__ ,bos_token=SCREAMING_SNAKE_CASE__ ,eos_token=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,sep_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,cls_token=SCREAMING_SNAKE_CASE__ ,mask_token=SCREAMING_SNAKE_CASE__ ,sp_model_kwargs=self.sp_model_kwargs ,**SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Any = do_lower_case __lowerCamelCase : Union[str, Any] = remove_space __lowerCamelCase : Tuple = keep_accents __lowerCamelCase : Dict = vocab_file __lowerCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(SCREAMING_SNAKE_CASE__) @property def lowerCAmelCase ( self : Optional[Any]): return len(self.sp_model) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Union[str, Any]): __lowerCamelCase : str = self.__dict__.copy() __lowerCamelCase : Tuple = None return state def __setstate__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : List[str] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs'): __lowerCamelCase : List[str] = {} __lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : List[Any]): if self.remove_space: __lowerCamelCase : Dict = ' '.join(inputs.strip().split()) else: __lowerCamelCase : Optional[Any] = inputs __lowerCamelCase : Tuple = outputs.replace('``' ,'"').replace('\'\'' ,'"') if not self.keep_accents: __lowerCamelCase : List[str] = unicodedata.normalize('NFKD' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = ''.join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE__)]) if self.do_lower_case: __lowerCamelCase : Optional[Any] = outputs.lower() return outputs def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Tuple = self.preprocess_text(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = self.sp_model.encode(SCREAMING_SNAKE_CASE__ ,out_type=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE__) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): __lowerCamelCase : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE__ ,'')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __lowerCamelCase : Union[str, Any] = cur_pieces[1:] else: __lowerCamelCase : Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(SCREAMING_SNAKE_CASE__) else: new_pieces.append(SCREAMING_SNAKE_CASE__) return new_pieces def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : List[str]): return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Any): return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : int = '' __lowerCamelCase : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__) + token __lowerCamelCase : List[Any] = True __lowerCamelCase : Any = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__) return out_string.strip() def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None): __lowerCamelCase : Union[str, Any] = [self.sep_token_id] __lowerCamelCase : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ,SCREAMING_SNAKE_CASE__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ ,token_ids_a=SCREAMING_SNAKE_CASE__ ,already_has_special_tokens=SCREAMING_SNAKE_CASE__) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None): __lowerCamelCase : Tuple = [self.sep_token_id] __lowerCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[str] = None): if not os.path.isdir(SCREAMING_SNAKE_CASE__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __lowerCamelCase : List[str] = os.path.join( SCREAMING_SNAKE_CASE__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file ,SCREAMING_SNAKE_CASE__) elif not os.path.isfile(self.vocab_file): with open(SCREAMING_SNAKE_CASE__ ,'wb') as fi: __lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__) return (out_vocab_file,)
73
def _UpperCAmelCase ( snake_case = 10_00 ): """simple docstring""" _lowerCAmelCase = -1 _lowerCAmelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c _lowerCAmelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) _lowerCAmelCase = n - a - b if c * c == (a * a + b * b): _lowerCAmelCase = a * b * c if candidate >= product: _lowerCAmelCase = candidate return product if __name__ == "__main__": print(f"{solution() = }")
82
0
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 _UpperCamelCase: Union[str, Any] = get_tests_dir('fixtures/dummy-config.json') class a__ ( unittest.TestCase ): def lowercase ( self : Tuple ) -> str: lowercase : Dict = 0 def lowercase ( self : List[str] ) -> str: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def lowercase ( self : int ) -> Optional[Any]: lowercase : Any = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(__lowercase, __lowercase ) def lowercase ( self : int ) -> Optional[Any]: lowercase : Optional[Any] = AutoConfig.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) def lowercase ( self : int ) -> Union[str, Any]: lowercase : List[str] = AutoConfig.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) def lowercase ( self : int ) -> Any: lowercase : Any = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(__lowercase, __lowercase ) def lowercase ( self : Tuple ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. lowercase : int = os.path.join(__lowercase, '''fake-roberta''' ) os.makedirs(__lowercase, exist_ok=__lowercase ) with open(os.path.join(__lowercase, '''config.json''' ), '''w''' ) as f: f.write(json.dumps({} ) ) lowercase : int = AutoConfig.from_pretrained(__lowercase ) self.assertEqual(type(__lowercase ), __lowercase ) def lowercase ( self : Any ) -> Tuple: try: AutoConfig.register('''custom''', __lowercase ) # Wrong model type will raise an error with self.assertRaises(__lowercase ): AutoConfig.register('''model''', __lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase ): AutoConfig.register('''bert''', __lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowercase ) lowercase : Dict = AutoConfig.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowercase ( self : Optional[Any] ) -> Optional[Any]: with self.assertRaisesRegex( __lowercase, '''bert-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] = AutoConfig.from_pretrained('''bert-base''' ) def lowercase ( self : Tuple ) -> Optional[int]: with self.assertRaisesRegex( __lowercase, R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Optional[int] = AutoConfig.from_pretrained(__lowercase, revision='''aaaaaa''' ) def lowercase ( self : int ) -> List[Any]: with self.assertRaisesRegex( __lowercase, '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''', ): lowercase : int = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def lowercase ( self : Optional[Any] ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase ): lowercase : Optional[int] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase ): lowercase : Optional[int] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''', trust_remote_code=__lowercase ) lowercase : Tuple = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''', trust_remote_code=__lowercase ) self.assertEqual(config.__class__.__name__, '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowercase ) lowercase : Optional[int] = AutoConfig.from_pretrained(__lowercase, trust_remote_code=__lowercase ) self.assertEqual(reloaded_config.__class__.__name__, '''NewModelConfig''' ) def lowercase ( self : str ) -> List[Any]: class a__ ( UpperCAmelCase_ ): _lowerCamelCase = """new-model""" try: AutoConfig.register('''new-model''', __lowercase ) # If remote code is not set, the default is to use local lowercase : Union[str, Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__, '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. lowercase : List[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''', trust_remote_code=__lowercase ) self.assertEqual(config.__class__.__name__, '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub lowercase : Union[str, Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''', trust_remote_code=__lowercase ) self.assertEqual(config.__class__.__name__, '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
366
"""simple docstring""" from collections.abc import Sequence def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase : List[str] = 0 if allow_empty_subarrays else float('-inf' ) lowercase : Dict = 0.0 for num in arr: lowercase : List[str] = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase : List[Any] = max(_UpperCAmelCase , _UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _UpperCamelCase: Any = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
53
0
'''simple docstring''' import sys import turtle def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Any: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_A , get_mid(_A , _A ) , get_mid(_A , _A ) , depth - 1 ) triangle(_A , get_mid(_A , _A ) , get_mid(_A , _A ) , depth - 1 ) triangle(_A , get_mid(_A , _A ) , get_mid(_A , _A ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) __UpperCAmelCase =turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") __UpperCAmelCase =[(-1_7_5, -1_2_5), (0, 1_7_5), (1_7_5, -1_2_5)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
67
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
188
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
364
'''simple docstring''' from __future__ import annotations lowercase : Union[str, Any] = list[tuple[int, int]] lowercase : Optional[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase : Any = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" A : int = pos_x A : Optional[Any] = pos_y A : Optional[Any] = (pos_y, pos_x) A : str = goal_x A : Optional[int] = goal_y A : List[Any] = g_cost A : str = parent A : str = self.calculate_heuristic() def __lowerCAmelCase ( self ) -> float: """simple docstring""" A : Optional[int] = abs(self.pos_x - self.goal_x ) A : Optional[Any] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE ) A : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , SCREAMING_SNAKE_CASE ) A : Optional[Any] = [self.start] A : list[Node] = [] A : Tuple = False def __lowerCAmelCase ( self ) -> Path | None: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() A : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: A : Optional[int] = True return self.retrace_path(SCREAMING_SNAKE_CASE ) self.closed_nodes.append(SCREAMING_SNAKE_CASE ) A : Any = self.get_successors(SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: # retrieve the best current path A : str = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[Node]: """simple docstring""" A : List[Any] = [] for action in delta: A : List[str] = parent.pos_x + action[1] A : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE , ) ) return successors def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Path: """simple docstring""" A : int = node A : Union[str, Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A : int = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase : Tuple = (0, 0) lowercase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') lowercase : int = GreedyBestFirst(init, goal) lowercase : Union[str, Any] = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase : Dict = 2 for elem in grid: print(elem)
311
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : List[Any] = 'data2vec-text' def __init__( self : Tuple ,_UpperCAmelCase : int=30522 ,_UpperCAmelCase : Tuple=768 ,_UpperCAmelCase : Optional[int]=12 ,_UpperCAmelCase : List[str]=12 ,_UpperCAmelCase : Any=3072 ,_UpperCAmelCase : List[str]="gelu" ,_UpperCAmelCase : Optional[Any]=0.1 ,_UpperCAmelCase : Dict=0.1 ,_UpperCAmelCase : int=512 ,_UpperCAmelCase : Tuple=2 ,_UpperCAmelCase : str=0.02 ,_UpperCAmelCase : int=1E-12 ,_UpperCAmelCase : Tuple=1 ,_UpperCAmelCase : Tuple=0 ,_UpperCAmelCase : Any=2 ,_UpperCAmelCase : Any="absolute" ,_UpperCAmelCase : Optional[Any]=True ,_UpperCAmelCase : List[str]=None ,**_UpperCAmelCase : Dict ,): super().__init__(pad_token_id=_UpperCAmelCase ,bos_token_id=_UpperCAmelCase ,eos_token_id=_UpperCAmelCase ,**_UpperCAmelCase ) _a : Optional[Any] = vocab_size _a : Dict = hidden_size _a : Tuple = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Union[str, Any] = hidden_act _a : Optional[int] = intermediate_size _a : Optional[int] = hidden_dropout_prob _a : List[str] = attention_probs_dropout_prob _a : List[Any] = max_position_embeddings _a : str = type_vocab_size _a : Union[str, Any] = initializer_range _a : Optional[int] = layer_norm_eps _a : Optional[Any] = position_embedding_type _a : Dict = use_cache _a : Any = classifier_dropout class __magic_name__ ( _UpperCamelCase ): @property def __lowercase ( self : Union[str, Any] ): if self.task == "multiple-choice": _a : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _a : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
89
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : Dict =LxmertTokenizer A__ : List[Any] =LxmertTokenizerFast A__ : Any =True A__ : List[Any] =True def A_ ( self : Optional[Any] ): super().setUp() SCREAMING_SNAKE_CASE__ = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE__ = 'unwanted, running' return input_text, output_text def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(UpperCAmelCase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [7, 4, 5, 10, 8, 9] ) def A_ ( self : List[str] ): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
176
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = '''openai/whisper-base''' _lowerCamelCase = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) _lowerCamelCase = '''transcriber''' _lowerCamelCase = WhisperProcessor _lowerCamelCase = WhisperForConditionalGeneration _lowerCamelCase = ['''audio'''] _lowerCamelCase = ['''text'''] def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> int: return self.pre_processor(lowerCamelCase_ ,return_tensors="""pt""" ).input_features def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> List[Any]: return self.model.generate(inputs=lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> int: return self.pre_processor.batch_decode(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ )[0]
77
"""simple docstring""" import random def _A ( _a : list , _a : Any ): """simple docstring""" A , A , A = [], [], [] for element in data: if element < pivot: less.append(_a ) elif element > pivot: greater.append(_a ) else: equal.append(_a ) return less, equal, greater def _A ( _a : list , _a : int ): """simple docstring""" if index >= len(_a ) or index < 0: return None A = items[random.randint(0 , len(_a ) - 1 )] A = 0 A , A , A = _partition(_a , _a ) A = len(_a ) A = len(_a ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_a , _a ) # must be in larger else: return quick_select(_a , index - (m + count) )
77
1
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
39
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : str = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Any = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def snake_case (__lowercase , __lowercase ) -> Tuple: '''simple docstring''' _snake_case : List[Any] = k_size // 2 _snake_case : Any = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _snake_case : Optional[Any] = 1 / (2 * pi * sigma) * exp(-(square(__a ) + square(__a )) / (2 * square(__a )) ) return g def snake_case (__lowercase , __lowercase , __lowercase ) -> List[Any]: '''simple docstring''' _snake_case : Union[str, Any] = image.shape[0], image.shape[1] # dst image height and width _snake_case : int = height - k_size + 1 _snake_case : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _snake_case : Optional[Any] = zeros((dst_height * dst_width, k_size * k_size) ) _snake_case : Tuple = 0 for i, j in product(range(__a ) , range(__a ) ): _snake_case : Optional[int] = ravel(image[i : i + k_size, j : j + k_size] ) _snake_case : str = window row += 1 # turn the kernel into shape(k*k, 1) _snake_case : List[Any] = gen_gaussian_kernel(__a , __a ) _snake_case : str = ravel(__a ) # reshape and get the dst image _snake_case : Optional[int] = dot(__a , __a ).reshape(__a , __a ).astype(__a ) return dst if __name__ == "__main__": # read original image __SCREAMING_SNAKE_CASE : List[str] = imread(R'../image_data/lena.jpg') # turn image in gray scale value __SCREAMING_SNAKE_CASE : str = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __SCREAMING_SNAKE_CASE : List[Any] = gaussian_filter(gray, 3, sigma=1) __SCREAMING_SNAKE_CASE : Optional[int] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('gaussian filter with 3x3 mask', gaussianaxa) imshow('gaussian filter with 5x5 mask', gaussianaxa) waitKey()
350
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase_ : _lowerCamelCase = 42 _lowerCamelCase = 42 class lowercase_ : def __init__( self , lowercase_ ): _snake_case : list[list[Edge]] = [[] for _ in range(lowercase_ )] _snake_case : Union[str, Any] = size def __getitem__( self , lowercase_ ): return iter(self._graph[vertex] ) @property def UpperCamelCase ( self ): return self._size def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) ) def UpperCamelCase ( self , lowercase_ , lowercase_ ): _snake_case : Optional[int] = deque([start_vertex] ) _snake_case : list[int | None] = [None] * self.size _snake_case : Tuple = 0 while queue: _snake_case : List[Any] = queue.popleft() _snake_case : Tuple = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _snake_case : Dict = current_distance + edge.weight _snake_case : str = distances[edge.destination_vertex] if ( isinstance(lowercase_ , lowercase_ ) and new_distance >= dest_vertex_distance ): continue _snake_case : List[Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
284
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
260
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : List[str] = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """poolformer""" def __init__( self : List[str] , __UpperCamelCase : int=3 , __UpperCamelCase : List[Any]=1_6 , __UpperCamelCase : str=1_6 , __UpperCamelCase : List[Any]=3 , __UpperCamelCase : int=4.0 , __UpperCamelCase : str=[2, 2, 6, 2] , __UpperCamelCase : Tuple=[6_4, 1_2_8, 3_2_0, 5_1_2] , __UpperCamelCase : int=[7, 3, 3, 3] , __UpperCamelCase : str=[4, 2, 2, 2] , __UpperCamelCase : Union[str, Any]=[2, 1, 1, 1] , __UpperCamelCase : List[str]=4 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : Any="gelu" , __UpperCamelCase : List[str]=True , __UpperCamelCase : Union[str, Any]=1e-5 , __UpperCamelCase : str=0.0_2 , **__UpperCamelCase : List[Any] , )->Dict: _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = stride _UpperCAmelCase = padding _UpperCAmelCase = pool_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = mlp_ratio _UpperCAmelCase = depths _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = num_encoder_blocks _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_layer_scale _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = initializer_range super().__init__(**__UpperCamelCase ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = version.parse("""1.11""") @property def lowercase__ ( self : Union[str, Any] )->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ ( self : Tuple )->float: return 2e-3
260
1
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = XGLMTokenizer lowercase__: Dict = XGLMTokenizerFast lowercase__: List[str] = True lowercase__: Optional[Any] = True def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __snake_case : List[str] = XGLMTokenizer(__magic_name__ , keep_accents=__magic_name__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __snake_case : str = """<pad>""" __snake_case : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : Any ) -> Tuple: """simple docstring""" __snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(__magic_name__ ) , 10_08 ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08 ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : List[str] = XGLMTokenizer(__magic_name__ , keep_accents=__magic_name__ ) __snake_case : Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__magic_name__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __snake_case : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __snake_case : Optional[int] = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual( __magic_name__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __snake_case : Tuple = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowercase__ ( self : str ) -> Any: """simple docstring""" return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__magic_name__ , f.name ) __snake_case : Union[str, Any] = XGLMTokenizer(f.name , keep_accents=__magic_name__ ) __snake_case : str = pickle.dumps(__magic_name__ ) pickle.loads(__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" if not self.test_rust_tokenizer: return __snake_case : Optional[int] = self.get_tokenizer() __snake_case : Optional[Any] = self.get_rust_tokenizer() __snake_case : Dict = """I was born in 92000, and this is falsé.""" __snake_case : Any = tokenizer.tokenize(__magic_name__ ) __snake_case : Optional[Any] = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : str = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) __snake_case : Tuple = self.get_rust_tokenizer() __snake_case : Optional[int] = tokenizer.encode(__magic_name__ ) __snake_case : Optional[int] = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __snake_case : str = """Hello World!""" __snake_case : Optional[int] = [2, 3_12_27, 44_47, 35] self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) ) @slow def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : Optional[int] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off __snake_case : Optional[int] = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) ) @slow def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : str = { """input_ids""": [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="""facebook/xglm-564M""" , padding=__magic_name__ , )
367
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
0
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class UpperCamelCase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): UpperCAmelCase__ : List[str] = 1 @register_to_config def __init__( self :int , _A :Tuple=2_000 , _A :List[Any]=0.1 , _A :Optional[Any]=20 , _A :Any=1E-3 ) -> Any: '''simple docstring''' __A = None __A = None __A = None def lowercase_ ( self :Dict , _A :Union[str, Any] , _A :Union[str, torch.device] = None ) -> Any: '''simple docstring''' __A = torch.linspace(1 , self.config.sampling_eps , _A , device=_A ) def lowercase_ ( self :List[Any] , _A :Optional[int] , _A :Optional[int] , _A :Union[str, Any] , _A :str=None ) -> Tuple: '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __A = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __A = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __A = std.flatten() while len(std.shape ) < len(score.shape ): __A = std.unsqueeze(-1 ) __A = -score / std # compute __A = -1.0 / len(self.timesteps ) __A = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __A = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __A = beta_t.unsqueeze(-1 ) __A = -0.5 * beta_t * x __A = torch.sqrt(_A ) __A = drift - diffusion**2 * score __A = x + drift * dt # add noise __A = randn_tensor(x.shape , layout=x.layout , generator=_A , device=x.device , dtype=x.dtype ) __A = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :Optional[int] ) -> Optional[int]: '''simple docstring''' return self.config.num_train_timesteps
161
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ : List[Any] = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys a__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
161
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
369
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: int , lowerCAmelCase: List[Any] )-> Dict: # Initialise PyTorch model _snake_case : Dict = RemBertConfig.from_json_file(lowerCAmelCase ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase ) ) ) _snake_case : Optional[Any] = RemBertModel(lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase ) ) torch.save(model.state_dict() , lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
260
0
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = inspect.getfile(accelerate.test_utils ) __lowerCamelCase : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) __lowerCamelCase : Any = ["accelerate", "launch"] __lowerCamelCase : List[Any] = Path.home() / ".cache/huggingface/accelerate" __lowerCamelCase : Optional[Any] = "default_config.yaml" __lowerCamelCase : Dict = config_folder / config_file __lowerCamelCase : str = config_folder / "_default_config.yaml" __lowerCamelCase : int = Path("tests/test_configs" ) @classmethod def _lowerCAmelCase ( cls ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def _lowerCAmelCase ( cls ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def _lowerCAmelCase ( self ): A : str = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path], env=os.environ.copy() ) def _lowerCAmelCase ( self ): for config in sorted(self.test_config_path.glob("""**/*.yaml""" ) ): with self.subTest(config_file=_A ): execute_subprocess_async( self.base_cmd + ["""--config_file""", str(_A ), self.test_file_path], env=os.environ.copy() ) def _lowerCAmelCase ( self ): execute_subprocess_async(["""accelerate""", """test"""], env=os.environ.copy() ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = "test-tpu" __lowerCamelCase : Optional[Any] = "us-central1-a" __lowerCamelCase : Any = "ls" __lowerCamelCase : List[Any] = ["accelerate", "tpu-config"] __lowerCamelCase : Optional[Any] = "cd /usr/share" __lowerCamelCase : Union[str, Any] = "tests/test_samples/test_command_file.sh" __lowerCamelCase : Tuple = "Running gcloud compute tpus tpu-vm ssh" def _lowerCAmelCase ( self ): A : Dict = run_command( self.cmd + ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""], return_stdout=_A, ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''', _A, ) def _lowerCAmelCase ( self ): A : Union[str, Any] = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ], return_stdout=_A, ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''', _A, ) def _lowerCAmelCase ( self ): A : Optional[Any] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""], return_stdout=_A ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''', _A, ) def _lowerCAmelCase ( self ): A : int = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""], return_stdout=_A, ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''', _A, ) def _lowerCAmelCase ( self ): A : int = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--command""", """echo \"Hello World\"""", """--debug""", ], return_stdout=_A, ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''', _A, ) def _lowerCAmelCase ( self ): A : Tuple = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""], return_stdout=_A, ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''', _A, ) def _lowerCAmelCase ( self ): A : Any = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command_file""", self.command_file, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ], return_stdout=_A, ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''', _A, ) def _lowerCAmelCase ( self ): A : List[str] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""], return_stdout=_A, ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''', _A, ) def _lowerCAmelCase ( self ): A : Optional[int] = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--accelerate_version""", """12.0.0""", """--debug""", ], return_stdout=_A, ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''', _A, )
116
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE_ : Any = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(_A ),_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4 ) self.assertTrue(np.allclose(transpose(_A ),x.transpose() ) ) SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ),np.asarray(transpose(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),np.asarray(transpose(_A,axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.reshape(_A,(4, 3) ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.reshape(_A,(12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : int = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Any = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : int = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.asarray(reshape(_A,(4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.asarray(reshape(_A,(12, 5) ) ) ) ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(1,3,4 ) self.assertTrue(np.allclose(squeeze(_A ),np.squeeze(_A ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.squeeze(_A,axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ),np.asarray(squeeze(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.asarray(squeeze(_A,axis=2 ) ) ) ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.expand_dims(_A,axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.asarray(expand_dims(_A,axis=1 ) ) ) )
18
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Any ={ "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any =["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] =["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any =[ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
371
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase : Any ={ '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase : int =logging.get_logger(__name__) class a_ ( _lowerCAmelCase ): __A = "maskformer" __A = {"hidden_size": "mask_feature_size"} __A = ["resnet", "swin"] __A = ["detr"] def __init__( self : List[Any] , lowercase : int = 256 , lowercase : int = 256 , lowercase : float = 0.1 , lowercase : bool = False , lowercase : Optional[Dict] = None , lowercase : Optional[Dict] = None , lowercase : float = 0.02 , lowercase : float = 1.0 , lowercase : float = 1.0 , lowercase : float = 1.0 , lowercase : float = 20.0 , lowercase : Optional[bool] = None , **lowercase : Any , ): """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase_ :Any = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(lowercase , lowercase ): lowercase_ :Optional[int] = backbone_config.pop("model_type" ) lowercase_ :Optional[int] = CONFIG_MAPPING[backbone_model_type] lowercase_ :int = config_class.from_dict(lowercase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' F'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase_ :Optional[Any] = DetrConfig() else: # verify that the decoder is supported lowercase_ :Tuple = ( decoder_config.pop("model_type" ) if isinstance(lowercase , lowercase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'Transformer Decoder {decoder_type} not supported, please use one of' F' {",".join(self.decoders_supported )}' ) if isinstance(lowercase , lowercase ): lowercase_ :str = CONFIG_MAPPING[decoder_type] lowercase_ :List[str] = config_class.from_dict(lowercase ) lowercase_ :str = backbone_config lowercase_ :Union[str, Any] = decoder_config # main feature dimension for the model lowercase_ :Any = fpn_feature_size lowercase_ :Optional[int] = mask_feature_size # initializer lowercase_ :List[Any] = init_std lowercase_ :Union[str, Any] = init_xavier_std # Hungarian matcher && loss lowercase_ :List[str] = cross_entropy_weight lowercase_ :int = dice_weight lowercase_ :List[str] = mask_weight lowercase_ :Optional[Any] = use_auxiliary_loss lowercase_ :str = no_object_weight lowercase_ :int = output_auxiliary_logits lowercase_ :Optional[Any] = self.decoder_config.encoder_attention_heads lowercase_ :int = self.decoder_config.num_hidden_layers super().__init__(**lowercase ) @classmethod def lowercase__ ( cls : Tuple , lowercase : PretrainedConfig , lowercase : PretrainedConfig , **lowercase : Union[str, Any] ): """simple docstring""" return cls( backbone_config=lowercase , decoder_config=lowercase , **lowercase , ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :str = copy.deepcopy(self.__dict__ ) lowercase_ :int = self.backbone_config.to_dict() lowercase_ :List[Any] = self.decoder_config.to_dict() lowercase_ :Optional[Any] = self.__class__.model_type return output
147
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : list[list[float]] ): '''simple docstring''' _lowerCAmelCase = [] for data in source_data: for i, el in enumerate(SCREAMING_SNAKE_CASE_ ): if len(SCREAMING_SNAKE_CASE_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(SCREAMING_SNAKE_CASE_ ) ) return data_lists def __a(SCREAMING_SNAKE_CASE_ : list[list[float]] , SCREAMING_SNAKE_CASE_ : list[int] ): '''simple docstring''' _lowerCAmelCase = [] for dlist, weight in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = max(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: _lowerCAmelCase = F'''Invalid weight of {weight:f} provided''' raise ValueError(SCREAMING_SNAKE_CASE_ ) score_lists.append(SCREAMING_SNAKE_CASE_ ) return score_lists def __a(SCREAMING_SNAKE_CASE_ : list[list[float]] ): '''simple docstring''' _lowerCAmelCase = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = final_scores[j] + ele return final_scores def __a(SCREAMING_SNAKE_CASE_ : list[list[float]] , SCREAMING_SNAKE_CASE_ : list[int] ): '''simple docstring''' _lowerCAmelCase = get_data(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = calculate_each_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = generate_final_scores(SCREAMING_SNAKE_CASE_ ) # append scores to source data for i, ele in enumerate(SCREAMING_SNAKE_CASE_ ): source_data[i].append(SCREAMING_SNAKE_CASE_ ) return source_data
158
'''simple docstring''' from __future__ import annotations from collections import deque class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(_lowerCAmelCase ) self.set_fail_transitions() def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _snake_case ( self , _lowerCAmelCase ) -> None: _lowerCAmelCase = 0 for character in keyword: _lowerCAmelCase = self.find_next_state(_lowerCAmelCase , _lowerCAmelCase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) _lowerCAmelCase = len(self.adlist ) - 1 else: _lowerCAmelCase = next_state self.adlist[current_state]["output"].append(_lowerCAmelCase ) def _snake_case ( self ) -> None: _lowerCAmelCase = deque() for node in self.adlist[0]["next_states"]: q.append(_lowerCAmelCase ) _lowerCAmelCase = 0 while q: _lowerCAmelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_lowerCAmelCase ) _lowerCAmelCase = self.adlist[r]["fail_state"] while ( self.find_next_state(_lowerCAmelCase , self.adlist[child]["value"] ) is None and state != 0 ): _lowerCAmelCase = self.adlist[state]["fail_state"] _lowerCAmelCase = self.find_next_state( _lowerCAmelCase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: _lowerCAmelCase = 0 _lowerCAmelCase = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def _snake_case ( self , _lowerCAmelCase ) -> dict[str, list[int]]: _lowerCAmelCase = {} # returns a dict with keywords and list of its occurrences _lowerCAmelCase = 0 for i in range(len(_lowerCAmelCase ) ): while ( self.find_next_state(_lowerCAmelCase , string[i] ) is None and current_state != 0 ): _lowerCAmelCase = self.adlist[current_state]["fail_state"] _lowerCAmelCase = self.find_next_state(_lowerCAmelCase , string[i] ) if next_state is None: _lowerCAmelCase = 0 else: _lowerCAmelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: _lowerCAmelCase = [] result[key].append(i - len(_lowerCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
158
1
from ..utils import DummyObject, requires_backends class __a ( metaclass=UpperCAmelCase ): _a : Dict = ['transformers', 'torch', 'note_seq'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def UpperCAmelCase__ ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def UpperCAmelCase__ ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
352
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=9 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.002 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = encoder_seq_length _UpperCAmelCase = decoder_seq_length # For common tests _UpperCAmelCase = self.decoder_seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = d_ff _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = dropout_rate _UpperCAmelCase = initializer_factor _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = decoder_start_token_id _UpperCAmelCase = None _UpperCAmelCase = decoder_layers def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return TaConfig.from_pretrained('google/umt5-base' ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" if attention_mask is None: _UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) if decoder_head_mask is None: _UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) if cross_attn_head_mask is None: _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = self.get_config() _UpperCAmelCase = config.num_attention_heads _UpperCAmelCase = self.prepare_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, input_dict def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" _UpperCAmelCase = UMTaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model( input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = result.last_hidden_state _UpperCAmelCase = result.past_key_values _UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_SCREAMING_SNAKE_CASE ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = UMTaModel(config=_SCREAMING_SNAKE_CASE ).get_decoder().to(_SCREAMING_SNAKE_CASE ).eval() # first forward pass _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) + 1 ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )['last_hidden_state'] _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )['last_hidden_state'] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" _UpperCAmelCase = UMTaModel(config=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ).half().eval() _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )['last_hidden_state'] self.parent.assertFalse(torch.isnan(_SCREAMING_SNAKE_CASE ).any().item() ) @require_torch class __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : Union[str, Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _a : List[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () _a : Tuple = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) _a : List[str] = True _a : List[Any] = False _a : Tuple = False _a : List[Any] = True _a : str = True # The small UMT5 model needs higher percentages for CPU/MP tests _a : Tuple = [0.8, 0.9] def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _SCREAMING_SNAKE_CASE , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_SCREAMING_SNAKE_CASE , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = config_and_inputs[0] _UpperCAmelCase = UMTaForConditionalGeneration(_SCREAMING_SNAKE_CASE ).eval() model.to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), } for attn_name, (name, mask) in zip(_SCREAMING_SNAKE_CASE , head_masking.items() ): _UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=_SCREAMING_SNAKE_CASE , return_dict_in_generate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # We check the state of decoder_attentions and cross_attentions just from the last step _UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class __a ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=_SCREAMING_SNAKE_CASE , legacy=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors='pt' , padding=_SCREAMING_SNAKE_CASE ).input_ids # fmt: off _UpperCAmelCase = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.generate(input_ids.to(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] _UpperCAmelCase = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
185
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _a ( unittest.TestCase ): def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5], SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5], SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=1 / 255, SCREAMING_SNAKE_CASE_=True, ) -> Any: UpperCAmelCase_: List[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} UpperCAmelCase_: Dict = parent UpperCAmelCase_: Optional[int] = batch_size UpperCAmelCase_: str = num_channels UpperCAmelCase_: Optional[Any] = min_resolution UpperCAmelCase_: List[Any] = max_resolution UpperCAmelCase_: int = do_resize UpperCAmelCase_: Union[str, Any] = size UpperCAmelCase_: Union[str, Any] = do_normalize UpperCAmelCase_: int = image_mean UpperCAmelCase_: Optional[int] = image_std UpperCAmelCase_: List[Any] = do_rescale UpperCAmelCase_: Optional[Any] = rescale_factor UpperCAmelCase_: Any = do_pad def __snake_case (self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False ) -> List[Any]: if not batched: UpperCAmelCase_: Tuple = image_inputs[0] if isinstance(__lowerCamelCase, Image.Image ): UpperCAmelCase_: Tuple = image.size else: UpperCAmelCase_: List[str] = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_: List[Any] = int(self.size["""shortest_edge"""] * h / w ) UpperCAmelCase_: Optional[Any] = self.size["shortest_edge"] elif w > h: UpperCAmelCase_: List[Any] = self.size["shortest_edge"] UpperCAmelCase_: List[str] = int(self.size["""shortest_edge"""] * w / h ) else: UpperCAmelCase_: Optional[int] = self.size["shortest_edge"] UpperCAmelCase_: Union[str, Any] = self.size["shortest_edge"] else: UpperCAmelCase_: Dict = [] for image in image_inputs: UpperCAmelCase_: Union[str, Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_: str = max(__lowerCamelCase, key=lambda SCREAMING_SNAKE_CASE_ : item[0] )[0] UpperCAmelCase_: Optional[Any] = max(__lowerCamelCase, key=lambda SCREAMING_SNAKE_CASE_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( lowercase__ , unittest.TestCase ): A = DetaImageProcessor if is_vision_available() else None def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: str = DetaImageProcessingTester(self ) @property def __snake_case (self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case (self ) -> Dict: UpperCAmelCase_: int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase, """image_mean""" ) ) self.assertTrue(hasattr(__lowerCamelCase, """image_std""" ) ) self.assertTrue(hasattr(__lowerCamelCase, """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCamelCase, """do_resize""" ) ) self.assertTrue(hasattr(__lowerCamelCase, """do_rescale""" ) ) self.assertTrue(hasattr(__lowerCamelCase, """do_pad""" ) ) self.assertTrue(hasattr(__lowerCamelCase, """size""" ) ) def __snake_case (self ) -> Dict: UpperCAmelCase_: Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad, __lowerCamelCase ) def __snake_case (self ) -> List[Any]: pass def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_: List[str] = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase, Image.Image ) # Test not batched input UpperCAmelCase_: Optional[int] = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values UpperCAmelCase_: Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched UpperCAmelCase_: List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase, batched=__lowerCamelCase ) UpperCAmelCase_: List[Any] = image_processing(__lowerCamelCase, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_: Optional[int] = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowerCamelCase, numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase, np.ndarray ) # Test not batched input UpperCAmelCase_: Any = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values UpperCAmelCase_: Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched UpperCAmelCase_: Optional[Any] = image_processing(__lowerCamelCase, return_tensors="""pt""" ).pixel_values UpperCAmelCase_: Union[str, Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase, batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def __snake_case (self ) -> Any: UpperCAmelCase_: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_: Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowerCamelCase, torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase, torch.Tensor ) # Test not batched input UpperCAmelCase_: Dict = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values UpperCAmelCase_: Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched UpperCAmelCase_: Union[str, Any] = image_processing(__lowerCamelCase, return_tensors="""pt""" ).pixel_values UpperCAmelCase_: Dict = self.image_processor_tester.get_expected_values(__lowerCamelCase, batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""", """r""" ) as f: UpperCAmelCase_: Dict = json.loads(f.read() ) UpperCAmelCase_: Any = {"image_id": 39769, "annotations": target} # encode them UpperCAmelCase_: Union[str, Any] = DetaImageProcessor() UpperCAmelCase_: List[str] = image_processing(images=__lowerCamelCase, annotations=__lowerCamelCase, return_tensors="""pt""" ) # verify pixel values UpperCAmelCase_: List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape, __lowerCamelCase ) UpperCAmelCase_: Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3], __lowerCamelCase, atol=1E-4 ) ) # verify area UpperCAmelCase_: Tuple = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""], __lowerCamelCase ) ) # verify boxes UpperCAmelCase_: Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape, __lowerCamelCase ) UpperCAmelCase_: List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0], __lowerCamelCase, atol=1E-3 ) ) # verify image_id UpperCAmelCase_: Optional[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""], __lowerCamelCase ) ) # verify is_crowd UpperCAmelCase_: Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""], __lowerCamelCase ) ) # verify class_labels UpperCAmelCase_: int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""], __lowerCamelCase ) ) # verify orig_size UpperCAmelCase_: int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""], __lowerCamelCase ) ) # verify size UpperCAmelCase_: Optional[int] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""], __lowerCamelCase ) ) @slow def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""", """r""" ) as f: UpperCAmelCase_: Tuple = json.loads(f.read() ) UpperCAmelCase_: List[str] = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} UpperCAmelCase_: Union[str, Any] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCAmelCase_: Tuple = DetaImageProcessor(format="""coco_panoptic""" ) UpperCAmelCase_: Dict = image_processing(images=__lowerCamelCase, annotations=__lowerCamelCase, masks_path=__lowerCamelCase, return_tensors="""pt""" ) # verify pixel values UpperCAmelCase_: List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape, __lowerCamelCase ) UpperCAmelCase_: Dict = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3], __lowerCamelCase, atol=1E-4 ) ) # verify area UpperCAmelCase_: List[Any] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""], __lowerCamelCase ) ) # verify boxes UpperCAmelCase_: Any = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape, __lowerCamelCase ) UpperCAmelCase_: int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0], __lowerCamelCase, atol=1E-3 ) ) # verify image_id UpperCAmelCase_: Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""], __lowerCamelCase ) ) # verify is_crowd UpperCAmelCase_: Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""], __lowerCamelCase ) ) # verify class_labels UpperCAmelCase_: Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""], __lowerCamelCase ) ) # verify masks UpperCAmelCase_: Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item(), __lowerCamelCase ) # verify orig_size UpperCAmelCase_: Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""], __lowerCamelCase ) ) # verify size UpperCAmelCase_: Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""], __lowerCamelCase ) )
147
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
184
0
from manim import * class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE_ = Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE_ = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = Text('CPU' , font_size=24 ) SCREAMING_SNAKE_CASE_ = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = Text('GPU' , font_size=24 ) SCREAMING_SNAKE_CASE_ = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = Text('Model' , font_size=24 ) SCREAMING_SNAKE_CASE_ = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for i, rect in enumerate(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = fill.copy().set_fill(_lowerCAmelCase , opacity=0.8 ) target.move_to(_lowerCAmelCase ) model_arr.append(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_lowerCAmelCase ) self.add(*_lowerCAmelCase , *_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = Text('Disk' , font_size=24 ) SCREAMING_SNAKE_CASE_ = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE_ = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = MarkupText( F"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = Square(0.3 ) input.set_fill(_lowerCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _lowerCAmelCase , buff=0.5 ) self.play(Write(_lowerCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_lowerCAmelCase , buff=0.02 ) self.play(MoveToTarget(_lowerCAmelCase ) ) self.play(FadeOut(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = Arrow(start=_lowerCAmelCase , end=_lowerCAmelCase , color=_lowerCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _lowerCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) SCREAMING_SNAKE_CASE_ = MarkupText( F"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase , run_time=3 ) ) SCREAMING_SNAKE_CASE_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_lowerCAmelCase ) , Circumscribe(model_arr[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) SCREAMING_SNAKE_CASE_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _lowerCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) SCREAMING_SNAKE_CASE_ = AnimationGroup( FadeOut(_lowerCAmelCase , run_time=0.5 ) , MoveToTarget(_lowerCAmelCase , run_time=0.5 ) , FadeIn(_lowerCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_lowerCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: SCREAMING_SNAKE_CASE_ = 0.7 self.play( Circumscribe(model_arr[i] , **_lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) SCREAMING_SNAKE_CASE_ = a_c SCREAMING_SNAKE_CASE_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_lowerCAmelCase ) , FadeOut(_lowerCAmelCase , run_time=0.5 ) , ) SCREAMING_SNAKE_CASE_ = MarkupText(F"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase , run_time=3 ) , MoveToTarget(_lowerCAmelCase ) ) self.wait()
210
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "" lowercase_ = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self : Optional[int] , _lowerCAmelCase : Optional[DatasetInfo] = None , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : int , ): super().__init__(self , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = repo_info SCREAMING_SNAKE_CASE_ = token SCREAMING_SNAKE_CASE_ = None def lowerCAmelCase_ ( self : Tuple ): if self.dir_cache is None: SCREAMING_SNAKE_CASE_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes SCREAMING_SNAKE_CASE_ = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowerCAmelCase ): {'name': str(_lowerCAmelCase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : str = "rb" , **_lowerCAmelCase : Optional[Any] , ): if not isinstance(self.repo_info , _lowerCAmelCase ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) SCREAMING_SNAKE_CASE_ = hf_hub_url(self.repo_info.id , _lowerCAmelCase , revision=self.repo_info.sha ) return fsspec.open( _lowerCAmelCase , mode=_lowerCAmelCase , headers=get_authentication_headers_for_url(_lowerCAmelCase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , **_lowerCAmelCase : Dict ): self._get_dirs() SCREAMING_SNAKE_CASE_ = self._strip_protocol(_lowerCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any=False , **_lowerCAmelCase : str ): self._get_dirs() SCREAMING_SNAKE_CASE_ = PurePosixPath(path.strip('/' ) ) SCREAMING_SNAKE_CASE_ = {} for p, f in self.dir_cache.items(): SCREAMING_SNAKE_CASE_ = PurePosixPath(p.strip('/' ) ) SCREAMING_SNAKE_CASE_ = p.parent if root == path: SCREAMING_SNAKE_CASE_ = f SCREAMING_SNAKE_CASE_ = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
210
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : int ={ '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] =['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] =[ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] =[ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys A__ : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCAmelCase : _lowercase: List[str] _lowercase: Optional[str] = None # Automatically constructed _lowercase: ClassVar[str] = "dict" _lowercase: ClassVar[Any] = None _lowercase: str = field(default='''Translation''' , init=snake_case_ , repr=snake_case_ ) def __call__( self : Optional[int] ) -> Optional[int]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase__ ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class UpperCAmelCase : _lowercase: Optional[List] = None _lowercase: Optional[int] = None _lowercase: Optional[str] = None # Automatically constructed _lowercase: ClassVar[str] = "dict" _lowercase: ClassVar[Any] = None _lowercase: str = field(default='''TranslationVariableLanguages''' , init=snake_case_ , repr=snake_case_ ) def lowercase__ ( self : Any ) -> Optional[Any]: _lowerCAmelCase = sorted(set(self.languages ) ) if self.languages else None _lowerCAmelCase = len(self.languages ) if self.languages else None def __call__( self : List[str] ) -> Optional[Any]: return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def lowercase__ ( self : Optional[Any] , __snake_case : Tuple ) -> Any: _lowerCAmelCase = set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCAmelCase = [] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _lowerCAmelCase , _lowerCAmelCase = zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def lowercase__ ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
70
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ : List[str] =logging.get_logger(__name__) A__ : Tuple ={ '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class UpperCAmelCase ( snake_case_ ): _lowercase: Optional[Any] = '''conditional_detr''' _lowercase: Optional[int] = ['''past_key_values'''] _lowercase: int = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Optional[int] , __snake_case : Tuple=True , __snake_case : Any=None , __snake_case : str=3 , __snake_case : int=3_00 , __snake_case : Dict=6 , __snake_case : Optional[int]=20_48 , __snake_case : Dict=8 , __snake_case : List[str]=6 , __snake_case : Tuple=20_48 , __snake_case : Optional[int]=8 , __snake_case : Optional[int]=0.0 , __snake_case : Tuple=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Dict="relu" , __snake_case : List[Any]=2_56 , __snake_case : List[str]=0.1 , __snake_case : Tuple=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=0.02 , __snake_case : Union[str, Any]=1.0 , __snake_case : List[Any]=False , __snake_case : Any="sine" , __snake_case : Optional[int]="resnet50" , __snake_case : List[str]=True , __snake_case : Optional[int]=False , __snake_case : int=2 , __snake_case : Optional[int]=5 , __snake_case : Union[str, Any]=2 , __snake_case : str=1 , __snake_case : Optional[Any]=1 , __snake_case : List[str]=2 , __snake_case : Optional[int]=5 , __snake_case : Union[str, Any]=2 , __snake_case : List[str]=0.25 , **__snake_case : Union[str, Any] , ) -> str: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _lowerCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__snake_case , __snake_case ): _lowerCAmelCase = backbone_config.get("""model_type""" ) _lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase = config_class.from_dict(__snake_case ) _lowerCAmelCase = use_timm_backbone _lowerCAmelCase = backbone_config _lowerCAmelCase = num_channels _lowerCAmelCase = num_queries _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = init_xavier_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = encoder_layers _lowerCAmelCase = auxiliary_loss _lowerCAmelCase = position_embedding_type _lowerCAmelCase = backbone _lowerCAmelCase = use_pretrained_backbone _lowerCAmelCase = dilation # Hungarian matcher _lowerCAmelCase = class_cost _lowerCAmelCase = bbox_cost _lowerCAmelCase = giou_cost # Loss coefficients _lowerCAmelCase = mask_loss_coefficient _lowerCAmelCase = dice_loss_coefficient _lowerCAmelCase = cls_loss_coefficient _lowerCAmelCase = bbox_loss_coefficient _lowerCAmelCase = giou_loss_coefficient _lowerCAmelCase = focal_alpha super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def lowercase__ ( self : Any ) -> int: return self.encoder_attention_heads @property def lowercase__ ( self : Optional[Any] ) -> int: return self.d_model def lowercase__ ( self : int ) -> int: _lowerCAmelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _lowerCAmelCase = self.backbone_config.to_dict() _lowerCAmelCase = self.__class__.model_type return output class UpperCAmelCase ( snake_case_ ): _lowercase: Tuple = version.parse('''1.11''' ) @property def lowercase__ ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : Optional[int] ) -> float: return 1E-5 @property def lowercase__ ( self : Any ) -> int: return 12
351
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("""String lengths must match!""" ) _lowerCAmelCase = 0 for chara, chara in zip(lowerCAmelCase , lowerCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
220
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A_ :int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') A_ :List[str] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) A_ :Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : """simple docstring""" UpperCamelCase__ : Optional[str] =field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) UpperCamelCase__ : Optional[str] =field( default=a , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase__ : Optional[str] =field( default=a , metadata={"""help""": """The column name of the images in the files. If not set, will try to use 'image' or 'img'."""} , ) UpperCamelCase__ : Optional[str] =field(default=a , metadata={"""help""": """A folder containing the training data."""} ) UpperCamelCase__ : Optional[str] =field(default=a , metadata={"""help""": """A folder containing the validation data."""} ) UpperCamelCase__ : Optional[float] =field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) UpperCamelCase__ : int =field(default=3_2 , metadata={"""help""": """The size of the square patches to use for masking."""} ) UpperCamelCase__ : float =field( default=0.6 , metadata={"""help""": """Percentage of patches to mask."""} , ) UpperCamelCase__ : Optional[int] =field( default=a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCamelCase__ : Optional[int] =field( default=a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int ={} if self.train_dir is not None: __UpperCamelCase : Dict =self.train_dir if self.validation_dir is not None: __UpperCamelCase : Any =self.validation_dir __UpperCamelCase : Dict =data_files if data_files else None @dataclass class __A : """simple docstring""" UpperCamelCase__ : str =field( default=a , metadata={ """help""": ( """The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a """ """checkpoint identifier on the hub. """ """Don't set if you want to train a model from scratch.""" ) } , ) UpperCamelCase__ : Optional[str] =field( default=a , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(a )} , ) UpperCamelCase__ : Optional[str] =field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase__ : Optional[str] =field( default=a , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCamelCase__ : Optional[str] =field( default=a , metadata={"""help""": """Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"""} , ) UpperCamelCase__ : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase__ : str =field(default=a , metadata={"""help""": """Name or path of preprocessor config."""} ) UpperCamelCase__ : bool =field( default=a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) UpperCamelCase__ : Optional[int] =field( default=a , metadata={ """help""": ( """The size (resolution) of each image. If not specified, will use `image_size` of the configuration.""" ) } , ) UpperCamelCase__ : Optional[int] =field( default=a , metadata={ """help""": ( """The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.""" ) } , ) UpperCamelCase__ : Optional[int] =field( default=a , metadata={"""help""": """Stride to use for the encoder."""} , ) class __A : """simple docstring""" def __init__( self , lowerCamelCase__=192 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=0.6 ): """simple docstring""" __UpperCamelCase : int =input_size __UpperCamelCase : Any =mask_patch_size __UpperCamelCase : List[Any] =model_patch_size __UpperCamelCase : Union[str, Any] =mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) __UpperCamelCase : Any =self.input_size // self.mask_patch_size __UpperCamelCase : Dict =self.mask_patch_size // self.model_patch_size __UpperCamelCase : List[Any] =self.rand_size**2 __UpperCamelCase : List[Any] =int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ): """simple docstring""" __UpperCamelCase : str =np.random.permutation(self.token_count )[: self.mask_count] __UpperCamelCase : Optional[int] =np.zeros(self.token_count , dtype=lowerCamelCase__ ) __UpperCamelCase : int =1 __UpperCamelCase : Any =mask.reshape((self.rand_size, self.rand_size) ) __UpperCamelCase : Tuple =mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def A ( a_ ) -> int: __UpperCamelCase : List[str] =torch.stack([example['pixel_values'] for example in examples] ) __UpperCamelCase : Dict =torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def A ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCamelCase : str =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Tuple =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim' ,a_ ,a_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' ,datefmt='%m/%d/%Y %H:%M:%S' ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCamelCase : Optional[Any] =training_args.get_process_log_level() logger.setLevel(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __UpperCamelCase : Any =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCamelCase : int =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. __UpperCamelCase : Union[str, Any] =load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,data_files=data_args.data_files ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) # If we don't have a validation split, split off a percentage of train as validation. __UpperCamelCase : int =None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split ,a_ ) and data_args.train_val_split > 0.0: __UpperCamelCase : int =ds['train'].train_test_split(data_args.train_val_split ) __UpperCamelCase : Optional[Any] =split['train'] __UpperCamelCase : List[str] =split['test'] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase : Dict ={ 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: __UpperCamelCase : Tuple =AutoConfig.from_pretrained(model_args.config_name_or_path ,**a_ ) elif model_args.model_name_or_path: __UpperCamelCase : List[str] =AutoConfig.from_pretrained(model_args.model_name_or_path ,**a_ ) else: __UpperCamelCase : Any =CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(a_ ,'decoder_type' ): __UpperCamelCase : List[str] ='simmim' # adapt config __UpperCamelCase : Dict =model_args.image_size if model_args.image_size is not None else config.image_size __UpperCamelCase : Optional[Any] =model_args.patch_size if model_args.patch_size is not None else config.patch_size __UpperCamelCase : int =( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: __UpperCamelCase : Optional[Any] =AutoImageProcessor.from_pretrained(model_args.image_processor_name ,**a_ ) elif model_args.model_name_or_path: __UpperCamelCase : Tuple =AutoImageProcessor.from_pretrained(model_args.model_name_or_path ,**a_ ) else: __UpperCamelCase : List[str] ={ conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } __UpperCamelCase : Dict =IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: __UpperCamelCase : List[Any] =AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path ,from_tf=bool('.ckpt' in model_args.model_name_or_path ) ,config=a_ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) else: logger.info('Training new model from scratch' ) __UpperCamelCase : Tuple =AutoModelForMaskedImageModeling.from_config(a_ ) if training_args.do_train: __UpperCamelCase : Union[str, Any] =ds['train'].column_names else: __UpperCamelCase : Dict =ds['validation'].column_names if data_args.image_column_name is not None: __UpperCamelCase : Optional[Any] =data_args.image_column_name elif "image" in column_names: __UpperCamelCase : List[Any] ='image' elif "img" in column_names: __UpperCamelCase : Optional[int] ='img' else: __UpperCamelCase : List[Any] =column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py __UpperCamelCase : int =Compose( [ Lambda(lambda a_ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size ,scale=(0.67, 1.0) ,ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean ,std=image_processor.image_std ), ] ) # create mask generator __UpperCamelCase : Tuple =MaskGenerator( input_size=model_args.image_size ,mask_patch_size=data_args.mask_patch_size ,model_patch_size=model_args.patch_size ,mask_ratio=data_args.mask_ratio ,) def preprocess_images(a_ ): __UpperCamelCase : Dict =[transforms(a_ ) for image in examples[image_column_name]] __UpperCamelCase : int =[mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __UpperCamelCase : Optional[int] =ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(a_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __UpperCamelCase : int =( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(a_ ) # Initialize our trainer __UpperCamelCase : int =Trainer( model=a_ ,args=a_ ,train_dataset=ds['train'] if training_args.do_train else None ,eval_dataset=ds['validation'] if training_args.do_eval else None ,tokenizer=a_ ,data_collator=a_ ,) # Training if training_args.do_train: __UpperCamelCase : Optional[Any] =None if training_args.resume_from_checkpoint is not None: __UpperCamelCase : List[str] =training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCamelCase : List[Any] =last_checkpoint __UpperCamelCase : List[str] =trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() trainer.log_metrics('train' ,train_result.metrics ) trainer.save_metrics('train' ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __UpperCamelCase : Optional[int] =trainer.evaluate() trainer.log_metrics('eval' ,a_ ) trainer.save_metrics('eval' ,a_ ) # Write model card and (optionally) push to hub __UpperCamelCase : Tuple ={ 'finetuned_from': model_args.model_name_or_path, 'tasks': 'masked-image-modeling', 'dataset': data_args.dataset_name, 'tags': ['masked-image-modeling'], } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) if __name__ == "__main__": main()
71
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _UpperCAmelCase : @staticmethod def lowerCamelCase ( *__UpperCamelCase :List[Any] , **__UpperCamelCase :List[Any] ): pass def A__ ( UpperCamelCase ): A = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCAmelCase ( unittest.TestCase ): UpperCamelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :List[str] , __UpperCamelCase :Optional[int] ): A = DepthEstimationPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase ( self :Dict , __UpperCamelCase :Optional[int] , __UpperCamelCase :Optional[Any] ): A = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , __UpperCamelCase ) import datasets A = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) A = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , __UpperCamelCase , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def lowerCamelCase ( self :Optional[Any] ): pass @slow @require_torch def lowerCamelCase ( self :Optional[Any] ): A = "Intel/dpt-large" A = pipeline("depth-estimation" , model=__UpperCamelCase ) A = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) A = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def lowerCamelCase ( self :Optional[Any] ): # This is highly irregular to have no small tests. self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
292
0
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowerCAmelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = question_encoder lowerCAmelCase : Optional[Any] = generator lowerCAmelCase : List[str] = self.question_encoder def lowercase__ ( self , snake_case__ ): """simple docstring""" if os.path.isfile(snake_case__ ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase : Tuple = os.path.join(snake_case__ , "question_encoder_tokenizer" ) lowerCAmelCase : Optional[int] = os.path.join(snake_case__ , "generator_tokenizer" ) self.question_encoder.save_pretrained(snake_case__ ) self.generator.save_pretrained(snake_case__ ) @classmethod def lowercase__ ( cls , snake_case__ , **snake_case__ ): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer lowerCAmelCase : List[str] = kwargs.pop("config" , snake_case__ ) if config is None: lowerCAmelCase : str = RagConfig.from_pretrained(snake_case__ ) lowerCAmelCase : str = AutoTokenizer.from_pretrained( snake_case__ , config=config.question_encoder , subfolder="question_encoder_tokenizer" ) lowerCAmelCase : Dict = AutoTokenizer.from_pretrained( snake_case__ , config=config.generator , subfolder="generator_tokenizer" ) return cls(question_encoder=snake_case__ , generator=snake_case__ ) def __call__( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.current_tokenizer(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.generator.batch_decode(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.generator.decode(*snake_case__ , **snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.question_encoder def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.generator def lowercase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = "longest" , snake_case__ = None , snake_case__ = True , **snake_case__ , ): """simple docstring""" warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" , snake_case__ , ) if max_length is None: lowerCAmelCase : Dict = self.current_tokenizer.model_max_length lowerCAmelCase : List[Any] = self( snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , max_length=snake_case__ , padding=snake_case__ , truncation=snake_case__ , **snake_case__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: lowerCAmelCase : Union[str, Any] = self.current_tokenizer.model_max_length lowerCAmelCase : Any = self( text_target=snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , padding=snake_case__ , max_length=snake_case__ , truncation=snake_case__ , **snake_case__ , ) lowerCAmelCase : Tuple = labels["input_ids"] return model_inputs
133
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' lowerCAmelCase : str = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: lowerCAmelCase , lowerCAmelCase : Any = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
133
1
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def a__ ( lowercase : str, lowercase : str ) -> str | Literal[False]: """simple docstring""" _UpperCamelCase = list(lowercase ) _UpperCamelCase = list(lowercase ) _UpperCamelCase = 0 for i in range(len(lowercase ) ): if lista[i] != lista[i]: count += 1 _UpperCamelCase = '''_''' if count > 1: return False else: return "".join(lowercase ) def a__ ( lowercase : list[str] ) -> list[str]: """simple docstring""" _UpperCamelCase = [] while True: _UpperCamelCase = ['''$'''] * len(lowercase ) _UpperCamelCase = [] for i in range(len(lowercase ) ): for j in range(i + 1, len(lowercase ) ): _UpperCamelCase = compare_string(binary[i], binary[j] ) if k is False: _UpperCamelCase = '''*''' _UpperCamelCase = '''*''' temp.append('''X''' ) for i in range(len(lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowercase ) == 0: return pi _UpperCamelCase = list(set(lowercase ) ) def a__ ( lowercase : int, lowercase : Sequence[float] ) -> list[str]: """simple docstring""" _UpperCamelCase = [] for minterm in minterms: _UpperCamelCase = '''''' for _ in range(lowercase ): _UpperCamelCase = str(minterm % 2 ) + string minterm //= 2 temp.append(lowercase ) return temp def a__ ( lowercase : str, lowercase : str, lowercase : int ) -> bool: """simple docstring""" _UpperCamelCase = list(lowercase ) _UpperCamelCase = list(lowercase ) _UpperCamelCase = 0 for i in range(len(lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def a__ ( lowercase : list[list[int]], lowercase : list[str] ) -> list[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = [0] * len(lowercase ) for i in range(len(chart[0] ) ): _UpperCamelCase = 0 _UpperCamelCase = -1 for j in range(len(lowercase ) ): if chart[j][i] == 1: count += 1 _UpperCamelCase = j if count == 1: _UpperCamelCase = 1 for i in range(len(lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowercase ) ): _UpperCamelCase = 0 temp.append(prime_implicants[i] ) while True: _UpperCamelCase = 0 _UpperCamelCase = -1 _UpperCamelCase = 0 for i in range(len(lowercase ) ): _UpperCamelCase = chart[i].count(1 ) if count_n > max_n: _UpperCamelCase = count_n _UpperCamelCase = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowercase ) ): _UpperCamelCase = 0 def a__ ( lowercase : list[str], lowercase : list[str] ) -> list[list[int]]: """simple docstring""" _UpperCamelCase = [[0 for x in range(len(lowercase ) )] for x in range(len(lowercase ) )] for i in range(len(lowercase ) ): _UpperCamelCase = prime_implicants[i].count('''_''' ) for j in range(len(lowercase ) ): if is_for_table(prime_implicants[i], binary[j], lowercase ): _UpperCamelCase = 1 return chart def a__ ( ) -> None: """simple docstring""" _UpperCamelCase = int(input('''Enter the no. of variables\n''' ) ) _UpperCamelCase = [ float(lowercase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] _UpperCamelCase = decimal_to_binary(lowercase, lowercase ) _UpperCamelCase = check(lowercase ) print('''Prime Implicants are:''' ) print(lowercase ) _UpperCamelCase = prime_implicant_chart(lowercase, lowercase ) _UpperCamelCase = selection(lowercase, lowercase ) print('''Essential Prime Implicants are:''' ) print(lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
324
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Tuple = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : List[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : List[str]=32 ,__lowerCamelCase : Any=3 ,__lowerCamelCase : Dict=10 ,__lowerCamelCase : Union[str, Any]=[10, 20, 30, 40] ,__lowerCamelCase : List[str]=[1, 1, 2, 1] ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Any="relu" ,__lowerCamelCase : Optional[int]=3 ,__lowerCamelCase : Optional[int]=None ,): '''simple docstring''' a = parent a = batch_size a = image_size a = num_channels a = embeddings_size a = hidden_sizes a = depths a = is_training a = use_labels a = hidden_act a = num_labels a = scope a = len(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = self.get_config() return config, pixel_values def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = FlaxRegNetModel(config=__lowerCamelCase ) a = model(__lowerCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Any ): '''simple docstring''' a = self.num_labels a = FlaxRegNetForImageClassification(config=__lowerCamelCase ) a = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a = config_and_inputs a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class lowerCamelCase_ ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = FlaxRegNetModelTester(self ) a = ConfigTester(self ,config_class=__lowerCamelCase ,has_text_modality=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) a = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' def check_hidden_states_output(__lowerCamelCase : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : str ): a = model_class(__lowerCamelCase ) a = model(**self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) ) a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) ,expected_num_stages + 1 ) a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = True check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a = self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) a = model_class(__lowerCamelCase ) @jax.jit def model_jitted(__lowerCamelCase : Optional[Any] ,**__lowerCamelCase : int ): return model(pixel_values=__lowerCamelCase ,**__lowerCamelCase ) with self.subTest('''JIT Enabled''' ): a = model_jitted(**__lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): a = model_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) ,len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase ,__lowerCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: """simple docstring""" a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class lowerCamelCase_ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) a = self.default_image_processor a = prepare_img() a = image_processor(images=__lowerCamelCase ,return_tensors='''np''' ) a = model(**__lowerCamelCase ) # verify the logits a = (1, 10_00) self.assertEqual(outputs.logits.shape ,__lowerCamelCase ) a = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] ,__lowerCamelCase ,atol=1e-4 ) )
367
import re def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" if len(re.findall('''[ATCG]''', snake_case_ ) ) != len(snake_case_ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''', '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
330
0
"""simple docstring""" class _lowerCamelCase : def __init__( self : List[Any] , UpperCamelCase : Tuple ) -> int: """simple docstring""" # we need a list not a string, so do something to change the type lowerCAmelCase__ : str = arr.split(""",""" ) def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" lowerCAmelCase__ : str = [int(self.array[0] )] * len(self.array ) lowerCAmelCase__ : List[Any] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): lowerCAmelCase__ : Optional[int] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) lowerCAmelCase__ : Union[str, Any] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _A = input("""please input some numbers:""") _A = SubArray(whole_array) _A = array.solve_sub_array() print(("""the results is:""", re))
242
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowercase_ ( ) -> Optional[int]: lowerCAmelCase__ : Dict = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } lowerCAmelCase__ : int = Dataset.from_dict(__UpperCAmelCase ) return dataset class _lowerCamelCase ( a_ ): def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" lowerCAmelCase__ : Dict = get_dataset() lowerCAmelCase__ : Optional[int] = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" lowerCAmelCase__ : List[Any] = get_dataset() lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , UpperCamelCase )
242
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) A : Optional[Any] = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = ['''BeitFeatureExtractor'''] A : int = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys A : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
'''simple docstring''' class __lowerCamelCase : # Public class to implement a graph """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[bool]]): _A : List[Any] = row _A : Union[str, Any] = col _A : List[str] = graph def A ( self : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[bool]]): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def A ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[bool]]): # Checking all 8 elements surrounding nth element _A : Tuple = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _A : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] _A : List[Any] = True # Make those cells visited for k in range(8): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE): self.diffs(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE) def A ( self : int): # And finally, count all islands. _A : Dict = [[False for j in range(self.COL)] for i in range(self.ROW)] _A : Union[str, Any] = 0 for i in range(self.ROW): for j in range(self.COL): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) count += 1 return count
227
0
"""simple docstring""" def _snake_case ( lowerCamelCase__ : list ) -> list: def merge(lowerCamelCase__ : list , lowerCamelCase__ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowerCamelCase__ ) <= 1: return collection lowerCamelCase_ : Any =len(lowerCamelCase__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() A__ : List[str] = input('Enter numbers separated by a comma:\n').strip() A__ : List[Any] = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
144
"""simple docstring""" import os def _snake_case ( ) -> Dict: with open(os.path.dirname(lowerCamelCase__ ) + "/p022_names.txt" ) as file: lowerCamelCase_ : str =str(file.readlines()[0] ) lowerCamelCase_ : Union[str, Any] =names.replace("\"" , "" ).split("," ) names.sort() lowerCamelCase_ : str =0 lowerCamelCase_ : Optional[int] =0 for i, name in enumerate(lowerCamelCase__ ): for letter in name: name_score += ord(lowerCamelCase__ ) - 64 total_score += (i + 1) * name_score lowerCamelCase_ : List[Any] =0 return total_score if __name__ == "__main__": print(solution())
144
1
"""simple docstring""" from collections.abc import Callable def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : float = a __snake_case : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: __snake_case : List[str] = mid else: __snake_case : str = mid __snake_case : str = start + (end - start) / 2.0 return mid def lowercase ( _snake_case : float ) ->float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : List[str] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : List[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE : List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE : int = None def lowercase ( ) ->str: """simple docstring""" global _logger __snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[int] = lock_file return None def __str__(self ): '''simple docstring''' __snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = lock return None def __enter__(self ): '''simple docstring''' return self.lock def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ ) # The path to the lock file. __snake_case : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case : Dict = None # The default timeout value. __snake_case : List[Any] = timeout # We use this lock primarily for the lock counter. __snake_case : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case : Optional[Any] = 0 return None @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = float(a_ ) return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ): '''simple docstring''' if timeout is None: __snake_case : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case : Optional[int] = id(self ) __snake_case : str = self._lock_file __snake_case : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE (self , a_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case : Tuple = id(self ) __snake_case : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case : Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): '''simple docstring''' self.acquire() return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.release() return None def __del__(self ): '''simple docstring''' self.release(force=a_ ) return None def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = os.path.basename(a_ ) if len(a_ ) > max_length and max_length > 0: __snake_case : List[Any] = os.path.dirname(a_ ) __snake_case : Any = str(hash(a_ ) ) __snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a_ , a_ ) else: return path class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) __snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case : Any = os.open(self._lock_file , a_ ) except OSError: pass else: try: msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a_ ) else: __snake_case : Dict = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Dict = None msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 ) os.close(a_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case : List[str] = os.open(self._lock_file , a_ ) try: fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a_ ) else: __snake_case : Optional[int] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Tuple = None fcntl.flock(a_ , fcntl.LOCK_UN ) os.close(a_ ) return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case : Tuple = os.open(self._lock_file , a_ ) except OSError: pass else: __snake_case : List[Any] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' os.close(self._lock_file_fd ) __snake_case : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : Dict = None if msvcrt: SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: SCREAMING_SNAKE_CASE : str = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
24
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=[0.5, 0.5, 0.5] , a=[0.5, 0.5, 0.5] , a=True , a=1 / 2_5_5 , a=True , ) -> Any: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase__ : Dict = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} lowercase__ : Optional[int] = parent lowercase__ : Tuple = batch_size lowercase__ : List[str] = num_channels lowercase__ : List[str] = min_resolution lowercase__ : Tuple = max_resolution lowercase__ : Union[str, Any] = do_resize lowercase__ : Dict = size lowercase__ : str = do_normalize lowercase__ : List[Any] = image_mean lowercase__ : int = image_std lowercase__ : List[Any] = do_rescale lowercase__ : int = rescale_factor lowercase__ : int = do_pad def _UpperCAmelCase ( self ) -> Optional[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCAmelCase ( self , a , a=False ) -> Dict: if not batched: lowercase__ : str = image_inputs[0] if isinstance(a , Image.Image ): lowercase__ , lowercase__ : List[str] = image.size else: lowercase__ , lowercase__ : int = image.shape[1], image.shape[2] if w < h: lowercase__ : Any = int(self.size['shortest_edge'] * h / w ) lowercase__ : Dict = self.size['shortest_edge'] elif w > h: lowercase__ : int = self.size['shortest_edge'] lowercase__ : Tuple = int(self.size['shortest_edge'] * w / h ) else: lowercase__ : Optional[Any] = self.size['shortest_edge'] lowercase__ : List[Any] = self.size['shortest_edge'] else: lowercase__ : Union[str, Any] = [] for image in image_inputs: lowercase__ , lowercase__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ : Optional[Any] = max(a , key=lambda a : item[0] )[0] lowercase__ : Optional[Any] = max(a , key=lambda a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : List[str] = DetaImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[Any] = DetaImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'image_mean' ) ) self.assertTrue(hasattr(a , 'image_std' ) ) self.assertTrue(hasattr(a , 'do_normalize' ) ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'do_rescale' ) ) self.assertTrue(hasattr(a , 'do_pad' ) ) self.assertTrue(hasattr(a , 'size' ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : Optional[int] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ , lowercase__ : Tuple = self.image_processor_tester.get_expected_values(a , batched=a ) lowercase__ : List[str] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : List[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Union[str, Any] = image_processing(a , return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : int = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : Optional[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Optional[int] = image_processing(a , return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : Optional[Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCAmelCase ( self ) -> Dict: # prepare image and target lowercase__ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowercase__ : Tuple = json.loads(f.read() ) lowercase__ : Optional[int] = {'image_id': 3_9_7_6_9, 'annotations': target} # encode them lowercase__ : Union[str, Any] = DetaImageProcessor() lowercase__ : List[str] = image_processing(images=a , annotations=a , return_tensors='pt' ) # verify pixel values lowercase__ : int = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , a ) lowercase__ : List[str] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a , atol=1e-4 ) ) # verify area lowercase__ : List[str] = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a ) ) # verify boxes lowercase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , a ) lowercase__ : str = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a , atol=1e-3 ) ) # verify image_id lowercase__ : Tuple = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a ) ) # verify is_crowd lowercase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a ) ) # verify class_labels lowercase__ : List[Any] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a ) ) # verify orig_size lowercase__ : Tuple = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a ) ) # verify size lowercase__ : Optional[int] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: # prepare image, target and masks_path lowercase__ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowercase__ : int = json.loads(f.read() ) lowercase__ : Optional[Any] = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} lowercase__ : Any = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowercase__ : List[Any] = DetaImageProcessor(format='coco_panoptic' ) lowercase__ : int = image_processing(images=a , annotations=a , masks_path=a , return_tensors='pt' ) # verify pixel values lowercase__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , a ) lowercase__ : Optional[int] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a , atol=1e-4 ) ) # verify area lowercase__ : List[str] = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a ) ) # verify boxes lowercase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , a ) lowercase__ : List[Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a , atol=1e-3 ) ) # verify image_id lowercase__ : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a ) ) # verify is_crowd lowercase__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a ) ) # verify class_labels lowercase__ : Tuple = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a ) ) # verify masks lowercase__ : Dict = 8_2_2_8_7_3 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , a ) # verify orig_size lowercase__ : Any = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a ) ) # verify size lowercase__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a ) )
77
"""simple docstring""" from collections.abc import Generator def a_ ( ): '''simple docstring''' lowercase__ , lowercase__ : List[str] = 0, 1 while True: lowercase__ , lowercase__ : Optional[int] = b, a + b yield b def a_ ( _lowerCAmelCase : int = 1000 ): '''simple docstring''' lowercase__ : List[Any] = 1 lowercase__ : Any = fibonacci_generator() while len(str(next(_lowerCAmelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
77
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __UpperCamelCase : Optional[int] = logging.get_logger(__name__) class a ( a__ ): def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
309
"""simple docstring""" import os from datetime import datetime as dt from github import Github __UpperCamelCase : int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] ) lowerCAmelCase = g.get_repo('huggingface/diffusers' ) lowerCAmelCase = repo.get_issues(state='open' ) for issue in open_issues: lowerCAmelCase = sorted(issue.get_comments() , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase ) lowerCAmelCase = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
309
1
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __UpperCAmelCase : Any = datasets.logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" __UpperCAmelCase : Optional[Any] = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" __UpperCAmelCase : str = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="dummy_doc") -> Dict: __snake_case: Any = {doc: key_lines} __snake_case: Optional[int] = {doc: sys_lines} __snake_case: Any = {} __snake_case: int = 0 __snake_case: List[str] = 0 __snake_case: Tuple = 0 __snake_case: Union[str, Any] = 0 __snake_case: Union[str, Any] = 0 __snake_case: Optional[int] = 0 __snake_case , __snake_case: List[Any] = reader.get_doc_mentions(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__) key_singletons_num += singletons_num if NP_only or min_span: __snake_case: int = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) __snake_case , __snake_case: Dict = reader.get_doc_mentions(SCREAMING_SNAKE_CASE__ , sys_doc_lines[doc] , SCREAMING_SNAKE_CASE__) sys_singletons_num += singletons_num if NP_only or min_span: __snake_case: List[Any] = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE__ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) if remove_nested: __snake_case , __snake_case: List[str] = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters __snake_case , __snake_case: Optional[int] = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters __snake_case: Any = reader.get_mention_assignments(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) __snake_case: str = reader.get_mention_assignments(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) __snake_case: List[str] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''') logger.info( """Number of resulting singleton clusters in the key """ F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''') if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' """files, respectively""") return doc_coref_infos def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> Optional[Any]: __snake_case: str = get_coref_infos(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) __snake_case: List[str] = {} __snake_case: str = 0 __snake_case: Optional[int] = 0 for name, metric in metrics: __snake_case , __snake_case , __snake_case: Any = evaluator.evaluate_documents(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , beta=1) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa}) logger.info( name.ljust(10) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , ) if conll_subparts_num == 3: __snake_case: Union[str, Any] = (conll / 3) * 100 logger.info(F'''CoNLL score: {conll:.2f}''') output_scores.update({"""conll_score""": conll}) return output_scores def A__ ( SCREAMING_SNAKE_CASE__) -> str: __snake_case: List[Any] = False for line in key_lines: if not line.startswith("""#"""): if len(line.split()) > 6: __snake_case: Tuple = line.split()[5] if not parse_col == "-": __snake_case: Union[str, Any] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase__ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def UpperCAmelCase__ ( self : str , A : Optional[Any] , A : Tuple , A : Union[str, Any]=True , A : Dict=False , A : Any=False , A : Union[str, Any]=False ): __snake_case: int = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: __snake_case: int = util.check_gold_parse_annotation(A ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" __snake_case: int = evaluate( key_lines=A , sys_lines=A , metrics=A , NP_only=A , remove_nested=A , keep_singletons=A , min_span=A , ) return score
111
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : str = Dict[str, Any] __UpperCAmelCase : int = List[Prediction] @add_end_docstrings(__lowerCamelCase ) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : int , *A : Optional[int] , **A : Optional[int] ): super().__init__(*A , **A ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCAmelCase__ ( self : List[str] , **A : Tuple ): __snake_case: List[str] = {} if "threshold" in kwargs: __snake_case: Optional[Any] = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : int , *A : Optional[Any] , **A : Tuple ): return super().__call__(*A , **A ) def UpperCAmelCase__ ( self : Optional[int] , A : str ): __snake_case: Optional[Any] = load_image(A ) __snake_case: Dict = torch.IntTensor([[image.height, image.width]] ) __snake_case: str = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: __snake_case: Optional[Any] = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) __snake_case: Any = target_size return inputs def UpperCAmelCase__ ( self : Optional[int] , A : Dict ): __snake_case: int = model_inputs.pop("""target_size""" ) __snake_case: int = self.model(**A ) __snake_case: Any = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: __snake_case: Optional[int] = model_inputs["""bbox"""] return model_outputs def UpperCAmelCase__ ( self : List[Any] , A : Optional[int] , A : Union[str, Any]=0.9 ): __snake_case: Optional[Any] = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __snake_case , __snake_case: Union[str, Any] = target_size[0].tolist() def unnormalize(A : Tuple ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_000), (height * bbox[1] / 1_000), (width * bbox[2] / 1_000), (height * bbox[3] / 1_000), ] ) ) __snake_case , __snake_case: Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __snake_case: List[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __snake_case: int = [unnormalize(A ) for bbox in model_outputs["""bbox"""].squeeze(0 )] __snake_case: int = ["""score""", """label""", """box"""] __snake_case: List[Any] = [dict(zip(A , A ) ) for vals in zip(scores.tolist() , A , A ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __snake_case: Tuple = self.image_processor.post_process_object_detection(A , A , A ) __snake_case: Optional[Any] = raw_annotations[0] __snake_case: int = raw_annotation["""scores"""] __snake_case: int = raw_annotation["""labels"""] __snake_case: Optional[Any] = raw_annotation["""boxes"""] __snake_case: Union[str, Any] = scores.tolist() __snake_case: List[str] = [self.model.config.idalabel[label.item()] for label in labels] __snake_case: List[str] = [self._get_bounding_box(A ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __snake_case: List[Any] = ["""score""", """label""", """box"""] __snake_case: Dict = [ dict(zip(A , A ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCAmelCase__ ( self : Optional[Any] , A : "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) __snake_case , __snake_case , __snake_case , __snake_case: Union[str, Any] = box.int().tolist() __snake_case: Optional[Any] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
111
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : int = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[Any] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : List[str] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[str] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : Dict = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[Any] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Union[str, Any] = sd.pop(_lowerCamelCase ) __snake_case : List[Any] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Tuple = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Tuple = model["""model"""] __snake_case : Union[str, Any] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Tuple = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : Optional[Any] = m.model.state_dict().keys() __snake_case : Optional[Any] = [] __snake_case : List[Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : List[str] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
365
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[int] = pentagonal_nums[j] __snake_case : str = pentagonal_i + pentagonal_j __snake_case : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
13
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _UpperCamelCase : str = logging.get_logger(__name__) _UpperCamelCase : Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase : List[str] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } _UpperCamelCase : Optional[int] = { '''distilbert-base-uncased''': 5_1_2, '''distilbert-base-uncased-distilled-squad''': 5_1_2, '''distilbert-base-cased''': 5_1_2, '''distilbert-base-cased-distilled-squad''': 5_1_2, '''distilbert-base-german-cased''': 5_1_2, '''distilbert-base-multilingual-cased''': 5_1_2, } _UpperCamelCase : Tuple = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class a ( lowerCAmelCase__ ): UpperCAmelCase_ : List[str] =VOCAB_FILES_NAMES UpperCAmelCase_ : List[str] =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Optional[int] =PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ : List[str] =["""input_ids""", """attention_mask"""] UpperCAmelCase_ : Dict =DistilBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowercase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowercase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase_ ) != tokenize_chinese_chars ): lowercase = getattr(lowercase_ , normalizer_state.pop('type' ) ) lowercase = do_lower_case lowercase = strip_accents lowercase = tokenize_chinese_chars lowercase = normalizer_class(**lowercase_ ) lowercase = do_lower_case def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None ): lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ): lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ): lowercase = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ )
220
"""simple docstring""" from functools import lru_cache @lru_cache def __lowercase ( _a ): if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
264
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowerCamelCase : Dict = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') _lowerCamelCase : Dict = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) _lowerCamelCase : Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCamelCase (UpperCAmelCase__ : str ): with open(lowerCamelCase__ , "rb" ) as f: SCREAMING_SNAKE_CASE = Image.open(lowerCamelCase__ ) return im.convert("RGB" ) @dataclass class lowercase : lowercase__ : Optional[str] = field( default=a_ , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) lowercase__ : Optional[str] = field( default=a_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowercase__ : Optional[str] = field(default=a_ , metadata={"""help""": """A folder containing the training data."""} ) lowercase__ : Optional[str] = field(default=a_ , metadata={"""help""": """A folder containing the validation data."""} ) lowercase__ : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) lowercase__ : Optional[int] = field( default=a_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase__ : Optional[int] = field( default=a_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __snake_case( self : Tuple ) -> Dict: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowercase : lowercase__ : str = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) lowercase__ : Optional[str] = field( default=a_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(a_ )} , ) lowercase__ : Optional[str] = field( default=a_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ : Optional[str] = field( default=a_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowercase__ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase__ : str = field(default=a_ , metadata={"""help""": """Name or path of preprocessor config."""} ) lowercase__ : bool = field( default=a_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowercase__ : bool = field( default=a_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def __lowerCamelCase (UpperCAmelCase__ : Dict ): SCREAMING_SNAKE_CASE = torch.stack([example["pixel_values"] for example in examples] ) SCREAMING_SNAKE_CASE = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCamelCase (): SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , lowerCamelCase__ , lowerCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: SCREAMING_SNAKE_CASE = {} if data_args.train_dir is not None: SCREAMING_SNAKE_CASE = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: SCREAMING_SNAKE_CASE = os.path.join(data_args.validation_dir , "**" ) SCREAMING_SNAKE_CASE = load_dataset( "imagefolder" , data_files=lowerCamelCase__ , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCamelCase__ ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE = dataset["train"].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE = split["train"] SCREAMING_SNAKE_CASE = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. SCREAMING_SNAKE_CASE = dataset["train"].features["labels"].names SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = {}, {} for i, label in enumerate(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = str(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = label # Load the accuracy metric from the datasets package SCREAMING_SNAKE_CASE = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCAmelCase__ : Any ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCamelCase__ ) , labelaid=lowerCamelCase__ , idalabel=lowerCamelCase__ , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE = image_processor.size["shortest_edge"] else: SCREAMING_SNAKE_CASE = (image_processor.size["height"], image_processor.size["width"]) SCREAMING_SNAKE_CASE = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) SCREAMING_SNAKE_CASE = Compose( [ RandomResizedCrop(lowerCamelCase__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) SCREAMING_SNAKE_CASE = Compose( [ Resize(lowerCamelCase__ ), CenterCrop(lowerCamelCase__ ), ToTensor(), normalize, ] ) def train_transforms(UpperCAmelCase__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(UpperCAmelCase__ : Dict ): SCREAMING_SNAKE_CASE = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCamelCase__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCamelCase__ ) # Initalize our trainer SCREAMING_SNAKE_CASE = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=lowerCamelCase__ , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE = last_checkpoint SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE = trainer.evaluate() trainer.log_metrics("eval" , lowerCamelCase__ ) trainer.save_metrics("eval" , lowerCamelCase__ ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) if __name__ == "__main__": main()
350
from __future__ import annotations from collections.abc import Iterator class lowercase : def __init__( self : str , _UpperCamelCase : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None class lowercase : def __init__( self : str , _UpperCamelCase : Node ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = tree def __snake_case( self : int , _UpperCamelCase : Node | None ) -> int: '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : List[Any] ) -> Iterator[int]: '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
206
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = (PNDMScheduler,) __lowerCamelCase = (('''num_inference_steps''', 50),) def snake_case ( self , **_snake_case ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_snake_case ) return config def snake_case ( self , _snake_case=0 , **_snake_case ): """simple docstring""" _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("""num_inference_steps""" , _snake_case ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**_snake_case ) _lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) _lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[:] _lowerCAmelCase = scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowerCAmelCase = scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case ( self ): """simple docstring""" pass def snake_case ( self , _snake_case=0 , **_snake_case ): """simple docstring""" _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("""num_inference_steps""" , _snake_case ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) _lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[:] _lowerCAmelCase = scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowerCAmelCase = scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = new_scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case ( self , **_snake_case ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_snake_case ) _lowerCAmelCase = scheduler_class(**_snake_case ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.prk_timesteps ): _lowerCAmelCase = model(_snake_case , _snake_case ) _lowerCAmelCase = scheduler.step_prk(_snake_case , _snake_case , _snake_case ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowerCAmelCase = model(_snake_case , _snake_case ) _lowerCAmelCase = scheduler.step_plms(_snake_case , _snake_case , _snake_case ).prev_sample return sample def snake_case ( self ): """simple docstring""" _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("""num_inference_steps""" , _snake_case ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_snake_case ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(_snake_case , """set_timesteps""" ): scheduler.set_timesteps(_snake_case ) elif num_inference_steps is not None and not hasattr(_snake_case , """set_timesteps""" ): _lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowerCAmelCase = dummy_past_residuals[:] _lowerCAmelCase = scheduler.step_prk(_snake_case , 0 , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = scheduler.step_prk(_snake_case , 1 , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _lowerCAmelCase = scheduler.step_plms(_snake_case , 0 , _snake_case , **_snake_case ).prev_sample _lowerCAmelCase = scheduler.step_plms(_snake_case , 1 , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_snake_case ) def snake_case ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_snake_case ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(steps_offset=1 ) _lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def snake_case ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_snake_case , beta_end=_snake_case ) def snake_case ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_snake_case ) def snake_case ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case ) def snake_case ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=_snake_case ) def snake_case ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = 27 for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowerCAmelCase = scheduler.step_prk(_snake_case , _snake_case , _snake_case ).prev_sample def snake_case ( self ): """simple docstring""" with self.assertRaises(_snake_case ): _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.sum(torch.abs(_snake_case ) ) _lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop(prediction_type="""v_prediction""" ) _lowerCAmelCase = torch.sum(torch.abs(_snake_case ) ) _lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop(set_alpha_to_one=_snake_case , beta_start=0.01 ) _lowerCAmelCase = torch.sum(torch.abs(_snake_case ) ) _lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop(set_alpha_to_one=_snake_case , beta_start=0.01 ) _lowerCAmelCase = torch.sum(torch.abs(_snake_case ) ) _lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
82
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _UpperCAmelCase ( snake_case ): """simple docstring""" if isinstance(snake_case , collections.abc.Iterable ): return x return (x, x) @require_tf class __lowerCAmelCase : def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" pass def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = {"""vision_model""": vision_model, """text_model""": text_model} _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) _lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) _lowerCAmelCase = after_output[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case , 1e-5 ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model( input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(_snake_case , _snake_case , F'Difference between torch and flax is {diff} (>= {tol}).' ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_snake_case ) @slow def snake_case ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_pretrained_model_and_inputs() _lowerCAmelCase = model_a(**_snake_case ) _lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) _lowerCAmelCase = model_a(**_snake_case ) _lowerCAmelCase = after_outputs[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case , 1e-5 ) @require_tf class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFViTModel(_snake_case , name="""vision_model""" ) _lowerCAmelCase = TFBertModel(_snake_case , name="""text_model""" ) return vision_model, text_model def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFViTModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model( input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFDeiTModel(_snake_case , name="""vision_model""" ) _lowerCAmelCase = TFRobertaModel(_snake_case , name="""text_model""" ) return vision_model, text_model def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFDeiTModelTester(self ) _lowerCAmelCase = TFRobertaModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFCLIPVisionModel(_snake_case , name="""vision_model""" ) _lowerCAmelCase = TFBertModel(_snake_case , name="""text_model""" ) return vision_model, text_model def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFCLIPVisionModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __lowerCAmelCase ( unittest.TestCase ): @slow def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_snake_case ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _lowerCAmelCase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_snake_case , padding=_snake_case , return_tensors="""np""" ) _lowerCAmelCase = model(**_snake_case ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowerCAmelCase = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _snake_case , atol=1e-3 ) )
82
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __A = logging.get_logger(__name__) __A = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''longformer''' def __init__( self , lowerCamelCase__ = 512 , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 0 , lowerCamelCase__ = 2 , lowerCamelCase__ = 30_522 , lowerCamelCase__ = 768 , lowerCamelCase__ = 12 , lowerCamelCase__ = 12 , lowerCamelCase__ = 3_072 , lowerCamelCase__ = "gelu" , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 512 , lowerCamelCase__ = 2 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1e-12 , lowerCamelCase__ = False , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = attention_window __lowerCamelCase = sep_token_id __lowerCamelCase = bos_token_id __lowerCamelCase = eos_token_id __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = onnx_export class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ = "default" , lowerCamelCase__ = None ) -> int: '''simple docstring''' super().__init__(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = True @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __lowerCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCamelCase = super().outputs if self.task == "default": __lowerCamelCase = {0: 'batch'} return outputs @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-4 @property def lowercase_ ( self ) -> int: '''simple docstring''' # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' __lowerCamelCase = super().generate_dummy_inputs( preprocessor=lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __lowerCamelCase = torch.zeros_like(inputs['input_ids'] ) # make every second token global __lowerCamelCase = 1 return inputs
348
import sys from collections import defaultdict class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.node_position[vertex] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = pos def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase = 2 * start + 1 else: __lowerCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase = temp, tempa __lowerCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCamelCase__ ) self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = position[index] while index != 0: __lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase = heap[parent] __lowerCamelCase = position[parent] self.set_position(position[parent] , lowerCamelCase__ ) else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , lowerCamelCase__ ) break __lowerCamelCase = parent else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , 0 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1 for i in range(lowerCamelCase__ , -1 , -1 ): self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = positions[0] __lowerCamelCase = sys.maxsize self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) return temp def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = Heap() __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase = 0 __lowerCamelCase = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): __lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): __lowerCamelCase = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
348
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = 42 lowercase__ = jnp.floataa lowercase__ = True def lowercase__ ( self : Tuple ): '''simple docstring''' super().setup() lowercase__ = nn.Dense(5, dtype=self.dtype ) def __call__( self : List[Any], *lowerCamelCase : Dict, **lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = super().__call__(*lowerCamelCase, **lowerCamelCase ) lowercase__ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = FlaxBigBirdForNaturalQuestionsModule def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' def cross_entropy(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None ): lowercase__ = logits.shape[-1] lowercase__ = (labels[..., None] == jnp.arange(lowerCamelCase_ )[None]).astype('''f4''' ) lowercase__ = jax.nn.log_softmax(lowerCamelCase_ , axis=-1 ) lowercase__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase__ = reduction(lowerCamelCase_ ) return loss lowercase__ = partial(lowerCamelCase_ , reduction=jnp.mean ) lowercase__ = cross_entropy(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = cross_entropy(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = cross_entropy(lowerCamelCase_ , lowerCamelCase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = "google/bigbird-roberta-base" lowercase__ = 3_000 lowercase__ = 10_500 lowercase__ = 128 lowercase__ = 3 lowercase__ = 1 lowercase__ = 5 # tx_args lowercase__ = 3E-5 lowercase__ = 0.0 lowercase__ = 20_000 lowercase__ = 0.0095 lowercase__ = "bigbird-roberta-natural-questions" lowercase__ = "training-expt" lowercase__ = "data/nq-training.jsonl" lowercase__ = "data/nq-validation.jsonl" def lowercase__ ( self : Tuple ): '''simple docstring''' os.makedirs(self.base_dir, exist_ok=lowerCamelCase ) lowercase__ = os.path.join(self.base_dir, self.save_dir ) lowercase__ = self.batch_size_per_device * jax.device_count() @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 4_096 # no dynamic padding on TPUs def __call__( self : List[Any], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = self.collate_fn(lowerCamelCase ) lowercase__ = jax.tree_util.tree_map(lowerCamelCase, lowerCamelCase ) return batch def lowercase__ ( self : List[Any], lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.fetch_inputs(features['''input_ids'''] ) lowercase__ = { '''input_ids''': jnp.array(lowerCamelCase, dtype=jnp.intaa ), '''attention_mask''': jnp.array(lowerCamelCase, dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''], dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''], dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''], dtype=jnp.intaa ), } return batch def lowercase__ ( self : int, lowerCamelCase : list ): '''simple docstring''' lowercase__ = [self._fetch_inputs(lowerCamelCase ) for ids in input_ids] return zip(*lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : list ): '''simple docstring''' lowercase__ = [1 for _ in range(len(lowerCamelCase ) )] while len(lowerCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' if seed is not None: lowercase__ = dataset.shuffle(seed=lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) // batch_size ): lowercase__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCamelCase_ ) @partial(jax.pmap , axis_name='''batch''' ) def a ( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' def loss_fn(lowerCamelCase_ ): lowercase__ = model_inputs.pop('''start_labels''' ) lowercase__ = model_inputs.pop('''end_labels''' ) lowercase__ = model_inputs.pop('''pooled_labels''' ) lowercase__ = state.apply_fn(**lowerCamelCase_ , params=lowerCamelCase_ , dropout_rng=lowerCamelCase_ , train=lowerCamelCase_ ) lowercase__ , lowercase__ , lowercase__ = outputs return state.loss_fn( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) lowercase__ , lowercase__ = jax.random.split(lowerCamelCase_ ) lowercase__ = jax.value_and_grad(lowerCamelCase_ ) lowercase__ , lowercase__ = grad_fn(state.params ) lowercase__ = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) lowercase__ = jax.lax.pmean(lowerCamelCase_ , '''batch''' ) lowercase__ = state.apply_gradients(grads=lowerCamelCase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = model_inputs.pop('''start_labels''' ) lowercase__ = model_inputs.pop('''end_labels''' ) lowercase__ = model_inputs.pop('''pooled_labels''' ) lowercase__ = state.apply_fn(**lowerCamelCase_ , params=state.params , train=lowerCamelCase_ ) lowercase__ , lowercase__ , lowercase__ = outputs lowercase__ = state.loss_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class _UpperCAmelCase ( train_state.TrainState ): """simple docstring""" lowercase__ = struct.field(pytree_node=A__ ) @dataclass class _UpperCAmelCase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = None def lowercase__ ( self : List[str], lowerCamelCase : Dict, lowerCamelCase : str, lowerCamelCase : Dict, lowerCamelCase : Any=None ): '''simple docstring''' lowercase__ = model.params lowercase__ = TrainState.create( apply_fn=model.__call__, params=lowerCamelCase, tx=lowerCamelCase, loss_fn=lowerCamelCase, ) if ckpt_dir is not None: lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = restore_checkpoint(lowerCamelCase, lowerCamelCase ) lowercase__ = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } lowercase__ , lowercase__ = build_tx(**lowerCamelCase ) lowercase__ = train_state.TrainState( step=lowerCamelCase, apply_fn=model.__call__, params=lowerCamelCase, tx=lowerCamelCase, opt_state=lowerCamelCase, ) lowercase__ = args lowercase__ = data_collator lowercase__ = lr lowercase__ = params lowercase__ = jax_utils.replicate(lowerCamelCase ) return state def lowercase__ ( self : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = self.args lowercase__ = len(lowerCamelCase ) // args.batch_size lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = jax.random.split(lowerCamelCase, jax.device_count() ) for epoch in range(args.max_epochs ): lowercase__ = jnp.array(0, dtype=jnp.floataa ) lowercase__ = get_batched_dataset(lowerCamelCase, args.batch_size, seed=lowerCamelCase ) lowercase__ = 0 for batch in tqdm(lowerCamelCase, total=lowerCamelCase, desc=F"""Running EPOCH-{epoch}""" ): lowercase__ = self.data_collator(lowerCamelCase ) lowercase__ , lowercase__ , lowercase__ = self.train_step_fn(lowerCamelCase, lowerCamelCase, **lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: lowercase__ = jax_utils.unreplicate(state.step ) lowercase__ = running_loss.item() / i lowercase__ = self.scheduler_fn(state_step - 1 ) lowercase__ = self.evaluate(lowerCamelCase, lowerCamelCase ) lowercase__ = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(lowerCamelCase ) ) self.logger.log(lowerCamelCase, commit=lowerCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""", state=lowerCamelCase ) def lowercase__ ( self : str, lowerCamelCase : Dict, lowerCamelCase : Any ): '''simple docstring''' lowercase__ = get_batched_dataset(lowerCamelCase, self.args.batch_size ) lowercase__ = len(lowerCamelCase ) // self.args.batch_size lowercase__ = jnp.array(0, dtype=jnp.floataa ) lowercase__ = 0 for batch in tqdm(lowerCamelCase, total=lowerCamelCase, desc='''Evaluating ... ''' ): lowercase__ = self.data_collator(lowerCamelCase ) lowercase__ = self.val_step_fn(lowerCamelCase, **lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def lowercase__ ( self : Any, lowerCamelCase : Any, lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = jax_utils.unreplicate(lowerCamelCase ) print(F"""SAVING CHECKPOINT IN {save_dir}""", end=''' ... ''' ) self.model_save_fn(lowerCamelCase, params=state.params ) with open(os.path.join(lowerCamelCase, '''opt_state.msgpack''' ), '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args, os.path.join(lowerCamelCase, '''args.joblib''' ) ) joblib.dump(self.data_collator, os.path.join(lowerCamelCase, '''data_collator.joblib''' ) ) with open(os.path.join(lowerCamelCase, '''training_state.json''' ), '''w''' ) as f: json.dump({'''step''': state.step.item()}, lowerCamelCase ) print('''DONE''' ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' print(F"""RESTORING CHECKPOINT FROM {save_dir}""" , end=''' ... ''' ) with open(os.path.join(lowerCamelCase_ , '''flax_model.msgpack''' ) , '''rb''' ) as f: lowercase__ = from_bytes(state.params , f.read() ) with open(os.path.join(lowerCamelCase_ , '''opt_state.msgpack''' ) , '''rb''' ) as f: lowercase__ = from_bytes(state.opt_state , f.read() ) lowercase__ = joblib.load(os.path.join(lowerCamelCase_ , '''args.joblib''' ) ) lowercase__ = joblib.load(os.path.join(lowerCamelCase_ , '''data_collator.joblib''' ) ) with open(os.path.join(lowerCamelCase_ , '''training_state.json''' ) , '''r''' ) as f: lowercase__ = json.load(lowerCamelCase_ ) lowercase__ = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = num_train_steps - warmup_steps lowercase__ = optax.linear_schedule(init_value=lowerCamelCase_ , end_value=lowerCamelCase_ , transition_steps=lowerCamelCase_ ) lowercase__ = optax.linear_schedule(init_value=lowerCamelCase_ , end_value=1e-7 , transition_steps=lowerCamelCase_ ) lowercase__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' def weight_decay_mask(lowerCamelCase_ ): lowercase__ = traverse_util.flatten_dict(lowerCamelCase_ ) lowercase__ = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCamelCase_ ) lowercase__ = scheduler_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = optax.adamw(learning_rate=lowerCamelCase_ , weight_decay=lowerCamelCase_ , mask=lowerCamelCase_ ) return tx, lr
207
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Dict, *lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Any=None, **lowerCamelCase : str ): '''simple docstring''' super().__init__(*lowerCamelCase, **lowerCamelCase ) lowercase__ = eval_examples lowercase__ = post_process_function def lowercase__ ( self : int, lowerCamelCase : str=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : str = "eval" ): '''simple docstring''' lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(lowerCamelCase ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase__ = time.time() try: lowercase__ = eval_loop( lowerCamelCase, description='''Evaluation''', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size ), ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(lowerCamelCase, lowerCamelCase, output.predictions ) lowercase__ = self.compute_metrics(lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowercase__ = metrics.pop(lowerCamelCase ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args, self.state, self.control, lowerCamelCase ) return metrics def lowercase__ ( self : List[Any], lowerCamelCase : Any, lowerCamelCase : Dict, lowerCamelCase : int=None, lowerCamelCase : str = "test" ): '''simple docstring''' lowercase__ = self.get_test_dataloader(lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase__ = time.time() try: lowercase__ = eval_loop( lowerCamelCase, description='''Prediction''', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size ), ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(lowerCamelCase, lowerCamelCase, output.predictions, '''predict''' ) lowercase__ = self.compute_metrics(lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowercase__ = metrics.pop(lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=lowerCamelCase )
207
1
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration A__ : int ='''facebook/wmt19-en-de''' A__ : Optional[int] =FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model A__ : Optional[int] =FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) A__ : Optional[Any] =FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test A__ : Optional[int] =tokenizer(['''Making tiny model'''], return_tensors='''pt''') A__ : int =tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save A__ : int ='''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
220
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A__ : List[str] =datasets.logging.get_logger(__name__) A__ : List[Any] ='''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' A__ : List[str] ='''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' A__ : List[Any] =''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase="dummy_doc" ): """simple docstring""" _lowerCAmelCase = {doc: key_lines} _lowerCAmelCase = {doc: sys_lines} _lowerCAmelCase = {} _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase , _lowerCAmelCase = reader.get_doc_mentions(lowerCAmelCase , key_doc_lines[doc] , lowerCAmelCase ) key_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase = reader.set_annotated_parse_trees(lowerCAmelCase , key_doc_lines[doc] , lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = reader.get_doc_mentions(lowerCAmelCase , sys_doc_lines[doc] , lowerCAmelCase ) sys_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase = reader.set_annotated_parse_trees(lowerCAmelCase , key_doc_lines[doc] , lowerCAmelCase , lowerCAmelCase ) if remove_nested: _lowerCAmelCase , _lowerCAmelCase = reader.remove_nested_coref_mentions(lowerCAmelCase , lowerCAmelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _lowerCAmelCase , _lowerCAmelCase = reader.remove_nested_coref_mentions(lowerCAmelCase , lowerCAmelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _lowerCAmelCase = reader.get_mention_assignments(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = reader.get_mention_assignments(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( """Number of resulting singleton clusters in the key """ f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " """files, respectively""" ) return doc_coref_infos def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = get_coref_infos(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = {} _lowerCAmelCase = 0 _lowerCAmelCase = 0 for name, metric in metrics: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = evaluator.evaluate_documents(lowerCAmelCase , lowerCAmelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) , f"Recall: {recall * 1_00:.2f}" , f" Precision: {precision * 1_00:.2f}" , f" F1: {fa * 1_00:.2f}" , ) if conll_subparts_num == 3: _lowerCAmelCase = (conll / 3) * 1_00 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({"""conll_score""": conll} ) return output_scores def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: _lowerCAmelCase = line.split()[5] if not parse_col == "-": _lowerCAmelCase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def lowercase__ ( self : str ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def lowercase__ ( self : List[Any] , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Dict=True , __snake_case : List[str]=False , __snake_case : List[Any]=False , __snake_case : Dict=False ) -> Union[str, Any]: _lowerCAmelCase = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: _lowerCAmelCase = util.check_gold_parse_annotation(__snake_case ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _lowerCAmelCase = evaluate( key_lines=__snake_case , sys_lines=__snake_case , metrics=__snake_case , NP_only=__snake_case , remove_nested=__snake_case , keep_singletons=__snake_case , min_span=__snake_case , ) return score
220
1