code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case : '''simple docstring''' def __init__( self: int ,lowerCamelCase_: int ,lowerCamelCase_: Union[str, Any]=13 ,lowerCamelCase_: List[Any]=30 ,lowerCamelCase_: Union[str, Any]=2 ,lowerCamelCase_: Any=3 ,lowerCamelCase_: Optional[Any]=True ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=32 ,lowerCamelCase_: Optional[Any]=5 ,lowerCamelCase_: Dict=4 ,lowerCamelCase_: Optional[Any]=37 ,lowerCamelCase_: List[Any]="gelu" ,lowerCamelCase_: Tuple=0.1 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Tuple=10 ,lowerCamelCase_: List[str]=0.0_2 ,lowerCamelCase_: Optional[int]=None ,lowerCamelCase_: str=2 ,) -> List[Any]: UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : int = image_size UpperCAmelCase_ : List[str] = patch_size UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : Any = is_training UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : int = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : Tuple = (image_size // patch_size) ** 2 UpperCAmelCase_ : Dict = num_patches + 1 def A__ ( self: str ) -> Optional[Any]: UpperCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = None if self.use_labels: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Dict = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Tuple: return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def A__ ( self: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: int ) -> List[Any]: UpperCAmelCase_ : Dict = ViTModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self: str ,lowerCamelCase_: Dict ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = ViTForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ : Dict = ViTForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: str ,lowerCamelCase_: int ) -> Any: UpperCAmelCase_ : int = self.type_sequence_label_size UpperCAmelCase_ : Optional[Any] = ViTForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Optional[int] = ViTForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: Optional[Any] ) -> Tuple: UpperCAmelCase_ : List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Dict = config_and_inputs UpperCAmelCase_ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Any = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) A__ : Tuple = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) A__ : List[Any] = True A__ : Optional[int] = False A__ : List[Any] = False A__ : Tuple = False def A__ ( self: int ) -> str: UpperCAmelCase_ : List[str] = ViTModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self ,config_class=lowerCamelCase_ ,has_text_modality=lowerCamelCase_ ,hidden_size=37 ) def A__ ( self: Dict ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A__ ( self: Any ) -> Union[str, Any]: pass def A__ ( self: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[str] = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : int = [*signature.parameters.keys()] UpperCAmelCase_ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Any ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def A__ ( self: str ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: List[Any] ) -> Dict: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def A__ ( self: Union[str, Any] ) -> List[str]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = ViTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: str ) -> Dict: return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def A__ ( self: List[str] ) -> Tuple: UpperCAmelCase_ : int = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : int = prepare_img() UpperCAmelCase_ : List[str] = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) ) @slow def A__ ( self: Optional[int] ) -> List[Any]: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. UpperCAmelCase_ : Optional[Any] = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Any = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" ,size=480 ) UpperCAmelCase_ : Union[str, Any] = prepare_img() UpperCAmelCase_ : str = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ) UpperCAmelCase_ : int = inputs.pixel_values.to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ,interpolate_pos_encoding=lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : List[str] = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowerCamelCase_ ,atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def A__ ( self: int ) -> Dict: UpperCAmelCase_ : Dict = ViTModel.from_pretrained("""facebook/dino-vits8""" ,torch_dtype=torch.floataa ,device_map="""auto""" ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Optional[int] = prepare_img() UpperCAmelCase_ : Any = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ) UpperCAmelCase_ : Union[str, Any] = inputs.pixel_values.to(lowerCamelCase_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase_ : Dict = model(lowerCamelCase_ )
345
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Union[str, Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self: List[str] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Optional[Any] = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def A__ ( self: List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : int = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def A__ ( self: str ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) @property def A__ ( self: Tuple ) -> Tuple: def extract(*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: str ): class _snake_case : '''simple docstring''' def __init__( self: List[Any] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = torch.ones([0] ) def A__ ( self: List[Any] ,lowerCamelCase_: str ) -> int: self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def A__ ( self: Union[str, Any] ) -> Tuple: UpperCAmelCase_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : int = self.dummy_cond_unet UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase_ ,set_alpha_to_one=lowerCamelCase_ ,) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : str = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : List[Any] = output.images UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Dict = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : int = image[0, -3:, -3:, -1] UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Dict = self.dummy_cond_unet UpperCAmelCase_ : List[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : Union[str, Any] = self.dummy_text_encoder UpperCAmelCase_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : int = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : str = output.images UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: str ) -> Dict: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ ,lowerCamelCase_ ) assert isinstance(pipe.scheduler ,lowerCamelCase_ ) assert pipe.safety_checker is None UpperCAmelCase_ : List[Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ : Optional[int] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : Tuple = self.dummy_cond_unet UpperCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 UpperCAmelCase_ : Optional[Any] = unet.half() UpperCAmelCase_ : Optional[int] = vae.half() UpperCAmelCase_ : int = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[int] = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ) -> List[Any]: UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : str = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) UpperCAmelCase_ : Optional[int] = 4003660346 UpperCAmelCase_ : int = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase_ : Dict = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Any = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : str = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" UpperCAmelCase_ : List[Any] = 2734971755 UpperCAmelCase_ : Optional[Any] = 7 UpperCAmelCase_ : int = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCAmelCase_ : Any = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) UpperCAmelCase_ : Optional[Any] = 1044355234 UpperCAmelCase_ : List[str] = 12 UpperCAmelCase_ : List[Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Any = output.images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCAmelCase_ : Optional[int] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
345
1
"""simple docstring""" import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Dict = R'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n' class __A (snake_case__): '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : torch.LongTensor , UpperCAmelCase_ : torch.FloatTensor , **UpperCAmelCase_ : Optional[Any] ) ->bool: """simple docstring""" raise NotImplementedError("""StoppingCriteria needs to be subclassed""" ) class __A (snake_case__): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = None ) ->Union[str, Any]: """simple docstring""" snake_case_ = max_length snake_case_ = max_position_embeddings @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : str , UpperCAmelCase_ : torch.LongTensor , UpperCAmelCase_ : torch.FloatTensor , **UpperCAmelCase_ : int ) ->bool: """simple docstring""" snake_case_ = input_ids.shape[-1] snake_case_ = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( """This is a friendly reminder - the current text generation call will exceed the model's predefined """ F"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ """exceptions, performance degradation, or nothing at all.""" ) return is_done class __A (snake_case__): '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) ->Union[str, Any]: """simple docstring""" warnings.warn( """The class `MaxNewTokensCriteria` is deprecated. """ F"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ """with `max_length = start_length + max_new_tokens` instead.""" , UpperCAmelCase_ , ) snake_case_ = start_length snake_case_ = max_new_tokens snake_case_ = start_length + max_new_tokens @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Tuple , UpperCAmelCase_ : torch.LongTensor , UpperCAmelCase_ : torch.FloatTensor , **UpperCAmelCase_ : List[str] ) ->bool: """simple docstring""" return input_ids.shape[-1] >= self.max_length class __A (snake_case__): '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : float , UpperCAmelCase_ : Optional[float] = None ) ->List[Any]: """simple docstring""" snake_case_ = max_time snake_case_ = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Tuple , UpperCAmelCase_ : torch.LongTensor , UpperCAmelCase_ : torch.FloatTensor , **UpperCAmelCase_ : Union[str, Any] ) ->bool: """simple docstring""" return time.time() - self.initial_timestamp > self.max_time class __A (snake_case__): '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[int] , UpperCAmelCase_ : torch.LongTensor , UpperCAmelCase_ : torch.FloatTensor , **UpperCAmelCase_ : str ) ->bool: """simple docstring""" return any(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) for criteria in self ) @property def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" for stopping_criterium in self: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return stopping_criterium.max_length elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return stopping_criterium.max_length return None def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> StoppingCriteriaList: snake_case_ = stopping_criteria.max_length snake_case_ = deepcopy(_SCREAMING_SNAKE_CASE ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("""You set different `max_length` for stopping criteria and `max_length` parameter""" , _SCREAMING_SNAKE_CASE ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_SCREAMING_SNAKE_CASE ) ) return new_stopping_criteria
233
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 ) -> list: snake_case_ = length or len(_SCREAMING_SNAKE_CASE ) snake_case_ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: snake_case_ , snake_case_ = list_data[i + 1], list_data[i] snake_case_ = True return list_data if not swapped else bubble_sort(_SCREAMING_SNAKE_CASE , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
233
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a__: str = logging.get_logger(__name__) def UpperCamelCase__( UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] )->Tuple: A__ = b.T A__ = np.sum(np.square(__SCREAMING_SNAKE_CASE ) , axis=1 ) A__ = np.sum(np.square(__SCREAMING_SNAKE_CASE ) , axis=0 ) A__ = np.matmul(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) A__ = aa[:, None] - 2 * ab + ba[None, :] return d def UpperCamelCase__( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict )->List[str]: A__ = x.reshape(-1 , 3 ) A__ = squared_euclidean_distance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return np.argmin(__SCREAMING_SNAKE_CASE , axis=1 ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ ): __SCREAMING_SNAKE_CASE = ['''pixel_values'''] def __init__( self,__lowerCamelCase = None,__lowerCamelCase = True,__lowerCamelCase = None,__lowerCamelCase = PILImageResampling.BILINEAR,__lowerCamelCase = True,__lowerCamelCase = True,**__lowerCamelCase,): super().__init__(**__SCREAMING_SNAKE_CASE ) A__ = size if size is not None else {'''height''': 256, '''width''': 256} A__ = get_size_dict(__SCREAMING_SNAKE_CASE ) A__ = np.array(__SCREAMING_SNAKE_CASE ) if clusters is not None else None A__ = do_resize A__ = size A__ = resample A__ = do_normalize A__ = do_color_quantize def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = PILImageResampling.BILINEAR,__lowerCamelCase = None,**__lowerCamelCase,): A__ = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"Size dictionary must contain both height and width keys. Got {size.keys()}" ) return resize( __SCREAMING_SNAKE_CASE,size=(size['''height'''], size['''width''']),resample=__SCREAMING_SNAKE_CASE,data_format=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None,): A__ = rescale(image=__SCREAMING_SNAKE_CASE,scale=1 / 127.5,data_format=__SCREAMING_SNAKE_CASE ) A__ = image - 1 return image def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = ChannelDimension.FIRST,**__lowerCamelCase,): A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(__SCREAMING_SNAKE_CASE ) A__ = resample if resample is not None else self.resample A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize A__ = clusters if clusters is not None else self.clusters A__ = np.array(__SCREAMING_SNAKE_CASE ) A__ = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. A__ = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: A__ = [self.resize(image=__SCREAMING_SNAKE_CASE,size=__SCREAMING_SNAKE_CASE,resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: A__ = [self.normalize(image=__SCREAMING_SNAKE_CASE ) for image in images] if do_color_quantize: A__ = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) A__ = np.array(__SCREAMING_SNAKE_CASE ) A__ = color_quantize(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) A__ = images.shape[0] A__ = images.reshape(__SCREAMING_SNAKE_CASE,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. A__ = list(__SCREAMING_SNAKE_CASE ) else: A__ = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for image in images] A__ = {'''input_ids''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE,tensor_type=__SCREAMING_SNAKE_CASE )
193
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase_ : int = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids lowercase_ : Union[str, Any] = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids lowercase_ : Union[str, Any] = model(input_ids.to(__SCREAMING_SNAKE_CASE ) , labels=labels.to(__SCREAMING_SNAKE_CASE ) ).loss lowercase_ : int = -(labels.shape[-1] * loss.item()) lowercase_ : Any = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
93
0
from __future__ import annotations __snake_case : Union[str, Any] = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class __SCREAMING_SNAKE_CASE : def __init__( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = graph # mapping node to its parent in resulting breadth first tree lowerCAmelCase__ = {} lowerCAmelCase__ = source_vertex def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = {self.source_vertex} lowerCAmelCase__ = None lowerCAmelCase__ = [self.source_vertex] # first in first out queue while queue: lowerCAmelCase__ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_UpperCamelCase ) lowerCAmelCase__ = vertex queue.append(_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex lowerCAmelCase__ = self.parent.get(_UpperCamelCase ) if target_vertex_parent is None: lowerCAmelCase__ = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(_UpperCamelCase ) return self.shortest_path(_UpperCamelCase ) + F"->{target_vertex}" if __name__ == "__main__": __snake_case : Any = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
363
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __snake_case : Any = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __snake_case : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __snake_case : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCAmelCase__ = bs[:] lowerCAmelCase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 lowerCAmelCase__ = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ = set() lowerCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ = char return pairs class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="replace" , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase=False , **_UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token super().__init__( errors=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding='utf-8' ) as vocab_handle: lowerCAmelCase__ = json.load(_UpperCamelCase ) lowerCAmelCase__ = {v: k for k, v in self.encoder.items()} lowerCAmelCase__ = errors # how to handle errors in decoding lowerCAmelCase__ = bytes_to_unicode() lowerCAmelCase__ = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCamelCase , encoding='utf-8' ) as merges_handle: lowerCAmelCase__ = merges_handle.read().split('\n' )[1:-1] lowerCAmelCase__ = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase__ = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) lowerCAmelCase__ = {} lowerCAmelCase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase__ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def UpperCamelCase__ ( self ): """simple docstring""" return len(self.encoder ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" if token in self.cache: return self.cache[token] lowerCAmelCase__ = tuple(_UpperCamelCase ) lowerCAmelCase__ = get_pairs(_UpperCamelCase ) if not pairs: return token while True: lowerCAmelCase__ = min(_UpperCamelCase , key=lambda _UpperCamelCase : self.bpe_ranks.get(_UpperCamelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ = bigram lowerCAmelCase__ = [] lowerCAmelCase__ = 0 while i < len(_UpperCamelCase ): try: lowerCAmelCase__ = word.index(_UpperCamelCase , _UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ = j if word[i] == first and i < len(_UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ = tuple(_UpperCamelCase ) lowerCAmelCase__ = new_word if len(_UpperCamelCase ) == 1: break else: lowerCAmelCase__ = get_pairs(_UpperCamelCase ) lowerCAmelCase__ = ' '.join(_UpperCamelCase ) lowerCAmelCase__ = word return word def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = [] for token in re.findall(self.pat , _UpperCamelCase ): lowerCAmelCase__ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCamelCase ).split(' ' ) ) return bpe_tokens def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return self.encoder.get(_UpperCamelCase , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return self.decoder.get(_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = ''.join(_UpperCamelCase ) lowerCAmelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase__ = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase ) + '\n' ) lowerCAmelCase__ = 0 with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) lowerCAmelCase__ = token_index writer.write(' '.join(_UpperCamelCase ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] lowerCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=False , **_UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCamelCase ) > 0 and not text[0].isspace()): lowerCAmelCase__ = ' ' + text return (text, kwargs) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = PaddingStrategy.DO_NOT_PAD , _UpperCamelCase = None , _UpperCamelCase = None , ): """simple docstring""" lowerCAmelCase__ = super()._pad( encoded_inputs=_UpperCamelCase , max_length=_UpperCamelCase , padding_strategy=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) # Load from model defaults if return_attention_mask is None: lowerCAmelCase__ = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCAmelCase__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCAmelCase__ = len(encoded_inputs['global_attention_mask'] ) != len(_UpperCamelCase ) if needs_to_be_padded: lowerCAmelCase__ = len(_UpperCamelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCAmelCase__ = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": lowerCAmelCase__ = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
122
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) a_ = logging.getLogger(__name__) def a__ ( _UpperCamelCase : List[str] ,_UpperCamelCase : Tuple ): __lowerCamelCase = np.argmax(_UpperCamelCase ,axis=1 ) return np.sum(outputs == labels ) def a__ ( _UpperCamelCase : Optional[Any] ): with open(_UpperCamelCase ,encoding='''utf_8''' ) as f: __lowerCamelCase = csv.reader(_UpperCamelCase ) __lowerCamelCase = [] next(_UpperCamelCase ) # skip the first line for line in tqdm(_UpperCamelCase ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Tuple ,_UpperCamelCase : str ,_UpperCamelCase : List[str] ,_UpperCamelCase : str ,_UpperCamelCase : Any ): __lowerCamelCase = [] for dataset in encoded_datasets: __lowerCamelCase = len(_UpperCamelCase ) __lowerCamelCase = np.zeros((n_batch, 2, input_len) ,dtype=np.intaa ) __lowerCamelCase = np.zeros((n_batch, 2) ,dtype=np.intaa ) __lowerCamelCase = np.full((n_batch, 2, input_len) ,fill_value=-1_00 ,dtype=np.intaa ) __lowerCamelCase = np.zeros((n_batch,) ,dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_UpperCamelCase ): __lowerCamelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __lowerCamelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __lowerCamelCase = with_conta __lowerCamelCase = with_conta __lowerCamelCase = len(_UpperCamelCase ) - 1 __lowerCamelCase = len(_UpperCamelCase ) - 1 __lowerCamelCase = with_conta __lowerCamelCase = with_conta __lowerCamelCase = mc_label __lowerCamelCase = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_UpperCamelCase ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--model_name''' ,type=_UpperCamelCase ,default='''openai-gpt''' ,help='''pretrained model name''' ) parser.add_argument('''--do_train''' ,action='''store_true''' ,help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' ,action='''store_true''' ,help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' ,default=_UpperCamelCase ,type=_UpperCamelCase ,required=_UpperCamelCase ,help='''The output directory where the model predictions and checkpoints will be written.''' ,) parser.add_argument('''--train_dataset''' ,type=_UpperCamelCase ,default='''''' ) parser.add_argument('''--eval_dataset''' ,type=_UpperCamelCase ,default='''''' ) parser.add_argument('''--seed''' ,type=_UpperCamelCase ,default=42 ) parser.add_argument('''--num_train_epochs''' ,type=_UpperCamelCase ,default=3 ) parser.add_argument('''--train_batch_size''' ,type=_UpperCamelCase ,default=8 ) parser.add_argument('''--eval_batch_size''' ,type=_UpperCamelCase ,default=16 ) parser.add_argument('''--adam_epsilon''' ,default=1e-8 ,type=_UpperCamelCase ,help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' ,type=_UpperCamelCase ,default=1 ) parser.add_argument( '''--max_steps''' ,default=-1 ,type=_UpperCamelCase ,help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) ,) parser.add_argument( '''--gradient_accumulation_steps''' ,type=_UpperCamelCase ,default=1 ,help='''Number of updates steps to accumulate before performing a backward/update pass.''' ,) parser.add_argument('''--learning_rate''' ,type=_UpperCamelCase ,default=6.25e-5 ) parser.add_argument('''--warmup_steps''' ,default=0 ,type=_UpperCamelCase ,help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' ,type=_UpperCamelCase ,default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' ,type=_UpperCamelCase ,default=0.01 ) parser.add_argument('''--lm_coef''' ,type=_UpperCamelCase ,default=0.9 ) parser.add_argument('''--n_valid''' ,type=_UpperCamelCase ,default=3_74 ) parser.add_argument('''--server_ip''' ,type=_UpperCamelCase ,default='''''' ,help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' ,type=_UpperCamelCase ,default='''''' ,help='''Can be used for distant debugging.''' ) __lowerCamelCase = parser.parse_args() print(_UpperCamelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) ,redirect_output=_UpperCamelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __lowerCamelCase = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) __lowerCamelCase = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(_UpperCamelCase ,_UpperCamelCase ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __lowerCamelCase = ['''_start_''', '''_delimiter_''', '''_classify_'''] __lowerCamelCase = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_UpperCamelCase ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) __lowerCamelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_UpperCamelCase ) ) model.to(_UpperCamelCase ) # Load and encode the datasets def tokenize_and_encode(_UpperCamelCase : Tuple ): if isinstance(_UpperCamelCase ,_UpperCamelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_UpperCamelCase ) ) elif isinstance(_UpperCamelCase ,_UpperCamelCase ): return obj return [tokenize_and_encode(_UpperCamelCase ) for o in obj] logger.info('''Encoding dataset...''' ) __lowerCamelCase = load_rocstories_dataset(args.train_dataset ) __lowerCamelCase = load_rocstories_dataset(args.eval_dataset ) __lowerCamelCase = (train_dataset, eval_dataset) __lowerCamelCase = tokenize_and_encode(_UpperCamelCase ) # Compute the max input length for the Transformer __lowerCamelCase = model.config.n_positions // 2 - 2 __lowerCamelCase = max( len(story[:max_length] ) + max(len(conta[:max_length] ) ,len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __lowerCamelCase = min(_UpperCamelCase ,model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __lowerCamelCase = pre_process_datasets(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,*_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = tensor_datasets[0], tensor_datasets[1] __lowerCamelCase = TensorDataset(*_UpperCamelCase ) __lowerCamelCase = RandomSampler(_UpperCamelCase ) __lowerCamelCase = DataLoader(_UpperCamelCase ,sampler=_UpperCamelCase ,batch_size=args.train_batch_size ) __lowerCamelCase = TensorDataset(*_UpperCamelCase ) __lowerCamelCase = SequentialSampler(_UpperCamelCase ) __lowerCamelCase = DataLoader(_UpperCamelCase ,sampler=_UpperCamelCase ,batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __lowerCamelCase = args.max_steps __lowerCamelCase = args.max_steps // (len(_UpperCamelCase ) // args.gradient_accumulation_steps) + 1 else: __lowerCamelCase = len(_UpperCamelCase ) // args.gradient_accumulation_steps * args.num_train_epochs __lowerCamelCase = list(model.named_parameters() ) __lowerCamelCase = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] __lowerCamelCase = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] __lowerCamelCase = AdamW(_UpperCamelCase ,lr=args.learning_rate ,eps=args.adam_epsilon ) __lowerCamelCase = get_linear_schedule_with_warmup( _UpperCamelCase ,num_warmup_steps=args.warmup_steps ,num_training_steps=_UpperCamelCase ) if args.do_train: __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) ,desc='''Epoch''' ): __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = tqdm(_UpperCamelCase ,desc='''Training''' ) for step, batch in enumerate(_UpperCamelCase ): __lowerCamelCase = tuple(t.to(_UpperCamelCase ) for t in batch ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = batch __lowerCamelCase = model(_UpperCamelCase ,mc_token_ids=_UpperCamelCase ,lm_labels=_UpperCamelCase ,mc_labels=_UpperCamelCase ) __lowerCamelCase = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __lowerCamelCase = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __lowerCamelCase = '''Training loss: {:.2e} lr: {:.2e}'''.format(_UpperCamelCase ,scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __lowerCamelCase = model.module if hasattr(_UpperCamelCase ,'''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __lowerCamelCase = os.path.join(args.output_dir ,_UpperCamelCase ) __lowerCamelCase = os.path.join(args.output_dir ,_UpperCamelCase ) torch.save(model_to_save.state_dict() ,_UpperCamelCase ) model_to_save.config.to_json_file(_UpperCamelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __lowerCamelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __lowerCamelCase = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_UpperCamelCase ) if args.do_eval: model.eval() __lowerCamelCase ,__lowerCamelCase = 0, 0 __lowerCamelCase ,__lowerCamelCase = 0, 0 for batch in tqdm(_UpperCamelCase ,desc='''Evaluating''' ): __lowerCamelCase = tuple(t.to(_UpperCamelCase ) for t in batch ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = batch with torch.no_grad(): __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = model( _UpperCamelCase ,mc_token_ids=_UpperCamelCase ,lm_labels=_UpperCamelCase ,mc_labels=_UpperCamelCase ) __lowerCamelCase = mc_logits.detach().cpu().numpy() __lowerCamelCase = mc_labels.to('''cpu''' ).numpy() __lowerCamelCase = accuracy(_UpperCamelCase ,_UpperCamelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __lowerCamelCase = eval_loss / nb_eval_steps __lowerCamelCase = eval_accuracy / nb_eval_examples __lowerCamelCase = tr_loss / nb_tr_steps if args.do_train else None __lowerCamelCase = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} __lowerCamelCase = os.path.join(args.output_dir ,'''eval_results.txt''' ) with open(_UpperCamelCase ,'''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' ,_UpperCamelCase ,str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
330
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def a__ ( _UpperCamelCase : Optional[int] ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __lowerCamelCase = module __lowerCamelCase = nn.Sequential( nn.Linear(module.in_features , __UpperCAmelCase , bias=__UpperCAmelCase ) , nn.Linear(__UpperCAmelCase , module.out_features , bias=__UpperCAmelCase ) , ) __lowerCamelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowerCamelCase ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.module(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) + self.adapter(__UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ = """bigscience/bloom-1b7""" # Constant values lowerCAmelCase__ = 2.1_09_65_95_52_69_25_74 lowerCAmelCase__ = """Hello my name is""" lowerCAmelCase__ = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) lowerCAmelCase__ = 1_0 def lowerCamelCase ( self ): '''simple docstring''' # Models and tokenizer __lowerCamelCase = AutoTokenizer.from_pretrained(self.model_name ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Models and tokenizer __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_abit.config self.assertTrue(hasattr(__UpperCAmelCase , '''quantization_config''' ) ) __lowerCamelCase = config.to_dict() __lowerCamelCase = config.to_diff_dict() __lowerCamelCase = config.to_json_string() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit __lowerCamelCase = self.model_fpaa.get_memory_footprint() __lowerCamelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowerCamelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() __lowerCamelCase = True __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() with self.assertRaises(__UpperCAmelCase ): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_fpaa.to(torch.floataa ) __lowerCamelCase = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.half() # Check this does not throw an error __lowerCamelCase = self.model_fpaa.float() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls ): '''simple docstring''' __lowerCamelCase = '''t5-small''' __lowerCamelCase = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense __lowerCamelCase = AutoTokenizer.from_pretrained(cls.model_name ) __lowerCamelCase = '''Translate in German: Hello, my dog is cute''' def lowerCamelCase ( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaForConditionalGeneration __lowerCamelCase = TaForConditionalGeneration._keep_in_fpaa_modules __lowerCamelCase = None # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) __lowerCamelCase = modules def lowerCamelCase ( self ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # model_name __lowerCamelCase = '''bigscience/bloom-560m''' __lowerCamelCase = '''t5-small''' # Different types of model __lowerCamelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Sequence classification model __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # CausalLM model __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Seq2seq model __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowerCamelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch __lowerCamelCase = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''facebook/opt-350m''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowerCamelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowerCamelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__UpperCAmelCase ) ): __lowerCamelCase = LoRALayer(module.q_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.k_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowerCamelCase = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowerCamelCase = model.forward(**__UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = """gpt2-xl""" lowerCAmelCase__ = 3.31_91_85_48_54_15_21_87
330
1
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class UpperCamelCase_ ( a_ ): def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(snake_case__ ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self._create_example_records() UpperCAmelCase = Dataset.from_list(snake_case__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(snake_case__ ): self.assertDictEqual(snake_case__ , example_records[i] ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self._create_example_records() UpperCAmelCase = Dataset.from_list(snake_case__ ) UpperCAmelCase = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def UpperCamelCase_ ( self ) -> int: # checks what happens with missing columns """simple docstring""" UpperCAmelCase = [{"""col_1""": 1}, {"""col_2""": """x"""}] UpperCAmelCase = Dataset.from_list(snake_case__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def UpperCamelCase_ ( self ) -> List[str]: # checks if the type can be inferred from the second record """simple docstring""" UpperCAmelCase = [{"""col_1""": []}, {"""col_1""": [1, 2]}] UpperCAmelCase = Dataset.from_list(snake_case__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase = Dataset.from_list([] ) self.assertEqual(len(snake_case__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
248
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=lowerCAmelCase ) UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go UpperCAmelCase = parser.parse_args() if not hasattr(lowerCAmelCase , """func""" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
248
1
from collections.abc import Generator from math import sin def _A ( SCREAMING_SNAKE_CASE : bytes ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) != 32: raise ValueError("Input must be of length 32" ) a__ : Optional[Any] =b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) a__ : Optional[Any] =format(SCREAMING_SNAKE_CASE , "08x" )[-8:] a__ : Tuple =b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def _A ( SCREAMING_SNAKE_CASE : bytes ): """simple docstring""" a__ : Any =b"" for char in message: bit_string += format(SCREAMING_SNAKE_CASE , "08b" ).encode("utf-8" ) a__ : Optional[Any] =format(len(SCREAMING_SNAKE_CASE ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(SCREAMING_SNAKE_CASE ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _A ( SCREAMING_SNAKE_CASE : bytes ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(SCREAMING_SNAKE_CASE ) , 512 ): a__ : List[str] =bit_string[pos : pos + 512] a__ : Union[str, Any] =[] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) a__ : Optional[int] =format(SCREAMING_SNAKE_CASE , "032b" ) a__ : Optional[int] ="" for c in i_str: new_str += "1" if c == "0" else "0" return int(SCREAMING_SNAKE_CASE , 2 ) def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" return (a + b) % 2**32 def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _A ( SCREAMING_SNAKE_CASE : bytes ): """simple docstring""" a__ : str =preprocess(SCREAMING_SNAKE_CASE ) a__ : List[str] =[int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states a__ : List[Any] =0x67_452_301 a__ : Optional[Any] =0xEF_CDA_B89 a__ : List[Any] =0x98_BAD_CFE a__ : Any =0x10_325_476 a__ : str =[ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(SCREAMING_SNAKE_CASE ): a__ : List[Any] =aa a__ : List[Any] =ba a__ : List[Any] =ca a__ : List[str] =da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f a__ : Tuple =d ^ (b & (c ^ d)) a__ : str =i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f a__ : Any =c ^ (d & (b ^ c)) a__ : str =(5 * i + 1) % 16 elif i <= 47: a__ : Dict =b ^ c ^ d a__ : Optional[Any] =(3 * i + 5) % 16 else: a__ : Optional[Any] =c ^ (b | not_aa(SCREAMING_SNAKE_CASE )) a__ : str =(7 * i) % 16 a__ : Optional[Any] =(f + a + added_consts[i] + block_words[g]) % 2**32 a__ : List[Any] =d a__ : List[str] =c a__ : int =b a__ : Dict =sum_aa(SCREAMING_SNAKE_CASE , left_rotate_aa(SCREAMING_SNAKE_CASE , shift_amounts[i] ) ) # Add hashed chunk to running total a__ : Union[str, Any] =sum_aa(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : List[Any] =sum_aa(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : int =sum_aa(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : List[str] =sum_aa(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : Tuple =reformat_hex(SCREAMING_SNAKE_CASE ) + reformat_hex(SCREAMING_SNAKE_CASE ) + reformat_hex(SCREAMING_SNAKE_CASE ) + reformat_hex(SCREAMING_SNAKE_CASE ) return digest if __name__ == "__main__": import doctest doctest.testmod()
95
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' # Base Case if index == len(UpperCamelCase_ ): return True # Recursive Step for i in range(UpperCamelCase_ ): if valid_coloring(graph[index] , UpperCamelCase_ , UpperCamelCase_ ): # Color current vertex UpperCamelCase = i # Validate coloring if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index + 1 ): return True # Backtrack UpperCamelCase = -1 return False def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' UpperCamelCase = [-1] * len(UpperCamelCase_ ) if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , 0 ): return colored_vertices return []
343
0
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
362
from math import pow def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> tuple[int, int]: """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count lowerCamelCase__: Optional[Any] =int(pow(__a , __a ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n lowerCamelCase__ , lowerCamelCase__: int =backtrack( __a , __a , current_number + 1 , __a , __a ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. lowerCamelCase__ , lowerCamelCase__: Dict =backtrack( __a , __a , current_number + 1 , __a , __a ) return current_sum, solutions_count def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(__a , __a , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
273
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _A ( UpperCamelCase_ : Any) -> List[Any]: '''simple docstring''' __lowercase = filter(lambda UpperCamelCase_: p.requires_grad, model.parameters()) __lowercase = sum([np.prod(p.size()) for p in model_parameters]) return params _a = logging.getLogger(__name__) def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> Optional[int]: '''simple docstring''' if metric == "rouge2": __lowercase = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": __lowercase = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": __lowercase = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function.") __lowercase = ModelCheckpoint( dirpath=UpperCamelCase_, filename=UpperCamelCase_, monitor=F"""val_{metric}""", mode="max", save_top_k=3, every_n_epochs=1, ) return checkpoint_callback def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : List[str]) -> int: '''simple docstring''' return EarlyStopping( monitor=F"""val_{metric}""", mode="min" if "loss" in metric else "max", patience=UpperCamelCase_, verbose=UpperCamelCase_, ) class _lowerCAmelCase ( pl.Callback ): """simple docstring""" def _lowercase ( self : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : str ): __lowercase = {F"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(UpperCAmelCase__ ) @rank_zero_only def _lowercase ( self : List[Any], UpperCAmelCase__ : pl.Trainer, UpperCAmelCase__ : pl.LightningModule, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[int]=True ): logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) __lowercase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results __lowercase = Path(pl_module.hparams.output_dir ) if type_path == "test": __lowercase = od / "test_results.txt" __lowercase = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __lowercase = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" __lowercase = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=UpperCAmelCase__ ) generations_file.parent.mkdir(exist_ok=UpperCAmelCase__ ) with open(UpperCAmelCase__, "a+" ) as writer: for key in sorted(UpperCAmelCase__ ): if key in ["log", "progress_bar", "preds"]: continue __lowercase = metrics[key] if isinstance(UpperCAmelCase__, torch.Tensor ): __lowercase = val.item() __lowercase = F"""{key}: {val:.6f}\n""" writer.write(UpperCAmelCase__ ) if not save_generations: return if "preds" in metrics: __lowercase = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(UpperCAmelCase__ ) @rank_zero_only def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ): try: __lowercase = pl_module.model.model.num_parameters() except AttributeError: __lowercase = pl_module.model.num_parameters() __lowercase = count_trainable_parameters(UpperCAmelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def _lowercase ( self : Any, UpperCAmelCase__ : pl.Trainer, UpperCAmelCase__ : pl.LightningModule ): save_json(pl_module.metrics, pl_module.metrics_save_path ) return self._write_logs(UpperCAmelCase__, UpperCAmelCase__, "test" ) @rank_zero_only def _lowercase ( self : int, UpperCAmelCase__ : pl.Trainer, UpperCAmelCase__ : Optional[Any] ): save_json(pl_module.metrics, pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
17
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[str] = len(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): _UpperCAmelCase : List[Any] = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
322
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
1
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput lowerCamelCase_ : Union[str, Any] = 'scheduler_config.json' class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : Optional[Any] = 1 lowercase_ : str = 2 lowercase_ : List[str] = 3 lowercase_ : List[Any] = 4 lowercase_ : int = 5 @dataclass class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : jnp.ndarray class _UpperCAmelCase : '''simple docstring''' lowercase_ : int = SCHEDULER_CONFIG_NAME lowercase_ : str = ["""dtype"""] lowercase_ : List[Any] = [] lowercase_ : Any = True @classmethod def lowerCamelCase_ ( cls , snake_case_ = None , snake_case_ = None , snake_case_=False , **snake_case_ , ): """simple docstring""" A_ , A_ : str = cls.load_config( pretrained_model_name_or_path=snake_case_ , subfolder=snake_case_ , return_unused_kwargs=snake_case_ , **snake_case_ , ) A_ , A_ : int = cls.from_config(snake_case_ , return_unused_kwargs=snake_case_ , **snake_case_ ) if hasattr(snake_case_ , 'create_state' ) and getattr(snake_case_ , 'has_state' , snake_case_ ): A_ : Optional[int] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCamelCase_ ( self , snake_case_ , snake_case_ = False , **snake_case_ ): """simple docstring""" self.save_config(save_directory=snake_case_ , push_to_hub=snake_case_ , **snake_case_ ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self._get_compatibles() @classmethod def lowerCamelCase_ ( cls ): """simple docstring""" A_ : int = list(set([cls.__name__] + cls._compatibles ) ) A_ : Dict = importlib.import_module(__name__.split('.' )[0] ) A_ : Tuple = [ getattr(snake_case_ , snake_case_ ) for c in compatible_classes_str if hasattr(snake_case_ , snake_case_ ) ] return compatible_classes def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" assert len(_UpperCAmelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_UpperCAmelCase ) - x.ndim) ) , _UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=0.999 , _UpperCAmelCase=jnp.floataa ): """simple docstring""" def alpha_bar(_UpperCAmelCase ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 A_ : List[Any] = [] for i in range(_UpperCAmelCase ): A_ : Optional[Any] = i / num_diffusion_timesteps A_ : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_UpperCAmelCase ) / alpha_bar(_UpperCAmelCase ) , _UpperCAmelCase ) ) return jnp.array(_UpperCAmelCase , dtype=_UpperCAmelCase ) @flax.struct.dataclass class _UpperCAmelCase : '''simple docstring''' lowercase_ : jnp.ndarray lowercase_ : jnp.ndarray lowercase_ : jnp.ndarray @classmethod def lowerCamelCase_ ( cls , snake_case_ ): """simple docstring""" A_ : Tuple = scheduler.config if config.trained_betas is not None: A_ : str = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": A_ : str = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A_ : int = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A_ : Optional[Any] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) A_ : List[Any] = 1.0 - betas A_ : Optional[int] = jnp.cumprod(snake_case_ , axis=0 ) return cls( alphas=snake_case_ , betas=snake_case_ , alphas_cumprod=snake_case_ , ) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Union[str, Any] = state.alphas_cumprod A_ : Tuple = alphas_cumprod[timesteps] ** 0.5 A_ : str = sqrt_alpha_prod.flatten() A_ : str = broadcast_to_shape_from_left(_UpperCAmelCase , original_samples.shape ) A_ : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 A_ : List[str] = sqrt_one_minus_alpha_prod.flatten() A_ : List[Any] = broadcast_to_shape_from_left(_UpperCAmelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ , A_ : List[Any] = get_sqrt_alpha_prod(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) A_ : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ , A_ : int = get_sqrt_alpha_prod(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) A_ : Any = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
286
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=False ): """simple docstring""" A_ : Optional[Any] = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token') ) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings') ) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias') ) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A_ : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) # fmt: on return rename_keys def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A_ : List[str] = '' else: A_ : Dict = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ : str = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) A_ : List[Any] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A_ : List[Any] = in_proj_weight[ : config.hidden_size, : ] A_ : Tuple = in_proj_bias[: config.hidden_size] A_ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] A_ : Tuple = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : List[str] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Any = dct.pop(_UpperCAmelCase ) A_ : Optional[int] = val def UpperCAmelCase__ ( ): """simple docstring""" A_ : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' A_ : int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): """simple docstring""" A_ : List[Any] = BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=_UpperCAmelCase , ) A_ : Optional[int] = ViTHybridConfig(backbone_config=_UpperCAmelCase , image_size=384 , num_labels=1000 ) A_ : Union[str, Any] = False # load original model from timm A_ : List[Any] = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A_ : Tuple = timm_model.state_dict() if base_model: remove_classification_head_(_UpperCAmelCase ) A_ : Any = create_rename_keys(_UpperCAmelCase , _UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) A_ : Union[str, Any] = 'huggingface/label-files' A_ : Dict = 'imagenet-1k-id2label.json' A_ : List[str] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) A_ : str = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": A_ : List[Any] = ViTHybridModel(_UpperCAmelCase ).eval() else: A_ : str = ViTHybridForImageClassification(_UpperCAmelCase ).eval() model.load_state_dict(_UpperCAmelCase ) # create image processor A_ : Dict = create_transform(**resolve_data_config({} , model=_UpperCAmelCase ) ) A_ : List[str] = transform.transforms A_ : List[str] = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } A_ : Tuple = ViTHybridImageProcessor( do_resize=_UpperCAmelCase , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_UpperCAmelCase , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=_UpperCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A_ : Optional[Any] = prepare_img() A_ : Any = transform(_UpperCAmelCase ).unsqueeze(0 ) A_ : Dict = processor(_UpperCAmelCase , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ) # verify logits with torch.no_grad(): A_ : List[Any] = model(_UpperCAmelCase ) A_ : List[str] = outputs.logits print('Predicted class:' , logits.argmax(-1 ).item() ) if base_model: A_ : Union[str, Any] = timm_model.forward_features(_UpperCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_UpperCAmelCase , outputs.pooler_output , atol=1E-3 ) else: A_ : Tuple = timm_model(_UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_UpperCAmelCase , outputs.logits , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCAmelCase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print(f"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(f"""ybelkada/{vit_name}""" ) processor.push_to_hub(f"""ybelkada/{vit_name}""" ) if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) lowerCamelCase_ : List[str] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
286
1
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @register_to_config def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False , ) -> int: super().__init__() lowercase__ : Tuple = nn.Embedding(a_ , a_ ) lowercase__ : int = nn.Embedding(a_ , a_ ) lowercase__ : str = False lowercase__ : str = nn.Dropout(p=a_ ) lowercase__ : List[Any] = TaConfig( vocab_size=a_ , d_model=a_ , num_heads=a_ , d_kv=a_ , d_ff=a_ , dropout_rate=a_ , feed_forward_proj=a_ , is_decoder=a_ , is_encoder_decoder=a_ , ) lowercase__ : str = nn.ModuleList() for lyr_num in range(a_ ): lowercase__ : Optional[Any] = TaBlock(a_ ) self.encoders.append(a_ ) lowercase__ : Optional[int] = TaLayerNorm(a_ ) lowercase__ : Tuple = nn.Dropout(p=a_ ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: lowercase__ : Optional[int] = self.token_embedder(a_ ) lowercase__ : List[str] = encoder_input_tokens.shape[1] lowercase__ : str = torch.arange(a_ , device=encoder_input_tokens.device ) x += self.position_encoding(a_ ) lowercase__ : List[Any] = self.dropout_pre(a_ ) # inverted the attention mask lowercase__ : Optional[Any] = encoder_input_tokens.size() lowercase__ : List[Any] = self.get_extended_attention_mask(a_ , a_ ) for lyr in self.encoders: lowercase__ : List[Any] = lyr(a_ , a_ )[0] lowercase__ : Tuple = self.layer_norm(a_ ) return self.dropout_post(a_ ), encoder_inputs_mask
359
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): def merge(UpperCAmelCase , UpperCAmelCase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(UpperCAmelCase ) <= 1: return collection lowercase__ : int = len(UpperCAmelCase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __a: str = input("""Enter numbers separated by a comma:\n""").strip() __a: Optional[int] = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
214
0
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home UpperCAmelCase__ = HUGGINGFACE_HUB_CACHE UpperCAmelCase__ = """config.json""" UpperCAmelCase__ = """diffusion_pytorch_model.bin""" UpperCAmelCase__ = """diffusion_flax_model.msgpack""" UpperCAmelCase__ = """model.onnx""" UpperCAmelCase__ = """diffusion_pytorch_model.safetensors""" UpperCAmelCase__ = """weights.pb""" UpperCAmelCase__ = """https://huggingface.co""" UpperCAmelCase__ = default_cache_path UpperCAmelCase__ = """diffusers_modules""" UpperCAmelCase__ = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) UpperCAmelCase__ = ["""fp16""", """non-ema"""] UpperCAmelCase__ = """.self_attn"""
289
"""simple docstring""" import warnings warnings.warn( """memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: """ """`from accelerate import find_executable_batch_size` to avoid this warning.""", FutureWarning, )
289
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _lowerCamelCase : Optional[int] = get_tests_dir('''fixtures''') class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Tuple ): '''simple docstring''' _snake_case = mock.Mock() _snake_case = 500 _snake_case = {} _snake_case = HTTPError _snake_case = {} # Download this model to make sure it's in the cache. _snake_case = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowercase ) as mock_head: _snake_case = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def A ( self : List[str] ): '''simple docstring''' _snake_case = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def A ( self : str ): '''simple docstring''' with self.assertRaises(lowercase ): # config is in subfolder, the following should not work without specifying the subfolder _snake_case = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) _snake_case = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor' ) self.assertIsNotNone(lowercase ) @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @classmethod def A ( cls : int ): '''simple docstring''' _snake_case = TOKEN HfFolder.save_token(lowercase ) @classmethod def A ( cls : Optional[Any] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor' ) except HTTPError: pass def A ( self : Dict ): '''simple docstring''' _snake_case = ViTImageProcessor.from_pretrained(lowercase ) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token ) _snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( lowercase , repo_id='test-image-processor' , push_to_hub=lowercase , use_auth_token=self._token ) _snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) def A ( self : int ): '''simple docstring''' _snake_case = ViTImageProcessor.from_pretrained(lowercase ) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token ) _snake_case = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( lowercase , repo_id='valid_org/test-image-processor-org' , push_to_hub=lowercase , use_auth_token=self._token ) _snake_case = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) def A ( self : Any ): '''simple docstring''' CustomImageProcessor.register_for_auto_class() _snake_case = CustomImageProcessor.from_pretrained(lowercase ) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) _snake_case = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=lowercase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor' )
362
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) _lowerCamelCase : Union[str, Any] = logging.getLogger() def a_ ( __lowercase : Path , __lowercase : list ) -> Tuple: _snake_case = '\n'.join(__lowercase ) Path(__lowercase ).open('w' ).writelines(__lowercase ) _lowerCamelCase : Any = '''patrickvonplaten/t5-tiny-random''' _lowerCamelCase : List[Any] = '''sshleifer/bart-tiny-random''' _lowerCamelCase : List[Any] = '''sshleifer/tiny-mbart''' _lowerCamelCase : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def A ( self : Optional[int] , lowercase : int ): '''simple docstring''' _snake_case = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _snake_case = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _snake_case = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(lowercase , lowercase ) _snake_case = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _snake_case = 'translation_en_to_de' if model == T5_TINY else 'summarization' _snake_case = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(lowercase , 'argv' , lowercase ): run_generate() assert Path(lowercase ).exists() # os.remove(Path(output_file_name)) def A ( self : List[Any] ): '''simple docstring''' self.run_eval_tester(lowercase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def A ( self : Any , lowercase : int ): '''simple docstring''' self.run_eval_tester(lowercase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def A ( self : Any , lowercase : str ): '''simple docstring''' _snake_case = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _snake_case = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _snake_case = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _snake_case = Path(self.get_auto_remove_tmp_dir() ) _snake_case = str(tmp_dir / 'scores.json' ) _snake_case = str(tmp_dir / 'val.target' ) _dump_articles(lowercase , text['en'] ) _dump_articles(lowercase , text['de'] ) _snake_case = 'translation_en_to_de' if model == T5_TINY else 'summarization' _snake_case = f''' run_eval_search.py {model} {str(lowercase )} {str(lowercase )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(lowercase , 'argv' , lowercase ): with CaptureStdout() as cs: run_search() _snake_case = [' num_beams | length_penalty', model, 'Best score args'] _snake_case = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(lowercase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowercase ).exists() os.remove(Path(lowercase ) )
130
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __UpperCamelCase ( _A = "isbn/0140328726" ): lowerCAmelCase_ = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: lowerCAmelCase_ = f"{olid} is not a valid Open Library olid" raise ValueError(_A ) return requests.get(f"https://openlibrary.org/{new_olid}.json" ).json() def __UpperCamelCase ( _A ): lowerCAmelCase_ = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } lowerCAmelCase_ = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowerCAmelCase_ = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] lowerCAmelCase_ = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(_A , _A ): lowerCAmelCase_ = ''', '''.join(_A ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _A = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f"Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.") continue print(f"\nSearching Open Library for ISBN: {isbn}...\n") try: _A = summarize_book(get_openlibrary_data(f"isbn/{isbn}")) print('''\n'''.join(f"{key}: {value}" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f"Sorry, there are no results for ISBN: {isbn}.")
278
from functools import lru_cache @lru_cache def __UpperCamelCase ( _A ): if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
278
1
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=100 , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Optional[int] = vocab_size UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : List[str] = patch_size UpperCAmelCase__ : Dict = num_channels UpperCAmelCase__ : Optional[int] = is_training UpperCAmelCase__ : Tuple = use_labels UpperCAmelCase__ : int = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : str = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : str = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : Any = (image_size // patch_size) ** 2 UpperCAmelCase__ : List[Any] = num_patches + 1 def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : List[Any] = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Dict = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, pixel_values, labels def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = FlaxBeitModel(config=_lowerCamelCase ) UpperCAmelCase__ : int = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = FlaxBeitForMaskedImageModeling(config=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = self.type_sequence_label_size UpperCAmelCase__ : List[Any] = FlaxBeitForImageClassification(config=_lowerCamelCase ) UpperCAmelCase__ : str = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Tuple = FlaxBeitForImageClassification(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Tuple = model(_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase__ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = FlaxBeitModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def _a (self ): """simple docstring""" self.config_tester.run_common_tests() def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class(_lowerCamelCase ) UpperCAmelCase__ : Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Any = model_class(_lowerCamelCase ) @jax.jit def model_jitted(_lowerCamelCase , **_lowerCamelCase ): return model(pixel_values=_lowerCamelCase , **_lowerCamelCase ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase__ : List[str] = model_jitted(**_lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase__ : Optional[int] = model_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _a (self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class_name.from_pretrained("""microsoft/beit-base-patch16-224""" ) UpperCAmelCase__ : Union[str, Any] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_lowerCamelCase ) def a__ ( ) -> Dict: UpperCAmelCase__ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _a (self ): """simple docstring""" return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = FlaxBeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ) UpperCAmelCase__ : List[Any] = self.default_image_processor UpperCAmelCase__ : Tuple = prepare_img() UpperCAmelCase__ : str = image_processor(images=_lowerCamelCase , return_tensors="""np""" ).pixel_values # prepare bool_masked_pos UpperCAmelCase__ : Optional[int] = np.ones((1, 196) , dtype=_lowerCamelCase ) # forward pass UpperCAmelCase__ : Optional[int] = model(pixel_values=_lowerCamelCase , bool_masked_pos=_lowerCamelCase ) UpperCAmelCase__ : Any = outputs.logits # verify the logits UpperCAmelCase__ : Optional[int] = (1, 196, 8192) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , _lowerCamelCase , atol=1e-2 ) ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Optional[int] = prepare_img() UpperCAmelCase__ : int = image_processor(images=_lowerCamelCase , return_tensors="""np""" ) # forward pass UpperCAmelCase__ : List[str] = model(**_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = outputs.logits # verify the logits UpperCAmelCase__ : Tuple = (1, 1000) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCAmelCase__ : List[Any] = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) UpperCAmelCase__ : Any = 281 self.assertEqual(logits.argmax(-1 ).item() , _lowerCamelCase ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ) UpperCAmelCase__ : Any = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=_lowerCamelCase , return_tensors="""np""" ) # forward pass UpperCAmelCase__ : Optional[Any] = model(**_lowerCamelCase ) UpperCAmelCase__ : List[str] = outputs.logits # verify the logits UpperCAmelCase__ : Optional[int] = (1, 21841) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCAmelCase__ : Any = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) UpperCAmelCase__ : List[Any] = 2396 self.assertEqual(logits.argmax(-1 ).item() , _lowerCamelCase )
166
"""simple docstring""" _A = range(2, 20 + 1) _A = [10**k for k in range(ks[-1] + 1)] _A = {} def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> int: UpperCAmelCase__ : List[str] = sum(a_i[j] for j in range(lowerCAmelCase , len(lowerCAmelCase ) ) ) UpperCAmelCase__ : str = sum(a_i[j] * base[j] for j in range(min(len(lowerCAmelCase ) , lowerCAmelCase ) ) ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = 0, 0 UpperCAmelCase__ : Optional[Any] = n - i UpperCAmelCase__ : Union[str, Any] = memo.get(lowerCAmelCase ) if sub_memo is not None: UpperCAmelCase__ : Any = sub_memo.get(lowerCAmelCase ) if jumps is not None and len(lowerCAmelCase ) > 0: # find and make the largest jump without going over UpperCAmelCase__ : Optional[int] = -1 for _k in range(len(lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase__ : str = _k break if max_jump >= 0: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase__ : Any = diff + c for j in range(min(lowerCAmelCase , len(lowerCAmelCase ) ) ): UpperCAmelCase__ , UpperCAmelCase__ : Tuple = divmod(lowerCAmelCase , 10 ) if new_c > 0: add(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: UpperCAmelCase__ : int = [] else: UpperCAmelCase__ : Union[str, Any] = {c: []} UpperCAmelCase__ : Union[str, Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = next_term(lowerCAmelCase , k - 1 , i + dn , lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase__ , UpperCAmelCase__ : Tuple = compute(lowerCAmelCase , lowerCAmelCase , i + dn , lowerCAmelCase ) diff += _diff dn += terms_jumped UpperCAmelCase__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase__ : Any = 0 while j < len(lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> List[Any]: if i >= n: return 0, i if k > len(lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase__ : Tuple = i UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = 0, 0, 0 for j in range(len(lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase__ : Dict = ds_c + ds_b diff += addend UpperCAmelCase__ : Tuple = 0 for j in range(lowerCAmelCase ): UpperCAmelCase__ : Tuple = a_i[j] + addend UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = divmod(lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return diff, i - start_i def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: for j in range(lowerCAmelCase , len(lowerCAmelCase ) ): UpperCAmelCase__ : Optional[Any] = digits[j] + addend if s >= 10: UpperCAmelCase__ , UpperCAmelCase__ : Dict = divmod(lowerCAmelCase , 10 ) UpperCAmelCase__ : Any = addend // 10 + quotient else: UpperCAmelCase__ : Optional[Any] = s UpperCAmelCase__ : Tuple = addend // 10 if addend == 0: break while addend > 0: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = divmod(lowerCAmelCase , 10 ) digits.append(lowerCAmelCase ) def a__ ( lowerCAmelCase = 10**15 ) -> int: UpperCAmelCase__ : Optional[int] = [1] UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Dict = 0 while True: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = next_term(lowerCAmelCase , 20 , i + dn , lowerCAmelCase ) dn += terms_jumped if dn == n - i: break UpperCAmelCase__ : Optional[int] = 0 for j in range(len(lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
166
1
"""simple docstring""" from sklearn.metrics import recall_score import datasets _UpperCAmelCase = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ _UpperCAmelCase = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ _UpperCAmelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCamelCase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[Any]="binary" , lowerCAmelCase : int=None , lowerCAmelCase : str="warn" , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =recall_score( lowerCAmelCase , lowerCAmelCase , labels=lowerCAmelCase , pos_label=lowerCAmelCase , average=lowerCAmelCase , sample_weight=lowerCAmelCase , zero_division=lowerCAmelCase , ) return {"recall": float(lowerCAmelCase ) if score.size == 1 else score}
173
"""simple docstring""" from sklearn.metrics import recall_score import datasets _UpperCAmelCase = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ _UpperCAmelCase = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ _UpperCAmelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCamelCase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[Any]="binary" , lowerCAmelCase : int=None , lowerCAmelCase : str="warn" , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =recall_score( lowerCAmelCase , lowerCAmelCase , labels=lowerCAmelCase , pos_label=lowerCAmelCase , average=lowerCAmelCase , sample_weight=lowerCAmelCase , zero_division=lowerCAmelCase , ) return {"recall": float(lowerCAmelCase ) if score.size == 1 else score}
173
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = inspect.getfile(accelerate.test_utils ) UpperCAmelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) UpperCAmelCase__ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) UpperCAmelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" print(F"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase__ = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ (self ) -> Dict: """simple docstring""" print(F"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase__ = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(F"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" print(F"Found {torch.cuda.device_count()} devices, using 2 devices only" ) UpperCAmelCase__ = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(__a , env=os.environ.copy() ) if __name__ == "__main__": _UpperCamelCase = Accelerator() _UpperCamelCase = (accelerator.state.process_index + 2, 10) _UpperCamelCase = torch.randint(0, 10, shape).to(accelerator.device) _UpperCamelCase = '''''' _UpperCamelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _UpperCamelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _UpperCamelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
335
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __SCREAMING_SNAKE_CASE = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __SCREAMING_SNAKE_CASE = field( default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} ) __SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __SCREAMING_SNAKE_CASE = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __SCREAMING_SNAKE_CASE = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} ) __SCREAMING_SNAKE_CASE = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) __SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __SCREAMING_SNAKE_CASE = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __SCREAMING_SNAKE_CASE = field( default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __SCREAMING_SNAKE_CASE = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field( default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
335
1
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _A = logging.getLogger(__name__) _A = """pytorch_model.bin""" @dataclasses.dataclass class A : __snake_case = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) __snake_case = dataclasses.field( default=lowercase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class A : __snake_case = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) __snake_case = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) __snake_case = dataclasses.field( default=lowercase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) __snake_case = dataclasses.field( default=lowercase_ , metadata={'help': 'The name of the task to train on.'} , ) __snake_case = dataclasses.field( default=lowercase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class A : __snake_case = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) __snake_case = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) __snake_case = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]' } , ) __snake_case = dataclasses.field( default=10 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) __snake_case = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) __snake_case = dataclasses.field( default=lowercase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) __snake_case = dataclasses.field( default=lowercase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) __snake_case = dataclasses.field( default=lowercase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) __snake_case = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) __snake_case = dataclasses.field( default=100 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) __snake_case = dataclasses.field( default=lowercase_ , metadata={'help': 'Random seed for initialization.'} , ) def __UpperCamelCase ( _A , _A , _A , _A , _A , _A ): lowerCAmelCase_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: lowerCAmelCase_ = dataset.filter(lambda _A : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 lowerCAmelCase_ = int(eval_result * len(lowerCAmelCase__ ) ) print(lowerCAmelCase__ ) lowerCAmelCase_ = dataset.sort('''probability''' , reverse=lowerCAmelCase__ ) lowerCAmelCase_ = dataset.select(range(lowerCAmelCase__ ) ) lowerCAmelCase_ = dataset.remove_columns(['''label''', '''probability'''] ) lowerCAmelCase_ = dataset.rename_column('''prediction''' , '''label''' ) lowerCAmelCase_ = dataset.map(lambda _A : {"label": idalabel[example["label"]]} ) lowerCAmelCase_ = dataset.shuffle(seed=args.seed ) lowerCAmelCase_ = os.path.join(lowerCAmelCase__ , f"train_pseudo.{args.data_file_extension}" ) if args.data_file_extension == "csv": dataset.to_csv(lowerCAmelCase__ , index=lowerCAmelCase__ ) else: dataset.to_json(lowerCAmelCase__ ) def __UpperCamelCase ( _A , _A , _A , _A , **_A ): lowerCAmelCase_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() lowerCAmelCase_ = STModelArguments(model_name_or_path=lowerCAmelCase__ ) lowerCAmelCase_ = STDataArguments(train_file=lowerCAmelCase__ , infer_file=lowerCAmelCase__ ) lowerCAmelCase_ = STTrainingArguments(output_dir=lowerCAmelCase__ ) lowerCAmelCase_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowerCAmelCase__ ).items(): setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for key, value in kwargs.items(): if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Sanity checks lowerCAmelCase_ = {} lowerCAmelCase_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None lowerCAmelCase_ = args.train_file lowerCAmelCase_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None lowerCAmelCase_ = args.eval_file for key in data_files: lowerCAmelCase_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], f"`{key}_file` should be a csv or a json file." if args.data_file_extension is None: lowerCAmelCase_ = extension else: assert extension == args.data_file_extension, f"`{key}_file` should be a {args.data_file_extension} file`." assert ( args.eval_metric in datasets.list_metrics() ), f"{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}." # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) lowerCAmelCase_ = f"{args.output_dir}/self-train_iter-{{}}".format lowerCAmelCase_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) accelerator.wait_for_everyone() lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = 0 lowerCAmelCase_ = False # Show the progress bar lowerCAmelCase_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): lowerCAmelCase_ = data_dir_format(lowerCAmelCase__ ) assert os.path.exists(lowerCAmelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 lowerCAmelCase_ = os.path.join(lowerCAmelCase__ , '''stage-1''' ) lowerCAmelCase_ = { 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): arguments_dict.update({key: value} ) lowerCAmelCase_ = os.path.join(lowerCAmelCase__ , '''best-checkpoint''' , lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , lowerCAmelCase__ , lowerCAmelCase__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , lowerCAmelCase__ ) finetune(**lowerCAmelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , lowerCAmelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data lowerCAmelCase_ = os.path.join(lowerCAmelCase__ , '''best-checkpoint''' ) lowerCAmelCase_ = os.path.join(lowerCAmelCase__ , '''stage-2''' ) # Update arguments_dict lowerCAmelCase_ = model_path lowerCAmelCase_ = data_files['train'] lowerCAmelCase_ = current_output_dir lowerCAmelCase_ = os.path.join(lowerCAmelCase__ , '''best-checkpoint''' , lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , lowerCAmelCase__ , lowerCAmelCase__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , lowerCAmelCase__ ) finetune(**lowerCAmelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , lowerCAmelCase__ ) lowerCAmelCase_ = iteration lowerCAmelCase_ = data_dir_format(iteration + 1 ) lowerCAmelCase_ = AutoConfig.from_pretrained(os.path.join(lowerCAmelCase__ , '''best-checkpoint''' ) ) lowerCAmelCase_ = config.idalabel lowerCAmelCase_ = os.path.join(lowerCAmelCase__ , '''eval_results_best-checkpoint.json''' ) lowerCAmelCase_ = os.path.join(lowerCAmelCase__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''r''' ) as f: lowerCAmelCase_ = float(json.load(lowerCAmelCase__ )[args.eval_metric] ) lowerCAmelCase_ = os.path.join(lowerCAmelCase__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(lowerCAmelCase__ ) # Loading the dataset from local csv or json files. lowerCAmelCase_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['data'] lowerCAmelCase_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) shutil.copy(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , f"eval_results_iter-{iteration}.json" ) ) if os.path.exists(lowerCAmelCase__ ): shutil.copy(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , f"test_results_iter-{iteration}.json" ) ) create_pseudo_labeled_data(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.wait_for_everyone() lowerCAmelCase_ = os.path.join(lowerCAmelCase__ , f"train_pseudo.{args.data_file_extension}" ) if args.evaluation_strategy != IntervalStrategy.NO.value: lowerCAmelCase_ = eval_result if best_iteration is None: lowerCAmelCase_ = new_iteration lowerCAmelCase_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: lowerCAmelCase_ = new_iteration lowerCAmelCase_ = new_eval_result lowerCAmelCase_ = 0 else: if new_eval_result == best_eval_result: lowerCAmelCase_ = new_iteration lowerCAmelCase_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: lowerCAmelCase_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , lowerCAmelCase__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase__ , f"eval_results_iter-{iteration}.json" ) , os.path.join(lowerCAmelCase__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase__ , f"eval_results_iter-{args.max_selftrain_iterations - 1}.json" ) , os.path.join(lowerCAmelCase__ , '''eval_results_best-iteration.json''' ) , )
278
"""simple docstring""" import random def UpperCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : float , lowerCAmelCase__ : bool = False ) -> dict: """simple docstring""" lowerCAmelCase_ : dict = {i: [] for i in range(lowerCAmelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCAmelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCAmelCase__ ): for j in range(i + 1 , lowerCAmelCase__ ): if random.random() < probability: graph[i].append(lowerCAmelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCAmelCase__ ) return graph def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> dict: """simple docstring""" return { i: [j for j in range(lowerCAmelCase__ ) if i != j] for i in range(lowerCAmelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
224
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : Tuple ,A : int ,A : int ,A : Optional[int] = None ,A : int = 5_02_57 ,A : int = 10_24 ,A : int = 7_68 ,A : int = 12 ,A : int = 12 ,A : Optional[int] = None ,A : str = "gelu_new" ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 1E-5 ,A : float = 0.02 ,A : bool = True ,A : bool = True ,A : bool = False ,A : bool = False ,): super().__init__() __A = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) __A = prefix_inner_dim __A = prefix_hidden_dim __A = ( nn.Linear(self.prefix_inner_dim ,self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) __A = ( nn.Linear(self.prefix_hidden_dim ,A ) if self.prefix_hidden_dim is not None else nn.Identity() ) __A = GPTaConfig( vocab_size=A ,n_positions=A ,n_embd=A ,n_layer=A ,n_head=A ,n_inner=A ,activation_function=A ,resid_pdrop=A ,embd_pdrop=A ,attn_pdrop=A ,layer_norm_epsilon=A ,initializer_range=A ,scale_attn_weights=A ,use_cache=A ,scale_attn_by_inverse_layer_idx=A ,reorder_and_upcast_attn=A ,) __A = GPTaLMHeadModel(A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : torch.Tensor ,A : torch.Tensor ,A : Optional[torch.Tensor] = None ,A : Optional[torch.Tensor] = None ,): __A = self.transformer.transformer.wte(A ) __A = self.encode_prefix(A ) __A = self.decode_prefix(A ) __A = torch.cat((prefix_embeds, embedding_text) ,dim=1 ) if labels is not None: __A = self.get_dummy_token(input_ids.shape[0] ,input_ids.device ) __A = torch.cat((dummy_token, input_ids) ,dim=1 ) __A = self.transformer(inputs_embeds=A ,labels=A ,attention_mask=A ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCamelCase_ ( self : int ,A : int ,A : torch.device ): return torch.zeros(A ,self.prefix_length ,dtype=torch.intaa ,device=A ) def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ): return self.encode_prefix(A ) @torch.no_grad() def UpperCamelCase_ ( self : str ,A : List[str] ,A : List[Any] ,A : List[Any] ): __A = torch.split(A ,1 ,dim=0 ) __A = [] __A = [] for feature in features: __A = self.decode_prefix(feature.to(A ) ) # back to the clip feature # Only support beam search for now __A , __A = self.generate_beam( input_embeds=A ,device=A ,eos_token_id=A ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) __A = torch.stack(A ) __A = torch.stack(A ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCamelCase_ ( self : Tuple ,A : List[str]=None ,A : Dict=None ,A : Optional[int]=None ,A : int = 5 ,A : int = 67 ,A : float = 1.0 ,A : Optional[int] = None ,): __A = eos_token_id __A = None __A = None __A = torch.ones(A ,device=A ,dtype=torch.int ) __A = torch.zeros(A ,device=A ,dtype=torch.bool ) if input_embeds is not None: __A = input_embeds else: __A = self.transformer.transformer.wte(A ) for i in range(A ): __A = self.transformer(inputs_embeds=A ) __A = outputs.logits __A = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) __A = logits.softmax(-1 ).log() if scores is None: __A , __A = logits.topk(A ,-1 ) __A = generated.expand(A ,*generated.shape[1:] ) __A , __A = next_tokens.permute(1 ,0 ), scores.squeeze(0 ) if tokens is None: __A = next_tokens else: __A = tokens.expand(A ,*tokens.shape[1:] ) __A = torch.cat((tokens, next_tokens) ,dim=1 ) else: __A = -float(np.inf ) __A = 0 __A = scores[:, None] + logits seq_lengths[~is_stopped] += 1 __A = scores_sum / seq_lengths[:, None] __A , __A = scores_sum_average.view(-1 ).topk(A ,-1 ) __A = next_tokens // scores_sum.shape[1] __A = seq_lengths[next_tokens_source] __A = next_tokens % scores_sum.shape[1] __A = next_tokens.unsqueeze(1 ) __A = tokens[next_tokens_source] __A = torch.cat((tokens, next_tokens) ,dim=1 ) __A = generated[next_tokens_source] __A = scores_sum_average * seq_lengths __A = is_stopped[next_tokens_source] __A = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] ,1 ,-1 ) __A = torch.cat((generated, next_token_embed) ,dim=1 ) __A = is_stopped + next_tokens.eq(A ).squeeze() if is_stopped.all(): break __A = scores / seq_lengths __A = scores.argsort(descending=A ) # tokens tensors are already padded to max_seq_length __A = [tokens[i] for i in order] __A = torch.stack(A ,dim=0 ) __A = torch.tensor([seq_lengths[i] for i in order] ,dtype=seq_lengths.dtype ) return output_texts, seq_lengths
124
import copy import re class UpperCAmelCase : '''simple docstring''' snake_case_ = "hp" snake_case_ = {} snake_case_ = None @classmethod def UpperCamelCase_ ( cls : Dict ,A : Dict ,A : Any ): __A = prefix __A = defaults cls.build_naming_info() @staticmethod def UpperCamelCase_ ( A : Dict ,A : int ): if len(A ) == 0: return "" __A = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 ,len(A ) + 1 ): __A = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __A = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(A : str ): __A = "" while integer != 0: __A = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s __A = 0 while True: __A = word + "#" + int_to_alphabetic(A ) if sword in info["reverse_short_word"]: continue else: __A = sword break __A = short_word __A = word return short_word @staticmethod def UpperCamelCase_ ( A : int ,A : Tuple ): __A = param_name.split("_" ) __A = [TrialShortNamer.shortname_for_word(A ,A ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __A = ["", "_"] for separator in separators: __A = separator.join(A ) if shortname not in info["reverse_short_param"]: __A = shortname __A = param_name return shortname return param_name @staticmethod def UpperCamelCase_ ( A : Optional[Any] ,A : Tuple ): __A = TrialShortNamer.shortname_for_key(A ,A ) __A = short_name __A = param_name @classmethod def UpperCamelCase_ ( cls : Dict ): if cls.NAMING_INFO is not None: return __A = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } __A = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(A ,A ) __A = info @classmethod def UpperCamelCase_ ( cls : Dict ,A : List[str] ): cls.build_naming_info() assert cls.PREFIX is not None __A = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __A = cls.NAMING_INFO["short_param"][k] if isinstance(A ,A ): __A = 1 if v else 0 __A = "" if isinstance(A ,(int, float) ) else "-" __A = f'''{key}{sep}{v}''' name.append(A ) return "_".join(A ) @classmethod def UpperCamelCase_ ( cls : Tuple ,A : Tuple ): __A = repr[len(cls.PREFIX ) + 1 :] if repr == "": __A = [] else: __A = repr.split("_" ) __A = {} for value in values: if "-" in value: __A , __A = value.split("-" ) else: __A = re.sub("[0-9.]" ,"" ,A ) __A = float(re.sub("[^0-9.]" ,"" ,A ) ) __A = cls.NAMING_INFO["reverse_short_param"][p_k] __A = p_v for k in cls.DEFAULTS: if k not in parameters: __A = cls.DEFAULTS[k] return parameters
124
1
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _lowerCamelCase : Union[str, Any] = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): UpperCamelCase = """ernie_m""" UpperCamelCase = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : int, __A : Union[str, Any] = 2_5_0_0_0_2, __A : int = 7_6_8, __A : Union[str, Any] = 1_2, __A : List[str] = 1_2, __A : List[Any] = 3_0_7_2, __A : List[str] = "gelu", __A : Any = 0.1, __A : List[Any] = 0.1, __A : Union[str, Any] = 5_1_4, __A : int = 0.0_2, __A : List[str] = 1, __A : Any = 1E-05, __A : List[Any]=None, __A : Any=False, __A : Any=0.0, **__A : Dict, ): super().__init__(pad_token_id=__UpperCamelCase, **__UpperCamelCase ) UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : str = hidden_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : List[Any] = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Dict = attention_probs_dropout_prob UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : str = initializer_range UpperCAmelCase : Dict = layer_norm_eps UpperCAmelCase : List[str] = classifier_dropout UpperCAmelCase : Any = is_decoder UpperCAmelCase : Any = act_dropout
336
import colorsys from PIL import Image # type: ignore def lowerCamelCase__ ( a__ : float , a__ : float , a__ : int ) -> float: UpperCamelCase_ = x UpperCamelCase_ = y for step in range(a__ ): # noqa: B007 UpperCamelCase_ = a * a - b * b + x UpperCamelCase_ = 2 * a * b + y UpperCamelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase__ ( a__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase__ ( a__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(a__ , 1 , 1 ) ) def lowerCamelCase__ ( a__ : int = 800 , a__ : int = 600 , a__ : float = -0.6 , a__ : float = 0 , a__ : float = 3.2 , a__ : int = 50 , a__ : bool = True , ) -> Image.Image: UpperCamelCase_ = Image.new("""RGB""" , (image_width, image_height) ) UpperCamelCase_ = img.load() # loop through the image-coordinates for image_x in range(a__ ): for image_y in range(a__ ): # determine the figure-coordinates based on the image-coordinates UpperCamelCase_ = figure_width / image_width * image_height UpperCamelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase_ = get_distance(a__ , a__ , a__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase_ = get_color_coded_rgb(a__ ) else: UpperCamelCase_ = get_black_and_white_rgb(a__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _A = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
122
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """openai-gpt""" __SCREAMING_SNAKE_CASE = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , _snake_case=4_0478 , _snake_case=512 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=1e-5 , _snake_case=0.02 , _snake_case="cls_index" , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=0.1 , **_snake_case , ) -> str: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = n_positions UpperCAmelCase = n_embd UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = afn UpperCAmelCase = resid_pdrop UpperCAmelCase = embd_pdrop UpperCAmelCase = attn_pdrop UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = summary_type UpperCAmelCase = summary_use_proj UpperCAmelCase = summary_activation UpperCAmelCase = summary_first_dropout UpperCAmelCase = summary_proj_to_labels super().__init__(**_snake_case )
152
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
152
1
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowerCamelCase_ = parse(importlib.metadata.version('''torch''')) def __lowercase ( __lowercase , __lowercase , __lowercase ) -> List[Any]: '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) _A = STR_OPERATION_TO_FUNC[operation] if isinstance(__lowercase , __lowercase ): _A = parse(importlib.metadata.version(__lowercase ) ) return operation(__lowercase , parse(__lowercase ) ) def __lowercase ( __lowercase , __lowercase ) -> Optional[Any]: '''simple docstring''' return compare_versions(__lowercase , __lowercase , __lowercase )
79
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = CycleDiffusionPipeline snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } snake_case = PipelineTesterMixin.required_optional_params - {'''latents'''} snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _A = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , num_train_timesteps=1000 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _A = CLIPTextModel(__UpperCAmelCase ) _A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _A = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any]=0 ): '''simple docstring''' _A = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) _A = image / 2 + 0.5 if str(__UpperCAmelCase ).startswith("mps" ): _A = torch.manual_seed(__UpperCAmelCase ) else: _A = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) _A = { "prompt": "An astronaut riding an elephant", "source_prompt": "An astronaut riding a horse", "image": image, "generator": generator, "num_inference_steps": 2, "eta": 0.1, "strength": 0.8, "guidance_scale": 3, "source_guidance_scale": 1, "output_type": "numpy", } return inputs def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = "cpu" # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = CycleDiffusionPipeline(**__UpperCAmelCase ) _A = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _A = self.get_dummy_inputs(__UpperCAmelCase ) _A = pipe(**__UpperCAmelCase ) _A = output.images _A = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) _A = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.get_dummy_components() for name, module in components.items(): if hasattr(__UpperCAmelCase , "half" ): _A = module.half() _A = CycleDiffusionPipeline(**__UpperCAmelCase ) _A = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _A = self.get_dummy_inputs(__UpperCAmelCase ) _A = pipe(**__UpperCAmelCase ) _A = output.images _A = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) _A = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCAmelCase ( self : Any ): '''simple docstring''' return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def lowerCAmelCase ( self : str ): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def lowerCAmelCase ( self : str ): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) _A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) _A = init_image.resize((512, 512) ) _A = "CompVis/stable-diffusion-v1-4" _A = DDIMScheduler.from_pretrained(__UpperCAmelCase , subfolder="scheduler" ) _A = CycleDiffusionPipeline.from_pretrained( __UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _A = "A black colored car" _A = "A blue colored car" _A = torch.manual_seed(0 ) _A = pipe( prompt=__UpperCAmelCase , source_prompt=__UpperCAmelCase , image=__UpperCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__UpperCAmelCase , output_type="np" , ) _A = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) _A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) _A = init_image.resize((512, 512) ) _A = "CompVis/stable-diffusion-v1-4" _A = DDIMScheduler.from_pretrained(__UpperCAmelCase , subfolder="scheduler" ) _A = CycleDiffusionPipeline.from_pretrained(__UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _A = "A black colored car" _A = "A blue colored car" _A = torch.manual_seed(0 ) _A = pipe( prompt=__UpperCAmelCase , source_prompt=__UpperCAmelCase , image=__UpperCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__UpperCAmelCase , output_type="np" , ) _A = output.images assert np.abs(image - expected_image ).max() < 2E-2
79
1
__UpperCamelCase : Tuple = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
51
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[str] = { "configuration_mobilenet_v2": [ "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileNetV2Config", "MobileNetV2OnnxConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = ["MobileNetV2FeatureExtractor"] __UpperCamelCase : List[str] = ["MobileNetV2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ "MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileNetV2ForImageClassification", "MobileNetV2ForSemanticSegmentation", "MobileNetV2Model", "MobileNetV2PreTrainedModel", "load_tf_weights_in_mobilenet_v2", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
1
'''simple docstring''' from __future__ import annotations import requests __lowercase : Union[str, Any] = set( '''approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'''.split() ) def lowercase_ ( _lowercase , _lowercase = 1 , _lowercase = "new" , _lowercase = None ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : Dict = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__UpperCamelCase ) - valid_terms ) ): lowerCamelCase_ : List[str] = F"""Invalid search term: {invalid_search_terms}""" raise ValueError(__UpperCamelCase ) lowerCamelCase_ : Optional[Any] = requests.get( F"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 429: raise requests.HTTPError lowerCamelCase_ : Dict = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__UpperCamelCase )} lowerCamelCase_ : List[str] = {} for id_ in range(__UpperCamelCase ): lowerCamelCase_ : Optional[int] = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
318
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str], _lowerCamelCase : Optional[Any], _lowerCamelCase : Union[str, Any]=13, _lowerCamelCase : Any=3, _lowerCamelCase : Optional[int]=2_24, _lowerCamelCase : str=30, _lowerCamelCase : Dict=4_00, _lowerCamelCase : Union[str, Any]=True, _lowerCamelCase : Any=None, _lowerCamelCase : Optional[Any]=True, _lowerCamelCase : Any=[0.5, 0.5, 0.5], _lowerCamelCase : List[str]=[0.5, 0.5, 0.5], ): '''simple docstring''' __A = size if size is not None else {'''height''': 18, '''width''': 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_normalize __A = image_mean __A = image_std def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : str = ViTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = EfficientFormerImageProcessorTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase, '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''size''' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' # Initialize image_processor __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_proc_tester, equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, Image.Image ) # Test not batched input __A = image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched __A = image_processor(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' # Initialize image_processor __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_proc_tester, equal_resolution=_lowerCamelCase, numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, np.ndarray ) # Test not batched input __A = image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched __A = image_processor(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' # Initialize image_processor __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_proc_tester, equal_resolution=_lowerCamelCase, torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, torch.Tensor ) # Test not batched input __A = image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched __A = image_processor(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), )
266
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = DebertaTokenizer UpperCamelCase_ : List[str] = True UpperCamelCase_ : int = DebertaTokenizerFast def _snake_case ( self : Optional[int] ) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A: Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] A: int = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A: Union[str, Any] = {'''unk_token''': '''[UNK]'''} A: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: '''simple docstring''' A: Optional[int] = '''lower newer''' A: str = '''lower newer''' return input_text, output_text def _snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A: str = self.get_tokenizer() A: Any = '''lower newer''' A: Dict = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokens + [tokenizer.unk_token] A: int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' A: str = self.get_tokenizer() A: List[str] = tokenizer('''Hello''' , '''World''' ) A: Union[str, Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Tuple ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Any = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) A: int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: int = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A: List[Any] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] A: Dict = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) A: Any = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) for seq in encoding['''input_ids''']] # fmt: off A: Any = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A: Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , SCREAMING_SNAKE_CASE_ ) for expected, decoded in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
334
1
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=16 , __a=36 , __a=6 , __a=6 , __a=6 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.0_2 , __a=3 , __a=4 , __a=None , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = embedding_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_hidden_groups __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def snake_case ( self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = AlbertModel(config=__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a ) __lowerCAmelCase = model(__a , token_type_ids=__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = AlbertForPreTraining(config=__a ) model.to(__a ) model.eval() __lowerCAmelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , sentence_order_label=__a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = AlbertForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = AlbertForQuestionAnswering(config=__a ) model.to(__a ) model.eval() __lowerCAmelCase = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = AlbertForSequenceClassification(__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = AlbertForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = self.num_choices __lowerCAmelCase = AlbertForMultipleChoice(config=__a ) model.to(__a ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[str] =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __UpperCAmelCase : List[Any] =( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Any =True def snake_case ( self , __a , __a , __a=False ): __lowerCAmelCase = super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class in get_values(__a ): __lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__a ) __lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) return inputs_dict def snake_case ( self ): __lowerCAmelCase = AlbertModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__a , hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*__a ) @slow def snake_case ( self ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AlbertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def snake_case ( self ): __lowerCAmelCase = AlbertModel.from_pretrained("albert-base-v2" ) __lowerCAmelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase = model(__a , attention_mask=__a )[0] __lowerCAmelCase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , __a ) __lowerCAmelCase = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4 ) )
57
'''simple docstring''' import warnings from functools import wraps from typing import Callable def UpperCamelCase_( snake_case : Callable ): '''simple docstring''' @wraps(snake_case ) def _inner_fn(*snake_case : Optional[int] , **snake_case : List[Any] ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , snake_case , ) return fn(*snake_case , **snake_case ) return _inner_fn
85
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class snake_case_( a__ ): __UpperCamelCase = '''naver-clova-ix/donut-base-finetuned-docvqa''' __UpperCamelCase = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) __UpperCamelCase = '''document_qa''' __UpperCamelCase = AutoProcessor __UpperCamelCase = VisionEncoderDecoderModel __UpperCamelCase = ['''image''', '''text'''] __UpperCamelCase = ['''text'''] def __init__( self : List[Any] , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : int ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : "Image" , UpperCamelCase_ : str ): lowerCAmelCase : Any = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' lowerCAmelCase : int = task_prompt.replace('''{user_input}''' , UpperCamelCase_ ) lowerCAmelCase : Any = self.pre_processor.tokenizer( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors='''pt''' ).input_ids lowerCAmelCase : Any = self.pre_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=UpperCamelCase_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=UpperCamelCase_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=UpperCamelCase_ , ).sequences def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int ): lowerCAmelCase : Optional[Any] = self.pre_processor.batch_decode(UpperCamelCase_ )[0] lowerCAmelCase : str = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) lowerCAmelCase : List[str] = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) lowerCAmelCase : Optional[int] = re.sub(r'''<.*?>''' , '''''' , UpperCamelCase_ , count=1 ).strip() # remove first task start token lowerCAmelCase : Any = self.pre_processor.tokenajson(UpperCamelCase_ ) return sequence["answer"]
314
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _snake_case : Union[str, Any] = get_tests_dir('fixtures') class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = mock.Mock() __lowerCAmelCase = 5_0_0 __lowerCAmelCase = {} __lowerCAmelCase = HTTPError __lowerCAmelCase = {} # Download this model to make sure it's in the cache. __lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowerCAmelCase__ ) as mock_head: __lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def lowercase ( cls : Any ) -> int: __lowerCAmelCase = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def lowercase ( cls : Union[str, Any] ) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def lowercase ( self : str ) -> int: __lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) __lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase__ , repo_id='test-feature-extractor' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def lowercase ( self : Dict ) -> Optional[int]: __lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) __lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase__ , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def lowercase ( self : Optional[int] ) -> List[str]: CustomFeatureExtractor.register_for_auto_class() __lowerCAmelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained( f"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
284
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __a ( __UpperCamelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Any = params lowercase__: List[Any] = np.array(lowerCAmelCase__ ) lowercase__: Optional[Any] = np.array([len(lowerCAmelCase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> List[Any]: '''simple docstring''' return len(self.lengths ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = self.params.max_model_input_size lowercase__: Dict = self.lengths > max_len logger.info(F'Splitting {sum(lowerCAmelCase__ )} too long sequences.' ) def divide_chunks(lowerCAmelCase__ , lowerCAmelCase__ ): return [l[i : i + n] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )] lowercase__: str = [] lowercase__: List[str] = [] if self.params.mlm: lowercase__ , lowercase__: str = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: lowercase__ , lowercase__: int = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowercase__: Optional[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: lowercase__: int = np.insert(lowerCAmelCase__ , 0 , lowerCAmelCase__ ) if sub_s[-1] != sep_id: lowercase__: Union[str, Any] = np.insert(lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowerCAmelCase__ ) new_tok_ids.extend(lowerCAmelCase__ ) new_lengths.extend([len(lowerCAmelCase__ ) for l in sub_seqs] ) lowercase__: Union[str, Any] = np.array(lowerCAmelCase__ ) lowercase__: Union[str, Any] = np.array(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Dict = len(self ) lowercase__: Union[str, Any] = self.lengths > 11 lowercase__: List[Any] = self.token_ids[indices] lowercase__: Optional[Any] = self.lengths[indices] lowercase__: List[str] = len(self ) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: lowercase__: List[str] = self.params.special_tok_ids['unk_token'] lowercase__: str = len(self ) lowercase__: Tuple = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowercase__: Any = (unk_occs / self.lengths) < 0.5 lowercase__: Tuple = self.token_ids[indices] lowercase__: str = self.lengths[indices] lowercase__: Dict = len(self ) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' if not self.params.is_master: return logger.info(F'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: Union[str, Any] = [t[0] for t in batch] lowercase__: Dict = [t[1] for t in batch] assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) # Max for paddings lowercase__: List[Any] = max(lowerCAmelCase__ ) # Pad token ids if self.params.mlm: lowercase__: Dict = self.params.special_tok_ids['pad_token'] else: lowercase__: Optional[Any] = self.params.special_tok_ids['unk_token'] lowercase__: int = [list(t.astype(lowerCAmelCase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowerCAmelCase__ )) for t in token_ids] assert len(tk_ ) == len(lowerCAmelCase__ ) assert all(len(lowerCAmelCase__ ) == max_seq_len_ for t in tk_ ) lowercase__: Tuple = torch.tensor(tk_ ) # (bs, max_seq_len_) lowercase__: Optional[Any] = torch.tensor(lowerCAmelCase__ ) # (bs) return tk_t, lg_t
196
0
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowerCAmelCase_ = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def lowerCamelCase_ ( _UpperCamelCase ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = list(s_dict.keys() ) for key in keys: snake_case_ : Dict = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case_ : str = new_key.replace(_UpperCamelCase , _UpperCamelCase ) print(f'''{key} -> {new_key}''' ) snake_case_ : Optional[int] = s_dict.pop(_UpperCamelCase ) return s_dict def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ , snake_case_ : List[Any] = emb.weight.shape snake_case_ : List[str] = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) snake_case_ : Tuple = emb.weight.data return lin_layer def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> bytes: """simple docstring""" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : Any = os.path.basename(_UpperCamelCase ) snake_case_ : List[Any] = url.split('''/''' )[-2] snake_case_ : Dict = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ) and not os.path.isfile(_UpperCamelCase ): raise RuntimeError(f'''{download_target} exists and is not a regular file''' ) if os.path.isfile(_UpperCamelCase ): snake_case_ : Union[str, Any] = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(_UpperCamelCase ) as source, open(_UpperCamelCase , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=_UpperCamelCase , unit_divisor=1_024 ) as loop: while True: snake_case_ : List[Any] = source.read(8_192 ) if not buffer: break output.write(_UpperCamelCase ) loop.update(len(_UpperCamelCase ) ) snake_case_ : List[Any] = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" if ".pt" not in checkpoint_path: snake_case_ : Any = _download(_MODELS[checkpoint_path] ) else: snake_case_ : str = torch.load(_UpperCamelCase , map_location='''cpu''' ) snake_case_ : Tuple = original_checkpoint['''dims'''] snake_case_ : Tuple = original_checkpoint['''model_state_dict'''] snake_case_ : Tuple = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(_UpperCamelCase ) rename_keys(_UpperCamelCase ) snake_case_ : str = True snake_case_ : Optional[Any] = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] snake_case_ : Tuple = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_UpperCamelCase , decoder_ffn_dim=_UpperCamelCase , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) snake_case_ : str = WhisperForConditionalGeneration(_UpperCamelCase ) snake_case_ , snake_case_ : Optional[Any] = model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) if len(_UpperCamelCase ) > 0 and not set(_UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f''' but all the following weights are missing {missing}''' ) if tie_embeds: snake_case_ : List[Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case_ : str = proj_out_weights model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
279
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCAmelCase_ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCAmelCase_ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class __lowerCAmelCase ( _a ): lowerCamelCase_ : int = VOCAB_FILES_NAMES lowerCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : Optional[Any] = BlenderbotSmallTokenizer def __init__(self , __magic_name__=None , __magic_name__=None , __magic_name__="<|endoftext|>" , __magic_name__="<|endoftext|>" , __magic_name__="<|endoftext|>" , __magic_name__=False , __magic_name__=True , **__magic_name__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=__magic_name__ , merges=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , ) , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , **__magic_name__ , ) snake_case_ : Optional[int] = add_prefix_space def lowerCamelCase (self , __magic_name__ , __magic_name__=None ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> List[int]: '''simple docstring''' snake_case_ : List[str] = [self.sep_token_id] snake_case_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
279
1
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class _lowerCamelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase_ = BartphoTokenizer UpperCAmelCase_ = False UpperCAmelCase_ = True def snake_case_ (self ) -> List[str]: super().setUp() UpperCamelCase = ["▁This", "▁is", "▁a", "▁t", "est"] UpperCamelCase = dict(zip(__a , range(len(__a ) ) ) ) UpperCamelCase = {"unk_token": "<unk>"} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"{token} {vocab_tokens[token]}\n" ) UpperCamelCase = BartphoTokenizer(__a , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ (self , **__a ) -> int: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__a ) def snake_case_ (self , __a ) -> str: UpperCamelCase = "This is a là test" UpperCamelCase = "This is a<unk><unk> test" return input_text, output_text def snake_case_ (self ) -> Dict: UpperCamelCase = BartphoTokenizer(__a , self.monolingual_vocab_file , **self.special_tokens_map ) UpperCamelCase = "This is a là test" UpperCamelCase = "▁This ▁is ▁a ▁l à ▁t est".split() UpperCamelCase = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
153
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE = 4_000_000 ): """simple docstring""" UpperCamelCase = [] UpperCamelCase , UpperCamelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase = b, a + b return sum(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f'''{solution() = }''')
153
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __a ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Tuple = DiTPipeline SCREAMING_SNAKE_CASE__ : Optional[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ : List[str] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } SCREAMING_SNAKE_CASE__ : List[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : str = False def snake_case_ ( self ): torch.manual_seed(0 ) _lowerCamelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn='gelu-approximate' , num_embeds_ada_norm=10_00 , norm_type='ada_norm_zero' , norm_elementwise_affine=a__ , ) _lowerCamelCase = AutoencoderKL() _lowerCamelCase = DDIMScheduler() _lowerCamelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def snake_case_ ( self , a__ , a__=0 ): if str(a__ ).startswith('mps' ): _lowerCamelCase = torch.manual_seed(a__ ) else: _lowerCamelCase = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCamelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case_ ( self ): _lowerCamelCase = 'cpu' _lowerCamelCase = self.get_dummy_components() _lowerCamelCase = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCamelCase = self.get_dummy_inputs(a__ ) _lowerCamelCase = pipe(**a__ ).images _lowerCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCamelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def snake_case_ ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def snake_case_ ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __a ( unittest.TestCase ): def snake_case_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _lowerCamelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _lowerCamelCase = pipe.get_label_ids(a__ ) _lowerCamelCase = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type='np' ).images for word, image in zip(a__ , a__ ): _lowerCamelCase = load_numpy( F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1e-2 def snake_case_ ( self ): _lowerCamelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _lowerCamelCase = ['vase', 'umbrella'] _lowerCamelCase = pipe.get_label_ids(a__ ) _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type='np' ).images for word, image in zip(a__ , a__ ): _lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' F'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1e-1
369
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: A_ : Any =None A_ : Optional[int] =logging.get_logger(__name__) A_ : List[str] ={"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} A_ : List[Any] ={ """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } A_ : Any ={ """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } A_ : Union[str, Any] ="""▁""" class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : str = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE__ : int = BarthezTokenizer def __init__( self , a__=None , a__=None , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( a__ , tokenizer_file=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , **a__ , ) _lowerCamelCase = vocab_file _lowerCamelCase = False if not self.vocab_file else True def snake_case_ ( self , a__ , a__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] _lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self , a__ , a__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(a__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase = os.path.join( a__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
80
0
import socket def A_ ( ): SCREAMING_SNAKE_CASE_: str = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE_: Tuple = socket.gethostname() SCREAMING_SNAKE_CASE_: str = 1_23_12 sock.connect((host, port) ) sock.send(B"Hello server!" ) with open("Received_file" , "wb" ) as out_file: print("File opened" ) print("Receiving data..." ) while True: SCREAMING_SNAKE_CASE_: List[Any] = sock.recv(10_24 ) if not data: break out_file.write(_UpperCAmelCase ) print("Successfully received the file" ) sock.close() print("Connection closed" ) if __name__ == "__main__": main()
13
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["speech"] def __init__( self : Tuple ,*lowercase_ : Tuple ,**lowercase_ : List[str] ): requires_backends(self ,['''speech'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["speech"] def __init__( self : Union[str, Any] ,*lowercase_ : List[str] ,**lowercase_ : Any ): requires_backends(self ,['''speech'''] )
106
0
import requests def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = {"Content-Type": "application/json"} __lowerCamelCase = requests.post(A__ , json={"""text""": message_body} , headers=A__ ) if response.status_code != 200: __lowerCamelCase = ( "Request to slack returned an error " f'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(A__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
369
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = 'segformer' def __init__( self: Union[str, Any] , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Any=4 , UpperCamelCase_: int=[2, 2, 2, 2] , UpperCamelCase_: Optional[Any]=[8, 4, 2, 1] , UpperCamelCase_: Union[str, Any]=[32, 64, 1_60, 2_56] , UpperCamelCase_: int=[7, 3, 3, 3] , UpperCamelCase_: Dict=[4, 2, 2, 2] , UpperCamelCase_: str=[1, 2, 5, 8] , UpperCamelCase_: List[str]=[4, 4, 4, 4] , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Optional[int]=1E-6 , UpperCamelCase_: Optional[int]=2_56 , UpperCamelCase_: Optional[Any]=2_55 , **UpperCamelCase_: List[Any] , ): super().__init__(**UpperCamelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , UpperCamelCase_ , ) __lowerCamelCase = num_channels __lowerCamelCase = num_encoder_blocks __lowerCamelCase = depths __lowerCamelCase = sr_ratios __lowerCamelCase = hidden_sizes __lowerCamelCase = patch_sizes __lowerCamelCase = strides __lowerCamelCase = mlp_ratios __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = classifier_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = drop_path_rate __lowerCamelCase = layer_norm_eps __lowerCamelCase = decoder_hidden_size __lowerCamelCase = kwargs.get("""reshape_last_stage""" , UpperCamelCase_ ) __lowerCamelCase = semantic_loss_ignore_index class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Any = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Union[str, Any] ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
0
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset a : Tuple = '''bert-base-cased''' a : List[Any] = '''google/pegasus-xsum''' a : List[Any] = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] a : Dict = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] a : str = '''patrickvonplaten/t5-tiny-random''' a : List[str] = '''sshleifer/bart-tiny-random''' a : int = '''sshleifer/tiny-mbart''' a : int = '''sshleifer/tiny-marian-en-de''' def _SCREAMING_SNAKE_CASE ( _lowercase : Path , _lowercase : list ) ->Optional[Any]: '''simple docstring''' a : str = "\n".join(_lowercase ) Path(_lowercase ).open("w" ).writelines(_lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple ) ->Optional[Any]: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(_lowercase , F"""{split}.source""" ) , _lowercase ) _dump_articles(os.path.join(_lowercase , F"""{split}.target""" ) , _lowercase ) return tmp_dir class __UpperCamelCase ( a__ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __a ( self , lowerCAmelCase__ ) -> Optional[Any]: a : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) a : int = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) a : Tuple = max(len(tokenizer.encode(lowerCAmelCase__ ) ) for a in ARTICLES ) a : Dict = max(len(tokenizer.encode(lowerCAmelCase__ ) ) for a in SUMMARIES ) a : int = 4 a : Dict = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated a, a : str = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. a : Union[str, Any] = SeqaSeqDataset( lowerCAmelCase__ , data_dir=lowerCAmelCase__ , type_path="train" , max_source_length=lowerCAmelCase__ , max_target_length=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , ) a : List[Any] = DataLoader(lowerCAmelCase__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place a : Optional[int] = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __a ( self , lowerCAmelCase__ ) -> Dict: a : Tuple = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) a : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) a : Optional[int] = max(len(tokenizer.encode(lowerCAmelCase__ ) ) for a in ARTICLES ) a : str = max(len(tokenizer.encode(lowerCAmelCase__ ) ) for a in SUMMARIES ) a : str = 4 a : Dict = LegacySeqaSeqDataset( lowerCAmelCase__ , data_dir=lowerCAmelCase__ , type_path="train" , max_source_length=20 , max_target_length=lowerCAmelCase__ , ) a : str = DataLoader(lowerCAmelCase__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __a ( self ) -> Dict: a : Union[str, Any] = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) a : List[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) a : Any = tmp_dir.joinpath("train.source" ).open().readlines() a : Any = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCAmelCase__ , lowerCAmelCase__ , 128 , lowerCAmelCase__ ) a : List[str] = {x.name for x in tmp_dir.iterdir()} a : Tuple = {x.name for x in save_dir.iterdir()} a : Tuple = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCAmelCase__ ) < len(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCAmelCase__ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def __a ( self ) -> int: if not FAIRSEQ_AVAILABLE: return a, a, a : List[str] = self._get_dataset(max_len=64 ) a : str = 64 a : Optional[int] = ds.make_dynamic_sampler(lowerCAmelCase__ , required_batch_size_multiple=lowerCAmelCase__ ) a : Dict = [len(lowerCAmelCase__ ) for x in batch_sampler] assert len(set(lowerCAmelCase__ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) # no dropped or added examples a : str = DataLoader(lowerCAmelCase__ , batch_sampler=lowerCAmelCase__ , collate_fn=ds.collate_fn , num_workers=2 ) a : Optional[Any] = [] a : Optional[int] = [] for batch in data_loader: a : int = batch["input_ids"].shape a : Dict = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple a : Tuple = np.product(batch["input_ids"].shape ) num_src_per_batch.append(lowerCAmelCase__ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCAmelCase__ ) assert num_src_per_batch[0] == max(lowerCAmelCase__ ) if failures: raise AssertionError(f"""too many tokens in {len(lowerCAmelCase__ )} batches""" ) def __a ( self ) -> Any: a, a, a : Optional[int] = self._get_dataset(max_len=512 ) a : Optional[int] = 2 a : List[str] = ds.make_sortish_sampler(lowerCAmelCase__ , shuffle=lowerCAmelCase__ ) a : Union[str, Any] = DataLoader(lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=ds.collate_fn , num_workers=2 ) a : Any = DataLoader(lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCAmelCase__ ) a : List[Any] = tokenizer.pad_token_id def count_pad_tokens(lowerCAmelCase__ , lowerCAmelCase__="input_ids" ): return [batch[k].eq(lowerCAmelCase__ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCAmelCase__ , k="labels" ) ) < sum(count_pad_tokens(lowerCAmelCase__ , k="labels" ) ) assert sum(count_pad_tokens(lowerCAmelCase__ ) ) < sum(count_pad_tokens(lowerCAmelCase__ ) ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__=1000 , lowerCAmelCase__=128 ) -> Dict: if os.getenv("USE_REAL_DATA" , lowerCAmelCase__ ): a : Tuple = "examples/seq2seq/wmt_en_ro" a : Optional[Any] = max_len * 2 * 64 if not Path(lowerCAmelCase__ ).joinpath("train.len" ).exists(): save_len_file(lowerCAmelCase__ , lowerCAmelCase__ ) else: a : Tuple = "examples/seq2seq/test_data/wmt_en_ro" a : Optional[int] = max_len * 4 save_len_file(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) a : Tuple = SeqaSeqDataset( lowerCAmelCase__ , data_dir=lowerCAmelCase__ , type_path="train" , max_source_length=lowerCAmelCase__ , max_target_length=lowerCAmelCase__ , n_obs=lowerCAmelCase__ , ) return ds, max_tokens, tokenizer def __a ( self ) -> Optional[Any]: a, a, a : Tuple = self._get_dataset() a : List[str] = set(DistributedSortishSampler(lowerCAmelCase__ , 256 , num_replicas=2 , rank=0 , add_extra_examples=lowerCAmelCase__ ) ) a : Dict = set(DistributedSortishSampler(lowerCAmelCase__ , 256 , num_replicas=2 , rank=1 , add_extra_examples=lowerCAmelCase__ ) ) assert idsa.intersection(lowerCAmelCase__ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __a ( self , lowerCAmelCase__ ) -> Dict: a : Optional[int] = AutoTokenizer.from_pretrained(lowerCAmelCase__ , use_fast=lowerCAmelCase__ ) if tok_name == MBART_TINY: a : Optional[Any] = SeqaSeqDataset( lowerCAmelCase__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) a : str = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: a : Any = SeqaSeqDataset( lowerCAmelCase__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) a : Optional[int] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCAmelCase__ ) == 1 if tok_name == BART_TINY else len(lowerCAmelCase__ ) == 0
105
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any]=3 , SCREAMING_SNAKE_CASE_ : Any=3_2 , SCREAMING_SNAKE_CASE_ : int=3 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_0 , SCREAMING_SNAKE_CASE_ : Dict=[1_0, 2_0, 3_0, 4_0] , SCREAMING_SNAKE_CASE_ : int=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : int="relu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE_ : List[str]=None , ): lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Optional[int] = image_size lowerCAmelCase_ : Optional[int] = num_channels lowerCAmelCase_ : Any = embeddings_size lowerCAmelCase_ : Dict = hidden_sizes lowerCAmelCase_ : Any = depths lowerCAmelCase_ : Optional[int] = is_training lowerCAmelCase_ : int = use_labels lowerCAmelCase_ : List[Any] = hidden_act lowerCAmelCase_ : Dict = num_labels lowerCAmelCase_ : Optional[int] = scope lowerCAmelCase_ : Tuple = len(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Union[str, Any] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : str ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : List[Any] = TFRegNetModel(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCAmelCase_ : int = self.num_labels lowerCAmelCase_ : int = TFRegNetForImageClassification(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : str = self.prepare_config_and_inputs() lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ ( lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () _SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : List[Any] = TFRegNetModelTester(self ) lowerCAmelCase_ : Tuple = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): super().test_keras_fit() @unittest.skip(reason='RegNet does not support input and output embeddings' ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ ,lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : int = model_class(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[Any] = [*signature.parameters.keys()] lowerCAmelCase_ : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): def check_hidden_states_output(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple ): lowerCAmelCase_ : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , training=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowerCAmelCase_ ,lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Optional[int] = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase_ : str = layer_type lowerCAmelCase_ : List[str] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : List[str] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ ,lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str={} ): lowerCAmelCase_ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) , msg=( 'Tuple and dict output are not equal. Difference:' F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: lowerCAmelCase_ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) lowerCAmelCase_ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : int = TFRegNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( ) -> List[str]: """simple docstring""" lowerCAmelCase_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : int = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Dict = prepare_img() lowerCAmelCase_ : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='tf' ) # forward pass lowerCAmelCase_ : List[str] = model(**SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) # verify the logits lowerCAmelCase_ : Optional[Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 )
224
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __snake_case = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __snake_case = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): A__ : Optional[int] ="""maskformer""" A__ : Tuple ={"""hidden_size""": """mask_feature_size"""} A__ : int =["""resnet""", """swin"""] A__ : Union[str, Any] =["""detr"""] def __init__( self : int , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[Dict] = None , UpperCAmelCase_ : Optional[Dict] = None , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : float = 20.0 , UpperCAmelCase_ : Optional[bool] = None , **UpperCAmelCase_ : Optional[int] , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k SCREAMING_SNAKE_CASE__ = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = backbone_config.pop('model_type' ) SCREAMING_SNAKE_CASE__ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE__ = config_class.from_dict(UpperCAmelCase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' F'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 SCREAMING_SNAKE_CASE__ = DetrConfig() else: # verify that the decoder is supported SCREAMING_SNAKE_CASE__ = ( decoder_config.pop('model_type' ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'Transformer Decoder {decoder_type} not supported, please use one of' F' {",".join(self.decoders_supported )}' ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = CONFIG_MAPPING[decoder_type] SCREAMING_SNAKE_CASE__ = config_class.from_dict(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = backbone_config SCREAMING_SNAKE_CASE__ = decoder_config # main feature dimension for the model SCREAMING_SNAKE_CASE__ = fpn_feature_size SCREAMING_SNAKE_CASE__ = mask_feature_size # initializer SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = init_xavier_std # Hungarian matcher && loss SCREAMING_SNAKE_CASE__ = cross_entropy_weight SCREAMING_SNAKE_CASE__ = dice_weight SCREAMING_SNAKE_CASE__ = mask_weight SCREAMING_SNAKE_CASE__ = use_auxiliary_loss SCREAMING_SNAKE_CASE__ = no_object_weight SCREAMING_SNAKE_CASE__ = output_auxiliary_logits SCREAMING_SNAKE_CASE__ = self.decoder_config.encoder_attention_heads SCREAMING_SNAKE_CASE__ = self.decoder_config.num_hidden_layers super().__init__(**UpperCAmelCase_ ) @classmethod def A_ ( cls : Dict , UpperCAmelCase_ : PretrainedConfig , UpperCAmelCase_ : PretrainedConfig , **UpperCAmelCase_ : str ): return cls( backbone_config=UpperCAmelCase_ , decoder_config=UpperCAmelCase_ , **UpperCAmelCase_ , ) def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE__ = self.decoder_config.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
169
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP __snake_case = False try: __snake_case = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class lowercase__ : def __init__( self : Optional[Any] , UpperCAmelCase_ : str = None , UpperCAmelCase_ : list = [] ): SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = choices SCREAMING_SNAKE_CASE__ = prompt if sys.platform == "win32": SCREAMING_SNAKE_CASE__ = '*' else: SCREAMING_SNAKE_CASE__ = '➔ ' def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , UpperCAmelCase_ ) else: forceWrite(self.choices[index] , UpperCAmelCase_ ) def A_ ( self : List[str] , UpperCAmelCase_ : int ): if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(UpperCAmelCase_ ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def A_ ( self : List[Any] , UpperCAmelCase_ : Direction , UpperCAmelCase_ : int = 1 ): SCREAMING_SNAKE_CASE__ = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCAmelCase_ ) move_cursor(UpperCAmelCase_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def A_ ( self : Optional[Any] ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def A_ ( self : List[Any] ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def A_ ( self : Dict ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def A_ ( self : Optional[Any] ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCAmelCase_ )] for number in range(10 )] ) def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ = int(chr(self.current_selection ) ) SCREAMING_SNAKE_CASE__ = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , UpperCAmelCase_ ) else: return else: return def A_ ( self : Optional[int] , UpperCAmelCase_ : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) SCREAMING_SNAKE_CASE__ = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCAmelCase_ ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: SCREAMING_SNAKE_CASE__ = int(builtins.input() ) except ValueError: SCREAMING_SNAKE_CASE__ = default_choice else: SCREAMING_SNAKE_CASE__ = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(UpperCAmelCase_ , '\n' ) return choice
169
1
def SCREAMING_SNAKE_CASE__ ( ) -> list[list[int]]: return [list(range(1000 - i ,-1000 - i ,-1 ) ) for i in range(1000 )] lowerCamelCase : List[Any] = generate_large_matrix() lowerCamelCase : Optional[int] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: assert all(row == sorted(lowercase ,reverse=lowercase ) for row in grid ) assert all(list(lowercase ) == sorted(lowercase ,reverse=lowercase ) for col in zip(*lowercase ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Tuple = 0 snake_case : List[Any] = len(lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: snake_case : Tuple = (left + right) // 2 snake_case : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: snake_case : List[Any] = mid + 1 else: snake_case : str = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Union[str, Any] = 0 snake_case : Dict = len(grid[0] ) for i in range(len(lowercase ) ): snake_case : Tuple = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase ) * len(grid[0] )) - total def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return len([number for row in grid for number in row if number < 0] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Dict = 0 for row in grid: for i, number in enumerate(lowercase ): if number < 0: total += len(lowercase ) - i break return total def SCREAMING_SNAKE_CASE__ ( ) -> None: from timeit import timeit print("""Running benchmarks""" ) snake_case : List[Any] = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): snake_case : int = timeit(f"""{func}(grid=grid)""" ,setup=lowercase ,number=500 ) print(f"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
124
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=True , A=9_9 , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> Dict: snake_case : Any = parent snake_case : List[Any] = batch_size snake_case : List[Any] = seq_length snake_case : Dict = is_training snake_case : List[str] = use_input_mask snake_case : List[str] = use_token_type_ids snake_case : Dict = use_labels snake_case : Optional[int] = vocab_size snake_case : Optional[int] = hidden_size snake_case : Optional[Any] = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Union[str, Any] = intermediate_size snake_case : List[Any] = hidden_act snake_case : int = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : List[Any] = max_position_embeddings snake_case : List[Any] = type_vocab_size snake_case : int = type_sequence_label_size snake_case : Optional[int] = initializer_range snake_case : Union[str, Any] = num_labels snake_case : List[str] = num_choices snake_case : Optional[int] = scope def UpperCAmelCase ( self ) -> int: snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Union[str, Any] = None if self.use_input_mask: snake_case : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Tuple = None if self.use_token_type_ids: snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Optional[int] = None snake_case : str = None snake_case : List[Any] = None if self.use_labels: snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : int = ids_tensor([self.batch_size] , self.num_choices ) snake_case : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ) -> Any: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> List[str]: snake_case : Tuple = NystromformerModel(config=A ) model.to(A ) model.eval() snake_case : str = model(A , attention_mask=A , token_type_ids=A ) snake_case : List[str] = model(A , token_type_ids=A ) snake_case : Any = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Union[str, Any]: snake_case : List[Any] = NystromformerForMaskedLM(config=A ) model.to(A ) model.eval() snake_case : List[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Optional[Any]: snake_case : List[Any] = NystromformerForQuestionAnswering(config=A ) model.to(A ) model.eval() snake_case : Dict = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Tuple: snake_case : Optional[int] = self.num_labels snake_case : Union[str, Any] = NystromformerForSequenceClassification(A ) model.to(A ) model.eval() snake_case : Union[str, Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> int: snake_case : Union[str, Any] = self.num_labels snake_case : Union[str, Any] = NystromformerForTokenClassification(config=A ) model.to(A ) model.eval() snake_case : int = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : List[Any] = self.num_choices snake_case : Union[str, Any] = NystromformerForMultipleChoice(config=A ) model.to(A ) model.eval() snake_case : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[str] = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Any = config_and_inputs snake_case : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _snake_case = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> str: snake_case : Dict = NystromformerModelTester(self ) snake_case : str = ConfigTester(self , config_class=A , hidden_size=3_7 ) def UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Any: snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : int = type self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Dict: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCAmelCase ( self ) -> Any: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @slow def UpperCAmelCase ( self ) -> Optional[int]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Any = NystromformerModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Dict: snake_case : Optional[int] = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : int = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): snake_case : Optional[int] = model(A )[0] snake_case : List[Any] = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , A ) snake_case : Union[str, Any] = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Union[str, Any] = """the [MASK] of Belgium is Brussels""" snake_case : Any = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : Union[str, Any] = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : int = tokenizer(A , return_tensors="""pt""" ) with torch.no_grad(): snake_case : Optional[int] = model(encoding.input_ids ).logits snake_case : str = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(A ) , """capital""" )
124
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> tuple[int, int]: """simple docstring""" if b == 0: return (1, 0) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =extended_euclid(_UpperCamelCase , a % b ) _SCREAMING_SNAKE_CASE =a // b return (y, x - k * y) def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> int: """simple docstring""" ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =extended_euclid(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =na * na _SCREAMING_SNAKE_CASE =ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: """simple docstring""" ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =extended_euclid(_UpperCamelCase , _UpperCamelCase ) if b < 0: _SCREAMING_SNAKE_CASE =(b % n + n) % n return b def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =invert_modulo(_UpperCamelCase , _UpperCamelCase ), invert_modulo(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =na * na _SCREAMING_SNAKE_CASE =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
350
'''simple docstring''' from math import factorial def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : float ) -> float: """simple docstring""" if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _SCREAMING_SNAKE_CASE =(prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _SCREAMING_SNAKE_CASE =float(factorial(_UpperCamelCase ) ) coefficient /= factorial(_UpperCamelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.7_5))
114
0
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _a = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _a = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _a = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = len([g for position, g in enumerate(__lowerCamelCase ) if g == main_target[position]] ) return (item, float(__lowerCamelCase )) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = random.randint(0, len(__lowerCamelCase ) - 1 ) UpperCAmelCase_ : Optional[Any] = parent_a[:random_slice] + parent_a[random_slice:] UpperCAmelCase_ : Optional[int] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = list(__lowerCamelCase ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: UpperCAmelCase_ : List[str] = random.choice(__lowerCamelCase ) return "".join(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): UpperCAmelCase_ : Optional[Any] = [] # Generate more children proportionally to the fitness score. UpperCAmelCase_ : Tuple = int(parent_a[1] * 100 ) + 1 UpperCAmelCase_ : int = 10 if child_n >= 10 else child_n for _ in range(__lowerCamelCase ): UpperCAmelCase_ : Dict = population_score[random.randint(0, __lowerCamelCase )][0] UpperCAmelCase_ , UpperCAmelCase_ : int = crossover(parent_a[0], __lowerCamelCase ) # Append new string to the population list. pop.append(mutate(__lowerCamelCase, __lowerCamelCase ) ) pop.append(mutate(__lowerCamelCase, __lowerCamelCase ) ) return pop def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: UpperCAmelCase_ : List[str] = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(__lowerCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. UpperCAmelCase_ : List[str] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: UpperCAmelCase_ : List[Any] = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(__lowerCamelCase ) # Generate random starting population. UpperCAmelCase_ : Dict = [] for _ in range(__lowerCamelCase ): population.append("".join([random.choice(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__lowerCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. UpperCAmelCase_ : Optional[Any] = [evaluate(__lowerCamelCase, __lowerCamelCase ) for item in population] # Check if there is a matching evolution. UpperCAmelCase_ : Any = sorted(__lowerCamelCase, key=lambda __lowerCamelCase : x[1], reverse=__lowerCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. UpperCAmelCase_ : Tuple = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__lowerCamelCase ) # Normalize population score to be between 0 and 1. UpperCAmelCase_ : Dict = [ (item, score / len(__lowerCamelCase )) for item, score in population_score ] # This is selection for i in range(__lowerCamelCase ): population.extend(select(population_score[int(__lowerCamelCase )], __lowerCamelCase, __lowerCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__lowerCamelCase ) > N_POPULATION: break if __name__ == "__main__": _a = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) _a = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) _a , _a , _a = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
61
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a_ : def __init__( self : Any , lowercase : Optional[int] , lowercase : List[Any]=13 , lowercase : int=10 , lowercase : str=3 , lowercase : List[Any]=2 , lowercase : Dict=2 , lowercase : List[str]=2 , lowercase : int=True , lowercase : List[Any]=True , lowercase : Union[str, Any]=32 , lowercase : Optional[int]=5 , lowercase : List[Any]=4 , lowercase : List[str]=37 , lowercase : Union[str, Any]="gelu" , lowercase : List[Any]=0.1 , lowercase : Any=0.1 , lowercase : Optional[Any]=10 , lowercase : Union[str, Any]=0.02 , lowercase : Optional[int]=0.9 , lowercase : List[str]=None , ): """simple docstring""" lowercase_ :Optional[int] = parent lowercase_ :str = batch_size lowercase_ :Optional[int] = image_size lowercase_ :Tuple = num_channels lowercase_ :Optional[Any] = patch_size lowercase_ :List[str] = tubelet_size lowercase_ :List[Any] = num_frames lowercase_ :Dict = is_training lowercase_ :Optional[int] = use_labels lowercase_ :Optional[int] = hidden_size lowercase_ :List[str] = num_hidden_layers lowercase_ :List[str] = num_attention_heads lowercase_ :int = intermediate_size lowercase_ :Any = hidden_act lowercase_ :Tuple = hidden_dropout_prob lowercase_ :str = attention_probs_dropout_prob lowercase_ :Any = type_sequence_label_size lowercase_ :int = initializer_range lowercase_ :Dict = mask_ratio lowercase_ :Optional[int] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase_ :str = (image_size // patch_size) ** 2 lowercase_ :Union[str, Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase_ :Optional[Any] = int(mask_ratio * self.seq_length ) def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase_ :Union[str, Any] = None if self.use_labels: lowercase_ :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ :Optional[int] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ): """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) def lowercase__ ( self : Optional[int] , lowercase : Dict , lowercase : Dict , lowercase : Optional[int] ): """simple docstring""" lowercase_ :int = VideoMAEModel(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :Optional[int] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : str , lowercase : str , lowercase : List[str] , lowercase : int ): """simple docstring""" lowercase_ :Union[str, Any] = VideoMAEForPreTraining(lowercase ) model.to(lowercase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase_ :Optional[int] = torch.ones((self.num_masks,) ) lowercase_ :List[str] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase_ :Dict = mask.expand(self.batch_size , -1 ).bool() lowercase_ :str = model(lowercase , lowercase ) # model only returns predictions for masked patches lowercase_ :Any = mask.sum().item() lowercase_ :Tuple = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :int = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ :Dict = config_and_inputs lowercase_ :Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __A = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __A = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :List[Any] = VideoMAEModelTester(self ) lowercase_ :Dict = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def lowercase__ ( self : List[Any] , lowercase : List[str] , lowercase : List[str] , lowercase : List[str]=False ): """simple docstring""" lowercase_ :Tuple = copy.deepcopy(lowercase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase_ :Tuple = torch.ones((self.model_tester.num_masks,) ) lowercase_ :Tuple = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase_ :Optional[int] = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase_ :Dict = bool_masked_pos.to(lowercase ) if return_labels: if model_class in [ *get_values(lowercase ), ]: lowercase_ :Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def lowercase__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def lowercase__ ( self : Dict ): """simple docstring""" pass def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ , lowercase_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Dict = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ :List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ , lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Any = model_class(lowercase ) lowercase_ :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ :List[str] = [*signature.parameters.keys()] lowercase_ :str = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase ) @slow def lowercase__ ( self : Dict ): """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :List[Any] = VideoMAEModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" if not self.has_attentions: pass else: lowercase_ , lowercase_ :Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ :Union[str, Any] = True for model_class in self.all_model_classes: lowercase_ :Dict = self.model_tester.seq_length - self.model_tester.num_masks lowercase_ :Optional[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase_ :Union[str, Any] = True lowercase_ :List[Any] = False lowercase_ :Optional[int] = True lowercase_ :Union[str, Any] = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :List[Any] = model(**self._prepare_for_class(lowercase , lowercase ) ) lowercase_ :str = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ :Union[str, Any] = True lowercase_ :Optional[Any] = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :Optional[Any] = model(**self._prepare_for_class(lowercase , lowercase ) ) lowercase_ :Union[str, Any] = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase_ :List[str] = len(lowercase ) # Check attention is always last and order is fine lowercase_ :Optional[Any] = True lowercase_ :Dict = True lowercase_ :Dict = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :List[Any] = model(**self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + 1 , len(lowercase ) ) lowercase_ :int = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase__ ( self : int ): """simple docstring""" def check_hidden_states_output(lowercase : Union[str, Any] , lowercase : Dict , lowercase : Any ): lowercase_ :Any = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :Optional[int] = model(**self._prepare_for_class(lowercase , lowercase ) ) lowercase_ :Optional[int] = outputs.hidden_states lowercase_ :Any = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase ) , lowercase ) lowercase_ :List[str] = self.model_tester.seq_length - self.model_tester.num_masks lowercase_ :List[Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase_ , lowercase_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Optional[int] = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ :List[Any] = True check_hidden_states_output(lowercase , lowercase , lowercase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : List[str] ): """simple docstring""" pass def UpperCAmelCase_ ( ): lowercase_ :Dict = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" ,filename="eating_spaghetti.npy" ,repo_type="dataset" ) lowercase_ :Optional[Any] = np.load(__lowerCamelCase ) return list(__lowerCamelCase ) @require_torch @require_vision class a_ ( unittest.TestCase ): @cached_property def lowercase__ ( self : Any ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Union[str, Any] = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( lowercase ) lowercase_ :List[str] = self.default_image_processor lowercase_ :List[str] = prepare_video() lowercase_ :int = image_processor(lowercase , return_tensors="pt" ).to(lowercase ) # forward pass with torch.no_grad(): lowercase_ :Dict = model(**lowercase ) # verify the logits lowercase_ :Dict = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowercase ) lowercase_ :int = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) ) @slow def lowercase__ ( self : str ): """simple docstring""" lowercase_ :List[Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(lowercase ) lowercase_ :Dict = self.default_image_processor lowercase_ :Union[str, Any] = prepare_video() lowercase_ :List[str] = image_processor(lowercase , return_tensors="pt" ).to(lowercase ) # add boolean mask, indicating which patches to mask lowercase_ :int = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) lowercase_ :List[str] = torch.load(lowercase ) # forward pass with torch.no_grad(): lowercase_ :List[Any] = model(**lowercase ) # verify the logits lowercase_ :Union[str, Any] = torch.Size([1, 1_408, 1_536] ) lowercase_ :List[Any] = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=lowercase ) self.assertEqual(outputs.logits.shape , lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowercase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase_ :Any = torch.tensor([0.51_42] , device=lowercase ) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase_ :Union[str, Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=lowercase ).to( lowercase ) with torch.no_grad(): lowercase_ :Tuple = model(**lowercase ) lowercase_ :Optional[Any] = torch.tensor(torch.tensor([0.64_69] ) , device=lowercase ) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4 ) )
223
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowercase__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[int] ): warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
358
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowercase__ : int = logging.get_logger('''transformers.models.encodec''') lowercase__ : Optional[int] = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } lowercase__ : Tuple = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } lowercase__ : List[str] = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } lowercase__ : List[Any] = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } lowercase__ : int = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } lowercase__ : int = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowercase__ : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowercase__ : int = [] lowercase__ : Dict = [] def __lowercase ( _a , _a , _a , _a , _a ): for attribute in key.split('''.''' ): snake_case_ : Optional[Any] = getattr(_a , _a ) if weight_type is not None: snake_case_ : Union[str, Any] = getattr(_a , _a ).shape else: snake_case_ : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case_ : Dict = value elif weight_type == "weight_g": snake_case_ : List[Any] = value elif weight_type == "weight_v": snake_case_ : List[Any] = value elif weight_type == "bias": snake_case_ : Optional[Any] = value elif weight_type == "running_mean": snake_case_ : str = value elif weight_type == "running_var": snake_case_ : List[Any] = value elif weight_type == "num_batches_tracked": snake_case_ : Tuple = value elif weight_type == "weight_ih_l0": snake_case_ : Dict = value elif weight_type == "weight_hh_l0": snake_case_ : str = value elif weight_type == "bias_ih_l0": snake_case_ : str = value elif weight_type == "bias_hh_l0": snake_case_ : Dict = value elif weight_type == "weight_ih_l1": snake_case_ : Optional[int] = value elif weight_type == "weight_hh_l1": snake_case_ : Dict = value elif weight_type == "bias_ih_l1": snake_case_ : List[str] = value elif weight_type == "bias_hh_l1": snake_case_ : Optional[int] = value else: snake_case_ : Dict = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def __lowercase ( _a , _a ): for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case_, snake_case_ : Tuple = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __lowercase ( _a , _a , _a ): snake_case_ : str = [] if model_name == "encodec_24khz" or "encodec_32khz": snake_case_ : Any = MAPPING_24K elif model_name == "encodec_48khz": snake_case_ : int = MAPPING_48K else: raise ValueError(f"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(_a , _a ): logger.info(f"{name} was ignored" ) continue snake_case_ : Optional[Any] = False for key, mapped_key in MAPPING.items(): if "*" in key: snake_case_, snake_case_ : List[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: snake_case_ : Any = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue snake_case_ : str = True if "*" in mapped_key: snake_case_ : Optional[Any] = name.split(_a )[0].split('''.''' )[-2] snake_case_ : str = mapped_key.replace('''*''' , _a ) if "weight_g" in name: snake_case_ : int = '''weight_g''' elif "weight_v" in name: snake_case_ : List[str] = '''weight_v''' elif "weight_ih_l0" in name: snake_case_ : List[Any] = '''weight_ih_l0''' elif "weight_hh_l0" in name: snake_case_ : Tuple = '''weight_hh_l0''' elif "bias_ih_l0" in name: snake_case_ : Any = '''bias_ih_l0''' elif "bias_hh_l0" in name: snake_case_ : Dict = '''bias_hh_l0''' elif "weight_ih_l1" in name: snake_case_ : str = '''weight_ih_l1''' elif "weight_hh_l1" in name: snake_case_ : List[Any] = '''weight_hh_l1''' elif "bias_ih_l1" in name: snake_case_ : List[Any] = '''bias_ih_l1''' elif "bias_hh_l1" in name: snake_case_ : List[Any] = '''bias_hh_l1''' elif "bias" in name: snake_case_ : Optional[int] = '''bias''' elif "weight" in name: snake_case_ : str = '''weight''' elif "running_mean" in name: snake_case_ : Optional[int] = '''running_mean''' elif "running_var" in name: snake_case_ : int = '''running_var''' elif "num_batches_tracked" in name: snake_case_ : Optional[int] = '''num_batches_tracked''' else: snake_case_ : Optional[Any] = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(f"Unused weights: {unused_weights}" ) @torch.no_grad() def __lowercase ( _a , _a , _a , _a=None , _a=None , ): if config_path is not None: snake_case_ : Optional[int] = EncodecConfig.from_pretrained(_a ) else: snake_case_ : str = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": snake_case_ : Union[str, Any] = [8, 5, 4, 4] snake_case_ : Optional[int] = [2.2] snake_case_ : Any = 64 snake_case_ : Dict = 32_000 snake_case_ : int = 2_048 snake_case_ : int = False snake_case_ : Optional[int] = False snake_case_ : Optional[int] = False elif model_name == "encodec_48khz": snake_case_ : List[str] = [8, 5, 4, 2] snake_case_ : List[Any] = [3.0, 6.0, 12.0, 24.0] snake_case_ : Any = 48_000 snake_case_ : List[str] = 2 snake_case_ : int = False snake_case_ : str = '''time_group_norm''' snake_case_ : int = True snake_case_ : List[str] = 1.0 snake_case_ : Tuple = 0.01 else: raise ValueError(f"Unknown model name: {model_name}" ) snake_case_ : Any = EncodecModel(_a ) snake_case_ : str = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_a ) snake_case_ : Optional[Any] = torch.load(_a ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights snake_case_ : Union[str, Any] = original_checkpoint['''best_state'''] recursively_load_weights(_a , _a , _a ) model.save_pretrained(_a ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(_a ) model.push_to_hub(_a ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
155
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : Optional[Any] = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _A : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
202
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _A : List[Any] = logging.get_logger(__name__) class a__ ( a_ ): __lowerCAmelCase = ["""pixel_values"""] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = True , **_a , ): super().__init__(**_a ) lowercase : Optional[Any] = size if size is not None else {"shortest_edge": 224} lowercase : List[Any] = get_size_dict(_a , default_to_square=_a ) lowercase : str = crop_size if crop_size is not None else {"height": 256, "width": 256} lowercase : List[str] = get_size_dict(_a , param_name="crop_size" ) lowercase : int = do_resize lowercase : Optional[int] = size lowercase : str = resample lowercase : List[Any] = do_rescale lowercase : Union[str, Any] = rescale_factor lowercase : Optional[int] = do_center_crop lowercase : Union[str, Any] = crop_size lowercase : Optional[Any] = do_flip_channel_order def __magic_name__ ( self , _a , _a , _a = PIL.Image.BILINEAR , _a = None , **_a , ): lowercase : List[Any] = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) lowercase : Union[str, Any] = get_resize_output_image_size(_a , size=size["shortest_edge"] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __magic_name__ ( self , _a , _a , _a = None , **_a , ): lowercase : str = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(_a , size=(size["height"], size["width"]) , data_format=_a , **_a ) def __magic_name__ ( self , _a , _a , _a = None , **_a , ): return rescale(_a , scale=_a , data_format=_a , **_a ) def __magic_name__ ( self , _a , _a = None ): return flip_channel_order(_a , data_format=_a ) def __magic_name__ ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ): lowercase : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowercase : Tuple = resample if resample is not None else self.resample lowercase : List[str] = do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : Optional[int] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_a , default_to_square=_a ) lowercase : int = crop_size if crop_size is not None else self.crop_size lowercase : Any = get_size_dict(_a , param_name="crop_size" ) lowercase : int = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. lowercase : Any = [to_numpy_array(_a ) for image in images] if do_resize: lowercase : Optional[int] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: lowercase : str = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: lowercase : Union[str, Any] = [self.rescale(image=_a , scale=_a ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: lowercase : int = [self.flip_channel_order(image=_a ) for image in images] lowercase : int = [to_channel_dimension_format(_a , _a ) for image in images] lowercase : Optional[Any] = {"pixel_values": images} return BatchFeature(data=_a , tensor_type=_a ) def __magic_name__ ( self , _a , _a = None ): lowercase : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_a ) != len(_a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(_a ): lowercase : Tuple = target_sizes.numpy() lowercase : List[Any] = [] for idx in range(len(_a ) ): lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=_a ) lowercase : Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_a ) else: lowercase : str = logits.argmax(dim=1 ) lowercase : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
202
1
"""simple docstring""" import string def lowercase__ ( snake_case_ :str ): __UpperCAmelCase = '''''' for i in sequence: __UpperCAmelCase = ord(UpperCamelCase__ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def lowercase__ ( snake_case_ :str ): __UpperCAmelCase = string.ascii_letters __UpperCAmelCase = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(UpperCamelCase__ )] if c in letters else c for c in sequence ) def lowercase__ ( ): from timeit import timeit print('''Running performance benchmarks...''' ) __UpperCAmelCase = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(F'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=UpperCamelCase__ )} seconds''' ) print(F'''> atbash(): {timeit("atbash(printable)" , setup=UpperCamelCase__ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
352
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=_lowerCAmelCase ): a__ : Union[str, Any] = ["onnx"] def __init__( self : Any , *_lowercase : Dict , **_lowercase : Any ): requires_backends(self , ['''onnx'''] ) @classmethod def a ( cls : str , *_lowercase : List[Any] , **_lowercase : int ): requires_backends(cls , ['''onnx'''] ) @classmethod def a ( cls : Union[str, Any] , *_lowercase : List[str] , **_lowercase : Optional[int] ): requires_backends(cls , ['''onnx'''] )
86
0
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def snake_case_ (): UpperCAmelCase = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 2_0, '''a ''' * 3_0, '''b ''' * 7], } UpperCAmelCase = Dataset.from_dict(_a ) return dataset class _a ( __a ): def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = get_dataset() UpperCAmelCase = make_duplicate_clusters(lowercase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = get_dataset() UpperCAmelCase , UpperCAmelCase = deduplicate_dataset(lowercase ) self.assertEqual(len(lowercase ) , 2 ) print(lowercase ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , lowercase )
34
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,) -> List[str]: if config_name_or_path is None: lowerCamelCase : Any = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: lowerCamelCase : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCamelCase : Any = question_encoder_name_or_path lowerCamelCase : str = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. lowerCamelCase : List[Any] = RagConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[Any] = gen_config lowerCamelCase : Optional[Any] = question_encoder_config lowerCamelCase : List[Any] = model_class.from_pretrained_question_encoder_generator( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,config=_SCREAMING_SNAKE_CASE ) rag_model.save_pretrained(_SCREAMING_SNAKE_CASE ) # Sanity check. model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) # Save tokenizers. lowerCamelCase : List[str] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) lowerCamelCase : int = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE__ : Optional[Any] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
48
0
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , A_ , A_=13 , A_=32 , A_=3 , A_=4 , A_=[10, 20, 30, 40] , A_=[2, 2, 3, 2] , A_=True , A_=True , A_=37 , A_="gelu" , A_=10 , A_=0.02 , A_=["stage2", "stage3", "stage4"] , A_=[2, 3, 4] , A_=None , ) -> Optional[int]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = num_stages UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = initializer_range UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = scope def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ) -> Any: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" UpperCamelCase = ConvNextVaModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> int: """simple docstring""" UpperCamelCase = ConvNextVaForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = ConvNextVaBackbone(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = ConvNextVaBackbone(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Optional[int] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __lowercase : int = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) __lowercase : List[Any] = False __lowercase : int = False __lowercase : Optional[Any] = False __lowercase : List[str] = False __lowercase : str = False def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = ConvNextVaModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" pass def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_with_labels() UpperCamelCase = True if model_class.__name__ in [ *get_values(A_ ), *get_values(A_ ), ]: continue UpperCamelCase = model_class(A_ ) model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_with_labels() UpperCamelCase = False UpperCamelCase = True if ( model_class.__name__ in [*get_values(A_ ), *get_values(A_ )] or not model_class.supports_gradient_checkpointing ): continue UpperCamelCase = model_class(A_ ) model.to(A_ ) model.gradient_checkpointing_enable() model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> int: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(A_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = ConvNextVaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A ( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> int: """simple docstring""" return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = preprocessor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([0.9996, 0.1966, -0.4386] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
110
from __future__ import annotations class lowercase : def __init__( self , A_ , A_ ) -> Any: """simple docstring""" UpperCamelCase , UpperCamelCase = text, pattern UpperCamelCase , UpperCamelCase = len(A_ ), len(A_ ) def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __UpperCamelCase ( self ) -> list[int]: """simple docstring""" # searches pattern in text and returns index positions UpperCamelCase = [] for i in range(self.textLen - self.patLen + 1 ): UpperCamelCase = self.mismatch_in_text(A_ ) if mismatch_index == -1: positions.append(A_ ) else: UpperCamelCase = self.match_in_pattern(self.text[mismatch_index] ) UpperCamelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _UpperCAmelCase : Union[str, Any] = "ABAABA" _UpperCAmelCase : Any = "AB" _UpperCAmelCase : Dict = BoyerMooreSearch(text, pattern) _UpperCAmelCase : Optional[int] = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
110
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 1 @register_to_config def __init__( self : Any , _lowerCAmelCase : int = 2_000 , _lowerCAmelCase : float = 0.15 , _lowerCAmelCase : float = 0.01 , _lowerCAmelCase : float = 1348.0 , _lowerCAmelCase : float = 1E-5 , _lowerCAmelCase : int = 1 , ): # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE_ = sigma_max # setable values SCREAMING_SNAKE_CASE_ = None self.set_sigmas(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : Optional[int] = None ): return sample def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : float = None , _lowerCAmelCase : Union[str, torch.device] = None ): SCREAMING_SNAKE_CASE_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps SCREAMING_SNAKE_CASE_ = torch.linspace(1 , _lowerCAmelCase , _lowerCAmelCase , device=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : float = None , _lowerCAmelCase : float = None , _lowerCAmelCase : float = None ): SCREAMING_SNAKE_CASE_ = sigma_min if sigma_min is not None else self.config.sigma_min SCREAMING_SNAKE_CASE_ = sigma_max if sigma_max is not None else self.config.sigma_max SCREAMING_SNAKE_CASE_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) SCREAMING_SNAKE_CASE_ = torch.exp(torch.linspace(math.log(_lowerCAmelCase ) , math.log(_lowerCAmelCase ) , _lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : int , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : Optional[torch.Generator] = None , _lowerCAmelCase : bool = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) SCREAMING_SNAKE_CASE_ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) SCREAMING_SNAKE_CASE_ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda SCREAMING_SNAKE_CASE_ = timesteps.to(self.discrete_sigmas.device ) SCREAMING_SNAKE_CASE_ = self.discrete_sigmas[timesteps].to(sample.device ) SCREAMING_SNAKE_CASE_ = self.get_adjacent_sigma(_lowerCAmelCase , _lowerCAmelCase ).to(sample.device ) SCREAMING_SNAKE_CASE_ = torch.zeros_like(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods SCREAMING_SNAKE_CASE_ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): SCREAMING_SNAKE_CASE_ = diffusion.unsqueeze(-1 ) SCREAMING_SNAKE_CASE_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of SCREAMING_SNAKE_CASE_ = randn_tensor( sample.shape , layout=sample.layout , generator=_lowerCAmelCase , device=sample.device , dtype=sample.dtype ) SCREAMING_SNAKE_CASE_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? SCREAMING_SNAKE_CASE_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_lowerCAmelCase , prev_sample_mean=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : Optional[torch.Generator] = None , _lowerCAmelCase : bool = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction SCREAMING_SNAKE_CASE_ = randn_tensor(sample.shape , layout=sample.layout , generator=_lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr SCREAMING_SNAKE_CASE_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() SCREAMING_SNAKE_CASE_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() SCREAMING_SNAKE_CASE_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 SCREAMING_SNAKE_CASE_ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term SCREAMING_SNAKE_CASE_ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): SCREAMING_SNAKE_CASE_ = step_size.unsqueeze(-1 ) SCREAMING_SNAKE_CASE_ = sample + step_size * model_output SCREAMING_SNAKE_CASE_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCAmelCase ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples SCREAMING_SNAKE_CASE_ = timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE_ = self.discrete_sigmas.to(original_samples.device )[timesteps] SCREAMING_SNAKE_CASE_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_lowerCAmelCase ) * sigmas[:, None, None, None] ) SCREAMING_SNAKE_CASE_ = noise + original_samples return noisy_samples def __len__( self : Tuple ): return self.config.num_train_timesteps
225
from __future__ import annotations lowerCamelCase__ : Optional[int] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCamelCase__ : List[Any] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) for i in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = -1 for j in range(i + 1 , __UpperCAmelCase ): if arr[i] < arr[j]: SCREAMING_SNAKE_CASE_ = arr[j] break result.append(__UpperCAmelCase ) return result def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE_ = [] for i, outer in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = -1 for inner in arr[i + 1 :]: if outer < inner: SCREAMING_SNAKE_CASE_ = inner break result.append(__UpperCAmelCase ) return result def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [-1] * arr_size for index in reversed(range(__UpperCAmelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: SCREAMING_SNAKE_CASE_ = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCamelCase__ : List[str] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
225
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) A = torch.device('''cpu''') def __A ( ) -> Any: __a : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a : Dict = Image.open(requests.get(a_ , stream=a_).raw) return im def __A ( a_ :List[str]) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03e00, 2.11_07e00, -2.08_11e00, 8.86_85e-01, 2.43_60e-01]) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36e-01, 2.34_78e-01, -1.69_63e00, -1.73_81e00, -8.63_37e-01]) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68e-01, -4.74_29e-01, -1.08_97e00, -1.02_48e00, 3.55_23e-02]) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30e-01, 2.42_11e-01, -6.01_85e-01, -8.27_89e-01, -6.04_46e-02]) def __A ( a_ :str , a_ :Optional[int] , a_ :str) -> List[Any]: __a : Union[str, Any] = dct.pop(a_) __a : List[Any] = val def __A ( a_ :str) -> List[Any]: __a : List[str] = [] for k in state_dict.keys(): __a : Optional[Any] = k if ".pwconv" in k: __a : List[str] = k_new.replace('''.pwconv''' , '''.point_wise_conv''') if ".dwconv" in k: __a : int = k_new.replace('''.dwconv''' , '''.depth_wise_conv''') if ".Proj." in k: __a : Union[str, Any] = k_new.replace('''.Proj.''' , '''.proj.''') if "patch_embed" in k_new: __a : str = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''') if "network" in k_new: __a : int = k_new.split('''.''') if ls[2].isdigit(): __a : Optional[int] = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:]) else: __a : Any = k_new.replace('''network''' , '''swiftformer.encoder.network''') rename_keys.append((k, k_new)) return rename_keys @torch.no_grad() def __A ( a_ :Optional[Any] , a_ :Union[str, Any] , a_ :str) -> Dict: __a : Tuple = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __a : Optional[Any] = 10_00 __a : str = '''huggingface/label-files''' __a : List[Any] = '''imagenet-1k-id2label.json''' __a : Tuple = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) __a : Optional[int] = {int(a_): v for k, v in idalabel.items()} __a : List[Any] = idalabel __a : int = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __a : str = [3, 3, 6, 4] __a : Union[str, Any] = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": __a : str = [3, 3, 9, 6] __a : Dict = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": __a : int = [4, 3, 10, 5] __a : str = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": __a : Optional[Any] = [4, 4, 12, 6] __a : Tuple = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https'''): __a : Union[str, Any] = torch.hub.load_state_dict_from_url(a_ , map_location='''cpu''' , check_hash=a_) else: __a : Tuple = torch.load(a_ , map_location='''cpu''') __a : Union[str, Any] = checkpoint __a : Any = create_rename_keys(a_) for rename_key_src, rename_key_dest in rename_keys: rename_key(a_ , a_ , a_) # load HuggingFace model __a : Dict = SwiftFormerForImageClassification(a_).eval() hf_model.load_state_dict(a_) # prepare test inputs __a : Optional[Any] = prepare_img() __a : Dict = ViTImageProcessor.from_pretrained('''preprocessor_config''') __a : int = processor(images=a_ , return_tensors='''pt''') # compare outputs from both models __a : List[str] = get_expected_output(a_) __a : str = hf_model(inputs['''pixel_values''']).logits assert hf_logits.shape == torch.Size([1, 10_00]) assert torch.allclose(hf_logits[0, 0:5] , a_ , atol=1e-3) Path(a_).mkdir(exist_ok=a_) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""") hf_model.save_pretrained(a_) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') A = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
188
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) A = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def __A ( a_ :List[Any]) -> List[Any]: __a : List[Any] = {} state_dict.pop('''pixel_mean''' , a_) state_dict.pop('''pixel_std''' , a_) __a : List[Any] = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __a : int = key.replace(a_ , a_) if re.match(a_ , a_): __a : Optional[Any] = int(re.match(a_ , a_).group(2)) if layer_nb == 0: __a : Any = key.replace('''layers.0''' , '''proj_in''') elif layer_nb == 1: __a : Dict = key.replace('''layers.1''' , '''layers.0''') elif layer_nb == 2: __a : Optional[int] = key.replace('''layers.2''' , '''proj_out''') __a : int = value __a : Union[str, Any] = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def __A ( a_ :Optional[int] , a_ :Optional[Any] , a_ :Dict , a_ :Optional[int]="ybelkada/segment-anything") -> Dict: __a : Dict = hf_hub_download(a_ , F"""checkpoints/{model_name}.pth""") if "sam_vit_b" in model_name: __a : List[str] = SamConfig() elif "sam_vit_l" in model_name: __a : List[Any] = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __a : List[Any] = SamConfig( vision_config=a_ , ) elif "sam_vit_h" in model_name: __a : List[str] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __a : Optional[int] = SamConfig( vision_config=a_ , ) __a : int = torch.load(a_ , map_location='''cpu''') __a : Tuple = replace_keys(a_) __a : Optional[int] = SamImageProcessor() __a : Any = SamProcessor(image_processor=a_) __a : Any = SamModel(a_) hf_model.load_state_dict(a_) __a : Dict = hf_model.to('''cuda''') __a : Tuple = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' __a : str = Image.open(requests.get(a_ , stream=a_).raw).convert('''RGB''') __a : Tuple = [[[4_00, 6_50]]] __a : Tuple = [[1]] __a : Tuple = processor(images=np.array(a_) , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : str = hf_model(**a_) __a : Optional[int] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 __a : Any = processor( images=np.array(a_) , input_points=a_ , input_labels=a_ , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : Optional[int] = hf_model(**a_) __a : Optional[int] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 __a : str = ((75, 2_75, 17_25, 8_50),) __a : List[str] = processor(images=np.array(a_) , input_boxes=a_ , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : Any = hf_model(**a_) __a : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. __a : int = [[[4_00, 6_50], [8_00, 6_50]]] __a : Dict = [[1, 1]] __a : Optional[Any] = processor( images=np.array(a_) , input_points=a_ , input_labels=a_ , return_tensors='''pt''').to('''cuda''') with torch.no_grad(): __a : int = hf_model(**a_) __a : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": A = argparse.ArgumentParser() A = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) A = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
188
1
"""simple docstring""" from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _snake_case : str = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" _snake_case : List[str] = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" _snake_case : Union[str, Any] = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def A__ ( UpperCamelCase , UpperCamelCase ): return float((preds == labels).mean() ) def A__ ( UpperCamelCase , UpperCamelCase ): A = simple_accuracy(UpperCamelCase , UpperCamelCase ) A = float(fa_score(y_true=UpperCamelCase , y_pred=UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def A__ ( UpperCamelCase , UpperCamelCase ): A = float(pearsonr(UpperCamelCase , UpperCamelCase )[0] ) A = float(spearmanr(UpperCamelCase , UpperCamelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase ( self :Union[str, Any] ): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), "references": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def lowerCamelCase ( self :str , __UpperCamelCase :List[str] , __UpperCamelCase :str ): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(A_ , A_ )} elif self.config_name == "stsb": return pearson_and_spearman(A_ , A_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(A_ , A_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(A_ , A_ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" )
292
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_euler' ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_euler' ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe( [prompt] , generator=A_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=A_ , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
222
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase__ = '''pt''' elif is_tf_available(): lowerCAmelCase__ = '''tf''' else: lowerCAmelCase__ = '''jax''' class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Optional[Any] =PerceiverTokenizer a : str =False def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self ): """simple docstring""" return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def lowercase__ ( self , **snake_case__ ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__=False , snake_case__=20 , snake_case__=5 ): """simple docstring""" lowerCAmelCase : Optional[int] = [] for i in range(len(snake_case__ ) ): try: lowerCAmelCase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=snake_case__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase : Optional[Any] = list(filter(lambda snake_case__ : re.match(r"^[ a-zA-Z]+$" , t[1] ) , snake_case__ ) ) lowerCAmelCase : List[Any] = list(filter(lambda snake_case__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=snake_case__ ) , snake_case__ ) ) if max_length is not None and len(snake_case__ ) > max_length: lowerCAmelCase : Optional[int] = toks[:max_length] if min_length is not None and len(snake_case__ ) < min_length and len(snake_case__ ) > 0: while len(snake_case__ ) < min_length: lowerCAmelCase : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase : Tuple = [t[0] for t in toks] # Ensure consistency lowerCAmelCase : Union[str, Any] = tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) if " " not in output_txt and len(snake_case__ ) > 1: lowerCAmelCase : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=snake_case__ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=snake_case__ ) ) if with_prefix_space: lowerCAmelCase : int = " " + output_txt lowerCAmelCase : str = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) return output_txt, output_ids def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.perceiver_tokenizer lowerCAmelCase : Optional[Any] = "Unicode €." lowerCAmelCase : List[Any] = tokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , snake_case__ ) # decoding lowerCAmelCase : Tuple = tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , "[CLS]Unicode €.[SEP]" ) lowerCAmelCase : Optional[int] = tokenizer("e è é ê ë" ) lowerCAmelCase : Any = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , snake_case__ ) # decoding lowerCAmelCase : Optional[int] = tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.perceiver_tokenizer lowerCAmelCase : Union[str, Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowerCAmelCase : int = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on lowerCAmelCase : int = tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) if FRAMEWORK != "jax": lowerCAmelCase : Tuple = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(snake_case__ , snake_case__ ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.perceiver_tokenizer lowerCAmelCase : Dict = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCAmelCase : Optional[Any] = tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , snake_case__ ) self.assertIn("attention_mask" , snake_case__ ) self.assertNotIn("decoder_input_ids" , snake_case__ ) self.assertNotIn("decoder_attention_mask" , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.perceiver_tokenizer lowerCAmelCase : Optional[int] = [ "Summary of the text.", "Another summary.", ] lowerCAmelCase : Tuple = tokenizer( text_target=snake_case__ , max_length=32 , padding="max_length" , truncation=snake_case__ , return_tensors=snake_case__ ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : Union[str, Any] = " He is very happy, UNwant\u00E9d,running" lowerCAmelCase : str = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) tokenizer.save_pretrained(snake_case__ ) lowerCAmelCase : List[Any] = tokenizer.__class__.from_pretrained(snake_case__ ) lowerCAmelCase : Optional[Any] = after_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) shutil.rmtree(snake_case__ ) lowerCAmelCase : Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase : Any = tempfile.mkdtemp() lowerCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowerCAmelCase : int = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowerCAmelCase : List[Any] = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) tokenizer.save_pretrained(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(snake_case__ ) lowerCAmelCase : Optional[Any] = after_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCAmelCase : Tuple = tokenizer.__class__.from_pretrained(snake_case__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(snake_case__ ) with open(os.path.join(snake_case__ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: lowerCAmelCase : Dict = json.load(snake_case__ ) with open(os.path.join(snake_case__ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: lowerCAmelCase : Tuple = json.load(snake_case__ ) lowerCAmelCase : Tuple = [f"""<extra_id_{i}>""" for i in range(125 )] lowerCAmelCase : Any = added_tokens_extra_ids + [ "an_additional_special_token" ] lowerCAmelCase : List[str] = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(snake_case__ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case__ , snake_case__ ) with open(os.path.join(snake_case__ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case__ , snake_case__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase : Optional[Any] = tokenizer_class.from_pretrained( snake_case__ , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase : int = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=snake_case__ )] lowerCAmelCase : List[str] = tokenizer_class.from_pretrained( snake_case__ , additional_special_tokens=snake_case__ , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.get_tokenizers(fast=snake_case__ , do_lower_case=snake_case__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase : Tuple = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] lowerCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_string(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ )
133
"""simple docstring""" import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) lowerCAmelCase : Tuple = parser.parse_args() return args.f def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = {} lowerCAmelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE , "all_results.json" ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , "r" ) as f: lowerCAmelCase : str = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f"""can't find {path}""" ) return results def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" @classmethod def lowercase__ ( cls ): """simple docstring""" lowerCAmelCase : Any = tempfile.mkdtemp() lowerCAmelCase : List[Any] = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase : Optional[int] = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def lowercase__ ( cls ): """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() lowerCAmelCase : int = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) lowerCAmelCase : Dict = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowerCAmelCase : List[str] = get_results(snake_case__ ) self.assertLess(result["perplexity"] , 100 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : Any = get_results(snake_case__ ) self.assertLess(result["perplexity"] , 42 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase : Optional[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : int = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : str = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() lowerCAmelCase : List[str] = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : Optional[Any] = get_results(snake_case__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 28 ) self.assertGreaterEqual(result["eval_exact"] , 28 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : List[Any] = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : Tuple = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : str = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_rouge1"] , 10 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : int = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_bleu"] , 30 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "translation_no_trainer" ) ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Any = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : int = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) lowerCAmelCase : Dict = get_results(snake_case__ ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "image_classification_no_trainer" ) ) )
133
1
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase_ (A : List[Any] , A : str , A : int , A : int , A : Optional[Any] ): # Load configuration defined in the metadata file with open(A ) as metadata_file: snake_case__ : List[str] = json.load(A ) snake_case__ : Optional[Any] = LukeConfig(use_entity_aware_attention=A , **metadata['model_config'] ) # Load in the weights from the checkpoint_path snake_case__ : int = torch.load(A , map_location='cpu' ) # Load the entity vocab file snake_case__ : int = load_entity_vocab(A ) snake_case__ : Dict = RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks snake_case__ : Any = AddedToken('<ent>' , lstrip=A , rstrip=A ) snake_case__ : Dict = AddedToken('<ent2>' , lstrip=A , rstrip=A ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(A ) with open(os.path.join(A , LukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(A , A ) snake_case__ : Any = LukeTokenizer.from_pretrained(A ) # Initialize the embeddings of the special tokens snake_case__ : Optional[Any] = state_dict['embeddings.word_embeddings.weight'] snake_case__ : Dict = word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) snake_case__ : Tuple = word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) snake_case__ : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case__ : Tuple = F'''encoder.layer.{layer_index}.attention.self.''' snake_case__ : int = state_dict[prefix + matrix_name] snake_case__ : Optional[Any] = state_dict[prefix + matrix_name] snake_case__ : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case__ : Union[str, Any] = state_dict['entity_embeddings.entity_embeddings.weight'] snake_case__ : Optional[int] = entity_emb[entity_vocab['[MASK]']] snake_case__ : Tuple = LukeModel(config=A ).eval() snake_case__ , snake_case__ : Optional[Any] = model.load_state_dict(A , strict=A ) if not (len(A ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'''Missing keys {", ".join(A )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' F''' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}''' ) # Check outputs snake_case__ : Any = LukeTokenizer.from_pretrained(A , task='entity_classification' ) snake_case__ : int = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) snake_case__ : str = (3_9, 4_2) snake_case__ : int = tokenizer(A , entity_spans=[span] , add_prefix_space=A , return_tensors='pt' ) snake_case__ : Any = model(**A ) # Verify word hidden states if model_size == "large": snake_case__ : Optional[int] = torch.Size((1, 4_2, 1_0_2_4) ) snake_case__ : Any = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base snake_case__ : str = torch.Size((1, 4_2, 7_6_8) ) snake_case__ : Any = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": snake_case__ : Tuple = torch.Size((1, 1, 1_0_2_4) ) snake_case__ : List[str] = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base snake_case__ : Tuple = torch.Size((1, 1, 7_6_8) ) snake_case__ : Tuple = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , A , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(A ) ) model.save_pretrained(A ) def lowercase_ (A : Optional[int] ): snake_case__ : Union[str, Any] = {} with open(A , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(A ): snake_case__ , snake_case__ : Optional[int] = line.rstrip().split('\t' ) snake_case__ : Union[str, Any] = index return entity_vocab if __name__ == "__main__": a_ :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) a_ :str = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
277
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ :int = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :int = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
277
1
def A ( ) -> int: return [ a * b * (1_000 - a - b) for a in range(1 ,999 ) for b in range(a_ ,999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"{solution() = }")
354
import itertools import math def A ( a_ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(a_ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A ( ) -> Tuple: __UpperCamelCase : Optional[Any] =2 while True: if is_prime(a_ ): yield num num += 1 def A ( a_ = 10_001 ) -> int: return next(itertools.islice(prime_generator() ,nth - 1 ,a_ ) ) if __name__ == "__main__": print(f"{solution() = }")
245
0
'''simple docstring''' _A : List[str] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(UpperCamelCase , UpperCamelCase ): lowerCamelCase__ : Dict = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(UpperCamelCase ) lowerCamelCase__ : int = """""".join(bin(UpperCamelCase )[2:].zfill(8 ) for byte in data ) lowerCamelCase__ : int = len(UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later lowerCamelCase__ : Optional[Any] = b"""=""" * ((6 - len(UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(UpperCamelCase ) % 6) else: lowerCamelCase__ : Optional[int] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(UpperCamelCase ) , 6 ) ).encode() + padding ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(UpperCamelCase , UpperCamelCase ) and not isinstance(UpperCamelCase , UpperCamelCase ): lowerCamelCase__ : int = ( """argument should be a bytes-like object or ASCII string, """ f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(UpperCamelCase , UpperCamelCase ): try: lowerCamelCase__ : str = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) lowerCamelCase__ : Tuple = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowerCamelCase__ : Any = encoded_data[:-padding] lowerCamelCase__ : int = """""".join( bin(B64_CHARSET.index(UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowerCamelCase__ : Tuple = """""".join( bin(B64_CHARSET.index(UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) lowerCamelCase__ : List[Any] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(UpperCamelCase ) , 8 ) ] return bytes(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
41
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) self.check_model_type(_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = {}, {} if padding is not None: UpperCAmelCase_ : List[str] = padding if truncation is not None: UpperCAmelCase_ : Tuple = truncation if top_k is not None: UpperCAmelCase_ : Dict = top_k return preprocess_params, {}, postprocess_params def __call__( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> int: if isinstance(_UpperCamelCase , (Image.Image, str) ) and isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = {'image': image, 'question': question} else: UpperCAmelCase_ : List[str] = image UpperCAmelCase_ : Optional[Any] = super().__call__(_UpperCamelCase , **_UpperCamelCase ) return results def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = load_image(inputs['image'] ) UpperCAmelCase_ : Dict = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=_UpperCamelCase , truncation=_UpperCamelCase ) UpperCAmelCase_ : int = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework ) model_inputs.update(_UpperCamelCase ) return model_inputs def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Any = self.model(**_UpperCamelCase ) return model_outputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=5 ) -> str: if top_k > self.model.config.num_labels: UpperCAmelCase_ : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ : List[str] = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ : str = probs.topk(_UpperCamelCase ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) UpperCAmelCase_ : Optional[Any] = scores.tolist() UpperCAmelCase_ : Tuple = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase )]
29
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ) if weight_type is not None: _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ).shape else: _UpperCamelCase : int = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase : Optional[Any] = value elif weight_type == "weight_g": _UpperCamelCase : int = value elif weight_type == "weight_v": _UpperCamelCase : Optional[Any] = value elif weight_type == "bias": _UpperCamelCase : int = value else: _UpperCamelCase : Any = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[str] = [] _UpperCamelCase : Any = fairseq_model.state_dict() _UpperCamelCase : Union[str, Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase : List[str] = False if "conv_layers" in name: load_conv_layer( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,hf_model.config.feat_extract_norm == "group" ,) _UpperCamelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase : Dict = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCamelCase : Any = True if "*" in mapped_key: _UpperCamelCase : Dict = name.split(lowercase_ )[0].split("." )[-2] _UpperCamelCase : Any = mapped_key.replace("*" ,lowercase_ ) if "weight_g" in name: _UpperCamelCase : str = "weight_g" elif "weight_v" in name: _UpperCamelCase : Any = "weight_v" elif "weight" in name: _UpperCamelCase : List[str] = "weight" elif "bias" in name: _UpperCamelCase : List[Any] = "bias" else: _UpperCamelCase : str = None set_recursively(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Any = full_name.split("conv_layers." )[-1] _UpperCamelCase : Optional[Any] = name.split("." ) _UpperCamelCase : Union[str, Any] = int(items[0] ) _UpperCamelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Dict = SEWConfig() if is_finetuned: _UpperCamelCase : Dict = model.wav_encoder.wav_model.cfg else: _UpperCamelCase : List[Any] = model.cfg _UpperCamelCase : Any = fs_config.conv_bias _UpperCamelCase : str = eval(fs_config.conv_feature_layers ) _UpperCamelCase : Any = [x[0] for x in conv_layers] _UpperCamelCase : List[Any] = [x[1] for x in conv_layers] _UpperCamelCase : Union[str, Any] = [x[2] for x in conv_layers] _UpperCamelCase : str = "gelu" _UpperCamelCase : List[str] = "layer" if fs_config.extractor_mode == "layer_norm" else "group" _UpperCamelCase : Optional[int] = 0.0 _UpperCamelCase : Dict = fs_config.activation_fn.name _UpperCamelCase : Any = fs_config.encoder_embed_dim _UpperCamelCase : Optional[Any] = 0.02 _UpperCamelCase : str = fs_config.encoder_ffn_embed_dim _UpperCamelCase : int = 1e-5 _UpperCamelCase : Optional[int] = fs_config.encoder_layerdrop _UpperCamelCase : str = fs_config.encoder_attention_heads _UpperCamelCase : Tuple = fs_config.conv_pos_groups _UpperCamelCase : List[str] = fs_config.conv_pos _UpperCamelCase : Optional[int] = len(lowercase_ ) _UpperCamelCase : Union[str, Any] = fs_config.encoder_layers _UpperCamelCase : Union[str, Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _UpperCamelCase : List[str] = model.cfg _UpperCamelCase : List[str] = fs_config.final_dropout _UpperCamelCase : Optional[Any] = fs_config.layerdrop _UpperCamelCase : int = fs_config.activation_dropout _UpperCamelCase : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _UpperCamelCase : int = fs_config.attention_dropout _UpperCamelCase : int = fs_config.dropout_input _UpperCamelCase : List[Any] = fs_config.dropout _UpperCamelCase : List[Any] = fs_config.mask_channel_length _UpperCamelCase : List[str] = fs_config.mask_channel_prob _UpperCamelCase : Optional[Any] = fs_config.mask_length _UpperCamelCase : Optional[int] = fs_config.mask_prob _UpperCamelCase : List[str] = "Wav2Vec2FeatureExtractor" _UpperCamelCase : Optional[Any] = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=True ) -> str: """simple docstring""" if is_finetuned: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _UpperCamelCase : str = SEWConfig.from_pretrained(lowercase_ ) else: _UpperCamelCase : Optional[int] = convert_config(model[0] ,lowercase_ ) _UpperCamelCase : List[str] = model[0].eval() _UpperCamelCase : Union[str, Any] = True if config.feat_extract_norm == "layer" else False _UpperCamelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=lowercase_ ,return_attention_mask=lowercase_ ,) if is_finetuned: if dict_path: _UpperCamelCase : Union[str, Any] = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase : List[str] = target_dict.pad_index _UpperCamelCase : Optional[int] = target_dict.bos_index _UpperCamelCase : Any = target_dict.pad_index _UpperCamelCase : List[Any] = target_dict.bos_index _UpperCamelCase : List[str] = target_dict.eos_index _UpperCamelCase : Optional[Any] = len(target_dict.symbols ) _UpperCamelCase : List[Any] = os.path.join(lowercase_ ,"vocab.json" ) if not os.path.isdir(lowercase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase_ ) ) return os.makedirs(lowercase_ ,exist_ok=lowercase_ ) with open(lowercase_ ,"w" ,encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices ,lowercase_ ) _UpperCamelCase : Optional[Any] = WavaVecaCTCTokenizer( lowercase_ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=lowercase_ ,) _UpperCamelCase : List[str] = WavaVecaProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) _UpperCamelCase : List[Any] = SEWForCTC(lowercase_ ) else: _UpperCamelCase : int = SEWModel(lowercase_ ) feature_extractor.save_pretrained(lowercase_ ) recursively_load_weights(lowercase_ ,lowercase_ ,lowercase_ ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowerCamelCase__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
310
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(lowercase_ ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase_ ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase_ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ["pixel_values"] def __init__( self : List[str] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : List[Any] , ) -> None: super().__init__(**__a ) _UpperCamelCase : Union[str, Any] = size if size is not None else {"shortest_edge": 256} _UpperCamelCase : List[Any] = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : int = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCamelCase : Optional[Any] = get_size_dict(__a , param_name="crop_size" ) _UpperCamelCase : str = do_resize _UpperCamelCase : Dict = size _UpperCamelCase : int = do_center_crop _UpperCamelCase : int = crop_size _UpperCamelCase : Optional[Any] = resample _UpperCamelCase : Dict = do_rescale _UpperCamelCase : Any = rescale_factor _UpperCamelCase : Any = offset _UpperCamelCase : Union[str, Any] = do_normalize _UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __SCREAMING_SNAKE_CASE ( self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: _UpperCamelCase : Any = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" in size: _UpperCamelCase : str = get_resize_output_image_size(__a , size["shortest_edge"] , default_to_square=__a ) elif "height" in size and "width" in size: _UpperCamelCase : Any = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] , ) -> np.ndarray: _UpperCamelCase : List[Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Union[int, float] , __a : bool = True , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> Optional[Any]: _UpperCamelCase : Any = image.astype(np.floataa ) if offset: _UpperCamelCase : Dict = image - (scale / 2) return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Union[str, Any] , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. _UpperCamelCase : Optional[Any] = to_numpy_array(__a ) if do_resize: _UpperCamelCase : Any = self.resize(image=__a , size=__a , resample=__a ) if do_center_crop: _UpperCamelCase : Dict = self.center_crop(__a , size=__a ) if do_rescale: _UpperCamelCase : Union[str, Any] = self.rescale(image=__a , scale=__a , offset=__a ) if do_normalize: _UpperCamelCase : int = self.normalize(image=__a , mean=__a , std=__a ) _UpperCamelCase : str = to_channel_dimension_format(__a , __a ) return image def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: _UpperCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Optional[int] = resample if resample is not None else self.resample _UpperCamelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : str = offset if offset is not None else self.offset _UpperCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : str = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCamelCase : int = size if size is not None else self.size _UpperCamelCase : Tuple = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : Optional[int] = get_size_dict(__a , param_name="crop_size" ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) _UpperCamelCase : Union[str, Any] = make_batched(__a ) _UpperCamelCase : Optional[Any] = [ [ self._preprocess_image( image=__a , do_resize=__a , size=__a , resample=__a , do_center_crop=__a , crop_size=__a , do_rescale=__a , rescale_factor=__a , offset=__a , do_normalize=__a , image_mean=__a , image_std=__a , data_format=__a , ) for img in video ] for video in videos ] _UpperCamelCase : List[Any] = {"pixel_values": videos} return BatchFeature(data=__a , tensor_type=__a )
310
1
def __UpperCamelCase ( lowerCAmelCase__ : int = 5_0_0_0_0_0_0_0 ): __a : int = set() __a : str = int((limit - 2_4) ** (1 / 2) ) __a : int = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowerCAmelCase__ ) ) ) for primea in primes: __a : Union[str, Any] = primea * primea for primea in primes: __a : Union[str, Any] = primea * primea * primea if square + cube >= limit - 1_6: break for primea in primes: __a : int = primea * primea * primea * primea __a : Union[str, Any] = square + cube + tetr if total >= limit: break ret.add(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
216
def __UpperCamelCase ( lowerCAmelCase__ : str ): if n_term == "": return [] __a : list = [] for temp in range(int(lowerCAmelCase__ ) ): series.append(f"1/{temp + 1}" if series else '''1''' ) return series if __name__ == "__main__": lowercase__ =input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
216
1
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib SCREAMING_SNAKE_CASE__ = threading.Lock() SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } SCREAMING_SNAKE_CASE__ = logging.WARNING SCREAMING_SNAKE_CASE__ = True def lowercase__ ( )-> Optional[int]: UpperCamelCase = os.getenv("""TRANSFORMERS_VERBOSITY""" , __UpperCamelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def lowercase__ ( )-> str: return __name__.split(""".""" )[0] def lowercase__ ( )-> logging.Logger: return logging.getLogger(_get_library_name() ) def lowercase__ ( )-> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return UpperCamelCase = logging.StreamHandler() # Set sys.stderr as stream. UpperCamelCase = sys.stderr.flush # Apply our default configuration to the library root logger. UpperCamelCase = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) UpperCamelCase = False def lowercase__ ( )-> None: global _default_handler with _lock: if not _default_handler: return UpperCamelCase = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) UpperCamelCase = None def lowercase__ ( )-> Tuple: return log_levels def lowercase__ ( __UpperCamelCase = None )-> logging.Logger: if name is None: UpperCamelCase = _get_library_name() _configure_library_root_logger() return logging.getLogger(__UpperCamelCase ) def lowercase__ ( )-> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def lowercase__ ( __UpperCamelCase )-> None: _configure_library_root_logger() _get_library_root_logger().setLevel(__UpperCamelCase ) def lowercase__ ( )-> Tuple: return set_verbosity(__UpperCamelCase ) def lowercase__ ( )-> Union[str, Any]: return set_verbosity(__UpperCamelCase ) def lowercase__ ( )-> Optional[int]: return set_verbosity(__UpperCamelCase ) def lowercase__ ( )-> Tuple: return set_verbosity(__UpperCamelCase ) def lowercase__ ( )-> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def lowercase__ ( )-> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def lowercase__ ( __UpperCamelCase )-> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__UpperCamelCase ) def lowercase__ ( __UpperCamelCase )-> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__UpperCamelCase ) def lowercase__ ( )-> None: _configure_library_root_logger() UpperCamelCase = False def lowercase__ ( )-> None: _configure_library_root_logger() UpperCamelCase = True def lowercase__ ( )-> None: UpperCamelCase = _get_library_root_logger().handlers for handler in handlers: UpperCamelCase = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(__UpperCamelCase ) def lowercase__ ( )-> None: UpperCamelCase = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__UpperCamelCase ) def lowercase__ ( self , *__UpperCamelCase , **__UpperCamelCase )-> Tuple: UpperCamelCase = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , __UpperCamelCase ) if no_advisory_warnings: return self.warning(*__UpperCamelCase , **__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = warning_advice @functools.lru_cache(__UpperCamelCase ) def lowercase__ ( self , *__UpperCamelCase , **__UpperCamelCase )-> Optional[Any]: self.warning(*__UpperCamelCase , **__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = warning_once class a_ : def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: # pylint: disable=unused-argument """simple docstring""" UpperCamelCase = args[0] if args else None def __iter__( self ) -> List[Any]: """simple docstring""" return iter(self._iterator ) def __getattr__( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" def empty_fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> Dict: """simple docstring""" return self def __exit__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return class a_ : def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: return EmptyTqdm(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() SCREAMING_SNAKE_CASE__ = _tqdm_cls() def lowercase__ ( )-> bool: global _tqdm_active return bool(_tqdm_active ) def lowercase__ ( )-> Optional[Any]: global _tqdm_active UpperCamelCase = True hf_hub_utils.enable_progress_bars() def lowercase__ ( )-> str: global _tqdm_active UpperCamelCase = False hf_hub_utils.disable_progress_bars()
183
'''simple docstring''' from PIL import Image def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Image: def brightness(__UpperCamelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 SCREAMING_SNAKE_CASE__ = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
183
1
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = SwinConfig() __UpperCamelCase = swin_name.split("""_""" ) __UpperCamelCase = name_split[1] __UpperCamelCase = int(name_split[4] ) __UpperCamelCase = int(name_split[3][-1] ) if model_size == "tiny": __UpperCamelCase = 96 __UpperCamelCase = (2, 2, 6, 2) __UpperCamelCase = (3, 6, 12, 24) elif model_size == "small": __UpperCamelCase = 96 __UpperCamelCase = (2, 2, 18, 2) __UpperCamelCase = (3, 6, 12, 24) elif model_size == "base": __UpperCamelCase = 128 __UpperCamelCase = (2, 2, 18, 2) __UpperCamelCase = (4, 8, 16, 32) else: __UpperCamelCase = 192 __UpperCamelCase = (2, 2, 18, 2) __UpperCamelCase = (6, 12, 24, 48) if "in22k" in swin_name: __UpperCamelCase = 21_841 else: __UpperCamelCase = 1_000 __UpperCamelCase = "huggingface/label-files" __UpperCamelCase = "imagenet-1k-id2label.json" __UpperCamelCase = json.load(open(hf_hub_download(A_ ,A_ ,repo_type="""dataset""" ) ,"""r""" ) ) __UpperCamelCase = {int(A_ ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} __UpperCamelCase = img_size __UpperCamelCase = num_classes __UpperCamelCase = embed_dim __UpperCamelCase = depths __UpperCamelCase = num_heads __UpperCamelCase = window_size return config def _lowercase ( __A ): '''simple docstring''' if "patch_embed.proj" in name: __UpperCamelCase = name.replace("""patch_embed.proj""" ,"""embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __UpperCamelCase = name.replace("""patch_embed.norm""" ,"""embeddings.norm""" ) if "layers" in name: __UpperCamelCase = "encoder." + name if "attn.proj" in name: __UpperCamelCase = name.replace("""attn.proj""" ,"""attention.output.dense""" ) if "attn" in name: __UpperCamelCase = name.replace("""attn""" ,"""attention.self""" ) if "norm1" in name: __UpperCamelCase = name.replace("""norm1""" ,"""layernorm_before""" ) if "norm2" in name: __UpperCamelCase = name.replace("""norm2""" ,"""layernorm_after""" ) if "mlp.fc1" in name: __UpperCamelCase = name.replace("""mlp.fc1""" ,"""intermediate.dense""" ) if "mlp.fc2" in name: __UpperCamelCase = name.replace("""mlp.fc2""" ,"""output.dense""" ) if name == "norm.weight": __UpperCamelCase = "layernorm.weight" if name == "norm.bias": __UpperCamelCase = "layernorm.bias" if "head" in name: __UpperCamelCase = name.replace("""head""" ,"""classifier""" ) else: __UpperCamelCase = "swin." + name return name def _lowercase ( __A ,__A ): '''simple docstring''' for key in orig_state_dict.copy().keys(): __UpperCamelCase = orig_state_dict.pop(A_ ) if "mask" in key: continue elif "qkv" in key: __UpperCamelCase = key.split(""".""" ) __UpperCamelCase = int(key_split[1] ) __UpperCamelCase = int(key_split[3] ) __UpperCamelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCamelCase = val[:dim, :] __UpperCamelCase = val[ dim : dim * 2, : ] __UpperCamelCase = val[-dim:, :] else: __UpperCamelCase = val[ :dim ] __UpperCamelCase = val[ dim : dim * 2 ] __UpperCamelCase = val[ -dim: ] else: __UpperCamelCase = val return orig_state_dict def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = timm.create_model(A_ ,pretrained=A_ ) timm_model.eval() __UpperCamelCase = get_swin_config(A_ ) __UpperCamelCase = SwinForImageClassification(A_ ) model.eval() __UpperCamelCase = convert_state_dict(timm_model.state_dict() ,A_ ) model.load_state_dict(A_ ) __UpperCamelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCamelCase = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" ,"""-""" ) ) ) __UpperCamelCase = Image.open(requests.get(A_ ,stream=A_ ).raw ) __UpperCamelCase = image_processor(images=A_ ,return_tensors="""pt""" ) __UpperCamelCase = timm_model(inputs["""pixel_values"""] ) __UpperCamelCase = model(**A_ ).logits assert torch.allclose(A_ ,A_ ,atol=1E-3 ) print(f"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(A_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(A_ ) if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) a__ : str = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
349
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__: str = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Union[str, Any] = ['''YolosFeatureExtractor'''] A__: Optional[int] = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: str = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys A__: Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
149
0
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __SCREAMING_SNAKE_CASE : List[str] = '\\n Text data.\n Second line of data.' __SCREAMING_SNAKE_CASE : Optional[Any] = 'file' @pytest.fixture(scope="""session""" ) def _a ( _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") snake_case_ = bytes(_SCREAMING_SNAKE_CASE , """utf-8""" ) with zstd.open(_SCREAMING_SNAKE_CASE , """wb""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: with open(os.path.join(tmpfs.local_root_dir , _SCREAMING_SNAKE_CASE ) , """w""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} snake_case_ = input_paths[compression_format] snake_case_ = tmp_path / """cache""" snake_case_ = DownloadConfig(cache_dir=_SCREAMING_SNAKE_CASE , extract_compressed_file=_SCREAMING_SNAKE_CASE ) snake_case_ = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE ) as f: snake_case_ = f.read() with open(_SCREAMING_SNAKE_CASE ) as f: snake_case_ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ = """custom_cache""" snake_case_ = """custom_extracted_dir""" snake_case_ = tmp_path / """custom_extracted_path""" if default_extracted: snake_case_ = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(_SCREAMING_SNAKE_CASE ) ) snake_case_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) snake_case_ = xz_file snake_case_ = ( DownloadConfig(extract_compressed_file=_SCREAMING_SNAKE_CASE ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_SCREAMING_SNAKE_CASE ) ) snake_case_ = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) assert Path(_SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected def _a ( _SCREAMING_SNAKE_CASE ) -> Dict: # absolute path snake_case_ = str(Path(_SCREAMING_SNAKE_CASE ).resolve() ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file # relative path snake_case_ = str(Path(_SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]: # absolute path snake_case_ = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) # relative path snake_case_ = """./__missing_file__.txt""" with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = get_from_cache(f"""tmp://{tmpfs_file}""" ) with open(_SCREAMING_SNAKE_CASE ) as f: snake_case_ = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def _a ( ) -> List[Any]: with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): http_get("""https://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_get("""ftp://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]: snake_case_ = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_get("""s3://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_head("""s3://huggingface.co""" )
233
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str: snake_case_ = ascii_letters + digits + punctuation return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(_SCREAMING_SNAKE_CASE ) snake_case_ = i // 3 snake_case_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case_ = ( chars_incl + random(_SCREAMING_SNAKE_CASE , quotient + remainder ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) snake_case_ = list(_SCREAMING_SNAKE_CASE ) shuffle(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool: if len(_SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False snake_case_ = any(char in ascii_uppercase for char in password ) snake_case_ = any(char in ascii_lowercase for char in password ) snake_case_ = any(char in digits for char in password ) snake_case_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _a ( ) -> Union[str, Any]: snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() ) snake_case_ = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) ) print( """Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
233
1
import copy import random from transformers import CLIPTokenizer class a__ ( snake_case ): """simple docstring""" def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(*lowercase , **lowercase ) A__ = {} def UpperCamelCase ( self , lowercase , *lowercase , **lowercase ) -> str: '''simple docstring''' A__ = super().add_tokens(lowercase , *lowercase , **lowercase ) if num_added_tokens == 0: raise ValueError( F'The tokenizer already contains the token {placeholder_token}. Please pass a different' " `placeholder_token` that is not already in the tokenizer." ) def UpperCamelCase ( self , lowercase , *lowercase , lowercase=1 , **lowercase ) -> Any: '''simple docstring''' A__ = [] if num_vec_per_token == 1: self.try_adding_tokens(lowercase , *lowercase , **lowercase ) output.append(lowercase ) else: A__ = [] for i in range(lowercase ): A__ = placeholder_token + F'_{i}' self.try_adding_tokens(lowercase , *lowercase , **lowercase ) output.append(lowercase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'The tokenizer already has placeholder token {token} that can get confused with' F' {placeholder_token}keep placeholder tokens independent' ) A__ = output def UpperCamelCase ( self , lowercase , lowercase=False , lowercase=1.0 ) -> List[Any]: '''simple docstring''' if isinstance(lowercase , lowercase ): A__ = [] for i in range(len(lowercase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowercase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: A__ = self.token_map[placeholder_token] A__ = tokens[: 1 + int(len(lowercase ) * prop_tokens_to_load )] if vector_shuffle: A__ = copy.copy(lowercase ) random.shuffle(lowercase ) A__ = text.replace(lowercase , " ".join(lowercase ) ) return text def __call__( self , lowercase , *lowercase , lowercase=False , lowercase=1.0 , **lowercase ) -> str: '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( lowercase , vector_shuffle=lowercase , prop_tokens_to_load=lowercase ) , *lowercase , **lowercase , ) def UpperCamelCase ( self , lowercase , *lowercase , lowercase=False , lowercase=1.0 , **lowercase ) -> List[str]: '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( lowercase , vector_shuffle=lowercase , prop_tokens_to_load=lowercase ) , *lowercase , **lowercase , )
68
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a_ :Optional[Any] = logging.getLogger(__name__) def lowercase_ (A : List[Any] , A : List[Any] ): # save results if os.path.exists(A ): if os.path.exists(os.path.join(A , 'config.json' ) ) and os.path.isfile( os.path.join(A , 'config.json' ) ): os.remove(os.path.join(A , 'config.json' ) ) if os.path.exists(os.path.join(A , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(A , 'pytorch_model.bin' ) ): os.remove(os.path.join(A , 'pytorch_model.bin' ) ) else: os.makedirs(A ) model.save_pretrained(A ) def lowercase_ (A : Any , A : Optional[Any]=False ): snake_case__ : str = 2 if unlogit: snake_case__ : Dict = torch.pow(A , A ) snake_case__ : Any = p * torch.log(A ) snake_case__ : Tuple = 0 return -plogp.sum(dim=-1 ) def lowercase_ (A : List[str] ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(A ) ) ) ) for row in range(len(A ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def lowercase_ (A : Tuple , A : Optional[Any] , A : str , A : int=True , A : Optional[int]=True , A : Any=None , A : int=False ): snake_case__ , snake_case__ : Optional[Any] = model.config.num_hidden_layers, model.config.num_attention_heads snake_case__ : int = torch.zeros(A , A ).to(args.device ) snake_case__ : Any = torch.zeros(A , A ).to(args.device ) if head_mask is None: snake_case__ : Dict = torch.ones(A , A ).to(args.device ) head_mask.requires_grad_(requires_grad=A ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: snake_case__ : Optional[int] = None snake_case__ : List[Any] = 0.0 snake_case__ : str = 0.0 for step, inputs in enumerate(tqdm(A , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): snake_case__ : Union[str, Any] = tuple(t.to(args.device ) for t in inputs ) ((snake_case__) , ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) snake_case__ : Union[str, Any] = model(A , labels=A , head_mask=A ) # (loss), lm_logits, presents, (all hidden_states), (attentions) snake_case__ , snake_case__ , snake_case__ : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(A ): snake_case__ : Optional[Any] = entropy(attn.detach() , A ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(A ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: snake_case__ : Union[str, Any] = 2 snake_case__ : List[Any] = torch.pow(torch.pow(A , A ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: snake_case__ : Tuple = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(A ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(A ) logger.info('Head ranked by importance scores' ) snake_case__ : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) snake_case__ : Union[str, Any] = torch.arange( head_importance.numel() , device=args.device ) snake_case__ : str = head_ranks.view_as(A ) print_ad_tensor(A ) return attn_entropy, head_importance, total_loss def lowercase_ (A : Optional[int] , A : Dict , A : Optional[int] ): snake_case__ , snake_case__ , snake_case__ : Any = compute_heads_importance(A , A , A , compute_entropy=A ) snake_case__ : Tuple = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , A , original_score * args.masking_threshold ) snake_case__ : Optional[Any] = torch.ones_like(A ) snake_case__ : Union[str, Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) snake_case__ : Dict = original_score while current_score >= original_score * args.masking_threshold: snake_case__ : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads snake_case__ : List[Any] = float('Inf' ) snake_case__ : Union[str, Any] = head_importance.view(-1 ).sort()[1] if len(A ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads snake_case__ : int = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) snake_case__ : int = new_head_mask.view(-1 ) snake_case__ : int = 0.0 snake_case__ : Union[str, Any] = new_head_mask.view_as(A ) snake_case__ : List[str] = new_head_mask.clone().detach() print_ad_tensor(A ) # Compute metric and head importance again snake_case__ , snake_case__ , snake_case__ : Any = compute_heads_importance( A , A , A , compute_entropy=A , head_mask=A ) snake_case__ : Dict = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info('Final head mask' ) print_ad_tensor(A ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowercase_ (A : List[str] , A : Tuple , A : Optional[Any] , A : int ): snake_case__ : Any = datetime.now() snake_case__ , snake_case__ , snake_case__ : str = compute_heads_importance( A , A , A , compute_entropy=A , compute_importance=A , head_mask=A ) snake_case__ : Tuple = 1 / loss snake_case__ : Dict = datetime.now() - before_time snake_case__ : Union[str, Any] = sum(p.numel() for p in model.parameters() ) snake_case__ : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(A ) ) } for k, v in heads_to_prune.items(): if isinstance(A , A ): snake_case__ : Any = [ v, ] assert sum(len(A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(A ) snake_case__ : Dict = sum(p.numel() for p in model.parameters() ) snake_case__ : Tuple = datetime.now() snake_case__ , snake_case__ , snake_case__ : Dict = compute_heads_importance( A , A , A , compute_entropy=A , compute_importance=A , head_mask=A , actually_pruned=A , ) snake_case__ : Any = 1 / loss snake_case__ : int = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , A , A , pruned_num_params / original_num_params * 1_0_0 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , A , A ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_0_0 ) save_model(A , args.output_dir ) def lowercase_ (): snake_case__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=A , type=A , required=A , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=A , type=A , required=A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=A , type=A , required=A , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=A , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=A , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=A , type=A , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=A , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=A , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=A , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=A , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_2_8 , type=A , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=A , help='Batch size.' ) parser.add_argument('--seed' , type=A , default=4_2 ) parser.add_argument('--local_rank' , type=A , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=A , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=A , default='' , help='Can be used for distant debugging.' ) snake_case__ : Optional[int] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: snake_case__ : List[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) snake_case__ : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) snake_case__ : int = torch.device('cuda' , args.local_rank ) snake_case__ : List[str] = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) snake_case__ : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: snake_case__ : List[str] = nn.parallel.DistributedDataParallel( A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=A ) elif args.n_gpu > 1: snake_case__ : Optional[int] = nn.DataParallel(A ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=A ) torch.save(A , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , A ) # Prepare dataset snake_case__ : Optional[Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) snake_case__ : List[str] = (torch.from_numpy(A ),) snake_case__ : int = TensorDataset(*A ) snake_case__ : Union[str, Any] = RandomSampler(A ) snake_case__ : Any = DataLoader(A , sampler=A , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(A , A , A ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: snake_case__ : Dict = mask_heads(A , A , A ) prune_heads(A , A , A , A ) if __name__ == "__main__": main()
277
0
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( UpperCamelCase__ : Dict, UpperCamelCase__ : bool = True, UpperCamelCase__ : float = math.inf, UpperCamelCase__ : float = -math.inf, UpperCamelCase__ : float = math.inf, UpperCamelCase__ : float = -math.inf, UpperCamelCase__ : bool = False, UpperCamelCase__ : float = 100, UpperCamelCase__ : float = 0.01, UpperCamelCase__ : float = 1, ): '''simple docstring''' UpperCamelCase__ = False UpperCamelCase__ = search_prob UpperCamelCase__ = start_temperate UpperCamelCase__ = [] UpperCamelCase__ = 0 UpperCamelCase__ = None while not search_end: UpperCamelCase__ = current_state.score() if best_state is None or current_score > best_state.score(): UpperCamelCase__ = current_state scores.append(UpperCamelCase__ ) iterations += 1 UpperCamelCase__ = None UpperCamelCase__ = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCamelCase__ = random.randint(0, len(UpperCamelCase__ ) - 1 ) # picking a random neighbor UpperCamelCase__ = neighbors.pop(UpperCamelCase__ ) UpperCamelCase__ = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCamelCase__ = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCamelCase__ = picked_neighbor else: UpperCamelCase__ = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCamelCase__ = picked_neighbor UpperCamelCase__ = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCamelCase__ = True else: UpperCamelCase__ = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(UpperCamelCase__ ), UpperCamelCase__ ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : Tuple ): '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowercase = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) lowercase = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ f'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) lowercase = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) lowercase = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ f'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : int ): '''simple docstring''' return (3 * x**2) - (6 * y) lowercase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowercase = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ f'{local_min.score()}' ) lowercase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowercase = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ f'{local_min.score()}' )
350
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase_ ( UpperCamelCase__ : Union[List, PIL.Image.Image, torch.Tensor] ): '''simple docstring''' warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''', UpperCamelCase__, ) if isinstance(UpperCamelCase__, torch.Tensor ): return image elif isinstance(UpperCamelCase__, PIL.Image.Image ): UpperCamelCase__ = [image] if isinstance(image[0], PIL.Image.Image ): UpperCamelCase__ , UpperCamelCase__ = image[0].size UpperCamelCase__ , UpperCamelCase__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCamelCase__ = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCamelCase__ = np.concatenate(UpperCamelCase__, axis=0 ) UpperCamelCase__ = np.array(UpperCamelCase__ ).astype(np.floataa ) / 255.0 UpperCamelCase__ = image.transpose(0, 3, 1, 2 ) UpperCamelCase__ = 2.0 * image - 1.0 UpperCamelCase__ = torch.from_numpy(UpperCamelCase__ ) elif isinstance(image[0], torch.Tensor ): UpperCamelCase__ = torch.cat(UpperCamelCase__, dim=0 ) return image def lowerCamelCase_ ( UpperCamelCase__ : Union[List, PIL.Image.Image, torch.Tensor] ): '''simple docstring''' if isinstance(UpperCamelCase__, torch.Tensor ): return mask elif isinstance(UpperCamelCase__, PIL.Image.Image ): UpperCamelCase__ = [mask] if isinstance(mask[0], PIL.Image.Image ): UpperCamelCase__ , UpperCamelCase__ = mask[0].size UpperCamelCase__ , UpperCamelCase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase__ = [np.array(m.convert('''L''' ).resize((w, h), resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] UpperCamelCase__ = np.concatenate(UpperCamelCase__, axis=0 ) UpperCamelCase__ = mask.astype(np.floataa ) / 255.0 UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = torch.from_numpy(UpperCamelCase__ ) elif isinstance(mask[0], torch.Tensor ): UpperCamelCase__ = torch.cat(UpperCamelCase__, dim=0 ) return mask class __lowercase ( A ): '''simple docstring''' _A : UNetaDModel _A : RePaintScheduler def __init__( self : Tuple , _a : Any , _a : Tuple ): super().__init__() self.register_modules(unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self : Optional[int] , _a : Union[torch.Tensor, PIL.Image.Image] , _a : Union[torch.Tensor, PIL.Image.Image] , _a : int = 250 , _a : float = 0.0 , _a : int = 10 , _a : int = 10 , _a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _a : Optional[str] = "pil" , _a : bool = True , ): UpperCamelCase__ = image UpperCamelCase__ = _preprocess_image(_a ) UpperCamelCase__ = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase__ = _preprocess_mask(_a ) UpperCamelCase__ = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase__ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_a , _a ) and len(_a ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_a )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCamelCase__ = original_image.shape UpperCamelCase__ = randn_tensor(_a , generator=_a , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_a , _a , _a , self.device ) UpperCamelCase__ = eta UpperCamelCase__ = self.scheduler.timesteps[0] + 1 UpperCamelCase__ = generator[0] if isinstance(_a , _a ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCamelCase__ = self.unet(_a , _a ).sample # compute previous image: x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(_a , _a , _a , _a , _a , _a ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCamelCase__ = self.scheduler.undo_step(_a , _a , _a ) UpperCamelCase__ = t UpperCamelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
35
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Optional[Any] = "efficientformer" def __init__( self, SCREAMING_SNAKE_CASE_ = [3, 2, 6, 4], SCREAMING_SNAKE_CASE_ = [48, 96, 224, 448], SCREAMING_SNAKE_CASE_ = [True, True, True, True], SCREAMING_SNAKE_CASE_ = 448, SCREAMING_SNAKE_CASE_ = 32, SCREAMING_SNAKE_CASE_ = 4, SCREAMING_SNAKE_CASE_ = 7, SCREAMING_SNAKE_CASE_ = 5, SCREAMING_SNAKE_CASE_ = 8, SCREAMING_SNAKE_CASE_ = 4, SCREAMING_SNAKE_CASE_ = 0.0, SCREAMING_SNAKE_CASE_ = 16, SCREAMING_SNAKE_CASE_ = 3, SCREAMING_SNAKE_CASE_ = 3, SCREAMING_SNAKE_CASE_ = 3, SCREAMING_SNAKE_CASE_ = 2, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = 0.0, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = 1e-5, SCREAMING_SNAKE_CASE_ = "gelu", SCREAMING_SNAKE_CASE_ = 0.02, SCREAMING_SNAKE_CASE_ = 1e-12, SCREAMING_SNAKE_CASE_ = 224, SCREAMING_SNAKE_CASE_ = 1e-05, **SCREAMING_SNAKE_CASE_, ) -> Optional[Any]: super().__init__(**__a ) UpperCamelCase : Tuple = hidden_act UpperCamelCase : List[str] = hidden_dropout_prob UpperCamelCase : str = hidden_sizes UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : Dict = num_attention_heads UpperCamelCase : List[Any] = initializer_range UpperCamelCase : Dict = layer_norm_eps UpperCamelCase : List[str] = patch_size UpperCamelCase : Optional[Any] = num_channels UpperCamelCase : Tuple = depths UpperCamelCase : str = mlp_expansion_ratio UpperCamelCase : List[str] = downsamples UpperCamelCase : int = dim UpperCamelCase : Any = key_dim UpperCamelCase : Optional[Any] = attention_ratio UpperCamelCase : int = resolution UpperCamelCase : Tuple = pool_size UpperCamelCase : Optional[int] = downsample_patch_size UpperCamelCase : List[str] = downsample_stride UpperCamelCase : str = downsample_pad UpperCamelCase : Any = drop_path_rate UpperCamelCase : Tuple = num_metaad_blocks UpperCamelCase : Dict = distillation UpperCamelCase : List[str] = use_layer_scale UpperCamelCase : Dict = layer_scale_init_value UpperCamelCase : Optional[int] = image_size UpperCamelCase : Any = batch_norm_eps
119
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def constraint_to_multiple_of(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=None ): _lowerCAmelCase : Tuple = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowerCAmelCase : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: _lowerCAmelCase : List[str] = math.ceil(val / multiple ) * multiple return x _lowerCAmelCase : Union[str, Any] = (output_size, output_size) if isinstance(_lowerCamelCase , _lowerCamelCase ) else output_size _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = get_image_size(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Any = output_size # determine new height and width _lowerCAmelCase : List[Any] = output_height / input_height _lowerCAmelCase : Any = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowerCAmelCase : Union[str, Any] = scale_width else: # fit height _lowerCAmelCase : Union[str, Any] = scale_height _lowerCAmelCase : List[str] = constraint_to_multiple_of(scale_height * input_height , multiple=_lowerCamelCase ) _lowerCAmelCase : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=_lowerCamelCase ) return (new_height, new_width) class UpperCAmelCase_ ( a): lowerCamelCase__ = ['pixel_values'] def __init__( self, __a = True, __a = None, __a = PILImageResampling.BILINEAR, __a = False, __a = 1, __a = True, __a = 1 / 255, __a = True, __a = None, __a = None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Any = size if size is not None else {"height": 384, "width": 384} _lowerCAmelCase : Optional[int] = get_size_dict(__a) _lowerCAmelCase : Optional[Any] = do_resize _lowerCAmelCase : Dict = size _lowerCAmelCase : Any = keep_aspect_ratio _lowerCAmelCase : str = ensure_multiple_of _lowerCAmelCase : str = resample _lowerCAmelCase : Dict = do_rescale _lowerCAmelCase : Optional[int] = rescale_factor _lowerCAmelCase : Dict = do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self, __a, __a, __a = False, __a = 1, __a = PILImageResampling.BICUBIC, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}") _lowerCAmelCase : List[Any] = get_resize_output_image_size( __a, output_size=(size["height"], size["width"]), keep_aspect_ratio=__a, multiple=__a, ) return resize(__a, size=__a, resample=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a = None, **__a, ): '''simple docstring''' return rescale(__a, scale=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a, __a = None, **__a, ): '''simple docstring''' return normalize(__a, mean=__a, std=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = ChannelDimension.FIRST, **__a, ): '''simple docstring''' _lowerCAmelCase : int = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : List[Any] = size if size is not None else self.size _lowerCAmelCase : str = get_size_dict(__a) _lowerCAmelCase : Dict = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowerCAmelCase : Any = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowerCAmelCase : int = resample if resample is not None else self.resample _lowerCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : List[str] = image_std if image_std is not None else self.image_std _lowerCAmelCase : Optional[Any] = make_list_of_images(__a) if not valid_images(__a): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. _lowerCAmelCase : List[Any] = [to_numpy_array(__a) for image in images] if do_resize: _lowerCAmelCase : Any = [self.resize(image=__a, size=__a, resample=__a) for image in images] if do_rescale: _lowerCAmelCase : List[str] = [self.rescale(image=__a, scale=__a) for image in images] if do_normalize: _lowerCAmelCase : Dict = [self.normalize(image=__a, mean=__a, std=__a) for image in images] _lowerCAmelCase : List[str] = [to_channel_dimension_format(__a, __a) for image in images] _lowerCAmelCase : Optional[Any] = {"pixel_values": images} return BatchFeature(data=__a, tensor_type=__a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a) != len(__a): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(__a): _lowerCAmelCase : List[Any] = target_sizes.numpy() _lowerCAmelCase : Dict = [] for idx in range(len(__a)): _lowerCAmelCase : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=__a) _lowerCAmelCase : int = resized_logits[0].argmax(dim=0) semantic_segmentation.append(__a) else: _lowerCAmelCase : Dict = logits.argmax(dim=1) _lowerCAmelCase : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
36
0
import cva import numpy as np class a : '''simple docstring''' def __init__( self : List[str] , __snake_case : float , __snake_case : int ): if k in (0.04, 0.06): UpperCAmelCase_ = k UpperCAmelCase_ = window_size else: raise ValueError('''invalid k value''' ) def __str__( self : Tuple ): return str(self.k ) def lowerCamelCase_ ( self : Optional[Any] , __snake_case : str ): UpperCAmelCase_ = cva.imread(__snake_case , 0 ) UpperCAmelCase_ , UpperCAmelCase_ = img.shape UpperCAmelCase_ = [] UpperCAmelCase_ = img.copy() UpperCAmelCase_ = cva.cvtColor(__snake_case , cva.COLOR_GRAY2RGB ) UpperCAmelCase_ , UpperCAmelCase_ = np.gradient(__snake_case ) UpperCAmelCase_ = dx**2 UpperCAmelCase_ = dy**2 UpperCAmelCase_ = dx * dy UpperCAmelCase_ = 0.04 UpperCAmelCase_ = self.window_size // 2 for y in range(__snake_case , h - offset ): for x in range(__snake_case , w - offset ): UpperCAmelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCAmelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCAmelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCAmelCase_ = (wxx * wyy) - (wxy**2) UpperCAmelCase_ = wxx + wyy UpperCAmelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": _lowerCamelCase = HarrisCorner(0.04, 3) _lowerCamelCase , _lowerCamelCase = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
177
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class a ( _A ): '''simple docstring''' lowerCAmelCase : Optional[Any] = 'data2vec-text' def __init__( self : Optional[Any] , __snake_case : Optional[int]=3_05_22 , __snake_case : List[str]=7_68 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Union[str, Any]=30_72 , __snake_case : List[Any]="gelu" , __snake_case : Any=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Tuple=5_12 , __snake_case : str=2 , __snake_case : str=0.02 , __snake_case : List[Any]=1E-12 , __snake_case : Any=1 , __snake_case : List[Any]=0 , __snake_case : Dict=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : Any=None , **__snake_case : List[Any] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class a ( _A ): '''simple docstring''' @property def lowerCamelCase_ ( self : str ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
177
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "Salesforce/blip-image-captioning-base" UpperCAmelCase__ : int = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) UpperCAmelCase__ : Optional[int] = "image_captioner" UpperCAmelCase__ : Tuple = AutoModelForVisionaSeq UpperCAmelCase__ : Union[str, Any] = ["image"] UpperCAmelCase__ : Tuple = ["text"] def __init__( self , *A_ , **A_ ) -> str: requires_backends(self , ['vision'] ) super().__init__(*A_ , **A_ ) def _a ( self , A_ ) -> Optional[int]: return self.pre_processor(images=A_ , return_tensors='pt' ) def _a ( self , A_ ) -> Any: return self.model.generate(**A_ ) def _a ( self , A_ ) -> str: return self.pre_processor.batch_decode(A_ , skip_special_tokens=A_ )[0].strip()
62
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase ( A ): lowerCAmelCase_ = "data2vec-audio" def __init__( self : Tuple , __lowercase : Optional[int]=32 , __lowercase : List[str]=768 , __lowercase : List[str]=12 , __lowercase : str=12 , __lowercase : Tuple=3072 , __lowercase : Any="gelu" , __lowercase : Dict=0.1 , __lowercase : Any=0.1 , __lowercase : Tuple=0.1 , __lowercase : List[str]=0.0 , __lowercase : List[Any]=0.1 , __lowercase : str=0.1 , __lowercase : Optional[int]=0.0_2 , __lowercase : Dict=1E-5 , __lowercase : Any="gelu" , __lowercase : Dict=(512, 512, 512, 512, 512, 512, 512) , __lowercase : str=(5, 2, 2, 2, 2, 2, 2) , __lowercase : List[Any]=(10, 3, 3, 3, 3, 2, 2) , __lowercase : Dict=False , __lowercase : int=16 , __lowercase : Any=19 , __lowercase : Tuple=5 , __lowercase : Optional[Any]=0.0_5 , __lowercase : Optional[int]=10 , __lowercase : int=2 , __lowercase : Optional[Any]=0.0 , __lowercase : Tuple=10 , __lowercase : Union[str, Any]=0 , __lowercase : Optional[int]="sum" , __lowercase : str=False , __lowercase : Union[str, Any]=False , __lowercase : Any=256 , __lowercase : str=(512, 512, 512, 512, 1500) , __lowercase : Union[str, Any]=(5, 3, 3, 1, 1) , __lowercase : List[Any]=(1, 2, 3, 1, 1) , __lowercase : Any=512 , __lowercase : int=0 , __lowercase : Union[str, Any]=1 , __lowercase : Optional[int]=2 , __lowercase : Any=False , __lowercase : Optional[int]=3 , __lowercase : Optional[Any]=2 , __lowercase : Any=3 , __lowercase : Tuple=None , **__lowercase : Optional[Any] , ): """simple docstring""" super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase ) __lowercase =hidden_size __lowercase =feat_extract_activation __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =conv_bias __lowercase =num_conv_pos_embeddings __lowercase =num_conv_pos_embedding_groups __lowercase =conv_pos_kernel_size __lowercase =len(self.conv_dim ) __lowercase =num_hidden_layers __lowercase =intermediate_size __lowercase =hidden_act __lowercase =num_attention_heads __lowercase =hidden_dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =feat_proj_dropout __lowercase =final_dropout __lowercase =layerdrop __lowercase =layer_norm_eps __lowercase =initializer_range __lowercase =vocab_size __lowercase =use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase =mask_time_prob __lowercase =mask_time_length __lowercase =mask_time_min_masks __lowercase =mask_feature_prob __lowercase =mask_feature_length __lowercase =mask_feature_min_masks # ctc loss __lowercase =ctc_loss_reduction __lowercase =ctc_zero_infinity # adapter __lowercase =add_adapter __lowercase =adapter_kernel_size __lowercase =adapter_stride __lowercase =num_adapter_layers __lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =xvector_output_dim @property def snake_case ( self : Optional[Any] ): """simple docstring""" return math.prod(self.conv_stride )
141
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Dict = "timm_backbone" def __init__( self : List[Any] , _A : Dict=None , _A : Optional[int]=3 , _A : Union[str, Any]=True , _A : Dict=True , _A : Optional[int]=None , **_A : Any , ) -> Dict: """simple docstring""" super().__init__(**_A ) snake_case_ : List[str] = backbone snake_case_ : Optional[Any] = num_channels snake_case_ : List[Any] = features_only snake_case_ : Any = use_pretrained_backbone snake_case_ : str = True snake_case_ : Tuple = out_indices if out_indices is not None else (-1,)
88
_SCREAMING_SNAKE_CASE = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
88
1
"""simple docstring""" class snake_case : def __init__( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Any = name __lowerCAmelCase: Dict = value __lowerCAmelCase: Tuple = weight def __repr__( self : Optional[Any])-> List[str]: '''simple docstring''' return f"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def lowercase_ ( self : List[Any])-> Optional[int]: '''simple docstring''' return self.value def lowercase_ ( self : Optional[Any])-> str: '''simple docstring''' return self.name def lowercase_ ( self : int)-> str: '''simple docstring''' return self.weight def lowercase_ ( self : str)-> Optional[Any]: '''simple docstring''' return self.value / self.weight def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: __lowerCAmelCase: int = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: __lowerCAmelCase: int = sorted(__SCREAMING_SNAKE_CASE , key=__SCREAMING_SNAKE_CASE , reverse=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = [] __lowerCAmelCase , __lowerCAmelCase: Tuple = 0.0, 0.0 for i in range(len(__SCREAMING_SNAKE_CASE ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def a__ ( ) -> Optional[int]: pass if __name__ == "__main__": import doctest doctest.testmod()
217
"""simple docstring""" from numpy import exp, pi, sqrt def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 1.0 ) -> int: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
217
1
import math import random from typing import Any from .hill_climbing import SearchProblem def _a ( lowerCamelCase: List[Any] , lowerCamelCase: bool = True , lowerCamelCase: float = math.inf , lowerCamelCase: float = -math.inf , lowerCamelCase: float = math.inf , lowerCamelCase: float = -math.inf , lowerCamelCase: bool = False , lowerCamelCase: float = 1_00 , lowerCamelCase: float = 0.01 , lowerCamelCase: float = 1 , ): '''simple docstring''' __A = False __A = search_prob __A = start_temperate __A = [] __A = 0 __A = None while not search_end: __A = current_state.score() if best_state is None or current_score > best_state.score(): __A = current_state scores.append(lowerCamelCase ) iterations += 1 __A = None __A = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __A = random.randint(0 , len(lowerCamelCase ) - 1 ) # picking a random neighbor __A = neighbors.pop(lowerCamelCase ) __A = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __A = change * -1 # in case we are finding minimum if change > 0: # improves the solution __A = picked_neighbor else: __A = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __A = picked_neighbor __A = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __A = True else: __A = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCamelCase ) , lowerCamelCase ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def _a ( lowerCamelCase: List[Any] , lowerCamelCase: Optional[int] ): '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) snake_case__ : Tuple = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) snake_case__ : Tuple = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) snake_case__ : Tuple = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) snake_case__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def _a ( lowerCamelCase: Tuple , lowerCamelCase: int ): '''simple docstring''' return (3 * x**2) - (6 * y) snake_case__ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) snake_case__ : Dict = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f'{local_min.score()}' ) snake_case__ : int = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) snake_case__ : List[str] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f'{local_min.score()}' )
362
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
250
0
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): '''simple docstring''' lowerCamelCase : Optional[Any] = [] for old_item in old_list: lowerCamelCase : str = old_item.replace("in_layers.0" , "norm1" ) lowerCamelCase : int = new_item.replace("in_layers.2" , "conv1" ) lowerCamelCase : Union[str, Any] = new_item.replace("out_layers.0" , "norm2" ) lowerCamelCase : List[str] = new_item.replace("out_layers.3" , "conv2" ) lowerCamelCase : Dict = new_item.replace("emb_layers.1" , "time_emb_proj" ) lowerCamelCase : Optional[int] = new_item.replace("skip_connection" , "conv_shortcut" ) lowerCamelCase : Optional[int] = shave_segments(SCREAMING_SNAKE_CASE_ , n_shave_prefix_segments=SCREAMING_SNAKE_CASE_ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): '''simple docstring''' lowerCamelCase : Dict = [] for old_item in old_list: lowerCamelCase : List[str] = old_item lowerCamelCase : Tuple = new_item.replace("norm.weight" , "group_norm.weight" ) lowerCamelCase : int = new_item.replace("norm.bias" , "group_norm.bias" ) lowerCamelCase : Optional[Any] = new_item.replace("proj_out.weight" , "proj_attn.weight" ) lowerCamelCase : Optional[int] = new_item.replace("proj_out.bias" , "proj_attn.bias" ) lowerCamelCase : List[Any] = shave_segments(SCREAMING_SNAKE_CASE_ , n_shave_prefix_segments=SCREAMING_SNAKE_CASE_ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowerCamelCase : List[str] = old_checkpoint[path] lowerCamelCase : List[str] = old_tensor.shape[0] // 3 lowerCamelCase : Optional[int] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowerCamelCase : List[Any] = old_tensor.shape[0] // config["num_head_channels"] // 3 lowerCamelCase : Optional[Any] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowerCamelCase , lowerCamelCase , lowerCamelCase : Dict = old_tensor.split(channels // num_heads , dim=1 ) lowerCamelCase : str = query.reshape(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict = key.reshape(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[str] = value.reshape(SCREAMING_SNAKE_CASE_ ) for path in paths: lowerCamelCase : Any = path["new"] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowerCamelCase : List[str] = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) lowerCamelCase : List[str] = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) lowerCamelCase : Union[str, Any] = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: lowerCamelCase : Any = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowerCamelCase : List[Any] = old_checkpoint[path["old"]][:, :, 0] else: lowerCamelCase : List[str] = old_checkpoint[path["old"]] def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[Any] = {} lowerCamelCase : List[Any] = checkpoint["time_embed.0.weight"] lowerCamelCase : List[Any] = checkpoint["time_embed.0.bias"] lowerCamelCase : List[Any] = checkpoint["time_embed.2.weight"] lowerCamelCase : Optional[int] = checkpoint["time_embed.2.bias"] lowerCamelCase : Optional[Any] = checkpoint["input_blocks.0.0.weight"] lowerCamelCase : List[Any] = checkpoint["input_blocks.0.0.bias"] lowerCamelCase : List[str] = checkpoint["out.0.weight"] lowerCamelCase : List[str] = checkpoint["out.0.bias"] lowerCamelCase : Tuple = checkpoint["out.2.weight"] lowerCamelCase : Union[str, Any] = checkpoint["out.2.bias"] # Retrieves the keys for the input blocks only lowerCamelCase : List[str] = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) lowerCamelCase : Dict = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(SCREAMING_SNAKE_CASE_ ) } # Retrieves the keys for the middle blocks only lowerCamelCase : List[Any] = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) lowerCamelCase : Dict = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(SCREAMING_SNAKE_CASE_ ) } # Retrieves the keys for the output blocks only lowerCamelCase : List[Any] = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) lowerCamelCase : Optional[Any] = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(SCREAMING_SNAKE_CASE_ ) } for i in range(1 , SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Optional[Any] = (i - 1) // (config["num_res_blocks"] + 1) lowerCamelCase : Tuple = (i - 1) % (config["num_res_blocks"] + 1) lowerCamelCase : Optional[Any] = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] lowerCamelCase : Any = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: lowerCamelCase : List[Any] = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] lowerCamelCase : Dict = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue lowerCamelCase : Optional[int] = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[str] = {"old": f"""input_blocks.{i}.0""", "new": f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} lowerCamelCase : Tuple = {"old": "resnets.2.op", "new": "downsamplers.0.op"} assign_to_checkpoint( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path, resnet_op] , config=SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : str = renew_attention_paths(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Union[str, Any] = { "old": f"""input_blocks.{i}.1""", "new": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } lowerCamelCase : int = { f"""input_blocks.{i}.1.qkv.bias""": { "key": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", "query": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", "value": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { "key": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", "query": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", "value": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path] , attention_paths_to_split=SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ , ) lowerCamelCase : Dict = middle_blocks[0] lowerCamelCase : Tuple = middle_blocks[1] lowerCamelCase : List[str] = middle_blocks[2] lowerCamelCase : Dict = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) assign_to_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[str] = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) assign_to_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Union[str, Any] = renew_attention_paths(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Union[str, Any] = { "middle_block.1.qkv.bias": { "key": "mid_block.attentions.0.key.bias", "query": "mid_block.attentions.0.query.bias", "value": "mid_block.attentions.0.value.bias", }, "middle_block.1.qkv.weight": { "key": "mid_block.attentions.0.key.weight", "query": "mid_block.attentions.0.query.weight", "value": "mid_block.attentions.0.value.weight", }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , attention_paths_to_split=SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Optional[int] = i // (config["num_res_blocks"] + 1) lowerCamelCase : Any = i % (config["num_res_blocks"] + 1) lowerCamelCase : int = [shave_segments(SCREAMING_SNAKE_CASE_ , 2 ) for name in output_blocks[i]] lowerCamelCase : Union[str, Any] = {} for layer in output_block_layers: lowerCamelCase , lowerCamelCase : List[Any] = layer.split("." )[0], shave_segments(SCREAMING_SNAKE_CASE_ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase : Any = [layer_name] if len(SCREAMING_SNAKE_CASE_ ) > 1: lowerCamelCase : str = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] lowerCamelCase : List[str] = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] lowerCamelCase : Any = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : int = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[Any] = {"old": f"""output_blocks.{i}.0""", "new": f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE_ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowerCamelCase : Union[str, Any] = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) lowerCamelCase : Optional[int] = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] lowerCamelCase : Any = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(SCREAMING_SNAKE_CASE_ ) == 2: lowerCamelCase : Dict = [] if len(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Optional[int] = renew_attention_paths(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : int = { "old": f"""output_blocks.{i}.1""", "new": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } lowerCamelCase : Optional[Any] = { f"""output_blocks.{i}.1.qkv.bias""": { "key": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", "query": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", "value": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { "key": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", "query": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", "value": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=SCREAMING_SNAKE_CASE_ , ) else: lowerCamelCase : Union[str, Any] = renew_resnet_paths(SCREAMING_SNAKE_CASE_ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowerCamelCase : Optional[int] = ".".join(["output_blocks", str(SCREAMING_SNAKE_CASE_ ), path["old"]] ) lowerCamelCase : Union[str, Any] = ".".join(["up_blocks", str(SCREAMING_SNAKE_CASE_ ), "resnets", str(SCREAMING_SNAKE_CASE_ ), path["new"]] ) lowerCamelCase : str = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') _snake_case = parser.parse_args() _snake_case = torch.load(args.checkpoint_path) with open(args.config_file) as f: _snake_case = json.loads(f.read()) _snake_case = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _snake_case = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _snake_case = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) _snake_case = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) _snake_case = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
283
def lowercase_( SCREAMING_SNAKE_CASE_ = 4000000 ): '''simple docstring''' lowerCamelCase : Any = [0, 1] lowerCamelCase : Union[str, Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCamelCase : Union[str, Any] = 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'''{solution() = }''')
283
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase ( unittest.TestCase ): def a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a ( self ): snake_case_ = 1 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def a ( self ): torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def a ( self ): torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def a ( self ): torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def a ( self ): def extract(*snake_case , **snake_case ): class lowercase : def __init__( self ): snake_case_ = torch.ones([0] ) def a ( self , snake_case ): self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def a ( self ): snake_case_ = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case_ = self.dummy_cond_unet snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ = self.dummy_vae snake_case_ = self.dummy_text_encoder snake_case_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) snake_case_ = 77 snake_case_ = self.dummy_image.to(lowerCAmelCase__ ) snake_case_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ = "A painting of a squirrel eating a burger" snake_case_ = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=lowerCAmelCase__ , ) snake_case_ = output.images snake_case_ = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def a ( self ): snake_case_ = self.dummy_cond_unet snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ = self.dummy_vae snake_case_ = self.dummy_text_encoder snake_case_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) snake_case_ = 77 snake_case_ = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 snake_case_ = unet.half() snake_case_ = vae.half() snake_case_ = bert.half() # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ = "A painting of a squirrel eating a burger" snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe( [prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type='np' , image=lowerCAmelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def a ( self ): snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case_ = init_image.resize((760, 504) ) snake_case_ = "BAAI/AltDiffusion" snake_case_ = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ = "A fantasy landscape, trending on artstation" snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.75 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type='np' , ) snake_case_ = output.images[0] snake_case_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) snake_case_ = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) snake_case_ = init_image.resize((768, 512) ) snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) snake_case_ = "BAAI/AltDiffusion" snake_case_ = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ = "A fantasy landscape, trending on artstation" snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.75 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type='np' , ) snake_case_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
363
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Tuple = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
200
0
'''simple docstring''' import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Any=100 , snake_case_ : List[str]=13 , snake_case_ : str=30 , snake_case_ : int=2 , snake_case_ : int=3 , snake_case_ : Union[str, Any]=True , snake_case_ : Any=True , snake_case_ : Union[str, Any]=32 , snake_case_ : Tuple=5 , snake_case_ : Optional[int]=4 , snake_case_ : Optional[Any]=37 , snake_case_ : List[Any]="gelu" , snake_case_ : str=0.1 , snake_case_ : Any=0.1 , snake_case_ : Optional[Any]=10 , snake_case_ : Union[str, Any]=0.02 , snake_case_ : Optional[Any]=3 , ): snake_case__ : Any = parent snake_case__ : List[str] = vocab_size snake_case__ : Optional[Any] = batch_size snake_case__ : Optional[int] = image_size snake_case__ : int = patch_size snake_case__ : List[Any] = num_channels snake_case__ : Optional[Any] = is_training snake_case__ : Dict = use_labels snake_case__ : Dict = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : Dict = num_attention_heads snake_case__ : str = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : List[Any] = type_sequence_label_size snake_case__ : str = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ : Dict = (image_size // patch_size) ** 2 snake_case__ : Dict = num_patches + 1 def lowerCamelCase ( self : Optional[Any] ): snake_case__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : str = None if self.use_labels: snake_case__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : str = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def lowerCamelCase ( self : Any , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : List[str] ): snake_case__ : Union[str, Any] = FlaxBeitModel(config=snake_case_ ) snake_case__ : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : Dict ): snake_case__ : str = FlaxBeitForMaskedImageModeling(config=snake_case_ ) snake_case__ : List[str] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCamelCase ( self : str , snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Tuple ): snake_case__ : Dict = self.type_sequence_label_size snake_case__ : int = FlaxBeitForImageClassification(config=snake_case_ ) snake_case__ : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : str = 1 snake_case__ : List[str] = FlaxBeitForImageClassification(snake_case_ ) snake_case__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : int = model(snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : Optional[Any] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Tuple = config_and_inputs snake_case__ : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def lowerCamelCase ( self : List[str] ): snake_case__ : str = FlaxBeitModelTester(self ) snake_case__ : Tuple = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def lowerCamelCase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def lowerCamelCase ( self : Optional[int] ): snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : int = model_class(snake_case_ ) snake_case__ : int = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Union[str, Any] = [*signature.parameters.keys()] snake_case__ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCamelCase ( self : List[str] ): snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case__ : str = self._prepare_for_class(snake_case_ , snake_case_ ) snake_case__ : Optional[Any] = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ : List[Any] , **snake_case_ : Tuple ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest("""JIT Enabled""" ): snake_case__ : Tuple = model_jitted(**snake_case_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): snake_case__ : Tuple = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase ( self : List[Any] ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCamelCase ( self : Optional[int] ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: snake_case__ : Union[str, Any] = model_class_name.from_pretrained("""microsoft/beit-base-patch16-224""" ) snake_case__ : int = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def __snake_case( ) -> Optional[Any]: snake_case__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCamelCase ( self : str ): snake_case__ : Optional[Any] = FlaxBeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ) snake_case__ : Tuple = self.default_image_processor snake_case__ : Optional[Any] = prepare_img() snake_case__ : Optional[int] = image_processor(images=snake_case_ , return_tensors="""np""" ).pixel_values # prepare bool_masked_pos snake_case__ : Any = np.ones((1, 196) , dtype=snake_case_ ) # forward pass snake_case__ : Dict = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) snake_case__ : List[str] = outputs.logits # verify the logits snake_case__ : Dict = (1, 196, 8_192) self.assertEqual(logits.shape , snake_case_ ) snake_case__ : Any = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) ) @slow def lowerCamelCase ( self : Tuple ): snake_case__ : List[Any] = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ) snake_case__ : Optional[Any] = self.default_image_processor snake_case__ : Union[str, Any] = prepare_img() snake_case__ : Optional[Any] = image_processor(images=snake_case_ , return_tensors="""np""" ) # forward pass snake_case__ : List[Any] = model(**snake_case_ ) snake_case__ : Optional[Any] = outputs.logits # verify the logits snake_case__ : str = (1, 1_000) self.assertEqual(logits.shape , snake_case_ ) snake_case__ : Any = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) snake_case__ : Union[str, Any] = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def lowerCamelCase ( self : Dict ): snake_case__ : List[str] = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ) snake_case__ : Optional[int] = self.default_image_processor snake_case__ : List[str] = prepare_img() snake_case__ : Optional[Any] = image_processor(images=snake_case_ , return_tensors="""np""" ) # forward pass snake_case__ : Optional[int] = model(**snake_case_ ) snake_case__ : int = outputs.logits # verify the logits snake_case__ : int = (1, 21_841) self.assertEqual(logits.shape , snake_case_ ) snake_case__ : Optional[int] = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) snake_case__ : Optional[int] = 2_396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
35
import os import pytest from attr import dataclass UpperCAmelCase__ : Optional[int] = """us-east-1""" # defaults region @dataclass class a__ : """simple docstring""" UpperCAmelCase__ : str UpperCAmelCase__ : Union[str, Any] ="""arn:aws:iam::558105141721:role/sagemaker_execution_role""" UpperCAmelCase__ : Tuple ={ """task_name""": """mnli""", """per_device_train_batch_size""": 1_6, """per_device_eval_batch_size""": 1_6, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 5_0_0, """save_steps""": 5_5_0_0, } UpperCAmelCase__ : Optional[int] ={**hyperparameters, """max_steps""": 1_0_0_0} @property def _lowercase ( self : List[str] ) ->str: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowercase ( self : Any ) ->str: """simple docstring""" return f"{self.framework}-transfromers-test" @property def _lowercase ( self : Union[str, Any] ) ->str: """simple docstring""" return f"./tests/sagemaker/scripts/{self.framework}" @property def _lowercase ( self : Dict ) ->str: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __lowercase ( _A ) -> Tuple: SCREAMING_SNAKE_CASE : List[str] = SageMakerTestEnvironment(framework=request.cls.framework )
245
0
"""simple docstring""" from itertools import permutations def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _lowercase : Dict = [7, 11, 13, 17] for i, test in enumerate(_UpperCAmelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = 10 ): return sum( int("""""".join(map(_UpperCAmelCase , _UpperCAmelCase ) ) ) for num in permutations(range(_UpperCAmelCase ) ) if is_substring_divisible(_UpperCAmelCase ) ) if __name__ == "__main__": print(F'{solution() = }')
351
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase: List[str] = True except (ImportError, ModuleNotFoundError): UpperCAmelCase: int = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): re.sub("""<n>""" , """""" , __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
336
0
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' snake_case_ = VideoMAEConfig() set_architecture_configs(__UpperCAmelCase, __UpperCAmelCase ) if "finetuned" not in model_name: snake_case_ = False if "finetuned" in model_name: snake_case_ = '''huggingface/label-files''' if "kinetics" in model_name: snake_case_ = 400 snake_case_ = '''kinetics400-id2label.json''' elif "ssv2" in model_name: snake_case_ = 174 snake_case_ = '''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) snake_case_ = json.load(open(hf_hub_download(__UpperCAmelCase, __UpperCAmelCase, repo_type='''dataset''' ), '''r''' ) ) snake_case_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' if "small" in model_name: snake_case_ = 384 snake_case_ = 1536 snake_case_ = 12 snake_case_ = 16 snake_case_ = 12 snake_case_ = 3 snake_case_ = 192 snake_case_ = 768 elif "large" in model_name: snake_case_ = 1024 snake_case_ = 4096 snake_case_ = 24 snake_case_ = 16 snake_case_ = 12 snake_case_ = 8 snake_case_ = 512 snake_case_ = 2048 elif "huge" in model_name: snake_case_ = 1280 snake_case_ = 5120 snake_case_ = 32 snake_case_ = 16 snake_case_ = 12 snake_case_ = 8 snake_case_ = 640 snake_case_ = 2560 elif "base" not in model_name: raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' ) def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if "encoder." in name: snake_case_ = name.replace('''encoder.''', '''''' ) if "cls_token" in name: snake_case_ = name.replace('''cls_token''', '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: snake_case_ = name.replace('''decoder_pos_embed''', '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: snake_case_ = name.replace('''pos_embed''', '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: snake_case_ = name.replace('''patch_embed.proj''', '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: snake_case_ = name.replace('''patch_embed.norm''', '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: snake_case_ = name.replace('''decoder.blocks''', '''decoder.decoder_layers''' ) if "blocks" in name: snake_case_ = name.replace('''blocks''', '''videomae.encoder.layer''' ) if "attn.proj" in name: snake_case_ = name.replace('''attn.proj''', '''attention.output.dense''' ) if "attn" in name and "bias" not in name: snake_case_ = name.replace('''attn''', '''attention.self''' ) if "attn" in name: snake_case_ = name.replace('''attn''', '''attention.attention''' ) if "norm1" in name: snake_case_ = name.replace('''norm1''', '''layernorm_before''' ) if "norm2" in name: snake_case_ = name.replace('''norm2''', '''layernorm_after''' ) if "mlp.fc1" in name: snake_case_ = name.replace('''mlp.fc1''', '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case_ = name.replace('''mlp.fc2''', '''output.dense''' ) if "decoder_embed" in name: snake_case_ = name.replace('''decoder_embed''', '''decoder.decoder_embed''' ) if "decoder_norm" in name: snake_case_ = name.replace('''decoder_norm''', '''decoder.decoder_norm''' ) if "decoder_pred" in name: snake_case_ = name.replace('''decoder_pred''', '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: snake_case_ = name.replace('''norm.weight''', '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: snake_case_ = name.replace('''norm.bias''', '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: snake_case_ = name.replace('''head''', '''classifier''' ) return name def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(__UpperCAmelCase ) if key.startswith('''encoder.''' ): snake_case_ = key.replace('''encoder.''', '''''' ) if "qkv" in key: snake_case_ = key.split('''.''' ) if key.startswith('''decoder.blocks''' ): snake_case_ = config.decoder_hidden_size snake_case_ = int(key_split[2] ) snake_case_ = '''decoder.decoder_layers.''' if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = config.hidden_size snake_case_ = int(key_split[1] ) snake_case_ = '''videomae.encoder.layer.''' if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val return orig_state_dict def __magic_name__ ( ) -> List[Any]: '''simple docstring''' snake_case_ = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''' ) snake_case_ = np.load(__UpperCAmelCase ) return list(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Any: '''simple docstring''' snake_case_ = get_videomae_config(__UpperCAmelCase ) if "finetuned" in model_name: snake_case_ = VideoMAEForVideoClassification(__UpperCAmelCase ) else: snake_case_ = VideoMAEForPreTraining(__UpperCAmelCase ) # download original checkpoint, hosted on Google Drive snake_case_ = '''pytorch_model.bin''' gdown.cached_download(__UpperCAmelCase, __UpperCAmelCase, quiet=__UpperCAmelCase ) snake_case_ = torch.load(__UpperCAmelCase, map_location='''cpu''' ) if "model" in files: snake_case_ = files['''model'''] else: snake_case_ = files['''module'''] snake_case_ = convert_state_dict(__UpperCAmelCase, __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() # verify model on basic input snake_case_ = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5] ) snake_case_ = prepare_video() snake_case_ = image_processor(__UpperCAmelCase, return_tensors='''pt''' ) if "finetuned" not in model_name: snake_case_ = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''', filename='''bool_masked_pos.pt''' ) snake_case_ = torch.load(__UpperCAmelCase ) snake_case_ = model(**__UpperCAmelCase ) snake_case_ = outputs.logits snake_case_ = [ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": snake_case_ = torch.Size([1, 400] ) snake_case_ = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": snake_case_ = torch.Size([1, 174] ) snake_case_ = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": snake_case_ = torch.Size([1, 1408, 1536] ) snake_case_ = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": snake_case_ = torch.Size([1, 1408, 1536] ) snake_case_ = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one snake_case_ = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": snake_case_ = torch.Size([1, 1408, 1536] ) snake_case_ = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": snake_case_ = torch.Size([1, 400] ) snake_case_ = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": snake_case_ = torch.Size([1, 400] ) snake_case_ = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": snake_case_ = torch.Size([1, 400] ) snake_case_ = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": snake_case_ = torch.Size([1, 400] ) snake_case_ = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": snake_case_ = torch.Size([1, 1408, 1536] ) snake_case_ = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": snake_case_ = torch.Size([1, 174] ) snake_case_ = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": snake_case_ = torch.Size([1, 1408, 1536] ) snake_case_ = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": snake_case_ = torch.Size([1, 174] ) snake_case_ = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(F"Model name not supported. Should be one of {model_names}" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3], __UpperCAmelCase, atol=1e-4 ) else: print('''Logits:''', logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3], __UpperCAmelCase, atol=1e-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": snake_case_ = outputs.loss assert torch.allclose(__UpperCAmelCase, __UpperCAmelCase, atol=1e-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(__UpperCAmelCase, organization='''nielsr''' ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a : Union[str, Any] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
56
'''simple docstring''' import math import unittest def lowerCamelCase ( UpperCAmelCase__ : int ) -> bool: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): with self.assertRaises(lowercase_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
239
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp _snake_case = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } _snake_case = { "RUCAIBox/mvp": 1024, } class UpperCAmelCase_ ( UpperCamelCase_): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] lowerCamelCase__ = MvpTokenizer def __init__( self, __a=None, __a=None, __a=None, __a="replace", __a="<s>", __a="</s>", __a="</s>", __a="<s>", __a="<unk>", __a="<pad>", __a="<mask>", __a=False, __a=True, **__a, ): '''simple docstring''' super().__init__( _a, _a, tokenizer_file=_a, errors=_a, bos_token=_a, eos_token=_a, sep_token=_a, cls_token=_a, unk_token=_a, pad_token=_a, mask_token=_a, add_prefix_space=_a, trim_offsets=_a, **_a, ) _lowerCAmelCase : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", _a) != add_prefix_space: _lowerCAmelCase : Union[str, Any] = getattr(_a, pre_tok_state.pop("type")) _lowerCAmelCase : Union[str, Any] = add_prefix_space _lowerCAmelCase : str = pre_tok_class(**_a) _lowerCAmelCase : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCAmelCase : List[str] = """post_processor""" _lowerCAmelCase : str = getattr(self.backend_tokenizer, _a, _a) if tokenizer_component_instance: _lowerCAmelCase : List[str] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : str = tuple(state["sep"]) if "cls" in state: _lowerCAmelCase : str = tuple(state["cls"]) _lowerCAmelCase : str = False if state.get("add_prefix_space", _a) != add_prefix_space: _lowerCAmelCase : List[str] = add_prefix_space _lowerCAmelCase : List[Any] = True if state.get("trim_offsets", _a) != trim_offsets: _lowerCAmelCase : Any = trim_offsets _lowerCAmelCase : Tuple = True if changes_to_apply: _lowerCAmelCase : Optional[int] = getattr(_a, state.pop("type")) _lowerCAmelCase : Dict = component_class(**_a) setattr(self.backend_tokenizer, _a, _a) @property def snake_case__ ( self): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = AddedToken(_a, lstrip=_a, rstrip=_a) if isinstance(_a, _a) else value _lowerCAmelCase : Any = value def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : Optional[int] = kwargs.get("is_split_into_words", _a) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs.") return super()._batch_encode_plus(*_a, **_a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : int = kwargs.get("is_split_into_words", _a) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs.") return super()._encode_plus(*_a, **_a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Optional[int] = self._tokenizer.model.save(_a, name=_a) return tuple(_a) def snake_case__ ( self, __a, __a=None): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
362
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
0
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->Any: '''simple docstring''' def decorator(_lowercase : List[str] ): a : Optional[Any] = getattr(_lowercase , "handle_key" , [] ) handle += [key] setattr(_lowercase , "handle_key" , _lowercase ) return func return decorator def _SCREAMING_SNAKE_CASE ( *_lowercase : List[str] ) ->Any: '''simple docstring''' def decorator(_lowercase : str ): a : Optional[Any] = getattr(_lowercase , "handle_key" , [] ) handle += keys setattr(_lowercase , "handle_key" , _lowercase ) return func return decorator class __UpperCamelCase ( a__ ): def __new__( cls , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: a : int = super().__new__(cls , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not hasattr(lowerCAmelCase__ , "key_handler" ): setattr(lowerCAmelCase__ , "key_handler" , {} ) setattr(lowerCAmelCase__ , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): a : Tuple = getattr(lowerCAmelCase__ , "handle_key" , [] ) for key in handled_keys: a : Union[str, Any] = value return new_cls @staticmethod def __a ( cls ) -> int: a : List[str] = get_character() if char != KEYMAP["undefined"]: a : Tuple = ord(lowerCAmelCase__ ) a : List[Any] = cls.key_handler.get(lowerCAmelCase__ ) if handler: a : Dict = char return handler(cls ) else: return None def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] ) ->Optional[Any]: '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
105
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _SCREAMING_SNAKE_CASE ( ) ->Dict: '''simple docstring''' a : Any = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=_lowercase ) a : List[Any] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=_lowercase ) env_command_parser(subparsers=_lowercase ) launch_command_parser(subparsers=_lowercase ) tpu_command_parser(subparsers=_lowercase ) test_command_parser(subparsers=_lowercase ) # Let's go a : List[Any] = parser.parse_args() if not hasattr(_lowercase , "func" ): parser.print_help() exit(1 ) # Run args.func(_lowercase ) if __name__ == "__main__": main()
105
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __UpperCAmelCase = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } __UpperCAmelCase = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } __UpperCAmelCase = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : str =VOCAB_FILES_NAMES lowerCamelCase : str =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[Any] =PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[str] =RealmTokenizer def __init__( self : str , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=True , lowerCAmelCase : Dict="[UNK]" , lowerCAmelCase : Tuple="[SEP]" , lowerCAmelCase : Tuple="[PAD]" , lowerCAmelCase : Optional[int]="[CLS]" , lowerCAmelCase : Tuple="[MASK]" , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=None , **lowerCAmelCase : str , ) -> List[Any]: """simple docstring""" super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) __lowerCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase ) != tokenize_chinese_chars ): __lowerCAmelCase : Tuple = getattr(lowerCAmelCase , normalizer_state.pop("""type""" ) ) __lowerCAmelCase : Union[str, Any] = do_lower_case __lowerCAmelCase : Any = strip_accents __lowerCAmelCase : List[str] = tokenize_chinese_chars __lowerCAmelCase : Any = normalizer_class(**lowerCAmelCase ) __lowerCAmelCase : Tuple = do_lower_case def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Dict , **lowerCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = PaddingStrategy.MAX_LENGTH __lowerCAmelCase : Tuple = text __lowerCAmelCase : Tuple = kwargs.pop("""text_pair""" , lowerCAmelCase ) __lowerCAmelCase : List[Any] = kwargs.pop("""return_tensors""" , lowerCAmelCase ) __lowerCAmelCase : Optional[int] = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(lowerCAmelCase ): if batch_text_pair is not None: __lowerCAmelCase : Union[str, Any] = batch_text_pair[idx] else: __lowerCAmelCase : List[Any] = None __lowerCAmelCase : Any = super().__call__(lowerCAmelCase , lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) __lowerCAmelCase : Dict = encoded_candidates.get("""input_ids""" ) __lowerCAmelCase : int = encoded_candidates.get("""attention_mask""" ) __lowerCAmelCase : List[str] = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(lowerCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(lowerCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(lowerCAmelCase ) __lowerCAmelCase : List[Any] = {key: item for key, item in output_data.items() if len(lowerCAmelCase ) != 0} return BatchEncoding(lowerCAmelCase , tensor_type=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : str , lowerCAmelCase : str=None ) -> Any: """simple docstring""" __lowerCAmelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowerCAmelCase : int = [self.sep_token_id] __lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __lowerCAmelCase : List[Any] = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
139
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : str=13 , lowerCAmelCase : Optional[Any]=7 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Any=True , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=99 , lowerCAmelCase : Any=32 , lowerCAmelCase : int=5 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : Optional[Any]=37 , lowerCAmelCase : str="gelu" , lowerCAmelCase : str=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : Any=5_12 , lowerCAmelCase : Optional[Any]=16 , lowerCAmelCase : Dict=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Optional[int]=4 , ) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = parent __lowerCAmelCase : Dict = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : Union[str, Any] = is_training __lowerCAmelCase : List[Any] = use_attention_mask __lowerCAmelCase : List[Any] = use_token_type_ids __lowerCAmelCase : Optional[int] = use_labels __lowerCAmelCase : str = vocab_size __lowerCAmelCase : Any = hidden_size __lowerCAmelCase : Optional[int] = num_hidden_layers __lowerCAmelCase : Optional[int] = num_attention_heads __lowerCAmelCase : Dict = intermediate_size __lowerCAmelCase : Tuple = hidden_act __lowerCAmelCase : Dict = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : Union[str, Any] = max_position_embeddings __lowerCAmelCase : int = type_vocab_size __lowerCAmelCase : Tuple = type_sequence_label_size __lowerCAmelCase : int = initializer_range __lowerCAmelCase : Optional[int] = num_choices def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Dict = None if self.use_attention_mask: __lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : List[str] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = self.prepare_config_and_inputs() __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : List[str] = config_and_inputs __lowerCAmelCase : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.prepare_config_and_inputs() __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Dict = config_and_inputs __lowerCAmelCase : Any = True __lowerCAmelCase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int =True lowerCamelCase : Any =( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = FlaxBertModelTester(self ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: """simple docstring""" __lowerCAmelCase : int = FlaxBertModel.from_pretrained("""bert-base-cased""" ) __lowerCAmelCase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase )
139
1
from ...processing_utils import ProcessorMixin class A ( __UpperCAmelCase ): __snake_case = ['image_processor', 'feature_extractor'] __snake_case = 'TvltImageProcessor' __snake_case = 'TvltFeatureExtractor' def __init__( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" super().__init__(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) lowerCAmelCase_ = image_processor lowerCAmelCase_ = feature_extractor def __call__( self, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=False, UpperCamelCase__=False, *UpperCamelCase__, **UpperCamelCase__, ): """simple docstring""" if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) lowerCAmelCase_ = None if images is not None: lowerCAmelCase_ = self.image_processor(UpperCamelCase__, mask_pixel=UpperCamelCase__, *UpperCamelCase__, **UpperCamelCase__ ) if images_mixed is not None: lowerCAmelCase_ = self.image_processor(UpperCamelCase__, is_mixed=UpperCamelCase__, *UpperCamelCase__, **UpperCamelCase__ ) if audio is not None: lowerCAmelCase_ = self.feature_extractor( UpperCamelCase__, *UpperCamelCase__, sampling_rate=UpperCamelCase__, mask_audio=UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = {} if audio is not None: output_dict.update(UpperCamelCase__ ) if images is not None: output_dict.update(UpperCamelCase__ ) if images_mixed_dict is not None: output_dict.update(UpperCamelCase__ ) return output_dict @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processor.model_input_names lowerCAmelCase_ = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
278
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A ( __UpperCAmelCase ): __snake_case = (UnCLIPScheduler,) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**UpperCamelCase__ ) return config def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__, prev_timestep=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) lowerCAmelCase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1E-5 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config(variance_type='''learned_range''' ) lowerCAmelCase_ = scheduler_class(**UpperCamelCase__ ) lowerCAmelCase_ = 0.5 assert scheduler._get_variance(1, predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1E-5 assert scheduler._get_variance(487, predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1E-5 assert scheduler._get_variance(999, predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1E-5 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config() lowerCAmelCase_ = scheduler_class(**UpperCamelCase__ ) lowerCAmelCase_ = scheduler.timesteps lowerCAmelCase_ = self.dummy_model() lowerCAmelCase_ = self.dummy_sample_deter lowerCAmelCase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowerCAmelCase_ = model(UpperCamelCase__, UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase_ = scheduler.step(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, generator=UpperCamelCase__ ).prev_sample lowerCAmelCase_ = pred_prev_sample lowerCAmelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCAmelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1E-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.scheduler_classes[0] lowerCAmelCase_ = self.get_scheduler_config() lowerCAmelCase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowerCAmelCase_ = scheduler.timesteps lowerCAmelCase_ = self.dummy_model() lowerCAmelCase_ = self.dummy_sample_deter lowerCAmelCase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowerCAmelCase_ = model(UpperCamelCase__, UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowerCAmelCase_ = None else: lowerCAmelCase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCAmelCase_ = scheduler.step( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, prev_timestep=UpperCamelCase__, generator=UpperCamelCase__ ).prev_sample lowerCAmelCase_ = pred_prev_sample lowerCAmelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCAmelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1E-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass
278
1
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants _A = 3_0_0 # TEMPERATURE (unit = K) def UpperCAmelCase ( a_, a_, a_, ): '''simple docstring''' if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
205
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _A = re.compile(r'^(?P<major>\d+)' r'\.(?P<minor>\d+)' r'\.(?P<patch>\d+)$') @total_ordering @dataclass class _lowercase : lowercase_ = 42 lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase , lowerCamelCase , lowerCamelCase : List[str] = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> int: return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def _UpperCamelCase ( self ) -> Dict: return self.major, self.minor, self.patch def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Optional[int]: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return Version(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return other raise TypeError(F"""{other} (type {type(UpperCAmelCase_ )}) cannot be compared to version.""" ) def __eq__( self , UpperCAmelCase_ ) -> Optional[Any]: try: lowerCamelCase : List[str] = self._validate_operand(UpperCAmelCase_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , UpperCAmelCase_ ) -> Optional[int]: lowerCamelCase : Optional[int] = self._validate_operand(UpperCAmelCase_ ) return self.tuple < other.tuple def __hash__( self ) -> Optional[Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _UpperCamelCase ( cls , UpperCAmelCase_ ) -> Union[str, Any]: lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _UpperCamelCase ( self ) -> str: return self.version_str def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : Tuple = _VERSION_REG.match(a_ ) if not res: raise ValueError(F"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(a_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def UpperCAmelCase ( a_ ): '''simple docstring''' return ".".join(str(a_ ) for v in version_tuple )
205
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase_ ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=0.9_9_9 , _UpperCAmelCase : Tuple="cosine" , ) -> int: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCAmelCase : Optional[int] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCAmelCase : Optional[int] ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _UpperCAmelCase : str = [] for i in range(_UpperCAmelCase ): _UpperCAmelCase : int = i / num_diffusion_timesteps _UpperCAmelCase : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCAmelCase ) / alpha_bar_fn(_UpperCAmelCase ) , _UpperCAmelCase ) ) return torch.tensor(_UpperCAmelCase , dtype=torch.floataa ) class lowerCamelCase_ (snake_case__ , snake_case__ ): '''simple docstring''' __UpperCamelCase: int = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase: List[Any] = 2 @register_to_config def __init__( self : str , A : int = 1000 , A : float = 0.00_085 , A : float = 0.012 , A : str = "linear" , A : Optional[Union[np.ndarray, List[float]]] = None , A : str = "epsilon" , A : Optional[bool] = False , A : Optional[bool] = False , A : float = 1.0 , A : str = "linspace" , A : int = 0 , ): if trained_betas is not None: _UpperCAmelCase : Optional[Any] = torch.tensor(A , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase : Dict = torch.linspace(A , A , A , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase : int = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase : Optional[Any] = betas_for_alpha_bar(A , alpha_transform_type="cosine" ) elif beta_schedule == "exp": _UpperCAmelCase : List[str] = betas_for_alpha_bar(A , alpha_transform_type="exp" ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _UpperCAmelCase : Optional[int] = 1.0 - self.betas _UpperCAmelCase : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(A , A , A ) _UpperCAmelCase : Union[str, Any] = use_karras_sigmas def _A ( self : Tuple , A : List[Any] , A : str=None ): if schedule_timesteps is None: _UpperCAmelCase : Dict = self.timesteps _UpperCAmelCase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _UpperCAmelCase : Optional[int] = 1 if len(A ) > 1 else 0 else: _UpperCAmelCase : List[str] = timestep.cpu().item() if torch.is_tensor(A ) else timestep _UpperCAmelCase : Any = self._index_counter[timestep_int] return indices[pos].item() @property def _A ( self : List[str] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _A ( self : Optional[Any] , A : torch.FloatTensor , A : Union[float, torch.FloatTensor] , ): _UpperCAmelCase : List[str] = self.index_for_timestep(A ) _UpperCAmelCase : int = self.sigmas[step_index] _UpperCAmelCase : Union[str, Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def _A ( self : Optional[Any] , A : int , A : Union[str, torch.device] = None , A : Optional[int] = None , ): _UpperCAmelCase : str = num_inference_steps _UpperCAmelCase : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _UpperCAmelCase : List[str] = np.linspace(0 , num_train_timesteps - 1 , A , dtype=A )[::-1].copy() elif self.config.timestep_spacing == "leading": _UpperCAmelCase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase : Tuple = (np.arange(0 , A ) * step_ratio).round()[::-1].copy().astype(A ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _UpperCAmelCase : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase : Optional[Any] = (np.arange(A , 0 , -step_ratio )).round().copy().astype(A ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _UpperCAmelCase : Dict = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _UpperCAmelCase : List[Any] = np.log(A ) _UpperCAmelCase : int = np.interp(A , np.arange(0 , len(A ) ) , A ) if self.config.use_karras_sigmas: _UpperCAmelCase : List[str] = self._convert_to_karras(in_sigmas=A , num_inference_steps=self.num_inference_steps ) _UpperCAmelCase : str = np.array([self._sigma_to_t(A , A ) for sigma in sigmas] ) _UpperCAmelCase : Optional[Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _UpperCAmelCase : List[str] = torch.from_numpy(A ).to(device=A ) _UpperCAmelCase : Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _UpperCAmelCase : Optional[Any] = torch.from_numpy(A ) _UpperCAmelCase : Optional[Any] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(A ).startswith("mps" ): # mps does not support float64 _UpperCAmelCase : Union[str, Any] = timesteps.to(A , dtype=torch.floataa ) else: _UpperCAmelCase : List[str] = timesteps.to(device=A ) # empty dt and derivative _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _UpperCAmelCase : int = defaultdict(A ) def _A ( self : Tuple , A : Optional[int] , A : Tuple ): # get log sigma _UpperCAmelCase : Dict = np.log(A ) # get distribution _UpperCAmelCase : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _UpperCAmelCase : Union[str, Any] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _UpperCAmelCase : List[Any] = low_idx + 1 _UpperCAmelCase : List[Any] = log_sigmas[low_idx] _UpperCAmelCase : Optional[Any] = log_sigmas[high_idx] # interpolate sigmas _UpperCAmelCase : Optional[Any] = (low - log_sigma) / (low - high) _UpperCAmelCase : List[str] = np.clip(A , 0 , 1 ) # transform interpolation to time range _UpperCAmelCase : Tuple = (1 - w) * low_idx + w * high_idx _UpperCAmelCase : Optional[Any] = t.reshape(sigma.shape ) return t def _A ( self : Tuple , A : torch.FloatTensor , A : List[str] ): _UpperCAmelCase : float = in_sigmas[-1].item() _UpperCAmelCase : float = in_sigmas[0].item() _UpperCAmelCase : Union[str, Any] = 7.0 # 7.0 is the value used in the paper _UpperCAmelCase : List[Any] = np.linspace(0 , 1 , A ) _UpperCAmelCase : List[Any] = sigma_min ** (1 / rho) _UpperCAmelCase : Tuple = sigma_max ** (1 / rho) _UpperCAmelCase : List[Any] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _A ( self : List[Any] ): return self.dt is None def _A ( self : Tuple , A : Union[torch.FloatTensor, np.ndarray] , A : Union[float, torch.FloatTensor] , A : Union[torch.FloatTensor, np.ndarray] , A : bool = True , ): _UpperCAmelCase : Dict = self.index_for_timestep(A ) # advance index counter by 1 _UpperCAmelCase : int = timestep.cpu().item() if torch.is_tensor(A ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _UpperCAmelCase : Any = self.sigmas[step_index] _UpperCAmelCase : Any = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _UpperCAmelCase : Optional[int] = self.sigmas[step_index - 1] _UpperCAmelCase : List[str] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : str = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _UpperCAmelCase : str = sigma_hat if self.state_in_first_order else sigma_next _UpperCAmelCase : Tuple = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _UpperCAmelCase : int = sigma_hat if self.state_in_first_order else sigma_next _UpperCAmelCase : str = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _UpperCAmelCase : Tuple = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _UpperCAmelCase : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _UpperCAmelCase : Optional[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _UpperCAmelCase : List[str] = sigma_next - sigma_hat # store for 2nd order step _UpperCAmelCase : Optional[int] = derivative _UpperCAmelCase : List[str] = dt _UpperCAmelCase : int = sample else: # 2. 2nd order / Heun's method _UpperCAmelCase : str = (sample - pred_original_sample) / sigma_next _UpperCAmelCase : Optional[int] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _UpperCAmelCase : Union[str, Any] = self.dt _UpperCAmelCase : Optional[Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _UpperCAmelCase : List[str] = None _UpperCAmelCase : str = None _UpperCAmelCase : List[str] = None _UpperCAmelCase : Any = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A ) def _A ( self : Optional[Any] , A : torch.FloatTensor , A : torch.FloatTensor , A : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples _UpperCAmelCase : int = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(A ): # mps does not support float64 _UpperCAmelCase : Tuple = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _UpperCAmelCase : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _UpperCAmelCase : Tuple = self.timesteps.to(original_samples.device ) _UpperCAmelCase : int = timesteps.to(original_samples.device ) _UpperCAmelCase : Optional[Any] = [self.index_for_timestep(A , A ) for t in timesteps] _UpperCAmelCase : Any = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _UpperCAmelCase : Dict = sigma.unsqueeze(-1 ) _UpperCAmelCase : List[Any] = original_samples + noise * sigma return noisy_samples def __len__( self : List[str] ): return self.config.num_train_timesteps
31
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.ndarray: """simple docstring""" if (ksize % 2) == 0: _UpperCamelCase = ksize + 1 _UpperCamelCase = np.zeros((ksize, ksize), dtype=np.floataa ) # each value for y in range(__snake_case ): for x in range(__snake_case ): # distance from center _UpperCamelCase = x - ksize // 2 _UpperCamelCase = y - ksize // 2 # degree to radiant _UpperCamelCase = theta / 1_80 * np.pi _UpperCamelCase = np.cos(_theta ) _UpperCamelCase = np.sin(_theta ) # get kernel x _UpperCamelCase = cos_theta * px + sin_theta * py # get kernel y _UpperCamelCase = -sin_theta * px + cos_theta * py # fill kernel _UpperCamelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _a = imread("""../image_data/lena.jpg""") # turn image in gray scale value _a = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _a = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _a = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _a = out / out.max() * 255 _a = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
194
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 5_1_2, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class UpperCAmelCase (_a ): """simple docstring""" _UpperCAmelCase :Tuple = VOCAB_FILES_NAMES _UpperCAmelCase :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Optional[Any] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase :Optional[Any] = RetriBertTokenizer _UpperCAmelCase :str = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase="[UNK]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="[PAD]" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) lowercase__: Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _a ) != do_lower_case or normalizer_state.get('''strip_accents''' , _a ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _a ) != tokenize_chinese_chars ): lowercase__: Optional[Any] = getattr(_a , normalizer_state.pop('''type''' ) ) lowercase__: List[Any] = do_lower_case lowercase__: List[str] = strip_accents lowercase__: Any = tokenize_chinese_chars lowercase__: List[str] = normalizer_class(**_a ) lowercase__: List[str] = do_lower_case def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=None ): lowercase__: List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: int = [self.sep_token_id] lowercase__: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Optional[int] = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
369
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: Optional[int] = batch_size lowercase__: List[str] = seq_length lowercase__: Optional[int] = is_training lowercase__: Dict = use_input_mask lowercase__: List[Any] = use_token_type_ids lowercase__: List[str] = use_labels lowercase__: Union[str, Any] = vocab_size lowercase__: str = hidden_size lowercase__: Any = embedding_size lowercase__: Any = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: List[Any] = type_vocab_size lowercase__: Tuple = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Dict = num_labels lowercase__: int = num_choices lowercase__: int = scope def _snake_case ( self ): lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[Any] = None if self.use_input_mask: lowercase__: Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[Any] = None if self.use_token_type_ids: lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Any = None lowercase__: str = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = MobileBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = MobileBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Any = MobileBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Union[str, Any] = MobileBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = self.num_choices lowercase__: Union[str, Any] = MobileBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): lowercase__: Optional[int] = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): Union[str, Any] = config_and_inputs lowercase__: Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: int = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _snake_case ( self ): lowercase__: int = MobileBertModelTester(self ) lowercase__: Dict = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: return torch.tensor( __UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase , ) __A = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Tuple = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(_UpperCAmelCase ) lowercase__: Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowercase__: Tuple = model(_UpperCAmelCase )[0] lowercase__: Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=_UpperCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase__: int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase__: Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
2
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: str = "levit" def __init__( self : Any , _A : str=224 , _A : List[Any]=3 , _A : List[str]=3 , _A : Dict=2 , _A : int=1 , _A : Any=16 , _A : Dict=[128, 256, 384] , _A : Dict=[4, 8, 12] , _A : Optional[int]=[4, 4, 4] , _A : Any=[16, 16, 16] , _A : int=0 , _A : Tuple=[2, 2, 2] , _A : Union[str, Any]=[2, 2, 2] , _A : Optional[Any]=0.0_2 , **_A : Any , ) -> Dict: """simple docstring""" super().__init__(**_A ) snake_case_ : Optional[Any] = image_size snake_case_ : List[str] = num_channels snake_case_ : str = kernel_size snake_case_ : int = stride snake_case_ : List[str] = padding snake_case_ : Optional[Any] = hidden_sizes snake_case_ : str = num_attention_heads snake_case_ : List[Any] = depths snake_case_ : List[Any] = key_dim snake_case_ : Any = drop_path_rate snake_case_ : str = patch_size snake_case_ : Any = attention_ratio snake_case_ : Dict = mlp_ratio snake_case_ : Union[str, Any] = initializer_range snake_case_ : int = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Tuple = version.parse("1.11" ) @property def UpperCAmelCase_ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> float: """simple docstring""" return 1E-4
327
def SCREAMING_SNAKE_CASE__ ( __a , __a ): while b: snake_case_ ,snake_case_ : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( __a , __a ): return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE__ ( ): print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
327
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase_ = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case ): UpperCamelCase__ : Any ="mask2former" UpperCamelCase__ : Dict =["swin"] UpperCamelCase__ : Optional[int] ={"hidden_size": "hidden_dim"} def __init__( self :List[str] , _lowercase :Optional[Dict] = None , _lowercase :int = 256 , _lowercase :int = 256 , _lowercase :int = 256 , _lowercase :int = 1024 , _lowercase :str = "relu" , _lowercase :int = 6 , _lowercase :int = 10 , _lowercase :int = 8 , _lowercase :float = 0.0 , _lowercase :int = 2048 , _lowercase :bool = False , _lowercase :bool = False , _lowercase :int = 4 , _lowercase :int = 255 , _lowercase :int = 100 , _lowercase :float = 0.1 , _lowercase :float = 2.0 , _lowercase :float = 5.0 , _lowercase :float = 5.0 , _lowercase :int = 12544 , _lowercase :float = 3.0 , _lowercase :float = 0.75 , _lowercase :float = 0.02 , _lowercase :float = 1.0 , _lowercase :bool = True , _lowercase :List[int] = [4, 8, 16, 32] , _lowercase :bool = None , **_lowercase :Tuple , ) -> Optional[Any]: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''') UpperCAmelCase_ = CONFIG_MAPPING['''swin''']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowercase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = backbone_config.pop('''model_type''') UpperCAmelCase_ = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ = config_class.from_dict(_lowercase) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " f"Supported model types: {','.join(self.backbones_supported)}") UpperCAmelCase_ = backbone_config UpperCAmelCase_ = feature_size UpperCAmelCase_ = mask_feature_size UpperCAmelCase_ = hidden_dim UpperCAmelCase_ = encoder_feedforward_dim UpperCAmelCase_ = activation_function UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = dropout UpperCAmelCase_ = dim_feedforward UpperCAmelCase_ = pre_norm UpperCAmelCase_ = enforce_input_projection UpperCAmelCase_ = common_stride UpperCAmelCase_ = ignore_value UpperCAmelCase_ = num_queries UpperCAmelCase_ = no_object_weight UpperCAmelCase_ = class_weight UpperCAmelCase_ = mask_weight UpperCAmelCase_ = dice_weight UpperCAmelCase_ = train_num_points UpperCAmelCase_ = oversample_ratio UpperCAmelCase_ = importance_sample_ratio UpperCAmelCase_ = init_std UpperCAmelCase_ = init_xavier_std UpperCAmelCase_ = use_auxiliary_loss UpperCAmelCase_ = feature_strides UpperCAmelCase_ = output_auxiliary_logits UpperCAmelCase_ = decoder_layers super().__init__(**_lowercase) @classmethod def __a ( cls :Optional[Any] , _lowercase :PretrainedConfig , **_lowercase :str) -> Dict: return cls( backbone_config=_lowercase , **_lowercase , ) def __a ( self :Any) -> Dict[str, any]: UpperCAmelCase_ = copy.deepcopy(self.__dict__) UpperCAmelCase_ = self.backbone_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
344
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A ( __UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rt in rc.restypes: UpperCAmelCase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase_ = rc.restype_atoa[restype_letter] UpperCAmelCase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase_ = rc.atom_order[atom_name] UpperCAmelCase_ = 1 UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask return protein def A ( __UpperCAmelCase ) -> Dict[str, np.ndarray]: '''simple docstring''' UpperCAmelCase_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
344
1
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): __lowerCAmelCase : Any = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: __lowerCAmelCase : Any = 1 - (matter_density + radiation_density + dark_energy) __lowerCAmelCase : Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __lowerCAmelCase : Tuple = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCamelCase__ = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
86
'''simple docstring''' from __future__ import annotations def snake_case_ (_a : Dict , _a : str , _a : Optional[Any] , _a : List[str] ): # noqa: E741 while r - l > 1: UpperCAmelCase = (l + r) // 2 if v[m] >= key: UpperCAmelCase = m else: UpperCAmelCase = m # noqa: E741 return r def snake_case_ (_a : list[int] ): if len(_a ) == 0: return 0 UpperCAmelCase = [0] * len(_a ) UpperCAmelCase = 1 UpperCAmelCase = v[0] for i in range(1 , len(_a ) ): if v[i] < tail[0]: UpperCAmelCase = v[i] elif v[i] > tail[length - 1]: UpperCAmelCase = v[i] length += 1 else: UpperCAmelCase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
34
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_vision_model" def __init__( self: Optional[Any], a_: List[Any]=768, a_: Dict=12, a_: List[str]=3, a_: Union[str, Any]=16, a_: List[str]=288, a_: List[Any]=1, a_: List[Any]=1E-05, a_: int=False, a_: Optional[int]=True, a_: Optional[int]=False, **a_: Union[str, Any], ): '''simple docstring''' super().__init__(**a_ ) _snake_case : Optional[int] = hidden_size _snake_case : str = num_hidden_layers _snake_case : Tuple = num_channels _snake_case : Tuple = patch_size _snake_case : Optional[int] = image_size _snake_case : str = initializer_factor _snake_case : List[str] = layer_norm_eps _snake_case : int = stop_gradient _snake_case : Optional[int] = share_layernorm _snake_case : List[Any] = remove_last_layer @classmethod def UpperCamelCase_ ( cls: Tuple, a_: Union[str, os.PathLike], **a_: int ): '''simple docstring''' _snake_case , _snake_case : List[Any] = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : int = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower_text_model" def __init__( self: Optional[int], a_: Dict=50_265, a_: str=768, a_: int=12, a_: str=12, a_: Tuple=1, a_: Optional[int]=3_072, a_: Any="gelu", a_: Union[str, Any]=0.1, a_: List[Any]=0.1, a_: List[str]=514, a_: List[str]=1, a_: List[Any]=1E-05, a_: Optional[Any]=1, a_: List[Any]=0, a_: Any=2, a_: List[Any]="absolute", a_: Dict=True, **a_: str, ): '''simple docstring''' super().__init__(**a_ ) _snake_case : str = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : int = hidden_act _snake_case : Optional[Any] = initializer_factor _snake_case : str = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : int = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : List[Any] = type_vocab_size _snake_case : Union[str, Any] = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Any = use_cache _snake_case : str = pad_token_id _snake_case : Optional[Any] = bos_token_id _snake_case : Union[str, Any] = eos_token_id @classmethod def UpperCamelCase_ ( cls: Optional[int], a_: Union[str, os.PathLike], **a_: int ): '''simple docstring''' _snake_case , _snake_case : Any = cls.get_config_dict(a_, **a_ ) if config_dict.get("""model_type""" ) == "bridgetower": _snake_case : Optional[Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a_, **a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "bridgetower" def __init__( self: Optional[int], a_: Optional[Any]=True, a_: Optional[int]="gelu", a_: Union[str, Any]=768, a_: Tuple=1, a_: Optional[int]=1E-05, a_: List[str]=False, a_: str="add", a_: str=12, a_: Dict=6, a_: Optional[Any]=False, a_: List[str]=False, a_: str=None, a_: int=None, **a_: Dict, ): '''simple docstring''' _snake_case : int = kwargs.pop("""text_config_dict""", a_ ) _snake_case : Any = kwargs.pop("""vision_config_dict""", a_ ) super().__init__(**a_ ) _snake_case : int = share_cross_modal_transformer_layers _snake_case : int = hidden_act _snake_case : Tuple = hidden_size _snake_case : Tuple = initializer_factor _snake_case : str = layer_norm_eps _snake_case : Any = share_link_tower_layers _snake_case : Union[str, Any] = link_tower_type _snake_case : Dict = num_attention_heads _snake_case : Optional[Any] = num_hidden_layers _snake_case : Any = tie_word_embeddings _snake_case : Union[str, Any] = init_layernorm_from_vision_encoder if text_config is None: _snake_case : Dict = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _snake_case : Dict = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _snake_case : Union[str, Any] = BridgeTowerTextConfig(**a_ ) _snake_case : str = BridgeTowerVisionConfig(**a_ ) @classmethod def UpperCamelCase_ ( cls: Optional[Any], a_: BridgeTowerTextConfig, a_: BridgeTowerVisionConfig, **a_: int ): '''simple docstring''' return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **a_ ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = copy.deepcopy(self.__dict__ ) _snake_case : Any = self.text_config.to_dict() _snake_case : List[Any] = self.vision_config.to_dict() _snake_case : Tuple = self.__class__.model_type return output
132
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : int ): """simple docstring""" if isinstance(snake_case__ , snake_case__ ): _snake_case : List[Any] = np.full((len(snake_case__ ), sequence_length, 2) , snake_case__ ) else: _snake_case : Any = np.full((len(snake_case__ ), sequence_length) , snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ , snake_case__ ): _snake_case : Dict = tensor[:sequence_length] else: _snake_case : List[Any] = tensor[:sequence_length] else: if isinstance(snake_case__ , snake_case__ ): _snake_case : str = tensor[:sequence_length] else: _snake_case : Tuple = tensor[:sequence_length] return out_tensor.tolist() def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" _snake_case : str = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _snake_case : Union[str, Any] = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = True lowercase__ = None lowercase__ = None lowercase__ = -1_00 lowercase__ = "pt" def UpperCamelCase_ ( self: Any, a_: Union[str, Any] ): '''simple docstring''' import torch _snake_case : Optional[Any] = """label""" if """label""" in features[0].keys() else """labels""" _snake_case : str = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _snake_case : Any = self.tokenizer.pad( a_, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="""pt""" if labels is None else None, ) if labels is None: return batch _snake_case : Optional[int] = torch.tensor(batch["""entity_ids"""] ).shape[1] _snake_case : Any = self.tokenizer.padding_side if padding_side == "right": _snake_case : Optional[int] = [ list(a_ ) + [self.label_pad_token_id] * (sequence_length - len(a_ )) for label in labels ] else: _snake_case : Union[str, Any] = [ [self.label_pad_token_id] * (sequence_length - len(a_ )) + list(a_ ) for label in labels ] _snake_case : List[Any] = [feature["""ner_tags"""] for feature in features] _snake_case : str = padding_tensor(a_, -1, a_, a_ ) _snake_case : Any = [feature["""original_entity_spans"""] for feature in features] _snake_case : int = padding_tensor(a_, (-1, -1), a_, a_ ) _snake_case : str = {k: torch.tensor(a_, dtype=torch.intaa ) for k, v in batch.items()} return batch
132
1
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE = 16 , __SCREAMING_SNAKE_CASE = 88 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 32 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "geglu" , __SCREAMING_SNAKE_CASE = None , ) ->int: super().__init__() lowerCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , cross_attention_dim=__SCREAMING_SNAKE_CASE , attention_bias=__SCREAMING_SNAKE_CASE , sample_size=__SCREAMING_SNAKE_CASE , num_vector_embeds=__SCREAMING_SNAKE_CASE , activation_fn=__SCREAMING_SNAKE_CASE , num_embeds_ada_norm=__SCREAMING_SNAKE_CASE , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowerCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowerCAmelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowerCAmelCase = [1, 0] def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = True , ) ->Tuple: lowerCAmelCase = hidden_states lowerCAmelCase = [] lowerCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowerCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowerCAmelCase = self.transformer_index_for_condition[i] lowerCAmelCase = self.transformers[transformer_index]( __SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , cross_attention_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowerCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowerCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__SCREAMING_SNAKE_CASE )
338
class lowercase_ : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Any: lowerCAmelCase = name lowerCAmelCase = value lowerCAmelCase = weight def __repr__( self ) ->str: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: return self.value def SCREAMING_SNAKE_CASE_ ( self ) ->int: return self.name def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: return self.weight def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: return self.value / self.weight def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> int: lowerCAmelCase = [] for i in range(len(snake_case__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: lowerCAmelCase = sorted(snake_case__ , key=snake_case__ , reverse=snake_case__ ) lowerCAmelCase = [] lowerCAmelCase , lowerCAmelCase = 0.0, 0.0 for i in range(len(snake_case__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: pass if __name__ == "__main__": import doctest doctest.testmod()
338
1
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any]=True , _SCREAMING_SNAKE_CASE : Tuple="pt" ) -> Any: lowerCAmelCase = {"""add_prefix_space""": True} if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not line.startswith(""" """ ) else {} lowerCAmelCase = padding_side return tokenizer( [line] , max_length=_SCREAMING_SNAKE_CASE , padding="""max_length""" if pad_to_max_length else None , truncation=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def _snake_case ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any]=None , ) -> int: lowerCAmelCase = input_ids.ne(_SCREAMING_SNAKE_CASE ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __snake_case( _lowerCAmelCase ): '''simple docstring''' def __init__( self , A_ , A_ , A_ , A_ , A_="train" , A_=None , A_=None , A_=None , A_="" , ) -> Optional[Any]: super().__init__() lowerCAmelCase = Path(A_ ).joinpath(type_path + """.source""" ) lowerCAmelCase = Path(A_ ).joinpath(type_path + """.target""" ) lowerCAmelCase = self.get_char_lens(self.src_file ) lowerCAmelCase = max_source_length lowerCAmelCase = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' lowerCAmelCase = tokenizer lowerCAmelCase = prefix if n_obs is not None: lowerCAmelCase = self.src_lens[:n_obs] lowerCAmelCase = src_lang lowerCAmelCase = tgt_lang def __len__( self ) -> Tuple: return len(self.src_lens ) def __getitem__( self , A_ ) -> Dict[str, torch.Tensor]: lowerCAmelCase = index + 1 # linecache starts at 1 lowerCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , A_ ).rstrip("""\n""" ) lowerCAmelCase = linecache.getline(str(self.tgt_file ) , A_ ).rstrip("""\n""" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A_ ) else self.tokenizer ) lowerCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , A_ ) else self.tokenizer lowerCAmelCase = encode_line(A_ , A_ , self.max_source_length , """right""" ) lowerCAmelCase = encode_line(A_ , A_ , self.max_target_length , """right""" ) lowerCAmelCase = source_inputs["""input_ids"""].squeeze() lowerCAmelCase = target_inputs["""input_ids"""].squeeze() lowerCAmelCase = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __snake_case ( A_ ) -> Optional[int]: return [len(A_ ) for x in Path(A_ ).open().readlines()] def __snake_case ( self , A_ ) -> Dict[str, torch.Tensor]: lowerCAmelCase = torch.stack([x["""input_ids"""] for x in batch] ) lowerCAmelCase = torch.stack([x["""attention_mask"""] for x in batch] ) lowerCAmelCase = torch.stack([x["""decoder_input_ids"""] for x in batch] ) lowerCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A_ ) else self.tokenizer.pad_token_id ) lowerCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A_ ) else self.tokenizer.pad_token_id ) lowerCAmelCase = trim_batch(A_ , A_ ) lowerCAmelCase, lowerCAmelCase = trim_batch(A_ , A_ , attention_mask=A_ ) lowerCAmelCase = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch UpperCAmelCase = getLogger(__name__) def _snake_case ( _SCREAMING_SNAKE_CASE : List[List] ) -> List[Any]: return list(itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ) ) def _snake_case ( _SCREAMING_SNAKE_CASE : str ) -> None: lowerCAmelCase = get_git_info() save_json(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """git_log.json""" ) ) def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any]=4 , **_SCREAMING_SNAKE_CASE : int ) -> List[str]: with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , indent=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: with open(_SCREAMING_SNAKE_CASE ) as f: return json.load(_SCREAMING_SNAKE_CASE ) def _snake_case ( ) -> Dict: lowerCAmelCase = git.Repo(search_parent_directories=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = { """repo_id""": str(_SCREAMING_SNAKE_CASE ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def _snake_case ( _SCREAMING_SNAKE_CASE : Callable , _SCREAMING_SNAKE_CASE : Iterable ) -> List: return list(map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def _snake_case ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: with open(_SCREAMING_SNAKE_CASE , """wb""" ) as f: return pickle.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: def remove_articles(_SCREAMING_SNAKE_CASE : Optional[Any] ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : List[str] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str ) -> List[str]: lowerCAmelCase = normalize_answer(_SCREAMING_SNAKE_CASE ).split() lowerCAmelCase = normalize_answer(_SCREAMING_SNAKE_CASE ).split() lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) & Counter(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = sum(common.values() ) if num_same == 0: return 0 lowerCAmelCase = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = (2 * precision * recall) / (precision + recall) return fa def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] ) -> int: return normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] ) -> Dict: assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = 0 for hypo, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): em += exact_match_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: em /= len(_SCREAMING_SNAKE_CASE ) return {"em": em} def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: return model_prefix.startswith("""rag""" ) def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: lowerCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCAmelCase = """dropout_rate""" for p in extra_params: if getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not hasattr(_SCREAMING_SNAKE_CASE , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(_SCREAMING_SNAKE_CASE ) ) delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue lowerCAmelCase = p if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else equivalent_param[p] setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return hparams, config
354
'''simple docstring''' from __future__ import annotations import pandas as pd def _snake_case ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ) -> list[int]: """simple docstring""" lowerCAmelCase = [0] * no_of_processes lowerCAmelCase = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = burst_time[i] lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 999_999_999 lowerCAmelCase = 0 lowerCAmelCase = False # Process until all processes are completed while complete != no_of_processes: for j in range(_SCREAMING_SNAKE_CASE ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: lowerCAmelCase = remaining_time[j] lowerCAmelCase = j lowerCAmelCase = True if not check: increment_time += 1 continue remaining_time[short] -= 1 lowerCAmelCase = remaining_time[short] if minm == 0: lowerCAmelCase = 999_999_999 if remaining_time[short] == 0: complete += 1 lowerCAmelCase = False # Find finish time of current process lowerCAmelCase = increment_time + 1 # Calculate waiting time lowerCAmelCase = finish_time - arrival_time[short] lowerCAmelCase = finar - burst_time[short] if waiting_time[short] < 0: lowerCAmelCase = 0 # Increment time increment_time += 1 return waiting_time def _snake_case ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[int] ) -> list[int]: """simple docstring""" lowerCAmelCase = [0] * no_of_processes for i in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time def _snake_case ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" lowerCAmelCase = 0 lowerCAmelCase = 0 for i in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = total_waiting_time + waiting_time[i] lowerCAmelCase = total_turn_around_time + turn_around_time[i] print(f'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') UpperCAmelCase = int(input()) UpperCAmelCase = [0] * no_of_processes UpperCAmelCase = [0] * no_of_processes UpperCAmelCase = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) UpperCAmelCase , UpperCAmelCase = map(int, input().split()) UpperCAmelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) UpperCAmelCase = burst_time UpperCAmelCase = no_of_processes UpperCAmelCase = waiting_time UpperCAmelCase = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) UpperCAmelCase = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
187
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
135
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class _snake_case ( a__ ): snake_case__ = "camembert" def __init__( self : Union[str, Any] , UpperCAmelCase : List[Any]=30522 , UpperCAmelCase : Optional[int]=768 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Tuple=12 , UpperCAmelCase : Tuple=3072 , UpperCAmelCase : int="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : int=0.0_2 , UpperCAmelCase : Tuple=1E-12 , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , UpperCAmelCase : str="absolute" , UpperCAmelCase : Dict=True , UpperCAmelCase : int=None , **UpperCAmelCase : List[str] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : Any = vocab_size __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : int = num_hidden_layers __lowerCamelCase : int = num_attention_heads __lowerCamelCase : int = hidden_act __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : List[Any] = attention_probs_dropout_prob __lowerCamelCase : Dict = max_position_embeddings __lowerCamelCase : Tuple = type_vocab_size __lowerCamelCase : Any = initializer_range __lowerCamelCase : str = layer_norm_eps __lowerCamelCase : List[Any] = position_embedding_type __lowerCamelCase : Dict = use_cache __lowerCamelCase : List[Any] = classifier_dropout class _snake_case ( a__ ): @property def lowerCamelCase__ ( self : int ): if self.task == "multiple-choice": __lowerCamelCase : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: __lowerCamelCase : Tuple = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
135
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case ( ) -> str: _A = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=snake_case__) _A = parser.add_subparsers(help="""accelerate command helpers""") # Register commands get_config_parser(subparsers=snake_case__) env_command_parser(subparsers=snake_case__) launch_command_parser(subparsers=snake_case__) tpu_command_parser(subparsers=snake_case__) test_command_parser(subparsers=snake_case__) # Let's go _A = parser.parse_args() if not hasattr(snake_case__ , """func"""): parser.print_help() exit(1) # Run args.func(snake_case__) if __name__ == "__main__": main()
359
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class a : """simple docstring""" def __init__( self , lowerCAmelCase_ = "cpu" , lowerCAmelCase_ = "openai/clip-vit-large-patch14" ) -> None: _A = device _A = CLIPTokenizerFast.from_pretrained(lowerCAmelCase_ ) _A = [0.4814_5466, 0.457_8275, 0.4082_1073] _A = [0.2686_2954, 0.2613_0258, 0.2757_7711] _A = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _A = torchvision.transforms.Resize(2_24 ) _A = torchvision.transforms.CenterCrop(2_24 ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: _A = self.resize(lowerCAmelCase_ ) _A = self.center_crop(lowerCAmelCase_ ) _A = self.normalize(lowerCAmelCase_ ) return images def __call__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Tuple: _A = self.tokenizer(text=lowerCAmelCase_ , **lowerCAmelCase_ ) _A = self.preprocess_img(lowerCAmelCase_ ) _A = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class a ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_=10 , lowerCAmelCase_=0.01 , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_="image" , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ) -> None: super().__init__() _A = None _A = device if device else get_device() if vqgan: _A = vqgan else: _A = load_vqgan(self.device , conf_path=lowerCAmelCase_ , ckpt_path=lowerCAmelCase_ ) self.vqgan.eval() if clip: _A = clip else: _A = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) _A = ProcessorGradientFlow(device=self.device ) _A = iterations _A = lr _A = log _A = make_grid _A = return_val _A = quantize _A = self.vqgan.decoder.z_shape def UpperCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=5 , lowerCAmelCase_=True ) -> Any: _A = [] if output_path is None: _A = """./animation.gif""" if input_path is None: _A = self.save_path _A = sorted(glob(input_path + """/*""" ) ) if not len(lowerCAmelCase_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(lowerCAmelCase_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) _A = total_duration / len(lowerCAmelCase_ ) _A = [frame_duration] * len(lowerCAmelCase_ ) if extend_frames: _A = 1.5 _A = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(lowerCAmelCase_ ) ) imageio.mimsave(lowerCAmelCase_ , lowerCAmelCase_ , duration=lowerCAmelCase_ ) print(F'''gif saved to {output_path}''' ) def UpperCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None ) -> str: if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError _A = preprocess(Image.open(lowerCAmelCase_ ) , target_image_size=2_56 ).to(self.device ) _A = preprocess_vqgan(lowerCAmelCase_ ) _A , *_A = self.vqgan.encode(lowerCAmelCase_ ) return z def UpperCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: _A = self.latent.detach().requires_grad_() _A = base_latent + transform_vector if self.quantize: _A , *_A = self.vqgan.quantize(lowerCAmelCase_ ) else: _A = trans_latent return self.vqgan.decode(lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Union[str, Any]: _A = self.clip_preprocessor(text=lowerCAmelCase_ , images=lowerCAmelCase_ , return_tensors="""pt""" , padding=lowerCAmelCase_ ) _A = self.clip(**lowerCAmelCase_ ) _A = clip_outputs.logits_per_image if weights is not None: _A = similarity_logits * weights return similarity_logits.sum() def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: _A = self._get_clip_similarity(pos_prompts["""prompts"""] , lowerCAmelCase_ , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: _A = self._get_clip_similarity(neg_prompts["""prompts"""] , lowerCAmelCase_ , weights=neg_prompts["""weights"""] ) else: _A = torch.tensor([1] , device=self.device ) _A = -torch.log(lowerCAmelCase_ ) + torch.log(lowerCAmelCase_ ) return loss def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _A = torch.randn_like(self.latent , requires_grad=lowerCAmelCase_ , device=self.device ) _A = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _A = self._add_vector(lowerCAmelCase_ ) _A = loop_post_process(lowerCAmelCase_ ) _A = self._get_CLIP_loss(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) print("""CLIP loss""" , lowerCAmelCase_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=lowerCAmelCase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: wandb.init(reinit=lowerCAmelCase_ , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: _A = Image.open(lowerCAmelCase_ ) _A = image.resize((2_56, 2_56) ) wandb.log("""Original Image""" , wandb.Image(lowerCAmelCase_ ) ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> int: if not prompts: return [] _A = [] _A = [] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(lowerCAmelCase_ , (tuple, list) ): _A = prompt[0] _A = float(prompt[1] ) elif ":" in prompt: _A , _A = prompt.split(""":""" ) _A = float(lowerCAmelCase_ ) else: _A = prompt _A = 1.0 processed_prompts.append(lowerCAmelCase_ ) weights.append(lowerCAmelCase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowerCAmelCase_ , device=self.device ), } def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , ) -> str: if image_path: _A = self._get_latent(lowerCAmelCase_ ) else: _A = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) assert pos_prompts, "You must provide at least one positive prompt." _A = self.process_prompts(lowerCAmelCase_ ) _A = self.process_prompts(lowerCAmelCase_ ) if save_final and save_path is None: _A = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) else: _A = save_path + """_""" + get_timestamp() os.makedirs(lowerCAmelCase_ ) _A = save_path _A = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(lowerCAmelCase_ ) ) _A = loop_post_process(lowerCAmelCase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ): if show_intermediate: show_pil(lowerCAmelCase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({"""Image""": wandb.Image(lowerCAmelCase_ )} ) if show_final: show_pil(lowerCAmelCase_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
81
0
def lowerCAmelCase__ ( ) -> Any: '''simple docstring''' for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple ) -> Any: '''simple docstring''' A__ = 1 A__ = 2 while i * i <= n: A__ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCAmelCase__ ( ) -> Dict: '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE_ ) > 5_0_0 ) if __name__ == "__main__": print(solution())
68
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') lowerCAmelCase_ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') lowerCAmelCase_ : List[Any] = '''xvjiarui/stable-diffusion-2-inpainting''' lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = FlaxStableDiffusionInpaintPipeline.from_pretrained(A_ , safety_checker=A_) lowerCAmelCase_ : List[str] = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowerCAmelCase_ : List[Any] = jax.random.PRNGKey(0) lowerCAmelCase_ : str = 5_0 lowerCAmelCase_ : List[Any] = jax.device_count() lowerCAmelCase_ : Union[str, Any] = num_samples * [prompt] lowerCAmelCase_ : str = num_samples * [init_image] lowerCAmelCase_ : Union[str, Any] = num_samples * [mask_image] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pipeline.prepare_inputs(A_ , A_ , A_) # shard inputs and rng lowerCAmelCase_ : str = replicate(A_) lowerCAmelCase_ : str = jax.random.split(A_ , jax.device_count()) lowerCAmelCase_ : List[Any] = shard(A_) lowerCAmelCase_ : str = shard(A_) lowerCAmelCase_ : Tuple = shard(A_) lowerCAmelCase_ : int = pipeline( A_ , A_ , A_ , A_ , A_ , A_ , jit=A_) lowerCAmelCase_ : Optional[int] = output.images.reshape(A_ , 5_1_2 , 5_1_2 , 3) lowerCAmelCase_ : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase_ : int = jnp.asarray(jax.device_get(image_slice.flatten())) lowerCAmelCase_ : str = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084]) print(F"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
103
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : str=13 , __lowerCamelCase : List[str]=10 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : int=True , __lowerCamelCase : Optional[Any]=32 , __lowerCamelCase : Optional[int]=5 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : str=37 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Optional[Any]=10 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : List[str]=0.9 , __lowerCamelCase : Any=None , ): A : Optional[int] = parent A : int = batch_size A : Any = image_size A : Optional[Any] = num_channels A : str = patch_size A : Any = tubelet_size A : int = num_frames A : Optional[Any] = is_training A : Optional[int] = use_labels A : Union[str, Any] = hidden_size A : Optional[Any] = num_hidden_layers A : str = num_attention_heads A : List[str] = intermediate_size A : List[Any] = hidden_act A : List[str] = hidden_dropout_prob A : Optional[Any] = attention_probs_dropout_prob A : Dict = type_sequence_label_size A : Union[str, Any] = initializer_range A : int = mask_ratio A : Union[str, Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame A : Union[str, Any] = (image_size // patch_size) ** 2 A : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos A : str = int(mask_ratio * self.seq_length ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): A : Tuple = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) A : Optional[Any] = None if self.use_labels: A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ): A : Optional[int] = VideoMAEModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict ): A : int = VideoMAEForPreTraining(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A : int = torch.ones((self.num_masks,) ) A : int = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) A : List[str] = mask.expand(self.batch_size , -1 ).bool() A : Optional[int] = model(__lowerCamelCase , __lowerCamelCase ) # model only returns predictions for masked patches A : List[Any] = mask.sum().item() A : List[str] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): A : List[Any] = self.prepare_config_and_inputs() A : Optional[int] = config_and_inputs A : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase ): '''simple docstring''' a__ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) a__ = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): A : List[str] = VideoMAEModelTester(self ) A : Dict = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any]=False ): A : List[str] = copy.deepcopy(__lowerCamelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A : Union[str, Any] = torch.ones((self.model_tester.num_masks,) ) A : List[str] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) A : Tuple = mask.expand(self.model_tester.batch_size , -1 ).bool() A : Union[str, Any] = bool_masked_pos.to(__lowerCamelCase ) if return_labels: if model_class in [ *get_values(__lowerCamelCase ), ]: A : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : Dict ): A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : int = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Tuple = model_class(__lowerCamelCase ) A : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Dict = [*signature.parameters.keys()] A : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : str = VideoMAEModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): if not self.has_attentions: pass else: A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A : int = True for model_class in self.all_model_classes: A : str = self.model_tester.seq_length - self.model_tester.num_masks A : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) A : Union[str, Any] = True A : Any = False A : Dict = True A : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): A : List[str] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) A : Optional[int] = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A : Tuple = True A : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) A : Tuple = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A : Dict = len(__lowerCamelCase ) # Check attention is always last and order is fine A : Union[str, Any] = True A : List[Any] = True A : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): A : Union[str, Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCamelCase ) ) A : Dict = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): def check_hidden_states_output(__lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : str ): A : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) A : int = outputs.hidden_states A : Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) A : Dict = self.model_tester.seq_length - self.model_tester.num_masks A : str = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : List[str] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A : List[Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE__ ( self : Any ): pass def UpperCAmelCase ( ): A : Any = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) A : Optional[Any] = np.load(A__ ) return list(A__ ) @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): A : Optional[Any] = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( __lowerCamelCase ) A : List[str] = self.default_image_processor A : str = prepare_video() A : Any = image_processor(__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): A : Any = model(**__lowerCamelCase ) # verify the logits A : Any = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) A : int = torch.tensor([0.3669, -0.0688, -0.2421] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): A : Optional[Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(__lowerCamelCase ) A : Optional[int] = self.default_image_processor A : List[Any] = prepare_video() A : int = image_processor(__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # add boolean mask, indicating which patches to mask A : List[str] = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) A : str = torch.load(__lowerCamelCase ) # forward pass with torch.no_grad(): A : Any = model(**__lowerCamelCase ) # verify the logits A : Dict = torch.Size([1, 14_08, 15_36] ) A : List[Any] = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=__lowerCamelCase ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) A : int = torch.tensor([0.5142] , device=__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss , __lowerCamelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) A : Any = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=__lowerCamelCase ).to( __lowerCamelCase ) with torch.no_grad(): A : int = model(**__lowerCamelCase ) A : Tuple = torch.tensor(torch.tensor([0.6469] ) , device=__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss , __lowerCamelCase , atol=1e-4 ) )
351
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
256
0
"""simple docstring""" import socket def _snake_case ( ): _lowerCamelCase : List[Any] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _lowerCamelCase : Union[str, Any] = socket.gethostname() _lowerCamelCase : List[Any] = 12312 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: _lowerCamelCase : int = sock.recv(1024 ) if not data: break out_file.write(lowercase__ ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
96
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL snake_case__ : List[Any] = logging.get_logger(__name__) def _snake_case ( _snake_case : Tuple ): if isinstance(_snake_case , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_snake_case , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_snake_case ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class snake_case_( a__ ): __UpperCamelCase = ['''pixel_values'''] def __init__( self : Optional[int] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , **UpperCamelCase_ : Tuple , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = size if size is not None else {'''shortest_edge''': 2_5_6} lowerCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowerCAmelCase : Tuple = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase : Dict = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) lowerCAmelCase : Any = do_resize lowerCAmelCase : Union[str, Any] = size lowerCAmelCase : List[str] = do_center_crop lowerCAmelCase : int = crop_size lowerCAmelCase : Dict = resample lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Any = rescale_factor lowerCAmelCase : List[Any] = offset lowerCAmelCase : Tuple = do_normalize lowerCAmelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : Optional[int] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" in size: lowerCAmelCase : List[str] = get_resize_output_image_size(UpperCamelCase_ , size['''shortest_edge'''] , default_to_square=UpperCamelCase_ ) elif "height" in size and "width" in size: lowerCAmelCase : Any = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Union[str, Any] , ): lowerCAmelCase : Tuple = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(UpperCamelCase_ , size=(size['''height'''], size['''width''']) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[int, float] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : List[str] = image.astype(np.floataa ) if offset: lowerCAmelCase : Union[str, Any] = image - (scale / 2) return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Any , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. lowerCAmelCase : List[str] = to_numpy_array(UpperCamelCase_ ) if do_resize: lowerCAmelCase : Optional[int] = self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) if do_center_crop: lowerCAmelCase : List[str] = self.center_crop(UpperCamelCase_ , size=UpperCamelCase_ ) if do_rescale: lowerCAmelCase : str = self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ , offset=UpperCamelCase_ ) if do_normalize: lowerCAmelCase : Optional[int] = self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) lowerCAmelCase : str = to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) return image def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_ : List[str] , ): lowerCAmelCase : str = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : Any = resample if resample is not None else self.resample lowerCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : str = offset if offset is not None else self.offset lowerCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Any = image_std if image_std is not None else self.image_std lowerCAmelCase : List[str] = size if size is not None else self.size lowerCAmelCase : Tuple = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase : Any = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowerCAmelCase : List[str] = make_batched(UpperCamelCase_ ) lowerCAmelCase : Dict = [ [ self._preprocess_image( image=UpperCamelCase_ , do_resize=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , do_center_crop=UpperCamelCase_ , crop_size=UpperCamelCase_ , do_rescale=UpperCamelCase_ , rescale_factor=UpperCamelCase_ , offset=UpperCamelCase_ , do_normalize=UpperCamelCase_ , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ , data_format=UpperCamelCase_ , ) for img in video ] for video in videos ] lowerCAmelCase : Optional[Any] = {'''pixel_values''': videos} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
60
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Optional[Any] = logging.get_logger(__name__) snake_case : Tuple = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class snake_case_ (_lowerCAmelCase ): UpperCAmelCase__ : Tuple = '''timesformer''' def __init__( self :Tuple ,__snake_case :Optional[int]=2_24 ,__snake_case :str=16 ,__snake_case :List[str]=3 ,__snake_case :str=8 ,__snake_case :Tuple=7_68 ,__snake_case :List[str]=12 ,__snake_case :str=12 ,__snake_case :str=30_72 ,__snake_case :Optional[Any]="gelu" ,__snake_case :Optional[int]=0.0 ,__snake_case :Any=0.0 ,__snake_case :Optional[int]=0.02 ,__snake_case :str=1E-6 ,__snake_case :Optional[Any]=True ,__snake_case :str="divided_space_time" ,__snake_case :Union[str, Any]=0 ,**__snake_case :Dict ,) -> Union[str, Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) a__ = image_size a__ = patch_size a__ = num_channels a__ = num_frames a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = initializer_range a__ = layer_norm_eps a__ = qkv_bias a__ = attention_type a__ = drop_path_rate
366
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() snake_case : int = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ): a__ = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('encoder.deit.cls_token', 'encoder.embeddings.cls_token'), ('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'), ('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'), ('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'), ('encoder.deit.norm.weight', 'encoder.layernorm.weight'), ('encoder.deit.norm.bias', 'encoder.layernorm.bias'), ] ) return rename_keys def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) a__ = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' ) a__ = in_proj_weight[ : encoder_config.hidden_size, : ] a__ = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] a__ = in_proj_weight[ -encoder_config.hidden_size :, : ] def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] ): a__ = dct.pop(__lowerCAmelCase ) a__ = val def __lowercase ( __lowerCAmelCase : Optional[Any] ): if "handwritten" in checkpoint_url: a__ = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: a__ = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg' a__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert('RGB' ) return im @torch.no_grad() def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ): a__ = ViTConfig(image_size=3_8_4 , qkv_bias=__lowerCAmelCase ) a__ = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: a__ = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder a__ = 1_0_2_4 a__ = 4_0_9_6 a__ = 2_4 a__ = 1_6 a__ = 1_0_2_4 else: raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: a__ = False a__ = 'relu' a__ = 1_0_2_4 a__ = True a__ = False a__ = False # load HuggingFace model a__ = ViTModel(__lowerCAmelCase , add_pooling_layer=__lowerCAmelCase ) a__ = TrOCRForCausalLM(__lowerCAmelCase ) a__ = VisionEncoderDecoderModel(encoder=__lowerCAmelCase , decoder=__lowerCAmelCase ) model.eval() # load state_dict of original model, rename some keys a__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='cpu' , check_hash=__lowerCAmelCase )['model'] a__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): a__ = state_dict.pop(__lowerCAmelCase ) if key.startswith('decoder' ) and "output_projection" not in key: a__ = val else: a__ = val # load state dict model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image a__ = ViTImageProcessor(size=encoder_config.image_size ) a__ = RobertaTokenizer.from_pretrained('roberta-large' ) a__ = TrOCRProcessor(__lowerCAmelCase , __lowerCAmelCase ) a__ = processor(images=prepare_img(__lowerCAmelCase ) , return_tensors='pt' ).pixel_values # verify logits a__ = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) a__ = model(pixel_values=__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ) a__ = outputs.logits a__ = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: a__ = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: a__ = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: a__ = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: a__ = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , __lowerCAmelCase , atol=1E-3 ), "First elements of logits not as expected" Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCAmelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) snake_case : int = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
109
0
'''simple docstring''' from __future__ import annotations def __snake_case( _lowerCAmelCase ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(_lowerCAmelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(_lowerCAmelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
35
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __a = logging.get_logger(__name__) __a = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __a = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __a = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = RoFormerTokenizer def __init__( self : List[Any] , snake_case_ : List[str]=None , snake_case_ : Dict=None , snake_case_ : Any=True , snake_case_ : str="[UNK]" , snake_case_ : List[str]="[SEP]" , snake_case_ : Optional[Any]="[PAD]" , snake_case_ : Union[str, Any]="[CLS]" , snake_case_ : Union[str, Any]="[MASK]" , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]=None , **snake_case_ : Tuple , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) snake_case__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , snake_case_ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , snake_case_ ) != strip_accents ): snake_case__ : str = getattr(snake_case_ , pre_tok_state.pop("""type""" ) ) snake_case__ : Optional[int] = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : Union[str, Any] = pre_tok_class(**snake_case_ ) snake_case__ : str = do_lower_case def __getstate__( self : int ): snake_case__ : List[Any] = self.__dict__.copy() snake_case__ : str = BertPreTokenizer() return state def __setstate__( self : Dict , snake_case_ : Dict ): snake_case__ : List[Any] = d snake_case__ : Union[str, Any] = self.__dict__["""_tokenizer"""].get_vocab() snake_case__ : List[Any] = PreTokenizer.custom(JiebaPreTokenizer(snake_case_ ) ) def lowerCamelCase ( self : str , snake_case_ : Optional[Any] , snake_case_ : List[str]=None ): snake_case__ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): snake_case__ : int = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self : Dict , snake_case_ : str , snake_case_ : Optional[str] = None ): snake_case__ : Union[str, Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCamelCase ( self : Dict , snake_case_ : List[str] , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=False , **snake_case_ : Tuple , ): snake_case__ : Optional[Any] = BertPreTokenizer() return super().save_pretrained(snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ )
35
1
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=1E-12): __lowerCAmelCase = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(lowerCamelCase, axis=1), a_min=lowerCamelCase)).T __lowerCAmelCase = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(lowerCamelCase, axis=1), a_min=lowerCamelCase)).T return jnp.matmul(lowerCamelCase, norm_emb_a.T) class a__ ( nn.Module ): """simple docstring""" __UpperCamelCase : CLIPConfig __UpperCamelCase : jnp.dtype = jnp.floataa def _snake_case (self ): __lowerCAmelCase = FlaxCLIPVisionModule(self.config.vision_config ) __lowerCAmelCase = nn.Dense(self.config.projection_dim , use_bias=__lowercase , dtype=self.dtype ) __lowerCAmelCase = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __lowerCAmelCase = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __lowerCAmelCase = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) __lowerCAmelCase = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__(self , __lowercase ): __lowerCAmelCase = self.vision_model(__lowercase )[1] __lowerCAmelCase = self.visual_projection(__lowercase ) __lowerCAmelCase = jax_cosine_distance(__lowercase , self.special_care_embeds ) __lowerCAmelCase = jax_cosine_distance(__lowercase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __lowerCAmelCase = 0.0 __lowerCAmelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __lowerCAmelCase = jnp.round(__lowercase , 3 ) __lowerCAmelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowercase ) # Use a lower threshold if an image has any special care concept __lowerCAmelCase = is_special_care * 0.0_1 __lowerCAmelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __lowerCAmelCase = jnp.round(__lowercase , 3 ) __lowerCAmelCase = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict = CLIPConfig __UpperCamelCase : Dict = 'clip_input' __UpperCamelCase : str = FlaxStableDiffusionSafetyCheckerModule def __init__(self , __lowercase , __lowercase = None , __lowercase = 0 , __lowercase = jnp.floataa , __lowercase = True , **__lowercase , ): if input_shape is None: __lowerCAmelCase = (1, 2_24, 2_24, 3) __lowerCAmelCase = self.module_class(config=__lowercase , dtype=__lowercase , **__lowercase ) super().__init__(__lowercase , __lowercase , input_shape=__lowercase , seed=__lowercase , dtype=__lowercase , _do_init=_do_init ) def _snake_case (self , __lowercase , __lowercase , __lowercase = None ): # init input tensor __lowerCAmelCase = jax.random.normal(__lowercase , __lowercase ) __lowerCAmelCase , __lowerCAmelCase = jax.random.split(__lowercase ) __lowerCAmelCase = {'''params''': params_rng, '''dropout''': dropout_rng} __lowerCAmelCase = self.module.init(__lowercase , __lowercase )['''params'''] return random_params def __call__(self , __lowercase , __lowercase = None , ): __lowerCAmelCase = jnp.transpose(__lowercase , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(__lowercase , dtype=jnp.floataa ) , rngs={} , )
9
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase_ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : _a = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _a = field( default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _a = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) _a = field( default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _a = field(default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _a = field( default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCAmelCase : _a = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) _a = field( default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) _a = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _a = field( default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def a ( ) -> int: """simple docstring""" _lowercase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowercase , _lowercase , _lowercase =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowercase , _lowercase , _lowercase =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) _lowercase =import_module('tasks' ) try: _lowercase =getattr(A__ , model_args.task_type ) _lowercase =token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , A__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _lowercase =token_classification_task.get_labels(data_args.labels ) _lowercase =dict(enumerate(A__ ) ) _lowercase =len(A__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A__ , idalabel=A__ , labelaid={label: i for i, label in enumerate(A__ )} , cache_dir=model_args.cache_dir , ) _lowercase =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) _lowercase =AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) # Get datasets _lowercase =( TokenClassificationDataset( token_classification_task=A__ , data_dir=data_args.data_dir , tokenizer=A__ , labels=A__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _lowercase =( TokenClassificationDataset( token_classification_task=A__ , data_dir=data_args.data_dir , tokenizer=A__ , labels=A__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(A__ : np.ndarray , A__ : np.ndarray ) -> Tuple[List[int], List[int]]: _lowercase =np.argmax(A__ , axis=2 ) _lowercase , _lowercase =preds.shape _lowercase =[[] for _ in range(A__ )] _lowercase =[[] for _ in range(A__ )] for i in range(A__ ): for j in range(A__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(A__ : EvalPrediction ) -> Dict: _lowercase , _lowercase =align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(A__ , A__ ), "precision": precision_score(A__ , A__ ), "recall": recall_score(A__ , A__ ), "f1": fa_score(A__ , A__ ), } # Data collator _lowercase =DataCollatorWithPadding(A__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _lowercase =Trainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , data_collator=A__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowercase ={} if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowercase =trainer.evaluate() _lowercase =os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , A__ , A__ ) writer.write('%s = %s\n' % (key, value) ) results.update(A__ ) # Predict if training_args.do_predict: _lowercase =TokenClassificationDataset( token_classification_task=A__ , data_dir=data_args.data_dir , tokenizer=A__ , labels=A__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) _lowercase , _lowercase , _lowercase =trainer.predict(A__ ) _lowercase , _lowercase =align_predictions(A__ , A__ ) _lowercase =os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , A__ , A__ ) writer.write('%s = %s\n' % (key, value) ) # Save predictions _lowercase =os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(A__ , A__ , A__ ) return results def a ( A__ : str ) -> Optional[Any]: """simple docstring""" main() if __name__ == "__main__": main()
205
def a ( A__ : str , A__ : bool = False ) -> str: """simple docstring""" if not isinstance(A__ , A__ ): _lowercase =F'''Expected string as input, found {type(A__ )}''' raise ValueError(A__ ) if not isinstance(A__ , A__ ): _lowercase =F'''Expected boolean as use_pascal parameter, found {type(A__ )}''' raise ValueError(A__ ) _lowercase =input_str.split('_' ) _lowercase =0 if use_pascal else 1 _lowercase =words[start_index:] _lowercase =[word[0].upper() + word[1:] for word in words_to_capitalize] _lowercase ='' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
205
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def a__ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> int: _A = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } _A , _A = input_paths_and_base_extractors[compression_format] if input_path is None: _A = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowercase ) assert base_extractor.is_extractable(__lowercase ) _A = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(__lowercase , __lowercase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _A = file_path.read_text(encoding="utf-8" ) else: _A = output_path.read_text(encoding="utf-8" ) _A = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def a__ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Optional[int]: _A = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } _A = input_paths[compression_format] if input_path is None: _A = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowercase ) _A = Extractor.infer_extractor_format(__lowercase ) assert extractor_format is not None _A = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(__lowercase , __lowercase , __lowercase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _A = file_path.read_text(encoding="utf-8" ) else: _A = output_path.read_text(encoding="utf-8" ) _A = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def a__ ( __lowercase , __lowercase ) -> int: import tarfile _A = tmp_path / "data_dot_dot" directory.mkdir() _A = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(__lowercase , "w" ) as f: f.add(__lowercase , arcname=os.path.join(".." , text_file.name ) ) return path @pytest.fixture def a__ ( __lowercase ) -> str: import tarfile _A = tmp_path / "data_sym_link" directory.mkdir() _A = directory / "tar_file_with_sym_link.tar" os.symlink(".." , directory / "subdir" , target_is_directory=__lowercase ) with tarfile.TarFile(__lowercase , "w" ) as f: f.add(str(directory / "subdir" ) , arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" , [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] , ) def a__ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Optional[Any]: _A = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } _A = insecure_tar_files[insecure_tar_file] _A = tmp_path / "extracted" TarExtractor.extract(__lowercase , __lowercase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def a__ ( __lowercase ) -> List[str]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number _A = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 _A = ( B"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" B"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" B"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" B"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(__lowercase ) assert zipfile.is_zipfile(str(__lowercase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__lowercase ) # but we're right
357
"""simple docstring""" def a__ ( __lowercase=2_8123 ) -> List[Any]: _A = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i _A = set() _A = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__lowercase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
163
0
'''simple docstring''' from __future__ import annotations lowercase : Any = 8.988E9 # units = N * m^s * C^-2 def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A ) -> dict[str, float]: _snake_case = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: _snake_case = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: _snake_case = abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: _snake_case = abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: _snake_case = (COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
42
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCamelCase : Any = None lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : List[str] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase : Any = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : int = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ : Optional[int] = TaTokenizer lowerCAmelCase__ : List[int] = [] def __init__(self : Dict , UpperCamelCase : str=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any="</s>" , UpperCamelCase : str="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : List[str]=100 , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase__ = [f"<extra_id_{i}>" for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ = len(set(filter(lambda UpperCamelCase : bool('''extra_id_''' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True lowercase__ = extra_ids @staticmethod def UpperCamelCase__ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase , ) return max_model_length def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase__ = os.path.join( UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) logger.info(f"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase ) for token in self.get_sentinel_tokens()]
2
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE ={ "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
357
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations_with_dp_array( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase_ : str = sum( count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE ) for item in array ) lowercase_ : Tuple = answer return answer lowercase_ : Optional[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = [0] * (target + 1) lowercase_ : Dict = 1 for i in range(1 , target + 1 ): for j in range(__SCREAMING_SNAKE_CASE ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE =3 __SCREAMING_SNAKE_CASE =5 __SCREAMING_SNAKE_CASE =[1, 2, 5] print(combination_sum_iv(n, array, target))
321
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder a__: Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name a__: List[str] = 256 class SCREAMING_SNAKE_CASE__ ( __A ): __SCREAMING_SNAKE_CASE = ["melgan"] def __init__( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,): super().__init__() # From MELGAN A__ = math.log(1E-5 ) # Matches MelGAN training. A__ = 4.0 # Largest value for most examples A__ = 128 self.register_modules( notes_encoder=lowercase_,continuous_encoder=lowercase_,decoder=lowercase_,scheduler=lowercase_,melgan=lowercase_,) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=(-1.0, 1.0),__lowerCamelCase=False ): A__ = output_range if clip: A__ = torch.clip(lowercase_,self.min_value,self.max_value ) # Scale to [0, 1]. A__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=(-1.0, 1.0),__lowerCamelCase=False ): A__ = input_range A__ = torch.clip(lowercase_,lowercase_,lowercase_ ) if clip else outputs # Scale to [0, 1]. A__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = input_tokens > 0 A__ = self.notes_encoder( encoder_input_tokens=lowercase_,encoder_inputs_mask=lowercase_ ) A__ = self.continuous_encoder( encoder_inputs=lowercase_,encoder_inputs_mask=lowercase_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = noise_time if not torch.is_tensor(lowercase_ ): A__ = torch.tensor([timesteps],dtype=torch.long,device=input_tokens.device ) elif torch.is_tensor(lowercase_ ) and len(timesteps.shape ) == 0: A__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A__ = timesteps * torch.ones(input_tokens.shape[0],dtype=timesteps.dtype,device=timesteps.device ) A__ = self.decoder( encodings_and_masks=lowercase_,decoder_input_tokens=lowercase_,decoder_noise_time=lowercase_ ) return logits @torch.no_grad() def __call__( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = 100,__lowerCamelCase = True,__lowerCamelCase = "numpy",__lowerCamelCase = None,__lowerCamelCase = 1,): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_,lowercase_ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(lowercase_ )}." ) A__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims],dtype=np.floataa ) A__ = np.zeros([1, 0, self.n_dims],np.floataa ) A__ = torch.ones((1, TARGET_FEATURE_LENGTH),dtype=lowercase_,device=self.device ) for i, encoder_input_tokens in enumerate(lowercase_ ): if i == 0: A__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device,dtype=self.decoder.dtype ) # The first chunk has no previous context. A__ = torch.zeros((1, TARGET_FEATURE_LENGTH),dtype=lowercase_,device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. A__ = ones A__ = self.scale_features( lowercase_,output_range=[-1.0, 1.0],clip=lowercase_ ) A__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ),continuous_inputs=lowercase_,continuous_mask=lowercase_,) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop A__ = randn_tensor( shape=encoder_continuous_inputs.shape,generator=lowercase_,device=self.device,dtype=self.decoder.dtype,) # set step values self.scheduler.set_timesteps(lowercase_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): A__ = self.decode( encodings_and_masks=lowercase_,input_tokens=lowercase_,noise_time=t / self.scheduler.config.num_train_timesteps,) # Compute previous output: x_t -> x_t-1 A__ = self.scheduler.step(lowercase_,lowercase_,lowercase_,generator=lowercase_ ).prev_sample A__ = self.scale_to_features(lowercase_,input_range=[-1.0, 1.0] ) A__ = mel[:1] A__ = mel.cpu().float().numpy() A__ = np.concatenate([full_pred_mel, pred_mel[:1]],axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_,lowercase_ ) logger.info('''Generated segment''',lowercase_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": A__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: A__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=lowercase_ )
193
def lowercase_ ( _lowerCamelCase : int): lowercase__ : Dict = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
87
0
"""simple docstring""" def _lowerCAmelCase ( ): UpperCAmelCase = 0 for i in range(1 , 1001 ): total += i**i return str(lowercase_ )[-10:] if __name__ == "__main__": print(solution())
181
"""simple docstring""" import math def _lowerCAmelCase ( lowercase_ ): assert isinstance(lowercase_ , lowercase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase = range(3 , int(math.sqrt(lowercase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowercase_ , lowercase_=1 , **lowercase_ ): UpperCAmelCase = factor * value UpperCAmelCase = value while not is_prime(lowercase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowercase_ ) return value
181
1
'''simple docstring''' import random class lowercase_ : """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : str ): __lowercase = [ord(_UpperCAmelCase ) for i in text] __lowercase = [] __lowercase = [] for i in plain: __lowercase = random.randint(1 ,3_0_0 ) __lowercase = (i + k) * k cipher.append(_UpperCAmelCase ) key.append(_UpperCAmelCase ) return cipher, key @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : list[int] ,lowercase__ : list[int] ): __lowercase = [] for i in range(len(_UpperCAmelCase ) ): __lowercase = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_UpperCAmelCase ) ) return "".join(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ , lowerCAmelCase__ = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
104
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
346
0
"""simple docstring""" __A = 'Input must be a string of 8 numbers plus letter' __A = 'TRWAGMYFPDXBNJZSQVHLCKE' def _lowerCamelCase(__UpperCamelCase ) -> bool: if not isinstance(__UpperCamelCase , __UpperCamelCase ): _lowerCAmelCase =F'''Expected string as input, found {type(__UpperCamelCase ).__name__}''' raise TypeError(__UpperCamelCase ) _lowerCAmelCase =spanish_id.replace("""-""" , """""" ).upper() if len(__UpperCamelCase ) != 9: raise ValueError(__UpperCamelCase ) try: _lowerCAmelCase =int(spanish_id_clean[0:8] ) _lowerCAmelCase =spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
341
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase = JukeboxTokenizer lowerCamelCase = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def _lowerCAmelCase ( self ) -> str: import torch _lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) _lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""] # fmt: off _lowerCAmelCase =[ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _lowerCAmelCase ( self ) -> Any: import torch _lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) _lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""] # fmt: off _lowerCAmelCase =[ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
341
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _SCREAMING_SNAKE_CASE = re.compile(R"""\s+""") def SCREAMING_SNAKE_CASE__ ( __a ): return {"hash": hashlib.mda(re.sub(__a , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Any = [len(__a ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__a ), "line_max": max(__a )} def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[str] = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def SCREAMING_SNAKE_CASE__ ( __a , __a ): if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def SCREAMING_SNAKE_CASE__ ( __a , __a=5 ): snake_case_ : Dict = ['auto-generated', 'autogenerated', 'automatically generated'] snake_case_ : List[str] = example['content'].splitlines() for _, line in zip(range(__a ) , __a ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def SCREAMING_SNAKE_CASE__ ( __a , __a=5 , __a=0.05 ): snake_case_ : Optional[Any] = ['unit tests', 'test file', 'configuration file'] snake_case_ : Dict = example['content'].splitlines() snake_case_ : List[Any] = 0 snake_case_ : Dict = 0 # first test for _, line in zip(range(__a ) , __a ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ : Union[str, Any] = example['content'].count('\n' ) snake_case_ : List[str] = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[int] = ['def ', 'class ', 'for ', 'while '] snake_case_ : str = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def SCREAMING_SNAKE_CASE__ ( __a , __a=4 ): snake_case_ : Optional[int] = example['content'].splitlines() snake_case_ : int = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[int] = tokenizer(example['content'] , truncation=__a )['input_ids'] snake_case_ : Optional[Any] = len(example['content'] ) / len(__a ) return {"ratio": ratio} def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[str] = {} results.update(get_hash(__a ) ) results.update(line_stats(__a ) ) results.update(alpha_stats(__a ) ) results.update(char_token_ratio(__a ) ) results.update(is_autogenerated(__a ) ) results.update(is_config_or_test(__a ) ) results.update(has_no_keywords(__a ) ) results.update(has_few_assignments(__a ) ) return results def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): if not check_uniques(__a , __a ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def SCREAMING_SNAKE_CASE__ ( __a ): with open(__a , 'rb' ) as f_in: with gzip.open(str(__a ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__a , __a ) os.unlink(__a ) # Settings _SCREAMING_SNAKE_CASE = HfArgumentParser(PreprocessingArguments) _SCREAMING_SNAKE_CASE = parser.parse_args() if args.num_workers is None: _SCREAMING_SNAKE_CASE = multiprocessing.cpu_count() _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = load_dataset(args.dataset_name, split="""train""") print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes _SCREAMING_SNAKE_CASE = set(ds.unique("""hash""")) _SCREAMING_SNAKE_CASE = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file _SCREAMING_SNAKE_CASE = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) _SCREAMING_SNAKE_CASE = output_dir / """data""" data_dir.mkdir(exist_ok=True) _SCREAMING_SNAKE_CASE = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _SCREAMING_SNAKE_CASE = str(data_dir / F'''file-{file_number+1:012}.json''') _SCREAMING_SNAKE_CASE = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
327
from math import pi def SCREAMING_SNAKE_CASE__ ( __a , __a ): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
327
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = "pix2struct_text_model" UpperCAmelCase_ = ["past_key_values"] UpperCAmelCase_ = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Tuple, _UpperCAmelCase : int=5_0_2_4_4, _UpperCAmelCase : str=7_6_8, _UpperCAmelCase : Any=6_4, _UpperCAmelCase : Tuple=2_0_4_8, _UpperCAmelCase : List[Any]=1_2, _UpperCAmelCase : List[Any]=1_2, _UpperCAmelCase : Dict=3_2, _UpperCAmelCase : Dict=1_2_8, _UpperCAmelCase : Dict=0.1, _UpperCAmelCase : List[str]=1E-6, _UpperCAmelCase : Optional[int]=1.0, _UpperCAmelCase : int="gelu_new", _UpperCAmelCase : str=0, _UpperCAmelCase : Tuple=False, _UpperCAmelCase : Dict=0, _UpperCAmelCase : List[str]=1, _UpperCAmelCase : Tuple=False, _UpperCAmelCase : List[Any]=True, **_UpperCAmelCase : Dict, ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : int = d_kv SCREAMING_SNAKE_CASE__ : Tuple = d_ff SCREAMING_SNAKE_CASE__ : Optional[int] = num_layers SCREAMING_SNAKE_CASE__ : Dict = num_heads SCREAMING_SNAKE_CASE__ : Dict = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ : Optional[int] = relative_attention_max_distance SCREAMING_SNAKE_CASE__ : Optional[Any] = dropout_rate SCREAMING_SNAKE_CASE__ : Dict = layer_norm_epsilon SCREAMING_SNAKE_CASE__ : Union[str, Any] = initializer_factor SCREAMING_SNAKE_CASE__ : Any = use_cache SCREAMING_SNAKE_CASE__ : Dict = eos_token_id SCREAMING_SNAKE_CASE__ : Any = decoder_start_token_id # for backwards compatibility SCREAMING_SNAKE_CASE__ : Union[str, Any] = dense_act_fn super().__init__( pad_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, decoder_start_token_id=_UpperCAmelCase, tie_word_embeddings=_UpperCAmelCase, is_decoder=_UpperCAmelCase, **_UpperCAmelCase, ) @classmethod def A_ ( cls : Optional[Any], _UpperCAmelCase : Union[str, os.PathLike], **_UpperCAmelCase : Optional[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = cls.get_config_dict(_UpperCAmelCase, **_UpperCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": SCREAMING_SNAKE_CASE__ : List[Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase, **_UpperCAmelCase ) class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = "pix2struct_vision_model" def __init__( self : Optional[Any], _UpperCAmelCase : Any=7_6_8, _UpperCAmelCase : List[str]=7_6_8, _UpperCAmelCase : Optional[int]=2_0_4_8, _UpperCAmelCase : List[Any]=6_4, _UpperCAmelCase : List[Any]=1_2, _UpperCAmelCase : int=1_2, _UpperCAmelCase : List[str]="gelu_new", _UpperCAmelCase : Any=1E-6, _UpperCAmelCase : str=0.0, _UpperCAmelCase : List[str]=0.0, _UpperCAmelCase : Dict=1E-10, _UpperCAmelCase : int=1.0, _UpperCAmelCase : Any=4_0_9_6, _UpperCAmelCase : Any=3_2, _UpperCAmelCase : List[str]=1_2_8, **_UpperCAmelCase : str, ) -> List[str]: """simple docstring""" super().__init__(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = hidden_size SCREAMING_SNAKE_CASE__ : Tuple = patch_embed_hidden_size SCREAMING_SNAKE_CASE__ : str = d_ff SCREAMING_SNAKE_CASE__ : Optional[int] = dropout_rate SCREAMING_SNAKE_CASE__ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = initializer_factor SCREAMING_SNAKE_CASE__ : Dict = attention_dropout SCREAMING_SNAKE_CASE__ : Any = layer_norm_eps SCREAMING_SNAKE_CASE__ : Union[str, Any] = dense_act_fn SCREAMING_SNAKE_CASE__ : Tuple = seq_len SCREAMING_SNAKE_CASE__ : Any = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ : Tuple = relative_attention_max_distance SCREAMING_SNAKE_CASE__ : List[Any] = d_kv @classmethod def A_ ( cls : List[str], _UpperCAmelCase : Union[str, os.PathLike], **_UpperCAmelCase : Any ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = cls.get_config_dict(_UpperCAmelCase, **_UpperCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": SCREAMING_SNAKE_CASE__ : str = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase, **_UpperCAmelCase ) class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = "pix2struct" UpperCAmelCase_ = True def __init__( self : Any, _UpperCAmelCase : Union[str, Any]=None, _UpperCAmelCase : List[Any]=None, _UpperCAmelCase : List[Any]=1.0, _UpperCAmelCase : Any=0.02, _UpperCAmelCase : int=False, _UpperCAmelCase : Any=False, _UpperCAmelCase : Optional[Any]=True, **_UpperCAmelCase : Union[str, Any], ) -> Union[str, Any]: """simple docstring""" super().__init__(tie_word_embeddings=_UpperCAmelCase, is_encoder_decoder=_UpperCAmelCase, **_UpperCAmelCase ) if text_config is None: SCREAMING_SNAKE_CASE__ : Any = {} logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE__ : Optional[int] = {} logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values." ) SCREAMING_SNAKE_CASE__ : Optional[int] = PixaStructTextConfig(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = PixaStructVisionConfig(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = self.text_config.decoder_start_token_id SCREAMING_SNAKE_CASE__ : List[Any] = self.text_config.pad_token_id SCREAMING_SNAKE_CASE__ : List[Any] = self.text_config.eos_token_id SCREAMING_SNAKE_CASE__ : List[str] = initializer_factor SCREAMING_SNAKE_CASE__ : int = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = self.initializer_range SCREAMING_SNAKE_CASE__ : str = self.initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] = is_vqa @classmethod def A_ ( cls : str, _UpperCAmelCase : PixaStructTextConfig, _UpperCAmelCase : PixaStructVisionConfig, **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **_UpperCAmelCase ) def A_ ( self : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ : int = self.text_config.to_dict() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.vision_config.to_dict() SCREAMING_SNAKE_CASE__ : List[Any] = self.__class__.model_type return output
354
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _a ( SCREAMING_SNAKE_CASE__ : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = analyze_text(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = list(" " + ascii_lowercase ) # what is our total sum of probabilities. SCREAMING_SNAKE_CASE__ : str = sum(single_char_strings.values() ) # one length string SCREAMING_SNAKE_CASE__ : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: SCREAMING_SNAKE_CASE__ : Optional[int] = single_char_strings[ch] SCREAMING_SNAKE_CASE__ : Any = my_str / all_sum my_fir_sum += prob * math.loga(SCREAMING_SNAKE_CASE__ ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string SCREAMING_SNAKE_CASE__ : Union[str, Any] = sum(two_char_strings.values() ) SCREAMING_SNAKE_CASE__ : int = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: SCREAMING_SNAKE_CASE__ : List[str] = cha + cha if sequence in two_char_strings: SCREAMING_SNAKE_CASE__ : Optional[Any] = two_char_strings[sequence] SCREAMING_SNAKE_CASE__ : Tuple = int(SCREAMING_SNAKE_CASE__ ) / all_sum my_sec_sum += prob * math.loga(SCREAMING_SNAKE_CASE__ ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def _a ( SCREAMING_SNAKE_CASE__ : str ) -> tuple[dict, dict]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = Counter() # type: ignore SCREAMING_SNAKE_CASE__ : Dict = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _a ( ) -> str: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
191
0