code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
173
"""simple docstring""" from ..utils import DummyObject, requires_backends class a ( metaclass=UpperCAmelCase__ ): UpperCamelCase : Optional[int] = ['torch', 'torchsde'] def __init__( self : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] )
173
1
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowerCAmelCase_ = parse(importlib.metadata.version('torch')) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) lowercase__ : str = STR_OPERATION_TO_FUNC[operation] if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Union[str, Any] = parse(importlib.metadata.version(__lowerCamelCase ) ) return operation(__lowerCamelCase , parse(__lowerCamelCase ) ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: return compare_versions(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
368
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"} lowerCAmelCase : Optional[int] = ["resnet", "swin"] lowerCAmelCase : str = ["detr"] def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Any = SwinConfig( image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = backbone_config.pop('''model_type''' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(_snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[Any] = config_class.from_dict(_snake_case ) lowercase__ : List[Any] = backbone_config lowercase__ : List[Any] = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : str = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Optional[int] = cross_entropy_weight lowercase__ : List[Any] = dice_weight lowercase__ : List[str] = mask_weight lowercase__ : str = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[Any] = output_auxiliary_logits lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**_snake_case ) @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls( backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : str ) -> Dict[str, any]: """simple docstring""" lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
302
0
"""simple docstring""" import os def lowercase__ ( ) -> Optional[Any]: '''simple docstring''' lowercase : Dict = os.path.join(os.path.dirname(_UpperCAmelCase ) , 'num.txt' ) with open(_UpperCAmelCase ) as file_hand: return str(sum(int(_UpperCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
255
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 42 class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): @register_to_config def __init__( self : Optional[int], lowerCAmelCase : int = 32, lowerCAmelCase : int = 64, lowerCAmelCase : int = 20, lowerCAmelCase : int = 768, lowerCAmelCase : Optional[Any]=77, lowerCAmelCase : Tuple=4, lowerCAmelCase : float = 0.0, lowerCAmelCase : str = "silu", lowerCAmelCase : Optional[str] = None, lowerCAmelCase : Optional[str] = None, lowerCAmelCase : Optional[str] = "linear", lowerCAmelCase : Optional[str] = "prd", lowerCAmelCase : Optional[int] = None, lowerCAmelCase : Optional[int] = None, lowerCAmelCase : Optional[int] = None, ) -> List[Any]: super().__init__() lowercase : List[Any] = num_attention_heads lowercase : int = attention_head_dim lowercase : List[Any] = num_attention_heads * attention_head_dim lowercase : Tuple = additional_embeddings lowercase : Dict = time_embed_dim or inner_dim lowercase : Optional[Any] = embedding_proj_dim or embedding_dim lowercase : int = clip_embed_dim or embedding_dim lowercase : List[str] = Timesteps(lowerCAmelCase, lowerCAmelCase, 0 ) lowercase : List[str] = TimestepEmbedding(lowerCAmelCase, lowerCAmelCase, out_dim=lowerCAmelCase, act_fn=lowerCAmelCase ) lowercase : List[str] = nn.Linear(lowerCAmelCase, lowerCAmelCase ) if embedding_proj_norm_type is None: lowercase : str = None elif embedding_proj_norm_type == "layer": lowercase : Tuple = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) lowercase : List[str] = nn.Linear(lowerCAmelCase, lowerCAmelCase ) if encoder_hid_proj_type is None: lowercase : Optional[int] = None elif encoder_hid_proj_type == "linear": lowercase : Dict = nn.Linear(lowerCAmelCase, lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) lowercase : Dict = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, lowerCAmelCase ) ) if added_emb_type == "prd": lowercase : Union[str, Any] = nn.Parameter(torch.zeros(1, 1, lowerCAmelCase ) ) elif added_emb_type is None: lowercase : str = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) lowercase : Dict = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, dropout=lowerCAmelCase, activation_fn='gelu', attention_bias=lowerCAmelCase, ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": lowercase : str = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: lowercase : Optional[int] = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) lowercase : int = nn.LayerNorm(lowerCAmelCase ) lowercase : str = nn.Linear(lowerCAmelCase, lowerCAmelCase ) lowercase : Optional[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -1_0000.0 ) causal_attention_mask.triu_(1 ) lowercase : List[str] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask', lowerCAmelCase, persistent=lowerCAmelCase ) lowercase : Any = nn.Parameter(torch.zeros(1, lowerCAmelCase ) ) lowercase : Any = nn.Parameter(torch.zeros(1, lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase ( self : Tuple ) -> Dict[str, AttentionProcessor]: lowercase : Any = {} def fn_recursive_add_processors(lowerCAmelCase : str, lowerCAmelCase : torch.nn.Module, lowerCAmelCase : Dict[str, AttentionProcessor] ): if hasattr(lowerCAmelCase, 'set_processor' ): lowercase : List[str] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''', lowerCAmelCase, lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) return processors def lowercase ( self : Union[str, Any], lowerCAmelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Tuple: lowercase : str = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase, lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase : str, lowerCAmelCase : torch.nn.Module, lowerCAmelCase : Union[str, Any] ): if hasattr(lowerCAmelCase, 'set_processor' ): if not isinstance(lowerCAmelCase, lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''', lowerCAmelCase, lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: self.set_attn_processor(AttnProcessor() ) def lowercase ( self : Any, lowerCAmelCase : int, lowerCAmelCase : Union[torch.Tensor, float, int], lowerCAmelCase : torch.FloatTensor, lowerCAmelCase : Optional[torch.FloatTensor] = None, lowerCAmelCase : Optional[torch.BoolTensor] = None, lowerCAmelCase : bool = True, ) -> List[Any]: lowercase : Optional[Any] = hidden_states.shape[0] lowercase : Union[str, Any] = timestep if not torch.is_tensor(lowerCAmelCase ): lowercase : List[str] = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: lowercase : List[str] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase : Optional[int] = timesteps * torch.ones(lowerCAmelCase, dtype=timesteps.dtype, device=timesteps.device ) lowercase : Dict = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowercase : Optional[int] = timesteps_projected.to(dtype=self.dtype ) lowercase : Any = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: lowercase : Any = self.embedding_proj_norm(lowerCAmelCase ) lowercase : List[str] = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowercase : str = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) lowercase : Optional[Any] = self.proj_in(lowerCAmelCase ) lowercase : Optional[int] = self.positional_embedding.to(hidden_states.dtype ) lowercase : Dict = [] lowercase : Optional[int] = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowercase : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowercase : Union[str, Any] = hidden_states[:, None, :] lowercase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowercase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase, -1, -1 ) additional_embeds.append(lowerCAmelCase ) lowercase : Union[str, Any] = torch.cat( lowerCAmelCase, dim=1, ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowercase : Optional[int] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowercase : List[Any] = F.pad( lowerCAmelCase, ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ), value=0.0, ) lowercase : str = hidden_states + positional_embeddings if attention_mask is not None: lowercase : Tuple = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 lowercase : List[Any] = F.pad(lowerCAmelCase, (0, self.additional_embeddings), value=0.0 ) lowercase : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowercase : Union[str, Any] = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0 ) if self.norm_in is not None: lowercase : List[Any] = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: lowercase : Tuple = block(lowerCAmelCase, attention_mask=lowerCAmelCase ) lowercase : Optional[Any] = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: lowercase : Optional[Any] = hidden_states[:, -1] else: lowercase : Any = hidden_states[:, additional_embeddings_len:] lowercase : Optional[int] = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def lowercase ( self : Any, lowerCAmelCase : Dict ) -> Dict: lowercase : int = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
255
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowerCamelCase = ['''flax''', '''transformers'''] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["""flax""", """transformers"""] ) class lowerCamelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowerCamelCase = ['''flax''', '''transformers'''] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ["""flax""", """transformers"""] ) class lowerCamelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowerCamelCase = ['''flax''', '''transformers'''] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ["""flax""", """transformers"""] ) class lowerCamelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowerCamelCase = ['''flax''', '''transformers'''] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["""flax""", """transformers"""] )
341
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
30
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[int]]) -> bool: '''simple docstring''' __UpperCamelCase : Any = len(_lowerCamelCase) # We need to create solution object to save path. __UpperCamelCase : List[str] = [[0 for _ in range(_lowerCamelCase)] for _ in range(_lowerCamelCase)] __UpperCamelCase : Optional[int] = run_maze(_lowerCamelCase , 0 , 0 , _lowerCamelCase) if solved: print("\n".join(str(_lowerCamelCase) for row in solutions)) else: print("No solution exists!") return solved def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[int]] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[list[int]]) -> bool: '''simple docstring''' __UpperCamelCase : Tuple = len(_lowerCamelCase) # Final check point. if i == j == (size - 1): __UpperCamelCase : Optional[int] = 1 return True __UpperCamelCase : List[Any] = (not i < 0) and (not j < 0) # Check lower bounds __UpperCamelCase : List[str] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __UpperCamelCase : int = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __UpperCamelCase : Tuple = 1 # check for directions if ( run_maze(_lowerCamelCase , i + 1 , _lowerCamelCase , _lowerCamelCase) or run_maze(_lowerCamelCase , _lowerCamelCase , j + 1 , _lowerCamelCase) or run_maze(_lowerCamelCase , i - 1 , _lowerCamelCase , _lowerCamelCase) or run_maze(_lowerCamelCase , _lowerCamelCase , j - 1 , _lowerCamelCase) ): return True __UpperCamelCase : Tuple = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
232
0
'''simple docstring''' snake_case_ : dict[tuple[int, int, int], int] = {} def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _UpperCamelCase : Any = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _UpperCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _UpperCamelCase : Optional[int] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _UpperCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , 0 ) _UpperCamelCase : Any = state_late + state_absent + state_ontime _UpperCamelCase : Dict = prizestrings return prizestrings def A__ ( UpperCAmelCase_ = 3_0 ): return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
352
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: snake_case_ : List[Any] = None snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : Dict = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} snake_case_ : List[str] = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } snake_case_ : str = { 'facebook/nllb-large-en-ro': 1024, 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off snake_case_ : Optional[Any] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowercase__ ( lowercase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = NllbTokenizer lowercase__ = [] lowercase__ = [] def __init__( self : List[Any] ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : Dict=None ,lowerCamelCase__ : List[Any]="<s>" ,lowerCamelCase__ : Dict="</s>" ,lowerCamelCase__ : List[Any]="</s>" ,lowerCamelCase__ : Union[str, Any]="<s>" ,lowerCamelCase__ : List[Any]="<unk>" ,lowerCamelCase__ : Any="<pad>" ,lowerCamelCase__ : Optional[Any]="<mask>" ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : str=None ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : Union[str, Any]=False ,**lowerCamelCase__ : Optional[Any] ,): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Optional[int] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else mask_token _UpperCamelCase : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=lowerCamelCase__ ,tokenizer_file=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,src_lang=lowerCamelCase__ ,tgt_lang=lowerCamelCase__ ,additional_special_tokens=lowerCamelCase__ ,legacy_behaviour=lowerCamelCase__ ,**lowerCamelCase__ ,) _UpperCamelCase : int = vocab_file _UpperCamelCase : int = False if not self.vocab_file else True _UpperCamelCase : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _UpperCamelCase : List[str] = { lang_code: self.convert_tokens_to_ids(lowerCamelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _UpperCamelCase : List[str] = src_lang if src_lang is not None else 'eng_Latn' _UpperCamelCase : int = self.convert_tokens_to_ids(self._src_lang ) _UpperCamelCase : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : Dict = [self.sep_token_id] _UpperCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] ,lowerCamelCase__ : Optional[str] ,**lowerCamelCase__ : Dict ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _UpperCamelCase : Tuple = src_lang _UpperCamelCase : Optional[Any] = self(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,return_tensors=lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Tuple = self.convert_tokens_to_ids(lowerCamelCase__ ) _UpperCamelCase : str = tgt_lang_id return inputs def UpperCamelCase_ ( self : int ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : str = "eng_Latn" ,lowerCamelCase__ : Optional[List[str]] = None ,lowerCamelCase__ : str = "fra_Latn" ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' _UpperCamelCase : Tuple = src_lang _UpperCamelCase : List[str] = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : List[Any] ): '''simple docstring''' _UpperCamelCase : int = self.convert_tokens_to_ids(lowerCamelCase__ ) if self.legacy_behaviour: _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : int = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase : List[Any] = [self.cur_lang_code] _UpperCamelCase : List[Any] = [self.eos_token_id] _UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) _UpperCamelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def UpperCamelCase_ ( self : int ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Any = self.convert_tokens_to_ids(lowerCamelCase__ ) if self.legacy_behaviour: _UpperCamelCase : Tuple = [] _UpperCamelCase : str = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase : Tuple = [self.cur_lang_code] _UpperCamelCase : Optional[Any] = [self.eos_token_id] _UpperCamelCase : int = self.convert_ids_to_tokens(self.prefix_tokens ) _UpperCamelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _UpperCamelCase : List[Any] = os.path.join( lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file ,lowerCamelCase__ ) return (out_vocab_file,)
236
0
"""simple docstring""" from heapq import heappop, heappush import numpy as np def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : tuple[int, int] , lowerCAmelCase__ : tuple[int, int] , lowerCAmelCase__ : bool , ) -> tuple[float | int, list[tuple[int, int]]]: __a , __a = grid.shape __a = [-1, 1, 0, 0] __a = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __a , __a = [(0, source)], set() __a = np.full((rows, cols) , np.inf ) __a = 0 __a = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) __a = None while queue: ((__a) , (__a)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __a = [] while (x, y) != source: path.append((x, y) ) __a , __a = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): __a , __a = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __a = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) __a = dist + 1 __a = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
45
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ : Any = logging.get_logger(__name__) class _UpperCAmelCase ( __a): __a : Optional[Any] = ["""pixel_values"""] def __init__( self , _A = True , _A = None , _A = PILImageResampling.BICUBIC , _A = True , _A = None , _A = True , _A = 1 / 2_55 , _A = True , _A = IMAGENET_DEFAULT_MEAN , _A = IMAGENET_DEFAULT_STD , **_A , ) -> None: '''simple docstring''' super().__init__(**_A ) _UpperCAmelCase : List[Any] = size if size is not None else {"""shortest_edge""": 2_24} _UpperCAmelCase : Optional[Any] = get_size_dict(_A , default_to_square=_A ) _UpperCAmelCase : int = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} _UpperCAmelCase : List[Any] = get_size_dict(_A , param_name="""crop_size""" ) _UpperCAmelCase : Any = do_resize _UpperCAmelCase : Optional[int] = size _UpperCAmelCase : List[str] = resample _UpperCAmelCase : Optional[Any] = do_center_crop _UpperCAmelCase : int = crop_size _UpperCAmelCase : Optional[int] = do_rescale _UpperCAmelCase : Optional[int] = rescale_factor _UpperCAmelCase : Any = do_normalize _UpperCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __snake_case ( self , _A , _A , _A = PILImageResampling.BICUBIC , _A = None , **_A , ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = get_size_dict(_A , default_to_square=_A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _UpperCAmelCase : Any = int((2_56 / 2_24) * size["""shortest_edge"""] ) _UpperCAmelCase : Tuple = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) _UpperCAmelCase : Tuple = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _A , size=(size_dict["""height"""], size_dict["""width"""]) , resample=_A , data_format=_A , **_A ) def __snake_case ( self , _A , _A , _A = None , **_A , ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase : List[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_A , size=(size["""height"""], size["""width"""]) , data_format=_A , **_A ) def __snake_case ( self , _A , _A , _A = None , **_A , ) -> np.ndarray: '''simple docstring''' return rescale(_A , scale=_A , data_format=_A , **_A ) def __snake_case ( self , _A , _A , _A , _A = None , **_A , ) -> np.ndarray: '''simple docstring''' return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __snake_case ( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = ChannelDimension.FIRST , **_A , ) -> BatchFeature: '''simple docstring''' _UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Union[str, Any] = resample if resample is not None else self.resample _UpperCAmelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCAmelCase : Tuple = size if size is not None else self.size _UpperCAmelCase : int = get_size_dict(_A , default_to_square=_A ) _UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : Union[str, Any] = get_size_dict(_A , param_name="""crop_size""" ) _UpperCAmelCase : Optional[int] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase : Any = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCAmelCase : Optional[Any] = [self.resize(_A , _A , _A ) for image in images] if do_center_crop: _UpperCAmelCase : Optional[int] = [self.center_crop(_A , _A ) for image in images] if do_rescale: _UpperCAmelCase : Tuple = [self.rescale(_A , _A ) for image in images] if do_normalize: _UpperCAmelCase : List[Any] = [self.normalize(_A , _A , _A ) for image in images] _UpperCAmelCase : Dict = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCAmelCase : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=_A , tensor_type=_A )
246
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : int = StableUnCLIPPipeline __A : Union[str, Any] = TEXT_TO_IMAGE_PARAMS __A : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS __A : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : List[str] = False def __lowercase ( self) -> Any: '''simple docstring''' a__ : Optional[Any] = 32 a__ : str = embedder_hidden_size # prior components torch.manual_seed(0) a__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') torch.manual_seed(0) a__ : List[Any] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase , projection_dim=lowercase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )) torch.manual_seed(0) a__ : Optional[Any] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase , num_layers=1 , ) torch.manual_seed(0) a__ : str = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=lowercase , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0) a__ : int = StableUnCLIPImageNormalizer(embedding_dim=lowercase) a__ : List[Any] = DDPMScheduler(beta_schedule='squaredcos_cap_v2') torch.manual_seed(0) a__ : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') torch.manual_seed(0) a__ : Optional[int] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )) torch.manual_seed(0) a__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase , layers_per_block=1 , upcast_attention=lowercase , use_linear_projection=lowercase , ) torch.manual_seed(0) a__ : int = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='v_prediction' , set_alpha_to_one=lowercase , steps_offset=1 , ) torch.manual_seed(0) a__ : Dict = AutoencoderKL() a__ : Optional[Any] = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def __lowercase ( self , lowercase , lowercase=0) -> Tuple: '''simple docstring''' if str(lowercase).startswith('mps'): a__ : Tuple = torch.manual_seed(lowercase) else: a__ : Dict = torch.Generator(device=lowercase).manual_seed(lowercase) a__ : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __lowercase ( self) -> str: '''simple docstring''' a__ : Dict = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=lowercase) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : str = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=lowercase) @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self) -> str: '''simple docstring''' a__ : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy') a__ : int = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa) pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a__ : Any = torch.Generator(device='cpu').manual_seed(0) a__ : Dict = pipe('anime turle' , generator=lowercase , output_type='np') a__ : Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase , lowercase) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a__ : Any = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa) a__ : Any = pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a__ : int = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) a__ : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
225
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase : Union[str, Any] = data_utils.TransfoXLTokenizer lowercase : Optional[int] = data_utils.TransfoXLCorpus lowercase : List[Any] = data_utils lowercase : Tuple = data_utils def A_ ( A__ , A__ , A__ , A__ ) -> Optional[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(A__ , 'rb' ) as fp: a__ : int = pickle.load(A__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) a__ : int = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) a__ : List[Any] = corpus.vocab.__dict__ torch.save(A__ , A__ ) a__ : Dict = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , A__ ) a__ : Optional[int] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(A__ , A__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model a__ : Union[str, Any] = os.path.abspath(A__ ) a__ : Optional[Any] = os.path.abspath(A__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": a__ : Dict = TransfoXLConfig() else: a__ : Dict = TransfoXLConfig.from_json_file(A__ ) print(F'Building PyTorch model from configuration: {config}' ) a__ : Optional[int] = TransfoXLLMHeadModel(A__ ) a__ : int = load_tf_weights_in_transfo_xl(A__ , A__ , A__ ) # Save pytorch-model a__ : Any = os.path.join(A__ , A__ ) a__ : Dict = os.path.join(A__ , A__ ) print(F'Save PyTorch model to {os.path.abspath(A__ )}' ) torch.save(model.state_dict() , A__ ) print(F'Save configuration file to {os.path.abspath(A__ )}' ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) lowercase : Any = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
225
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ = '''LayoutLMv3ImageProcessor''' UpperCAmelCase__ = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self : Optional[int] , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str) ->Tuple: '''simple docstring''' A__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase__ , ) A__ = kwargs.pop('''feature_extractor''') A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def __call__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase__ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase__ : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase__ : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase__ : List[str] , ) ->BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''') # first, apply the image processor A__ = self.image_processor(images=UpperCAmelCase__ , return_tensors=UpperCAmelCase__) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [text] # add batch dimension (as the image processor always adds a batch dimension) A__ = features['''words'''] A__ = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , ) # add pixel values A__ = features.pop('''pixel_values''') if return_overflowing_tokens is True: A__ = self.get_overflowing_images(UpperCAmelCase__ , encoded_inputs['''overflow_to_sample_mapping''']) A__ = images return encoded_inputs def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str]) ->List[Any]: '''simple docstring''' A__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(UpperCAmelCase__) != len(UpperCAmelCase__): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f""" {len(UpperCAmelCase__)} and {len(UpperCAmelCase__)}""") return images_with_overflow def SCREAMING_SNAKE_CASE ( self : int , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Optional[Any]) ->Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase__ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase__ , ) return self.image_processor
14
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = [0] * len(lowercase_ ) A__ = [] A__ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph _lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCAmelCase_( A__ ): '''simple docstring''' __lowercase : torch.FloatTensor class lowerCAmelCase_( A__ , A__ ): '''simple docstring''' @register_to_config def __init__( self ,__UpperCAmelCase = 32 ,__UpperCAmelCase = 64 ,__UpperCAmelCase = 20 ,__UpperCAmelCase = 768 ,__UpperCAmelCase=77 ,__UpperCAmelCase=4 ,__UpperCAmelCase = 0.0 ,__UpperCAmelCase = "silu" ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = "linear" ,__UpperCAmelCase = "prd" ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,) -> Tuple: super().__init__() lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Optional[int] = attention_head_dim lowerCAmelCase__ : Optional[int] = num_attention_heads * attention_head_dim lowerCAmelCase__ : List[Any] = additional_embeddings lowerCAmelCase__ : int = time_embed_dim or inner_dim lowerCAmelCase__ : int = embedding_proj_dim or embedding_dim lowerCAmelCase__ : List[Any] = clip_embed_dim or embedding_dim lowerCAmelCase__ : int = Timesteps(lowerCamelCase__ ,lowerCamelCase__ ,0 ) lowerCAmelCase__ : List[str] = TimestepEmbedding(lowerCamelCase__ ,lowerCamelCase__ ,out_dim=lowerCamelCase__ ,act_fn=lowerCamelCase__ ) lowerCAmelCase__ : Tuple = nn.Linear(lowerCamelCase__ ,lowerCamelCase__ ) if embedding_proj_norm_type is None: lowerCAmelCase__ : Any = None elif embedding_proj_norm_type == "layer": lowerCAmelCase__ : Any = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) lowerCAmelCase__ : List[Any] = nn.Linear(lowerCamelCase__ ,lowerCamelCase__ ) if encoder_hid_proj_type is None: lowerCAmelCase__ : Optional[int] = None elif encoder_hid_proj_type == "linear": lowerCAmelCase__ : int = nn.Linear(lowerCamelCase__ ,lowerCamelCase__ ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) lowerCAmelCase__ : str = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,lowerCamelCase__ ) ) if added_emb_type == "prd": lowerCAmelCase__ : List[Any] = nn.Parameter(torch.zeros(1 ,1 ,lowerCamelCase__ ) ) elif added_emb_type is None: lowerCAmelCase__ : str = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) lowerCAmelCase__ : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,dropout=lowerCamelCase__ ,activation_fn="""gelu""" ,attention_bias=lowerCamelCase__ ,) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": lowerCAmelCase__ : Tuple = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: lowerCAmelCase__ : Optional[int] = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) lowerCAmelCase__ : str = nn.LayerNorm(lowerCamelCase__ ) lowerCAmelCase__ : Optional[int] = nn.Linear(lowerCamelCase__ ,lowerCamelCase__ ) lowerCAmelCase__ : Optional[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0000.0 ) causal_attention_mask.triu_(1 ) lowerCAmelCase__ : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" ,lowerCamelCase__ ,persistent=lowerCamelCase__ ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.zeros(1 ,lowerCamelCase__ ) ) lowerCAmelCase__ : Dict = nn.Parameter(torch.zeros(1 ,lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[Any] = {} def fn_recursive_add_processors(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ): if hasattr(lowerCamelCase__ ,"""set_processor""" ): lowerCAmelCase__ : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,lowerCamelCase__ ,lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) return processors def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ): if hasattr(lowerCamelCase__ ,"""set_processor""" ): if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,lowerCamelCase__ ,lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def UpperCAmelCase_ ( self ) -> Tuple: self.set_attn_processor(AttnProcessor() ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = True ,) -> Any: lowerCAmelCase__ : Tuple = hidden_states.shape[0] lowerCAmelCase__ : Union[str, Any] = timestep if not torch.is_tensor(lowerCamelCase__ ): lowerCAmelCase__ : Optional[Any] = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: lowerCAmelCase__ : Union[str, Any] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCAmelCase__ : Any = timesteps * torch.ones(lowerCamelCase__ ,dtype=timesteps.dtype ,device=timesteps.device ) lowerCAmelCase__ : Optional[int] = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowerCAmelCase__ : Dict = timesteps_projected.to(dtype=self.dtype ) lowerCAmelCase__ : List[str] = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: lowerCAmelCase__ : List[Any] = self.embedding_proj_norm(lowerCamelCase__ ) lowerCAmelCase__ : Optional[int] = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowerCAmelCase__ : Optional[int] = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) lowerCAmelCase__ : Any = self.proj_in(lowerCamelCase__ ) lowerCAmelCase__ : List[str] = self.positional_embedding.to(hidden_states.dtype ) lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : str = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowerCAmelCase__ : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowerCAmelCase__ : Union[str, Any] = hidden_states[:, None, :] lowerCAmelCase__ : Optional[int] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowerCAmelCase__ : Tuple = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ ,-1 ,-1 ) additional_embeds.append(lowerCamelCase__ ) lowerCAmelCase__ : Optional[int] = torch.cat( lowerCamelCase__ ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowerCAmelCase__ : List[Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowerCAmelCase__ : Any = F.pad( lowerCamelCase__ ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) lowerCAmelCase__ : int = hidden_states + positional_embeddings if attention_mask is not None: lowerCAmelCase__ : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 lowerCAmelCase__ : Optional[int] = F.pad(lowerCamelCase__ ,(0, self.additional_embeddings) ,value=0.0 ) lowerCAmelCase__ : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowerCAmelCase__ : Dict = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: lowerCAmelCase__ : str = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: lowerCAmelCase__ : Any = block(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ) lowerCAmelCase__ : List[str] = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: lowerCAmelCase__ : List[str] = hidden_states[:, -1] else: lowerCAmelCase__ : int = hidden_states[:, additional_embeddings_len:] lowerCAmelCase__ : Union[str, Any] = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : List[str] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
357
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[int] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[int] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[str] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[str] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[int] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Any = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(self ,["""sentencepiece"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[Any] = ['''sentencepiece'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""sentencepiece"""] )
184
0
from typing import TYPE_CHECKING from ..utils import _LazyModule _lowercase: Tuple = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _lowercase: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
227
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 a : List[str] = get_tests_dir("""fixtures""") class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: # A mock response for an HTTP head request to emulate server down UpperCAmelCase : Tuple = mock.Mock() UpperCAmelCase : List[str] = 500 UpperCAmelCase : Any = {} UpperCAmelCase : List[str] = HTTPError UpperCAmelCase : str = {} # Download this model to make sure it's in the cache. UpperCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=A ) as mock_head: UpperCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def _lowercase( self ) -> Any: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def _lowercase( self ) -> Union[str, Any]: with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase : Any = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(A ) @is_staging_test class UpperCamelCase_ ( unittest.TestCase ): @classmethod def _lowercase( cls ) -> Dict: UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(A ) @classmethod def _lowercase( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) UpperCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id="""test-image-processor""" , push_to_hub=A , use_auth_token=self._token ) UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=A , use_auth_token=self._token ) UpperCAmelCase : int = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def _lowercase( self ) -> Optional[int]: CustomImageProcessor.register_for_auto_class() UpperCAmelCase : Optional[Any] = CustomImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
265
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer snake_case : Optional[Any] = ["bert-base-uncased", "bert-base-cased"] snake_case : Dict = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class _snake_case ( tf.keras.Model ): def __init__( self , _a ): super().__init__() __magic_name__ : Tuple = tokenizer __magic_name__ : str = AutoConfig.from_pretrained(_a ) __magic_name__ : Dict = TFAutoModel.from_config(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Any = self.tokenizer(_a ) __magic_name__ : List[Any] = self.bert(**_a ) return out["pooler_output"] @require_tf @require_tensorflow_text class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): super().setUp() __magic_name__ : Union[str, Any] = [ BertTokenizer.from_pretrained(_a ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false __magic_name__ : Optional[Any] = [TFBertTokenizer.from_pretrained(_a ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_a , use_fast_bert_tokenizer=_a ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __magic_name__ : str = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] __magic_name__ : List[str] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE ( self ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): __magic_name__ : int = tokenizer(_a , return_tensors="tf" , padding="longest" ) __magic_name__ : int = tf_tokenizer(_a ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self ): for tf_tokenizer in self.tf_tokenizers: __magic_name__ : Any = tf_tokenizer(self.paired_sentences ) __magic_name__ : List[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self ): for tf_tokenizer in self.tf_tokenizers: __magic_name__ : Tuple = tf.function(_a ) for test_inputs in (self.test_sentences, self.paired_sentences): __magic_name__ : Optional[Any] = tf.constant(_a ) __magic_name__ : Optional[int] = compiled_tokenizer(_a ) __magic_name__ : Any = tf_tokenizer(_a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self ): for tf_tokenizer in self.tf_tokenizers: __magic_name__ : str = ModelToSave(tokenizer=_a ) __magic_name__ : Optional[int] = tf.convert_to_tensor(self.test_sentences ) __magic_name__ : List[Any] = model(_a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __magic_name__ : List[Any] = Path(_a ) / "saved.model" model.save(_a ) __magic_name__ : str = tf.keras.models.load_model(_a ) __magic_name__ : str = loaded_model(_a ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
357
from typing import Any class _snake_case : def __init__( self , _a ): __magic_name__ : Union[str, Any] = data __magic_name__ : str = None class _snake_case : def __init__( self ): __magic_name__ : List[str] = None def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = self.head while temp is not None: print(temp.data , end=" " ) __magic_name__ : Optional[int] = temp.next print() def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Union[str, Any] = Node(_a ) __magic_name__ : List[str] = self.head __magic_name__ : Union[str, Any] = new_node def SCREAMING_SNAKE_CASE ( self , _a , _a ): if node_data_a == node_data_a: return else: __magic_name__ : Optional[Any] = self.head while node_a is not None and node_a.data != node_data_a: __magic_name__ : Tuple = node_a.next __magic_name__ : Dict = self.head while node_a is not None and node_a.data != node_data_a: __magic_name__ : List[Any] = node_a.next if node_a is None or node_a is None: return __magic_name__ , __magic_name__ : Optional[int] = node_a.data, node_a.data if __name__ == "__main__": snake_case : Optional[int] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
41
0
import math def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 0 , SCREAMING_SNAKE_CASE__ = 0) -> list: __snake_case: str = end or len(SCREAMING_SNAKE_CASE__) for i in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): __snake_case: str = i __snake_case: str = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case: Union[str, Any] = array[temp_index - 1] temp_index -= 1 __snake_case: List[Any] = temp_index_value return array def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> None: # Max Heap __snake_case: int = index __snake_case: Any = 2 * index + 1 # Left Node __snake_case: List[Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case: Tuple = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case: Any = right_index if largest != index: __snake_case , __snake_case: str = array[largest], array[index] heapify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) def A__ ( SCREAMING_SNAKE_CASE__) -> list: __snake_case: int = len(SCREAMING_SNAKE_CASE__) for i in range(n // 2 , -1 , -1): heapify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) for i in range(n - 1 , 0 , -1): __snake_case , __snake_case: Optional[Any] = array[0], array[i] heapify(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__) return array def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> int: __snake_case: Union[str, Any] = low __snake_case: int = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case: str = array[j], array[i] i += 1 def A__ ( SCREAMING_SNAKE_CASE__) -> list: if len(SCREAMING_SNAKE_CASE__) == 0: return array __snake_case: List[Any] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE__))) __snake_case: Any = 16 return intro_sort(SCREAMING_SNAKE_CASE__ , 0 , len(SCREAMING_SNAKE_CASE__) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(SCREAMING_SNAKE_CASE__) max_depth -= 1 __snake_case: List[Any] = median_of_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , start + ((end - start) // 2) + 1 , end - 1) __snake_case: List[str] = partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) intro_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) __snake_case: Tuple = p return insertion_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : int = input("Enter numbers separated by a comma : ").strip() __UpperCAmelCase : Optional[int] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
111
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __UpperCAmelCase : Tuple = logging.get_logger(__name__) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , *A : Union[str, Any] , **A : Optional[int] ): warnings.warn( """The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PerceiverImageProcessor instead.""" , A , ) super().__init__(*A , **A )
111
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=30 , _UpperCamelCase=4_00 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=[0.5, 0.5, 0.5] , _UpperCamelCase=[0.5, 0.5, 0.5] , _UpperCamelCase=True , _UpperCamelCase=1 / 2_55 , _UpperCamelCase=True , ): """simple docstring""" lowerCAmelCase__ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = min_resolution lowerCAmelCase__ = max_resolution lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean lowerCAmelCase__ = image_std lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_pad def UpperCamelCase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=False ): """simple docstring""" if not batched: lowerCAmelCase__ = image_inputs[0] if isinstance(_UpperCamelCase , Image.Image ): lowerCAmelCase__ , lowerCAmelCase__ = image.size else: lowerCAmelCase__ , lowerCAmelCase__ = image.shape[1], image.shape[2] if w < h: lowerCAmelCase__ = int(self.size['shortest_edge'] * h / w ) lowerCAmelCase__ = self.size['shortest_edge'] elif w > h: lowerCAmelCase__ = self.size['shortest_edge'] lowerCAmelCase__ = int(self.size['shortest_edge'] * w / h ) else: lowerCAmelCase__ = self.size['shortest_edge'] lowerCAmelCase__ = self.size['shortest_edge'] else: lowerCAmelCase__ = [] for image in image_inputs: lowerCAmelCase__ , lowerCAmelCase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase__ = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[0] )[0] lowerCAmelCase__ = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : Dict = DeformableDetrImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = DeformableDetrImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_rescale' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_pad' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'size' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) lowerCAmelCase__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_UpperCamelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) lowerCAmelCase__ = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowerCAmelCase__ = json.loads(f.read() ) lowerCAmelCase__ = {'image_id': 3_97_69, 'annotations': target} # encode them lowerCAmelCase__ = DeformableDetrImageProcessor() lowerCAmelCase__ = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , return_tensors='pt' ) # verify pixel values lowerCAmelCase__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCamelCase ) lowerCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCamelCase , atol=1E-4 ) ) # verify area lowerCAmelCase__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCamelCase ) ) # verify boxes lowerCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCamelCase ) lowerCAmelCase__ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCamelCase , atol=1E-3 ) ) # verify image_id lowerCAmelCase__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCamelCase ) ) # verify is_crowd lowerCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCamelCase ) ) # verify class_labels lowerCAmelCase__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCamelCase ) ) # verify orig_size lowerCAmelCase__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCamelCase ) ) # verify size lowerCAmelCase__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCamelCase ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowerCAmelCase__ = json.loads(f.read() ) lowerCAmelCase__ = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} lowerCAmelCase__ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowerCAmelCase__ = DeformableDetrImageProcessor(format='coco_panoptic' ) lowerCAmelCase__ = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , masks_path=_UpperCamelCase , return_tensors='pt' ) # verify pixel values lowerCAmelCase__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCamelCase ) lowerCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCamelCase , atol=1E-4 ) ) # verify area lowerCAmelCase__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCamelCase ) ) # verify boxes lowerCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCamelCase ) lowerCAmelCase__ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCamelCase , atol=1E-3 ) ) # verify image_id lowerCAmelCase__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCamelCase ) ) # verify is_crowd lowerCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCamelCase ) ) # verify class_labels lowerCAmelCase__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCamelCase ) ) # verify masks lowerCAmelCase__ = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _UpperCamelCase ) # verify orig_size lowerCAmelCase__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCamelCase ) ) # verify size lowerCAmelCase__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCamelCase ) )
363
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __snake_case : Any = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __snake_case : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __snake_case : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCAmelCase__ = bs[:] lowerCAmelCase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 lowerCAmelCase__ = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ = set() lowerCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ = char return pairs class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="replace" , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase=False , **_UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token super().__init__( errors=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding='utf-8' ) as vocab_handle: lowerCAmelCase__ = json.load(_UpperCamelCase ) lowerCAmelCase__ = {v: k for k, v in self.encoder.items()} lowerCAmelCase__ = errors # how to handle errors in decoding lowerCAmelCase__ = bytes_to_unicode() lowerCAmelCase__ = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCamelCase , encoding='utf-8' ) as merges_handle: lowerCAmelCase__ = merges_handle.read().split('\n' )[1:-1] lowerCAmelCase__ = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase__ = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) lowerCAmelCase__ = {} lowerCAmelCase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase__ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def UpperCamelCase__ ( self ): """simple docstring""" return len(self.encoder ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" if token in self.cache: return self.cache[token] lowerCAmelCase__ = tuple(_UpperCamelCase ) lowerCAmelCase__ = get_pairs(_UpperCamelCase ) if not pairs: return token while True: lowerCAmelCase__ = min(_UpperCamelCase , key=lambda _UpperCamelCase : self.bpe_ranks.get(_UpperCamelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ = bigram lowerCAmelCase__ = [] lowerCAmelCase__ = 0 while i < len(_UpperCamelCase ): try: lowerCAmelCase__ = word.index(_UpperCamelCase , _UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ = j if word[i] == first and i < len(_UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ = tuple(_UpperCamelCase ) lowerCAmelCase__ = new_word if len(_UpperCamelCase ) == 1: break else: lowerCAmelCase__ = get_pairs(_UpperCamelCase ) lowerCAmelCase__ = ' '.join(_UpperCamelCase ) lowerCAmelCase__ = word return word def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = [] for token in re.findall(self.pat , _UpperCamelCase ): lowerCAmelCase__ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCamelCase ).split(' ' ) ) return bpe_tokens def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return self.encoder.get(_UpperCamelCase , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return self.decoder.get(_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = ''.join(_UpperCamelCase ) lowerCAmelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase__ = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase ) + '\n' ) lowerCAmelCase__ = 0 with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) lowerCAmelCase__ = token_index writer.write(' '.join(_UpperCamelCase ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] lowerCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=False , **_UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCamelCase ) > 0 and not text[0].isspace()): lowerCAmelCase__ = ' ' + text return (text, kwargs) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = PaddingStrategy.DO_NOT_PAD , _UpperCamelCase = None , _UpperCamelCase = None , ): """simple docstring""" lowerCAmelCase__ = super()._pad( encoded_inputs=_UpperCamelCase , max_length=_UpperCamelCase , padding_strategy=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) # Load from model defaults if return_attention_mask is None: lowerCAmelCase__ = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCAmelCase__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCAmelCase__ = len(encoded_inputs['global_attention_mask'] ) != len(_UpperCamelCase ) if needs_to_be_padded: lowerCAmelCase__ = len(_UpperCamelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCAmelCase__ = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": lowerCAmelCase__ = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
122
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): def __lowerCamelCase ( self : List[Any] ) ->Optional[int]: return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=A , ) def __lowerCamelCase ( self : Optional[Any] , A : int , A : Tuple ) ->Dict: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def __lowerCamelCase ( self : Any , A : Dict , A : Union[str, Any] ) ->Optional[int]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(A ) class __SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): def __lowerCamelCase ( self : str ) ->Optional[int]: return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=A , ) def __lowerCamelCase ( self : Optional[int] , A : str , A : Optional[Any] ) ->int: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def __lowerCamelCase ( self : Union[str, Any] , A : Dict , A : int ) ->Optional[Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(A ) def _a ( ) -> Any: """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def _a ( ) -> List[Any]: """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): @require_beam def __lowerCamelCase ( self : str ) ->List[Any]: lowerCamelCase__ : Dict = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase__ : List[str] = DummyBeamDataset(cache_dir=A , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(A , builder.name , '''default''' , '''0.0.0''' , F"{builder.name}-train.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) lowerCamelCase__ : Optional[Any] = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , A ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , A ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(A , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def __lowerCamelCase ( self : Optional[int] ) ->int: import apache_beam as beam lowerCamelCase__ : str = beam.io.parquetio.WriteToParquet lowerCamelCase__ : List[Any] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=A , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: lowerCamelCase__ : int = partial(A , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( A , builder.name , '''default''' , '''0.0.0''' , F"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertTrue( os.path.exists( os.path.join( A , builder.name , '''default''' , '''0.0.0''' , F"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) lowerCamelCase__ : List[Any] = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , A ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , A ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(A , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def __lowerCamelCase ( self : Dict ) ->List[Any]: with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase__ : Dict = DummyBeamDataset(cache_dir=A ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __lowerCamelCase ( self : Optional[Any] ) ->Optional[int]: lowerCamelCase__ : Tuple = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase__ : List[str] = NestedBeamDataset(cache_dir=A , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(A , builder.name , '''default''' , '''0.0.0''' , F"{builder.name}-train.arrow" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) lowerCamelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , A ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , A ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(A , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
142
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __lowerCAmelCase ( pl.LightningModule ): def __init__( self :Union[str, Any] , __magic_name__ :Optional[int] ): '''simple docstring''' super().__init__() a = model a = 2 a = nn.Linear(self.model.config.hidden_size , self.num_labels ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' pass def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: # load longformer model from model identifier a = LongformerModel.from_pretrained(__lowerCamelCase ) a = LightningModel(__lowerCamelCase ) a = torch.load(__lowerCamelCase , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model a = LongformerForQuestionAnswering.from_pretrained(__lowerCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__lowerCamelCase ) print(f'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCamelCase : List[Any] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
228
0
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient lowercase_ = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ) -> str: lowercase__ = test_results.split(" " ) lowercase__ = 0 lowercase__ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowercase__ = expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(SCREAMING_SNAKE_CASE_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ) -> Tuple: lowercase__ = {} lowercase__ = None lowercase__ = False for line in failures_short_lines.split("\n" ): if re.search(r"_ \[doctest\]" , SCREAMING_SNAKE_CASE_ ): lowercase__ = True lowercase__ = line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): lowercase__ = line lowercase__ = False return failures class _snake_case : def __init__( self : Optional[int], __lowercase : str, __lowercase : Dict ): lowercase__ = title lowercase__ = doc_test_results["time_spent"].split("," )[0] lowercase__ = doc_test_results["success"] lowercase__ = doc_test_results["failures"] lowercase__ = self.n_success + self.n_failures # Failures and success of the modeling tests lowercase__ = doc_test_results @property def A__ ( self : Optional[Any] ): lowercase__ = [self._time_spent] lowercase__ = 0 for time in time_spent: lowercase__ = time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__lowercase ) == 1: lowercase__ = [0, 0, time_parts[0]] lowercase__ , lowercase__ , lowercase__ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds lowercase__ , lowercase__ , lowercase__ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(__lowercase )}h{int(__lowercase )}m{int(__lowercase )}s''' @property def A__ ( self : List[str] ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def A__ ( self : Dict ): return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def A__ ( self : Tuple ): return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def A__ ( self : Union[str, Any] ): lowercase__ = 40 lowercase__ = {k: v["failed"] for k, v in doc_test_results.items() if isinstance(__lowercase, __lowercase )} lowercase__ = "" for category, failures in category_failures.items(): if len(__lowercase ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__lowercase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def A__ ( self : List[Any] ): lowercase__ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__lowercase ) @staticmethod def A__ ( ): lowercase__ = [ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(__lowercase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"], text="There was an issue running the tests.", blocks=__lowercase, ) def A__ ( self : Union[str, Any] ): print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) lowercase__ = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else "All tests passed." lowercase__ = client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"], blocks=self.payload, text=__lowercase, ) def A__ ( self : Optional[int], __lowercase : Optional[int], __lowercase : Optional[int], __lowercase : Optional[Any], __lowercase : Tuple ): lowercase__ = "" for key, value in failures.items(): lowercase__ = value[:200] + " [Truncated]" if len(__lowercase ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' lowercase__ = job_name lowercase__ = {"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: lowercase__ = { "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def A__ ( self : Any ): if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) lowercase__ = self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) lowercase__ = sorted(self.doc_test_results.items(), key=lambda __lowercase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): lowercase__ = F'''*Num failures* :{len(job_result["failed"] )} \n''' lowercase__ = job_result["failures"] lowercase__ = self.get_reply_blocks(__lowercase, __lowercase, __lowercase, text=__lowercase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"], text=F'''Results for {job}''', blocks=__lowercase, thread_ts=self.thread_ts["ts"], ) time.sleep(1 ) def __lowerCAmelCase ( ) -> Union[str, Any]: lowercase__ = os.environ["GITHUB_RUN_ID"] lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' lowercase__ = requests.get(SCREAMING_SNAKE_CASE_ ).json() lowercase__ = {} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) lowercase__ = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): lowercase__ = requests.get(url + f'''&page={i + 2}''' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , SCREAMING_SNAKE_CASE_ ) return {} def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: lowercase__ = {} if os.path.exists(SCREAMING_SNAKE_CASE_ ): lowercase__ = os.listdir(SCREAMING_SNAKE_CASE_ ) for file in files: try: with open(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , encoding="utf-8" ) as f: lowercase__ = f.read() except UnicodeDecodeError as e: raise ValueError(f'''Could not open {os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}.''' ) from e return _artifact def __lowerCAmelCase ( ) -> Union[str, Any]: class _snake_case : def __init__( self : List[str], __lowercase : str ): lowercase__ = name lowercase__ = [] def __str__( self : int ): return self.name def A__ ( self : Optional[Any], __lowercase : str ): self.paths.append({"name": self.name, "path": path} ) lowercase__ = {} lowercase__ = filter(os.path.isdir , os.listdir() ) for directory in directories: lowercase__ = directory if artifact_name not in _available_artifacts: lowercase__ = Artifact(SCREAMING_SNAKE_CASE_ ) _available_artifacts[artifact_name].add_path(SCREAMING_SNAKE_CASE_ ) return _available_artifacts if __name__ == "__main__": lowercase_ = get_job_links() lowercase_ = retrieve_available_artifacts() lowercase_ = collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' lowercase_ = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job lowercase_ = github_actions_job_links.get("""run_doctests""") lowercase_ = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] lowercase_ = retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: lowercase_ , lowercase_ , lowercase_ = handle_test_results(artifact["""stats"""]) lowercase_ = failed lowercase_ = success lowercase_ = time_spent[1:-1] + """, """ lowercase_ = extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): lowercase_ = line.replace("""FAILED """, """""") lowercase_ = line.split()[0].replace("""\n""", """""") if "::" in line: lowercase_ , lowercase_ = line.split("""::""") else: lowercase_ , lowercase_ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): lowercase_ = docs[file_regex] doc_test_results[category]["failed"].append(test) lowercase_ = all_failures[test] if test in all_failures else """N/A""" lowercase_ = failure break lowercase_ = Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
361
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = len(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE_ ): if numbers[j] < numbers[i]: lowercase__ , lowercase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowercase_ = input("""Enter numbers separated by a comma:\n""").strip() lowercase_ = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
224
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class UpperCamelCase_ : """simple docstring""" snake_case__ : int = LEDConfig snake_case__ : Tuple = {} snake_case__ : List[Any] = "gelu" def __init__( self : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str]=1_3 , UpperCAmelCase__ : Any=7 , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Optional[int]=9_9 , UpperCAmelCase__ : int=3_2 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : int=3_7 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : List[str]=2_0 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : Dict=1 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[str]=4 , ) -> Dict: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __SCREAMING_SNAKE_CASE = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __SCREAMING_SNAKE_CASE = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tf.concat( [tf.zeros_like(UpperCAmelCase__ )[:, :-1], tf.ones_like(UpperCAmelCase__ )[:, -1:]] , axis=-1 , ) __SCREAMING_SNAKE_CASE = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] ) -> int: __SCREAMING_SNAKE_CASE = TFLEDModel(config=UpperCAmelCase__ ).get_decoder() __SCREAMING_SNAKE_CASE = inputs_dict["input_ids"] __SCREAMING_SNAKE_CASE = input_ids[:1, :] __SCREAMING_SNAKE_CASE = inputs_dict["attention_mask"][:1, :] __SCREAMING_SNAKE_CASE = 1 # first forward pass __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1 ) __SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] __SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1E-3 ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): '''simple docstring''' if attention_mask is None: __SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : str = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () snake_case__ : List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () snake_case__ : Union[str, Any] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) snake_case__ : str = True snake_case__ : Tuple = False snake_case__ : List[str] = False snake_case__ : int = False def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = TFLEDModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = tf.zeros_like(inputs_dict["attention_mask"] ) __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.model_tester.seq_length __SCREAMING_SNAKE_CASE = self.model_tester.encoder_seq_length def check_decoder_attentions_output(UpperCAmelCase__ : Optional[int] ): __SCREAMING_SNAKE_CASE = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(UpperCAmelCase__ : Optional[Any] ): __SCREAMING_SNAKE_CASE = [t.numpy() for t in outputs.encoder_attentions] __SCREAMING_SNAKE_CASE = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) self.assertEqual(config.output_hidden_states , UpperCAmelCase__ ) check_encoder_attentions_output(UpperCAmelCase__ ) if self.is_encoder_decoder: __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase__ ) check_decoder_attentions_output(UpperCAmelCase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase__ ) check_encoder_attentions_output(UpperCAmelCase__ ) # Check attention is always last and order is fine __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase__ ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase__ ) check_encoder_attentions_output(UpperCAmelCase__ ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: pass def UpperCAmelCase_ ( self : List[str] ) -> str: # TODO: Head-masking not yet implement pass def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) a__ : str = 1E-4 @slow @require_tf class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : int ) -> str: __SCREAMING_SNAKE_CASE = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here __SCREAMING_SNAKE_CASE = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __SCREAMING_SNAKE_CASE = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(model.config , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = (1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase__ ) # change to expected output here __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-3 ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here __SCREAMING_SNAKE_CASE = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __SCREAMING_SNAKE_CASE = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(model.config , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = (1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , UpperCAmelCase__ ) # change to expected output here __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-3 , rtol=1E-3 )
54
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @staticmethod @abstractmethod def UpperCAmelCase_ ( UpperCAmelCase__ : ArgumentParser ) -> int: raise NotImplementedError() @abstractmethod def UpperCAmelCase_ ( self : int ) -> Optional[int]: raise NotImplementedError()
54
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class __lowercase ( A ): '''simple docstring''' _A : List[str] = '''roberta-prelayernorm''' def __init__( self : Union[str, Any] , _a : List[str]=50_265 , _a : List[str]=768 , _a : List[str]=12 , _a : Optional[Any]=12 , _a : Any=3_072 , _a : int="gelu" , _a : List[Any]=0.1 , _a : Dict=0.1 , _a : Tuple=512 , _a : List[str]=2 , _a : List[str]=0.02 , _a : List[str]=1E-12 , _a : Union[str, Any]=1 , _a : Optional[Any]=0 , _a : Optional[int]=2 , _a : Dict="absolute" , _a : Any=True , _a : Dict=None , **_a : Dict , ): super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = use_cache UpperCamelCase__ = classifier_dropout class __lowercase ( A ): '''simple docstring''' @property def A_ ( self : Union[str, Any] ): if self.task == "multiple-choice": UpperCamelCase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
35
from __future__ import annotations from collections import Counter from random import random class __lowercase : '''simple docstring''' def __init__( self : List[Any] ): UpperCamelCase__ = {} def A_ ( self : List[Any] , _a : str ): UpperCamelCase__ = {} def A_ ( self : List[Any] , _a : str , _a : str , _a : float ): if nodea not in self.connections: self.add_node(_a ) if nodea not in self.connections: self.add_node(_a ) UpperCamelCase__ = probability def A_ ( self : Optional[Any] ): return list(self.connections ) def A_ ( self : Tuple , _a : str ): UpperCamelCase__ = 0 UpperCamelCase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : list[tuple[str, str, float]], UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) UpperCamelCase__ = Counter(graph.get_nodes() ) UpperCamelCase__ = start for _ in range(UpperCamelCase__ ): UpperCamelCase__ = graph.transition(UpperCamelCase__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
35
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
46
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 32 def snake_case ( snake_case__ :Optional[int]) -> str: return int(x / 2**20) class a : """simple docstring""" def __enter__( self ) -> List[str]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero _A = torch.cuda.memory_allocated() return self def __exit__( self , *lowerCAmelCase_ ) -> Optional[int]: gc.collect() torch.cuda.empty_cache() _A = torch.cuda.memory_allocated() _A = torch.cuda.max_memory_allocated() _A = bamb(self.end - self.begin ) _A = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def snake_case ( snake_case__ :Accelerator , snake_case__ :int = 16 , snake_case__ :str = "bert-base-cased" , snake_case__ :int = 320 , snake_case__ :int = 160 , ) -> Dict: _A = AutoTokenizer.from_pretrained(snake_case__) _A = load_dataset( """glue""" , """mrpc""" , split={"""train""": F'''train[:{n_train}]''', """validation""": F'''validation[:{n_val}]'''}) def tokenize_function(snake_case__ :Optional[int]): # max_length=None => use the model max length (it's actually the default) _A = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case__ , max_length=snake_case__) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _A = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=snake_case__) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _A = tokenized_datasets.rename_column("""label""" , """labels""") def collate_fn(snake_case__ :List[str]): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""") return tokenizer.pad(snake_case__ , padding="""longest""" , return_tensors="""pt""") # Instantiate dataloaders. _A = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__) _A = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__) return train_dataloader, eval_dataloader def snake_case ( snake_case__ :Optional[int] , snake_case__ :Optional[int]) -> Optional[int]: # Initialize accelerator _A = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _A = config["""lr"""] _A = int(config["""num_epochs"""]) _A = int(config["""seed"""]) _A = int(config["""batch_size"""]) _A = args.model_name_or_path set_seed(snake_case__) _A , _A = get_dataloaders(snake_case__ , snake_case__ , snake_case__ , args.n_train , args.n_val) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _A = AutoModelForSequenceClassification.from_pretrained(snake_case__ , return_dict=snake_case__) # Instantiate optimizer _A = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _A = optimizer_cls(params=model.parameters() , lr=snake_case__) if accelerator.state.deepspeed_plugin is not None: _A = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _A = 1 _A = (len(snake_case__) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _A = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=0 , num_training_steps=snake_case__ , ) else: _A = DummyScheduler(snake_case__ , total_num_steps=snake_case__ , warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _A , _A , _A , _A , _A = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) # We need to keep track of how many total steps we have iterated over _A = 0 # We also need to keep track of the stating epoch so files are named properly _A = 0 # Now we train the model _A = {} for epoch in range(snake_case__ , snake_case__): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case__): _A = model(**snake_case__) _A = outputs.loss _A = loss / gradient_accumulation_steps accelerator.backward(snake_case__) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin))) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used)) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked)) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin))) _A = tracemalloc.peaked + bamb(tracemalloc.begin) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""") , """w""") as f: json.dump(snake_case__ , snake_case__) def snake_case ( ) -> Optional[int]: _A = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""") parser.add_argument( """--model_name_or_path""" , type=snake_case__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=snake_case__ , ) parser.add_argument( """--output_dir""" , type=snake_case__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=snake_case__ , default=snake_case__ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=snake_case__ , default=320 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=snake_case__ , default=160 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=snake_case__ , default=1 , help="""Number of train epochs.""" , ) _A = parser.parse_args() _A = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(snake_case__ , snake_case__) if __name__ == "__main__": main()
180
0
from __future__ import annotations import collections import pprint from pathlib import Path def UpperCamelCase__( UpperCamelCase__ : str )->str: return "".join(sorted(UpperCamelCase__ ) ) def UpperCamelCase__( UpperCamelCase__ : str )->list[str]: return word_by_signature[signature(UpperCamelCase__ )] a__: str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') a__: List[Any] = sorted({word.strip().lower() for word in data.splitlines()}) a__: List[str] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a__: int = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
39
def UpperCamelCase__( UpperCamelCase__ : int , UpperCamelCase__ : int )->float: return base * power(UpperCamelCase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') a__: List[str] = int(input('Enter the base: ').strip()) a__: Dict = int(input('Enter the exponent: ').strip()) a__: Optional[Any] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents a__: Any = 1 / result print(F"{base} to the power of {exponent} is {result}")
39
1
"""simple docstring""" def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0 # if input_string is "aba" than new_input_string become "a|b|a" SCREAMING_SNAKE_CASE__ = """""" SCREAMING_SNAKE_CASE__ = """""" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(snake_case__ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 0, 0 # length[i] shows the length of palindromic substring with center i SCREAMING_SNAKE_CASE__ = [1 for i in range(len(snake_case__ ) )] # for each character in new_string find corresponding palindromic string SCREAMING_SNAKE_CASE__ = 0 for j in range(len(snake_case__ ) ): SCREAMING_SNAKE_CASE__ = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(snake_case__ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 SCREAMING_SNAKE_CASE__ = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: SCREAMING_SNAKE_CASE__ = j - k + 1 # noqa: E741 SCREAMING_SNAKE_CASE__ = j + k - 1 # update max_length and start position if max_length < length[j]: SCREAMING_SNAKE_CASE__ = length[j] SCREAMING_SNAKE_CASE__ = j # create that string SCREAMING_SNAKE_CASE__ = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
165
"""simple docstring""" from __future__ import annotations from collections import namedtuple def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
165
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __A: def __init__( self , _snake_case , _snake_case=13 , _snake_case=10 , _snake_case=3 , _snake_case=2 , _snake_case=2 , _snake_case=2 , _snake_case=True , _snake_case=True , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=10 , _snake_case=0.02 , _snake_case=0.9 , _snake_case=None , ) -> Tuple: '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = num_channels __a = patch_size __a = tubelet_size __a = num_frames __a = is_training __a = use_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = type_sequence_label_size __a = initializer_range __a = mask_ratio __a = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __a = (image_size // patch_size) ** 2 __a = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __a = int(mask_ratio * self.seq_length ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = VideoMAEModel(config=_snake_case ) model.to(_snake_case ) model.eval() __a = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = VideoMAEForPreTraining(_snake_case ) model.to(_snake_case ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __a = torch.ones((self.num_masks,) ) __a = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __a = mask.expand(self.batch_size , -1 ).bool() __a = model(_snake_case , _snake_case ) # model only returns predictions for masked patches __a = mask.sum().item() __a = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A( a , a , unittest.TestCase ): snake_case_ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) snake_case_ = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = VideoMAEModelTester(self ) __a = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case=False ) -> Tuple: '''simple docstring''' __a = copy.deepcopy(_snake_case ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __a = torch.ones((self.model_tester.num_masks,) ) __a = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __a = mask.expand(self.model_tester.batch_size , -1 ).bool() __a = bool_masked_pos.to(_snake_case ) if return_labels: if model_class in [ *get_values(_snake_case ), ]: __a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_snake_case ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = VideoMAEModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' if not self.has_attentions: pass else: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True for model_class in self.all_model_classes: __a = self.model_tester.seq_length - self.model_tester.num_masks __a = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __a = True __a = False __a = True __a = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __a = outputs.attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __a = True __a = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __a = outputs.attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __a = len(_snake_case ) # Check attention is always last and order is fine __a = True __a = True __a = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(out_len + 1 , len(_snake_case ) ) __a = outputs.attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' def check_hidden_states_output(_snake_case , _snake_case , _snake_case ): __a = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __a = outputs.hidden_states __a = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_snake_case ) , _snake_case ) __a = self.model_tester.seq_length - self.model_tester.num_masks __a = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' pass def __lowerCAmelCase ( ) -> int: __a = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) __a = np.load(a__ ) return list(a__ ) @require_torch @require_vision class __A( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( _snake_case ) __a = self.default_image_processor __a = prepare_video() __a = image_processor(_snake_case , return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): __a = model(**_snake_case ) # verify the logits __a = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _snake_case ) __a = torch.tensor([0.3669, -0.0688, -0.2421] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(_snake_case ) __a = self.default_image_processor __a = prepare_video() __a = image_processor(_snake_case , return_tensors='''pt''' ).to(_snake_case ) # add boolean mask, indicating which patches to mask __a = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) __a = torch.load(_snake_case ) # forward pass with torch.no_grad(): __a = model(**_snake_case ) # verify the logits __a = torch.Size([1, 1_408, 1_536] ) __a = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=_snake_case ) self.assertEqual(outputs.logits.shape , _snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _snake_case , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __a = torch.tensor([0.5142] , device=_snake_case ) self.assertTrue(torch.allclose(outputs.loss , _snake_case , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __a = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=_snake_case ).to( _snake_case ) with torch.no_grad(): __a = model(**_snake_case ) __a = torch.tensor(torch.tensor([0.6469] ) , device=_snake_case ) self.assertTrue(torch.allclose(outputs.loss , _snake_case , atol=1E-4 ) )
33
from string import ascii_uppercase A : Optional[int] = {char: i for i, char in enumerate(ascii_uppercase)} A : Union[str, Any] = dict(enumerate(ascii_uppercase)) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = len(a__ ) __a = 0 while True: if x == i: __a = 0 if len(a__ ) == len(a__ ): break key += key[i] i += 1 return key def __lowerCAmelCase ( a__ , a__ ) -> str: __a = '''''' __a = 0 for letter in message: if letter == " ": cipher_text += " " else: __a = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __lowerCAmelCase ( a__ , a__ ) -> str: __a = '''''' __a = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __a = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __lowerCAmelCase ( ) -> None: __a = '''THE GERMAN ATTACK''' __a = '''SECRET''' __a = generate_key(a__ , a__ ) __a = cipher_text(a__ , a__ ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(a__ , a__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
33
1
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if num <= 0: __SCREAMING_SNAKE_CASE = f"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [True] * (num + 1) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: __SCREAMING_SNAKE_CASE = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
54
"""simple docstring""" import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return x + 2 class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Any ) -> Any: __SCREAMING_SNAKE_CASE = "x = 3" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) assert result == 3 self.assertDictEqual(UpperCAmelCase__ , {"x": 3} ) __SCREAMING_SNAKE_CASE = "x = y" __SCREAMING_SNAKE_CASE = {"y": 5} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 5, "y": 5} ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: __SCREAMING_SNAKE_CASE = "y = add_two(x)" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"add_two": add_two} , state=UpperCAmelCase__ ) assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) assert result is None assert "tried to execute add_two" in out.out def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = "x = 3" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) assert result == 3 self.assertDictEqual(UpperCAmelCase__ , {"x": 3} ) def UpperCAmelCase_ ( self : str ) -> Any: __SCREAMING_SNAKE_CASE = "test_dict = {'x': x, 'y': add_two(x)}" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"add_two": add_two} , state=UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "y": 5} ) self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = "x = 3\ny = 5" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "y": 5} ) def UpperCAmelCase_ ( self : Any ) -> Any: __SCREAMING_SNAKE_CASE = "text = f'This is x: {x}.'" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "text": "This is x: 3."} ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = "if x <= 3:\n y = 2\nelse:\n y = 5" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "y": 2} ) __SCREAMING_SNAKE_CASE = {"x": 8} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 8, "y": 5} ) def UpperCAmelCase_ ( self : Tuple ) -> str: __SCREAMING_SNAKE_CASE = "test_list = [x, add_two(x)]" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"add_two": add_two} , state=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , [3, 5] ) self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "test_list": [3, 5]} ) def UpperCAmelCase_ ( self : Any ) -> int: __SCREAMING_SNAKE_CASE = "y = x" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) assert result == 3 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "y": 3} ) def UpperCAmelCase_ ( self : Tuple ) -> int: __SCREAMING_SNAKE_CASE = "test_list = [x, add_two(x)]\ntest_list[1]" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"add_two": add_two} , state=UpperCAmelCase__ ) assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "test_list": [3, 5]} ) __SCREAMING_SNAKE_CASE = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"add_two": add_two} , state=UpperCAmelCase__ ) assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE = "x = 0\nfor i in range(3):\n x = i" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"range": range} , state=UpperCAmelCase__ ) assert result == 2 self.assertDictEqual(UpperCAmelCase__ , {"x": 2, "i": 2} )
54
1
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __lowerCAmelCase ( datasets.BeamBasedBuilder ): def UpperCAmelCase ( self ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=__UpperCAmelCase , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__UpperCAmelCase ) class __lowerCAmelCase ( datasets.BeamBasedBuilder ): def UpperCAmelCase ( self ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=__UpperCAmelCase , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__UpperCAmelCase ) def A ( ) -> List[str]: return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def A ( ) -> Dict: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @require_beam def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase = DummyBeamDataset(cache_dir=__UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__UpperCAmelCase , builder.name , 'default' , '0.0.0' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) __UpperCamelCase = builder.as_dataset() self.assertEqual(dset['train'].num_rows , __UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , __UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def UpperCAmelCase ( self ): '''simple docstring''' import apache_beam as beam __UpperCamelCase = beam.io.parquetio.WriteToParquet __UpperCamelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase = DummyBeamDataset(cache_dir=__UpperCAmelCase , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: __UpperCamelCase = partial(__UpperCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __UpperCAmelCase , builder.name , 'default' , '0.0.0' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( __UpperCAmelCase , builder.name , 'default' , '0.0.0' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) __UpperCamelCase = builder.as_dataset() self.assertEqual(dset['train'].num_rows , __UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , __UpperCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(__UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def UpperCAmelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase = DummyBeamDataset(cache_dir=__UpperCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase = NestedBeamDataset(cache_dir=__UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__UpperCAmelCase , builder.name , 'default' , '0.0.0' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) __UpperCamelCase = builder.as_dataset() self.assertEqual(dset['train'].num_rows , __UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , __UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
263
"""simple docstring""" from math import isqrt def A ( snake_case :int ) -> list[int]: __UpperCamelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case , snake_case ): __UpperCamelCase = False return [i for i in range(2 , snake_case ) if is_prime[i]] def A ( snake_case :int = 1_0**8 ) -> int: __UpperCamelCase = calculate_prime_numbers(max_number // 2 ) __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
263
1
from __future__ import annotations import math lowerCamelCase__ : Dict = '2020.9.26' lowerCamelCase__ : Tuple = 'xcodz-dot, cclaus, dhruvmanila' def UpperCAmelCase_ ( __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float ) -> tuple[float, float]: if not all(isinstance(__UpperCAmelCase , (float, int) ) for val in locals().values() ): SCREAMING_SNAKE_CASE_ = f"Input values must either be float or int: {list(locals().values() )}" raise TypeError(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = ((x * distance) / (z + distance)) * scale SCREAMING_SNAKE_CASE_ = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def UpperCAmelCase_ ( __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : str , __UpperCAmelCase : float ) -> tuple[float, float, float]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('Axis must be a str' ) SCREAMING_SNAKE_CASE_ = locals() del input_variables["axis"] if not all(isinstance(__UpperCAmelCase , (float, int) ) for val in input_variables.values() ): SCREAMING_SNAKE_CASE_ = ( 'Input values except axis must either be float or int: ' f"{list(input_variables.values() )}" ) raise TypeError(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": SCREAMING_SNAKE_CASE_ = x * math.cos(__UpperCAmelCase ) - y * math.sin(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = y * math.cos(__UpperCAmelCase ) + x * math.sin(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = z elif axis == "x": SCREAMING_SNAKE_CASE_ = y * math.cos(__UpperCAmelCase ) - z * math.sin(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = z * math.cos(__UpperCAmelCase ) + y * math.sin(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = x elif axis == "y": SCREAMING_SNAKE_CASE_ = x * math.cos(__UpperCAmelCase ) - z * math.sin(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = z * math.cos(__UpperCAmelCase ) + x * math.sin(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(f'''{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }''')
225
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> str: SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) SCREAMING_SNAKE_CASE_ = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__UpperCAmelCase ) ), } , features=__UpperCAmelCase , ) return dataset @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : str ) -> int: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__UpperCAmelCase ) return filename # FILE_CONTENT + files lowerCamelCase__ : List[Any] = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt' SCREAMING_SNAKE_CASE_ = FILE_CONTENT with open(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase ) return filename @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> List[str]: import bza SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with bza.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> Any: import gzip SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with gzip.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> int: if datasets.config.LZ4_AVAILABLE: import lza.frame SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with lza.frame.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] ) -> Any: if datasets.config.PY7ZR_AVAILABLE: import pyazr SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__UpperCAmelCase , 'w' ) as archive: archive.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : str ) -> str: import tarfile SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> List[Any]: import lzma SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with lzma.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) -> str: import zipfile SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> Any: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with zstd.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> List[Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.xml' SCREAMING_SNAKE_CASE_ = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase ) return filename lowerCamelCase__ : Optional[Any] = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] lowerCamelCase__ : Dict = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] lowerCamelCase__ : Optional[int] = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } lowerCamelCase__ : List[Any] = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] lowerCamelCase__ : List[Any] = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> Tuple: return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = datasets.Dataset.from_dict(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__UpperCAmelCase ) ) as con: SCREAMING_SNAKE_CASE_ = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> str: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__UpperCAmelCase , 'w' , newline='' ) as f: SCREAMING_SNAKE_CASE_ = csv.DictWriter(__UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__UpperCAmelCase , 'w' , newline='' ) as f: SCREAMING_SNAKE_CASE_ = csv.DictWriter(__UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Tuple ) -> str: import bza SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__UpperCAmelCase , 'rb' ) as f: SCREAMING_SNAKE_CASE_ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : str ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) SCREAMING_SNAKE_CASE_ = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__UpperCAmelCase , 'wb' ) as f: SCREAMING_SNAKE_CASE_ = pq.ParquetWriter(__UpperCAmelCase , schema=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCAmelCase ) )] for k in DATA[0]} , schema=__UpperCAmelCase ) writer.write_table(__UpperCAmelCase ) writer.close() return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) SCREAMING_SNAKE_CASE_ = {'data': DATA} with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) SCREAMING_SNAKE_CASE_ = {'data': DATA_DICT_OF_LISTS} with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> List[str]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] ) -> Union[str, Any]: import gzip SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__UpperCAmelCase , 'rb' ) as orig_file: with gzip.open(__UpperCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] ) -> List[str]: import gzip SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__UpperCAmelCase , 'rb' ) as orig_file: with gzip.open(__UpperCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple ) -> Dict: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> Any: SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename('unsupported.ext' ) ) f.write(__UpperCAmelCase , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> List[Any]: return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> Tuple: return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) -> int: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Dict: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
225
1
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowercase_ ( __UpperCAmelCase ) -> None: lowerCAmelCase__ , lowerCAmelCase__ : int = analyze_text(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. lowerCAmelCase__ : List[str] = sum(single_char_strings.values() ) # one length string lowerCAmelCase__ : List[str] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCAmelCase__ : List[Any] = single_char_strings[ch] lowerCAmelCase__ : int = my_str / all_sum my_fir_sum += prob * math.loga(__UpperCAmelCase ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string lowerCAmelCase__ : Tuple = sum(two_char_strings.values() ) lowerCAmelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCAmelCase__ : Optional[int] = cha + cha if sequence in two_char_strings: lowerCAmelCase__ : int = two_char_strings[sequence] lowerCAmelCase__ : str = int(__UpperCAmelCase ) / all_sum my_sec_sum += prob * math.loga(__UpperCAmelCase ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def lowercase_ ( __UpperCAmelCase ) -> tuple[dict, dict]: lowerCAmelCase__ : Any = Counter() # type: ignore lowerCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__UpperCAmelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowercase_ ( ) -> Any: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
212
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _lowerCamelCase : def __init__( self : str , UpperCamelCase : int , UpperCamelCase : str=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Dict=7 , UpperCamelCase : List[Any]=9 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=True , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=32 , UpperCamelCase : str=5 , UpperCamelCase : int=4 , UpperCamelCase : Optional[Any]=37 , UpperCamelCase : Tuple=8 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=0.002 , UpperCamelCase : List[Any]=1 , UpperCamelCase : Any=0 , UpperCamelCase : Optional[Any]=0 , UpperCamelCase : Dict=None , UpperCamelCase : str=None , ) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[Any] = parent lowerCAmelCase__ : Union[str, Any] = batch_size lowerCAmelCase__ : List[str] = encoder_seq_length lowerCAmelCase__ : Any = decoder_seq_length # For common tests lowerCAmelCase__ : Union[str, Any] = self.decoder_seq_length lowerCAmelCase__ : List[Any] = is_training lowerCAmelCase__ : Optional[Any] = use_attention_mask lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Any = vocab_size lowerCAmelCase__ : Any = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : int = d_ff lowerCAmelCase__ : int = relative_attention_num_buckets lowerCAmelCase__ : Union[str, Any] = dropout_rate lowerCAmelCase__ : str = initializer_factor lowerCAmelCase__ : Tuple = eos_token_id lowerCAmelCase__ : List[str] = pad_token_id lowerCAmelCase__ : str = decoder_start_token_id lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Dict = decoder_layers def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" return TaConfig.from_pretrained("""google/umt5-base""" ) def _lowerCAmelCase ( self : str , UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : int=None , UpperCamelCase : List[Any]=None , ) -> List[Any]: """simple docstring""" if attention_mask is None: lowerCAmelCase__ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase__ : List[str] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase__ : str = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCamelCase ) if decoder_head_mask is None: lowerCAmelCase__ : Optional[int] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase ) if cross_attn_head_mask is None: lowerCAmelCase__ : Optional[int] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase__ : int = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ : Tuple = self.get_config() lowerCAmelCase__ : Dict = config.num_attention_heads lowerCAmelCase__ : Dict = self.prepare_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, input_dict def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Any , ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = UMTaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCAmelCase__ : Optional[int] = model( input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase , attention_mask=UpperCamelCase , decoder_attention_mask=UpperCamelCase , ) lowerCAmelCase__ : Optional[int] = model(input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase ) lowerCAmelCase__ : List[Any] = result.last_hidden_state lowerCAmelCase__ : Any = result.past_key_values lowerCAmelCase__ : str = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : int , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = UMTaModel(config=UpperCamelCase ).get_decoder().to(UpperCamelCase ).eval() # first forward pass lowerCAmelCase__ : Optional[int] = model(UpperCamelCase , use_cache=UpperCamelCase ) lowerCAmelCase__ : Any = model(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCAmelCase__ : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ : List[str] = model(UpperCamelCase )["""last_hidden_state"""] lowerCAmelCase__ : Any = model(UpperCamelCase , past_key_values=UpperCamelCase )["""last_hidden_state"""] # select random slice lowerCAmelCase__ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ : List[Any] = output_from_no_past[:, -1, random_slice_idx].detach() lowerCAmelCase__ : Optional[int] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) ) def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : str , UpperCamelCase : int , ) -> Dict: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = UMTaModel(config=UpperCamelCase ).to(UpperCamelCase ).half().eval() lowerCAmelCase__ : Dict = model(**UpperCamelCase )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(UpperCamelCase ).any().item() ) @require_torch class _lowerCamelCase ( a_ , a_ , a_ , unittest.TestCase ): _lowerCamelCase :List[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _lowerCamelCase :List[str] = (UMTaForConditionalGeneration,) if is_torch_available() else () _lowerCamelCase :Optional[Any] = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) _lowerCamelCase :Dict = True _lowerCamelCase :Optional[Any] = False _lowerCamelCase :List[str] = False _lowerCamelCase :Dict = True _lowerCamelCase :str = True # The small UMT5 model needs higher percentages for CPU/MP tests _lowerCamelCase :Optional[int] = [0.8, 0.9] def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Any = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[str] = UMTaModel(config_and_inputs[0] ).to(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCamelCase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCamelCase ) def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = config_and_inputs[0] lowerCAmelCase__ : int = UMTaForConditionalGeneration(UpperCamelCase ).eval() model.to(UpperCamelCase ) lowerCAmelCase__ : List[Any] = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=UpperCamelCase ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase ), } for attn_name, (name, mask) in zip(UpperCamelCase , head_masking.items() ): lowerCAmelCase__ : Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCAmelCase__ : Tuple = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=UpperCamelCase , return_dict_in_generate=UpperCamelCase , **UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCAmelCase__ : str = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Dict = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=UpperCamelCase ).to(UpperCamelCase ) lowerCAmelCase__ : Dict = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=UpperCamelCase , legacy=UpperCamelCase ) lowerCAmelCase__ : int = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] lowerCAmelCase__ : Union[str, Any] = tokenizer(UpperCamelCase , return_tensors="""pt""" , padding=UpperCamelCase ).input_ids # fmt: off lowerCAmelCase__ : List[Any] = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = model.generate(input_ids.to(UpperCamelCase ) ) lowerCAmelCase__ : int = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] lowerCAmelCase__ : Any = tokenizer.batch_decode(UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
212
1
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head: UpperCAmelCase_ = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ = GPTaTokenizerFast.from_pretrained('''gpt2''') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head: UpperCAmelCase_ = GPTaTokenizerFast.from_pretrained('''gpt2''') # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self : Tuple): """simple docstring""" try: UpperCAmelCase_ = tempfile.mktemp() with open(_snake_case , '''wb''') as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , _snake_case) UpperCAmelCase_ = AlbertTokenizer.from_pretrained(_snake_case) finally: os.remove(_snake_case) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json'''): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''') as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , _snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''') # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''') @is_staging_test class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def lowerCamelCase ( cls : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = TOKEN HfFolder.save_token(_snake_case) @classmethod def lowerCamelCase ( cls : List[str]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-tokenizer''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''') except HTTPError: pass def lowerCamelCase ( self : Tuple): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = os.path.join(_snake_case , '''vocab.txt''') with open(_snake_case , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) UpperCAmelCase_ = BertTokenizer(_snake_case) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token) UpperCAmelCase_ = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""") self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case , repo_id='''test-tokenizer''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""") self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) def lowerCamelCase ( self : List[Any]): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = os.path.join(_snake_case , '''vocab.txt''') with open(_snake_case , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) UpperCAmelCase_ = BertTokenizer(_snake_case) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token) UpperCAmelCase_ = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _snake_case , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) @require_tokenizers def lowerCamelCase ( self : int): """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = os.path.join(_snake_case , '''vocab.txt''') with open(_snake_case , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) UpperCAmelCase_ = CustomTokenizer(_snake_case) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token) UpperCAmelCase_ = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''') # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = os.path.join(_snake_case , '''vocab.txt''') with open(_snake_case , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) UpperCAmelCase_ = BertTokenizerFast.from_pretrained(_snake_case) bert_tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = CustomTokenizerFast.from_pretrained(_snake_case) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token) UpperCAmelCase_ = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''') UpperCAmelCase_ = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=_snake_case , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''') class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = Trie() trie.add('''Hello 友達''') self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}}) trie.add('''Hello''') trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}}) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''') , ['''[CLS] This is a extra_id_100''']) trie.add('''[CLS]''') trie.add('''extra_id_1''') trie.add('''extra_id_100''') self.assertEqual(trie.split('''[CLS] This is a extra_id_100''') , ['''[CLS]''', ''' This is a ''', '''extra_id_100''']) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = Trie() trie.add('''A''') self.assertEqual(trie.split('''ABC''') , ['''A''', '''BC''']) self.assertEqual(trie.split('''BCA''') , ['''BC''', '''A''']) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = Trie() trie.add('''TOKEN]''') trie.add('''[SPECIAL_TOKEN]''') self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''') , ['''This is something ''', '''[SPECIAL_TOKEN]''']) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = Trie() trie.add('''A''') trie.add('''P''') trie.add('''[SPECIAL_TOKEN]''') self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''') , ['''This is something ''', '''[SPECIAL_TOKEN]''']) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = Trie() trie.add('''AB''') trie.add('''B''') trie.add('''C''') self.assertEqual(trie.split('''ABC''') , ['''AB''', '''C''']) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = Trie() trie.add('''ABC''') trie.add('''B''') trie.add('''CD''') self.assertEqual(trie.split('''ABCD''') , ['''ABC''', '''D''']) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = Trie() UpperCAmelCase_ = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3]) self.assertEqual(_snake_case , ['''AB''', '''C'''])
51
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase: Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCamelCase_ (self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None ): """simple docstring""" a = {} a = {} if prompt is not None: a = prompt if generate_kwargs is not None: a = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: a = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) a = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__(self , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None ): """simple docstring""" a = load_image(lowerCamelCase_ ) if prompt is not None: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( F'''Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) a = self.model.config.model_type if model_type == "git": a = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) a = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids a = [self.tokenizer.cls_token_id] + input_ids a = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": a = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation a = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) a = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework ) model_inputs.update(lowerCamelCase_ ) else: raise ValueError(F'''Model type {model_type} does not support conditional text generation''' ) else: a = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: a = None return model_inputs def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None ): """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCamelCase_ ) and all(x is None for x in model_inputs["input_ids"] ) ): a = None if generate_kwargs is None: a = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. a = model_inputs.pop(self.model.main_input_name ) a = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ ) return model_outputs def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = [] for output_ids in model_outputs: a = { "generated_text": self.tokenizer.decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , ) } records.append(lowerCamelCase_ ) return records
227
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : List[str] = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowercase__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowercase__ : Dict = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowercase__ : Any = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def _lowerCAmelCase ( __snake_case : Any ) -> Optional[Any]: __A : Dict = (images / 2 + 0.5).clamp(0 , 1 ) __A : str = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __A : Dict = numpy_to_pil(__snake_case ) return images def _lowerCAmelCase ( __snake_case : List[Any] ) -> Optional[Any]: if images.ndim == 3: __A : List[Any] = images[None, ...] __A : List[str] = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __A : str = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: __A : str = [Image.fromarray(__snake_case ) for image in images] return pil_images
190
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator def __snake_case( ) -> Generator[int, None, None]: snake_case__ : dict[int, int] = {} snake_case__ : Any = 2 while True: snake_case__ : int = factor_map.pop(_lowerCAmelCase , _lowerCAmelCase ) if factor: snake_case__ : Any = factor + prime while x in factor_map: x += factor snake_case__ : Any = factor else: snake_case__ : Dict = prime yield prime prime += 1 def __snake_case( _lowerCAmelCase = 1e10 ) -> int: snake_case__ : Tuple = sieve() snake_case__ : List[Any] = 1 while True: snake_case__ : Tuple = next(_lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(_lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
35
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Optional[int] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ f"{test_file} instead." ) snake_case__ : Dict = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(f"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( f"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) snake_case__ : int = components[:-1] + [test_fn.replace(""".py""" , """""" )] snake_case__ : int = """.""".join(_lowerCAmelCase ) return test_module_path def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : str = get_module_path(_lowerCAmelCase ) snake_case__ : Union[str, Any] = importlib.import_module(_lowerCAmelCase ) return test_module def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : List[Any] = [] snake_case__ : Optional[int] = get_test_module(_lowerCAmelCase ) for attr in dir(_lowerCAmelCase ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : List[str] = [] snake_case__ : Any = get_test_module(_lowerCAmelCase ) for attr in dir(_lowerCAmelCase ): snake_case__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). snake_case__ : List[str] = getattr(_lowerCAmelCase , """all_model_classes""" , [] ) if len(_lowerCAmelCase ) > 0: test_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : Any = get_test_classes(_lowerCAmelCase ) snake_case__ : Optional[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Optional[Any]: snake_case__ : Optional[int] = test_class() if hasattr(_lowerCAmelCase , """setUp""" ): test.setUp() snake_case__ : Any = None if hasattr(_lowerCAmelCase , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: snake_case__ : Tuple = test.model_tester.__class__ return model_tester def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : Union[str, Any] = get_test_classes(_lowerCAmelCase ) snake_case__ : str = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: snake_case__ : Optional[Any] = get_test_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Union[str, Any] = [] for test_class in test_classes: snake_case__ : Tuple = get_model_tester_from_test_class(_lowerCAmelCase ) if tester_class is not None: tester_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Union[str, Any]: snake_case__ : Optional[Any] = get_test_classes(_lowerCAmelCase ) snake_case__ : Union[str, Any] = {test_class: get_model_tester_from_test_class(_lowerCAmelCase ) for test_class in test_classes} return test_tester_mapping def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Any = get_model_classes(_lowerCAmelCase ) snake_case__ : Any = { model_class: get_test_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) for model_class in model_classes } return model_test_mapping def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Union[str, Any] = get_model_classes(_lowerCAmelCase ) snake_case__ : str = { model_class: get_tester_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) for model_class in model_classes } return model_to_tester_mapping def __snake_case( _lowerCAmelCase ) -> int: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return o elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return o.__name__ elif isinstance(_lowerCAmelCase , (list, tuple) ): return [to_json(_lowerCAmelCase ) for x in o] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {to_json(_lowerCAmelCase ): to_json(_lowerCAmelCase ) for k, v in o.items()} else: return o
35
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> Dict: """simple docstring""" _snake_case = [] for part_id in partition_order: _snake_case = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(_UpperCamelCase ): expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def snake_case_() -> Any: """simple docstring""" _snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _snake_case = spark.range(100 ).repartition(1 ) _snake_case = Spark(_UpperCamelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def snake_case_() -> Dict: """simple docstring""" _snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _snake_case = spark.range(10 ).repartition(2 ) _snake_case = [1, 0] _snake_case = _generate_iterable_examples(_UpperCamelCase , _UpperCamelCase ) # Reverse the partitions. _snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , _UpperCamelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _snake_case = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_() -> str: """simple docstring""" _snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _snake_case = spark.range(10 ).repartition(1 ) _snake_case = SparkExamplesIterable(_UpperCamelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_UpperCamelCase ): assert row_id == F"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def snake_case_() -> Any: """simple docstring""" _snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _snake_case = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: _snake_case = lambda _UpperCamelCase : x.reverse() _snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , [2, 1, 0] ) _snake_case = SparkExamplesIterable(_UpperCamelCase ).shuffle_data_sources(_UpperCamelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_UpperCamelCase ): _snake_case = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_() -> Dict: """simple docstring""" _snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _snake_case = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _snake_case = SparkExamplesIterable(_UpperCamelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 _snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(_UpperCamelCase ): _snake_case = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _snake_case = SparkExamplesIterable(_UpperCamelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 _snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(_UpperCamelCase ): _snake_case = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_() -> Optional[int]: """simple docstring""" _snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _snake_case = spark.range(100 ).repartition(1 ) _snake_case = Spark(_UpperCamelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
360
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
278
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowercase__ : Union[str, Any] = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None ) -> Optional[int]: lowerCAmelCase = True while ask_again: lowerCAmelCase = input(snake_case__ ) try: if default is not None and len(snake_case__ ) == 0: return default return convert_value(snake_case__ ) if convert_value is not None else result except Exception: if error_message is not None: print(snake_case__ ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__=[] , snake_case__=None , snake_case__=0 ) -> Any: lowerCAmelCase = BulletMenu(snake_case__ , snake_case__ ) lowerCAmelCase = menu.run(default_choice=snake_case__ ) return convert_value(snake_case__ ) if convert_value is not None else result def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]: lowerCAmelCase = int(snake_case__ ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Tuple: lowerCAmelCase = int(snake_case__ ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[Any]: lowerCAmelCase = int(snake_case__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Dict: lowerCAmelCase = int(snake_case__ ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]: lowerCAmelCase = int(snake_case__ ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]: return {"yes": True, "no": False}[value.lower()] class lowercase_ ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->List[str]: lowerCAmelCase = super()._format_usage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
338
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]: lowerCAmelCase = split_dict._to_yaml_list() assert len(snake_case__ ) == len(snake_case__ ) lowerCAmelCase = SplitDict._from_yaml_list(snake_case__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=snake_case__ ), SplitInfo(dataset_name='''my_dataset''' )] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCAmelCase = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _A : def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=13 , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=99 , __SCREAMING_SNAKE_CASE : str=32 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : Tuple=4 , __SCREAMING_SNAKE_CASE : Optional[Any]=37 , __SCREAMING_SNAKE_CASE : List[str]="gelu" , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Any=512 , __SCREAMING_SNAKE_CASE : Any=16 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Optional[int]=4 , __SCREAMING_SNAKE_CASE : List[Any]=None , ): '''simple docstring''' __a = parent __a = 13 __a = 7 __a = True __a = True __a = True __a = True __a = 99 __a = 32 __a = 2 __a = 4 __a = 37 __a = '''gelu''' __a = 0.1 __a = 0.1 __a = 512 __a = 16 __a = 2 __a = 0.02 __a = 3 __a = 4 __a = None def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length]) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __a = ids_tensor([self.batch_size] , self.num_choices) __a = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__SCREAMING_SNAKE_CASE , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = TFRoFormerModel(config=__SCREAMING_SNAKE_CASE) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = [input_ids, input_mask] __a = model(__SCREAMING_SNAKE_CASE) __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = True __a = TFRoFormerForCausalLM(config=__SCREAMING_SNAKE_CASE) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(__SCREAMING_SNAKE_CASE)['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape) , [self.batch_size, self.seq_length, self.vocab_size]) def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = TFRoFormerForMaskedLM(config=__SCREAMING_SNAKE_CASE) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = self.num_labels __a = TFRoFormerForSequenceClassification(config=__SCREAMING_SNAKE_CASE) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = self.num_choices __a = TFRoFormerForMultipleChoice(config=__SCREAMING_SNAKE_CASE) __a = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1) , (1, self.num_choices, 1)) __a = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1) , (1, self.num_choices, 1)) __a = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1) , (1, self.num_choices, 1)) __a = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = self.num_labels __a = TFRoFormerForTokenClassification(config=__SCREAMING_SNAKE_CASE) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = TFRoFormerForQuestionAnswering(config=__SCREAMING_SNAKE_CASE) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _A ( __UpperCAmelCase ,__UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : int = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ : str = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ : int = False UpperCamelCase__ : Any = False def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = TFRoFormerModelTester(self) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37) def _lowerCamelCase ( self : Dict): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : str): '''simple docstring''' __a = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''') self.assertIsNotNone(__SCREAMING_SNAKE_CASE) @require_tf class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''') __a = tf.constant([[0, 1, 2, 3, 4, 5]]) __a = model(__SCREAMING_SNAKE_CASE)[0] # TODO Replace vocab size __a = 50_000 __a = [1, 6, vocab_size] self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE) print(output[:, :3, :3]) # TODO Replace values below with what was printed above. __a = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ]) tf.debugging.assert_near(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4) @require_tf class _A ( unittest.TestCase ): UpperCamelCase__ : str = 1e-4 def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = tf.constant([[4, 10]]) __a = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6) __a = emba(input_ids.shape) __a = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]]) tf.debugging.assert_near(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=self.tolerance) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ]) __a = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512) emba([2, 16, 512]) __a = emba.weight[:3, :5] tf.debugging.assert_near(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=self.tolerance) @require_tf class _A ( unittest.TestCase ): UpperCamelCase__ : Union[str, Any] = 1e-4 def _lowerCamelCase ( self : str): '''simple docstring''' __a = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa) , shape=(2, 12, 16, 64)) / 100 __a = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa) , shape=(2, 12, 16, 64)) / 100 __a = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64) __a = embed_positions([2, 16, 768])[None, None, :, :] __a , __a = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ]) __a = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ]) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __SCREAMING_SNAKE_CASE , atol=self.tolerance) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __SCREAMING_SNAKE_CASE , atol=self.tolerance)
368
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __snake_case ( _UpperCAmelCase ): if isinstance(_UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class _A : def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' pass def _lowerCamelCase ( self : Any): '''simple docstring''' pass def _lowerCamelCase ( self : Dict): '''simple docstring''' pass def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim)) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int]=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {'''vision_model''': vision_model, '''text_model''': text_model} __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = after_output[0].numpy() __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float): '''simple docstring''' __a = np.abs((a - b)).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , F'Difference between torch and flax is {diff} (>= {tol}).') def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_save_load(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a , __a = self.get_pretrained_model_and_inputs() __a = model_a(**__SCREAMING_SNAKE_CASE) __a = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model_a(**__SCREAMING_SNAKE_CASE) __a = after_outputs[0].numpy() __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = TFViTModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFBertModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFViTModelTester(self) __a = TFBertModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = TFDeiTModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFRobertaModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = TFDeiTModelTester(self) __a = TFRobertaModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = TFCLIPVisionModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFBertModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = TFCLIPVisionModelTester(self) __a = TFBertModelTester(self) __a = clip_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self : str): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=__SCREAMING_SNAKE_CASE) __a = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''') __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') __a = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='''np''') __a = model(**__SCREAMING_SNAKE_CASE) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __a = np.array([[1.2_28_47_27, 0.3_10_41_22]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __SCREAMING_SNAKE_CASE , atol=1E-3))
131
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: UpperCamelCase : Tuple = [] for part_id in partition_order: UpperCamelCase : List[str] = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(_lowerCAmelCase ): expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def A_ ( ) -> Any: UpperCamelCase : str = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCamelCase : Union[str, Any] = spark.range(100 ).repartition(1 ) UpperCamelCase : Tuple = Spark(_lowerCAmelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def A_ ( ) -> List[str]: UpperCamelCase : List[str] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCamelCase : Any = spark.range(10 ).repartition(2 ) UpperCamelCase : Dict = [1, 0] UpperCamelCase : int = _generate_iterable_examples(_lowerCAmelCase , _lowerCAmelCase ) # Reverse the partitions. UpperCamelCase : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCAmelCase , _lowerCAmelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCamelCase : int = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A_ ( ) -> Optional[int]: UpperCamelCase : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCamelCase : Optional[int] = spark.range(10 ).repartition(1 ) UpperCamelCase : str = SparkExamplesIterable(_lowerCAmelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_lowerCAmelCase ): assert row_id == F"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def A_ ( ) -> int: UpperCamelCase : List[Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCamelCase : List[str] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: UpperCamelCase : int = lambda _lowerCAmelCase : x.reverse() UpperCamelCase : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCAmelCase , [2, 1, 0] ) UpperCamelCase : List[Any] = SparkExamplesIterable(_lowerCAmelCase ).shuffle_data_sources(_lowerCAmelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_lowerCAmelCase ): UpperCamelCase : str = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A_ ( ) -> List[Any]: UpperCamelCase : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCamelCase : Any = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 UpperCamelCase : Any = SparkExamplesIterable(_lowerCAmelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCamelCase : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCAmelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(_lowerCAmelCase ): UpperCamelCase : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCamelCase : Dict = SparkExamplesIterable(_lowerCAmelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCamelCase : str = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCAmelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(_lowerCAmelCase ): UpperCamelCase : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A_ ( ) -> int: UpperCamelCase : str = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCamelCase : int = spark.range(100 ).repartition(1 ) UpperCamelCase : str = Spark(_lowerCAmelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
52
import cmath import math def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = math.radians(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = math.radians(SCREAMING_SNAKE_CASE ) # Convert voltage and current to rectangular form UpperCamelCase__ : str = cmath.rect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = cmath.rect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
146
0
"""simple docstring""" from __future__ import annotations lowercase__ = list[tuple[int, int]] lowercase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase__ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCamelCase : '''simple docstring''' def __init__( self : int , a_ : int , a_ : int , a_ : int , a_ : int , a_ : float , a_ : Node | None , ): lowerCAmelCase_ : List[Any] = pos_x lowerCAmelCase_ : int = pos_y lowerCAmelCase_ : List[Any] = (pos_y, pos_x) lowerCAmelCase_ : Optional[int] = goal_x lowerCAmelCase_ : List[Any] = goal_y lowerCAmelCase_ : List[Any] = g_cost lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : Tuple = self.calculate_heuristic() def lowerCamelCase ( self : Any ): lowerCAmelCase_ : int = abs(self.pos_x - self.goal_x ) lowerCAmelCase_ : Tuple = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Optional[int] , a_ : List[str] ): return self.f_cost < other.f_cost class __lowerCamelCase : '''simple docstring''' def __init__( self : Tuple , a_ : tuple[int, int] , a_ : tuple[int, int] ): lowerCAmelCase_ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , a_ ) lowerCAmelCase_ : Any = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , a_ ) lowerCAmelCase_ : List[Any] = [self.start] lowerCAmelCase_ : list[Node] = [] lowerCAmelCase_ : List[Any] = False def lowerCamelCase ( self : int ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase_ : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowerCAmelCase_ : Any = True return self.retrace_path(a_ ) self.closed_nodes.append(a_ ) lowerCAmelCase_ : List[Any] = self.get_successors(a_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(a_ ) else: # retrieve the best current path lowerCAmelCase_ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(a_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(a_ ) else: self.open_nodes.append(a_ ) if not self.reached: return [self.start.pos] return None def lowerCamelCase ( self : Any , a_ : Node ): lowerCAmelCase_ : List[Any] = [] for action in delta: lowerCAmelCase_ : Any = parent.pos_x + action[1] lowerCAmelCase_ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( a_ , a_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , a_ , ) ) return successors def lowerCamelCase ( self : int , a_ : Node | None ): lowerCAmelCase_ : Any = node lowerCAmelCase_ : Union[str, Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase_ : Dict = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase__ = (0, 0) lowercase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") lowercase__ = GreedyBestFirst(init, goal) lowercase__ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase__ = 2 for elem in grid: print(elem)
360
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __lowerCamelCase : '''simple docstring''' def __init__( self : List[str] , a_ : Any , a_ : Any=None , a_ : int=None , a_ : str=None , a_ : Optional[int]="resnet50" , a_ : str=3 , a_ : str=32 , a_ : Union[str, Any]=3 , a_ : Tuple=True , a_ : List[str]=True , ): lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : Dict = out_indices if out_indices is not None else [4] lowerCAmelCase_ : int = stage_names lowerCAmelCase_ : Optional[Any] = out_features lowerCAmelCase_ : Tuple = backbone lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : Tuple = image_size lowerCAmelCase_ : List[Any] = num_channels lowerCAmelCase_ : Optional[int] = use_pretrained_backbone lowerCAmelCase_ : List[Any] = is_training def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = self.get_config() return config, pixel_values def lowerCamelCase ( self : Dict ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCamelCase ( self : Union[str, Any] , a_ : str , a_ : Optional[int] ): lowerCAmelCase_ : Union[str, Any] = TimmBackbone(config=a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : int = model(a_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = config_and_inputs lowerCAmelCase_ : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class __lowerCamelCase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () a_ : int = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ : Union[str, Any] = False a_ : str = False a_ : List[Any] = False a_ : Dict = False def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Union[str, Any] = TimmBackboneModelTester(self ) lowerCAmelCase_ : List[str] = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def lowerCamelCase ( self : Dict ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = "resnet18" lowerCAmelCase_ : List[Any] = "microsoft/resnet-18" lowerCAmelCase_ : Tuple = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ ) lowerCAmelCase_ : str = AutoBackbone.from_pretrained(a_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase_ : Dict = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ , out_indices=[1, 2, 3] ) lowerCAmelCase_ : Any = AutoBackbone.from_pretrained(a_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowerCamelCase ( self : Optional[int] ): pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowerCamelCase ( self : Dict ): pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowerCamelCase ( self : List[Any] ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowerCamelCase ( self : Dict ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowerCamelCase ( self : Any ): pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowerCamelCase ( self : Tuple ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCamelCase ( self : str ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowerCamelCase ( self : Any ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowerCamelCase ( self : List[str] ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCamelCase ( self : Tuple ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCamelCase ( self : Optional[int] ): pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowerCamelCase ( self : Dict ): pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowerCamelCase ( self : int ): pass @unittest.skip("Safetensors is not supported by timm." ) def lowerCamelCase ( self : Union[str, Any] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCamelCase ( self : Union[str, Any] ): pass def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(a_ ) lowerCAmelCase_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : str = [*signature.parameters.keys()] lowerCAmelCase_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Optional[int] = True lowerCAmelCase_ : List[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase_ : int = self.all_model_classes[0] lowerCAmelCase_ : Optional[int] = model_class(a_ ) model.to(a_ ) lowerCAmelCase_ : Union[str, Any] = self._prepare_for_class(a_ , a_ ) lowerCAmelCase_ : str = model(**a_ ) lowerCAmelCase_ : Any = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase_ : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase_ : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCamelCase ( self : str ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Dict = model_class(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Tuple = model(**a_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase_ : Optional[int] = copy.deepcopy(a_ ) lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : Any = model_class(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : int = model(**a_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase_ : str = copy.deepcopy(a_ ) lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[int] = model_class(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Optional[Any] = model(**a_ )
161
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __a = logging.getLogger(__name__) def A_ ( _lowercase, _lowercase ): '''simple docstring''' return (preds == labels).mean() @dataclass class lowerCamelCase : '''simple docstring''' _A : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _A : Optional[str] = field( default=_lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _A : Optional[str] = field( default=_lowerCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _A : Optional[str] = field( default=_lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class lowerCamelCase : '''simple docstring''' _A : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _A : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) _A : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _A : bool = field( default=_lowerCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def A_ ( ): '''simple docstring''' snake_case_ :List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_, snake_case_, snake_case_ :List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""", _lowercase ) # Set seed set_seed(training_args.seed ) try: snake_case_ :Optional[Any] = processors[data_args.task_name]() snake_case_ :Tuple = processor.get_labels() snake_case_ :int = len(_lowercase ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ :List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=_lowercase, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) snake_case_ :Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) snake_case_ :Union[str, Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(""".ckpt""" in model_args.model_name_or_path ), config=_lowercase, cache_dir=model_args.cache_dir, ) # Get datasets snake_case_ :List[str] = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=_lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) snake_case_ :Optional[Any] = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=_lowercase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def compute_metrics(_lowercase ) -> Dict: snake_case_ :Union[str, Any] = np.argmax(p.predictions, axis=1 ) return {"acc": simple_accuracy(_lowercase, p.label_ids )} # Data collator snake_case_ :List[str] = DataCollatorWithPadding(_lowercase, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ :Optional[Any] = Trainer( model=_lowercase, args=_lowercase, train_dataset=_lowercase, eval_dataset=_lowercase, compute_metrics=_lowercase, data_collator=_lowercase, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ :Optional[int] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) snake_case_ :List[str] = trainer.evaluate() snake_case_ :Union[str, Any] = os.path.join(training_args.output_dir, """eval_results.txt""" ) if trainer.is_world_master(): with open(_lowercase, """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""", _lowercase, _lowercase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(_lowercase ) return results def A_ ( _lowercase ): '''simple docstring''' main() if __name__ == "__main__": main()
66
"""simple docstring""" from __future__ import annotations __a = 10 def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Union[str, Any] = 1 snake_case_ :List[str] = max(_lowercase ) while placement <= max_digit: # declare and initialize empty buckets snake_case_ :list[list] = [[] for _ in range(_lowercase )] # split list_of_ints between the buckets for i in list_of_ints: snake_case_ :Any = int((i / placement) % RADIX ) buckets[tmp].append(_lowercase ) # put each buckets' contents into list_of_ints snake_case_ :Optional[Any] = 0 for b in range(_lowercase ): for i in buckets[b]: snake_case_ :Union[str, Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
66
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv3FeatureExtractor'''] UpperCamelCase = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
125
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[str] = KandinskyVaaInpaintPipeline __snake_case : Union[str, Any] = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __snake_case : Tuple = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __snake_case : str = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __snake_case : List[str] = False @property def UpperCamelCase ( self: Tuple ): '''simple docstring''' return 32 @property def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return 32 @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return 100 @property def UpperCamelCase ( self: str ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _SCREAMING_SNAKE_CASE = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.dummy_unet _SCREAMING_SNAKE_CASE = self.dummy_movq _SCREAMING_SNAKE_CASE = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str]=0 ): '''simple docstring''' _SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase_ ) # create init_image _SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("""RGB""" ).resize((256, 256) ) # create mask _SCREAMING_SNAKE_CASE = np.ones((64, 64) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE = np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def UpperCamelCase ( self: int ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _SCREAMING_SNAKE_CASE = np.ones((768, 768) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = """a hat""" _SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _SCREAMING_SNAKE_CASE = pipeline( image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
125
1
A_ : int = 65521 def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 1 __UpperCAmelCase = 0 for plain_chr in plain_text: __UpperCAmelCase = (a + ord(SCREAMING_SNAKE_CASE )) % MOD_ADLER __UpperCAmelCase = (b + a) % MOD_ADLER return (b << 1_6) | a
333
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''▁''' __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } __UpperCamelCase = { '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off __UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def __init__( self, lowerCAmelCase__, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__ = None, lowerCAmelCase__=None, lowerCAmelCase__=False, **lowerCAmelCase__, ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs snake_case_ = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, src_lang=lowerCAmelCase__, tgt_lang=lowerCAmelCase__, additional_special_tokens=lowerCAmelCase__, sp_model_kwargs=self.sp_model_kwargs, legacy_behaviour=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowerCAmelCase__)) snake_case_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ = 1 snake_case_ = len(self.sp_model) snake_case_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__) } snake_case_ = {v: k for k, v in self.lang_code_to_id.items()} snake_case_ = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case_ = list(self.lang_code_to_id.keys()) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens]) snake_case_ = src_lang if src_lang is not None else 'eng_Latn' snake_case_ = self.lang_code_to_id[self._src_lang] snake_case_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self) -> Union[str, Any]: snake_case_ = self.__dict__.copy() snake_case_ = None snake_case_ = self.sp_model.serialized_model_proto() return state def __setstate__( self, lowerCAmelCase__) -> Tuple: snake_case_ = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs'): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def a_ ( self) -> str: return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a_ ( self) -> str: return self._src_lang @src_lang.setter def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__, token_ids_a=lowerCAmelCase__, already_has_special_tokens=lowerCAmelCase__) snake_case_ = [1] * len(self.prefix_tokens) snake_case_ = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__)) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__)) + ([0] * len(lowerCAmelCase__)) + suffix_ones def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> str: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') snake_case_ = src_lang snake_case_ = self(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = self.convert_tokens_to_ids(lowerCAmelCase__) snake_case_ = tgt_lang_id return inputs def a_ ( self) -> List[Any]: snake_case_ = {self.convert_ids_to_tokens(lowerCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def a_ ( self, lowerCAmelCase__) -> List[str]: return self.sp_model.encode(lowerCAmelCase__, out_type=lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(lowerCAmelCase__) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a_ ( self, lowerCAmelCase__) -> Dict: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def a_ ( self, lowerCAmelCase__) -> List[str]: snake_case_ = ''.join(lowerCAmelCase__).replace(lowerCAmelCase__, ' ').strip() return out_string def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, lowerCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase__, 'wb') as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__) return (out_vocab_file,) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = "eng_Latn", lowerCAmelCase__ = None, lowerCAmelCase__ = "fra_Latn", **lowerCAmelCase__, ) -> BatchEncoding: snake_case_ = src_lang snake_case_ = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang) def a_ ( self) -> int: return self.set_tgt_lang_special_tokens(self.tgt_lang) def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] else: snake_case_ = [self.cur_lang_code] snake_case_ = [self.eos_token_id] def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = self.lang_code_to_id[lang] if self.legacy_behaviour: snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] else: snake_case_ = [self.cur_lang_code] snake_case_ = [self.eos_token_id]
69
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCAmelCase : int = {"UserAgent": UserAgent().random} def A ( lowercase ) -> dict: '''simple docstring''' UpperCamelCase = script.contents[0] UpperCamelCase = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase : def __init__( self , A_ ) -> str: """simple docstring""" UpperCamelCase = F'''https://www.instagram.com/{username}/''' UpperCamelCase = self.get_json() def __UpperCamelCase ( self ) -> dict: """simple docstring""" UpperCamelCase = requests.get(self.url , headers=A_ ).text UpperCamelCase = BeautifulSoup(A_ , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ) -> str: """simple docstring""" return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ) -> str: """simple docstring""" return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __UpperCamelCase ( self ) -> str: """simple docstring""" return self.user_data["username"] @property def __UpperCamelCase ( self ) -> str: """simple docstring""" return self.user_data["full_name"] @property def __UpperCamelCase ( self ) -> str: """simple docstring""" return self.user_data["biography"] @property def __UpperCamelCase ( self ) -> str: """simple docstring""" return self.user_data["business_email"] @property def __UpperCamelCase ( self ) -> str: """simple docstring""" return self.user_data["external_url"] @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __UpperCamelCase ( self ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def __UpperCamelCase ( self ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def __UpperCamelCase ( self ) -> bool: """simple docstring""" return self.user_data["is_private"] def A ( lowercase = "github" ) -> None: '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions UpperCamelCase = InstagramUser(lowercase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowercase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[Any] = InstagramUser("github") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
110
from __future__ import annotations def A ( lowercase , lowercase , lowercase , lowercase ) -> list: '''simple docstring''' UpperCamelCase = [] UpperCamelCase , UpperCamelCase = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCamelCase = result + left + right return input_list def A ( lowercase ) -> list: '''simple docstring''' if len(lowercase ) <= 1: return input_list UpperCamelCase = list(lowercase ) # iteration for two-way merging UpperCamelCase = 2 while p <= len(lowercase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowercase ) , lowercase ): UpperCamelCase = i UpperCamelCase = i + p - 1 UpperCamelCase = (low + high + 1) // 2 UpperCamelCase = merge(lowercase , lowercase , lowercase , lowercase ) # final merge of last two parts if p * 2 >= len(lowercase ): UpperCamelCase = i UpperCamelCase = merge(lowercase , 0 , lowercase , len(lowercase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCAmelCase : Any = input("Enter numbers separated by a comma:\n").strip() if user_input == "": _UpperCAmelCase : Optional[Any] = [] else: _UpperCAmelCase : Any = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
110
1
"""simple docstring""" from __future__ import annotations import bisect def lowercase ( __snake_case : list[int] , __snake_case : int , __snake_case : int = 0 , __snake_case : int = -1 ): if hi < 0: lowercase_ : List[Any] = len(__snake_case ) while lo < hi: lowercase_ : Union[str, Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowercase_ : str = mid + 1 else: lowercase_ : List[str] = mid return lo def lowercase ( __snake_case : list[int] , __snake_case : int , __snake_case : int = 0 , __snake_case : int = -1 ): if hi < 0: lowercase_ : Any = len(__snake_case ) while lo < hi: lowercase_ : Dict = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowercase_ : Optional[int] = mid + 1 else: lowercase_ : Any = mid return lo def lowercase ( __snake_case : list[int] , __snake_case : int , __snake_case : int = 0 , __snake_case : int = -1 ): sorted_collection.insert(bisect_left(__snake_case , __snake_case , __snake_case , __snake_case ) , __snake_case ) def lowercase ( __snake_case : list[int] , __snake_case : int , __snake_case : int = 0 , __snake_case : int = -1 ): sorted_collection.insert(bisect_right(__snake_case , __snake_case , __snake_case , __snake_case ) , __snake_case ) def lowercase ( __snake_case : list[int] , __snake_case : int ): lowercase_ : Optional[int] = 0 lowercase_ : Tuple = len(__snake_case ) - 1 while left <= right: lowercase_ : str = left + (right - left) // 2 lowercase_ : Dict = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowercase_ : Dict = midpoint - 1 else: lowercase_ : Tuple = midpoint + 1 return None def lowercase ( __snake_case : list[int] , __snake_case : int ): lowercase_ : int = bisect.bisect_left(__snake_case , __snake_case ) if index != len(__snake_case ) and sorted_collection[index] == item: return index return None def lowercase ( __snake_case : list[int] , __snake_case : int , __snake_case : int , __snake_case : int ): if right < left: return None lowercase_ : List[str] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__snake_case , __snake_case , __snake_case , midpoint - 1 ) else: return binary_search_by_recursion(__snake_case , __snake_case , midpoint + 1 , __snake_case ) if __name__ == "__main__": __A : Dict = input('''Enter numbers separated by comma:\n''').strip() __A : List[str] = sorted(int(item) for item in user_input.split(''',''')) __A : Optional[int] = int(input('''Enter a single number to be found in the list:\n''')) __A : int = binary_search(collection, target) if result is None: print(F"""{target} was not found in {collection}.""") else: print(F"""{target} was found at position {result} in {collection}.""")
33
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Any = KandinskyVaaControlnetImgaImgPipeline SCREAMING_SNAKE_CASE_ : Optional[int] = ["image_embeds", "negative_image_embeds", "image", "hint"] SCREAMING_SNAKE_CASE_ : str = ["image_embeds", "negative_image_embeds", "image", "hint"] SCREAMING_SNAKE_CASE_ : Dict = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] SCREAMING_SNAKE_CASE_ : Dict = False @property def A ( self : Any ) -> Any: return 32 @property def A ( self : Optional[int] ) -> Any: return 32 @property def A ( self : Dict ) -> int: return self.time_input_dim @property def A ( self : Tuple ) -> str: return self.time_input_dim * 4 @property def A ( self : Any ) -> str: return 1_00 @property def A ( self : str ) -> List[str]: torch.manual_seed(0 ) lowercase_ : List[Any] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase_ : Dict = UNetaDConditionModel(**A ) return model @property def A ( self : Optional[Any] ) -> Union[str, Any]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def A ( self : List[Any] ) -> Dict: torch.manual_seed(0 ) lowercase_ : int = VQModel(**self.dummy_movq_kwargs ) return model def A ( self : Union[str, Any] ) -> Optional[int]: lowercase_ : Tuple = self.dummy_unet lowercase_ : int = self.dummy_movq lowercase_ : List[Any] = { '''num_train_timesteps''': 10_00, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowercase_ : str = DDIMScheduler(**A ) lowercase_ : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A ( self : Optional[int] , A : int , A : List[str]=0 ) -> int: lowercase_ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A ) ).to(A ) lowercase_ : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A ) # create init_image lowercase_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(A ) ).to(A ) lowercase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ : Optional[Any] = Image.fromarray(np.uinta(A ) ).convert('''RGB''' ).resize((2_56, 2_56) ) # create hint lowercase_ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(A ) ).to(A ) if str(A ).startswith('''mps''' ): lowercase_ : Optional[Any] = torch.manual_seed(A ) else: lowercase_ : List[Any] = torch.Generator(device=A ).manual_seed(A ) lowercase_ : Dict = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def A ( self : Any ) -> List[Any]: lowercase_ : List[str] = '''cpu''' lowercase_ : Any = self.get_dummy_components() lowercase_ : Any = self.pipeline_class(**A ) lowercase_ : int = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) lowercase_ : Dict = pipe(**self.get_dummy_inputs(A ) ) lowercase_ : str = output.images lowercase_ : int = pipe( **self.get_dummy_inputs(A ) , return_dict=A , )[0] lowercase_ : Dict = image[0, -3:, -3:, -1] lowercase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ : List[str] = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def A ( self : Tuple ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Any ) -> Optional[int]: lowercase_ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) lowercase_ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase_ : Optional[int] = init_image.resize((5_12, 5_12) ) lowercase_ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) lowercase_ : Optional[int] = torch.from_numpy(np.array(A ) ).float() / 255.0 lowercase_ : Tuple = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowercase_ : Optional[Any] = '''A robot, 4k photo''' lowercase_ : Tuple = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(A ) lowercase_ : Dict = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) lowercase_ : int = pipeline.to(A ) pipeline.set_progress_bar_config(disable=A ) lowercase_ : Tuple = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase_ , lowercase_ : int = pipe_prior( A , image=A , strength=0.85 , generator=A , negative_prompt='''''' , ).to_tuple() lowercase_ : str = pipeline( image=A , image_embeds=A , negative_image_embeds=A , hint=A , generator=A , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type='''np''' , ) lowercase_ : Optional[Any] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(A , A )
33
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = "timm_backbone" def __init__( self , A_=None , A_=3 , A_=True , A_=True , A_=None , **A_ , ) -> int: super().__init__(**A_ ) lowerCAmelCase = backbone lowerCAmelCase = num_channels lowerCAmelCase = features_only lowerCAmelCase = use_pretrained_backbone lowerCAmelCase = True lowerCAmelCase = out_indices if out_indices is not None else (-1,)
187
'''simple docstring''' from __future__ import annotations class __snake_case: '''simple docstring''' def __init__( self , A_ = 0 ) -> Dict: lowerCAmelCase = key def __snake_case ( self , A_ , A_ ) -> list[str]: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A_ ) ^ key ) for ch in content] def __snake_case ( self , A_ , A_ ) -> list[str]: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A_ ) ^ key ) for ch in content] def __snake_case ( self , A_ , A_ = 0 ) -> str: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase = """""" for ch in content: ans += chr(ord(A_ ) ^ key ) return ans def __snake_case ( self , A_ , A_ = 0 ) -> str: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase = """""" for ch in content: ans += chr(ord(A_ ) ^ key ) return ans def __snake_case ( self , A_ , A_ = 0 ) -> bool: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) try: with open(A_ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(A_ , A_ ) ) except OSError: return False return True def __snake_case ( self , A_ , A_ ) -> bool: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) try: with open(A_ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(A_ , A_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
187
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _SCREAMING_SNAKE_CASE (A , A=0.999 , A="cosine" , ) -> Optional[Any]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase__ = [] for i in range(A ): lowercase__ = i / num_diffusion_timesteps lowercase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A ) / alpha_bar_fn(A ) , A ) ) return torch.tensor(A , dtype=torch.floataa ) class __lowerCAmelCase (lowercase_ , lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Dict = [e.name for e in KarrasDiffusionSchedulers] lowerCAmelCase__ : Optional[int] = 2 @register_to_config def __init__(self : int , UpperCamelCase : int = 1000 , UpperCamelCase : float = 0.0_00_85 , UpperCamelCase : float = 0.0_12 , UpperCamelCase : str = "linear" , UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase : str = "epsilon" , UpperCamelCase : str = "linspace" , UpperCamelCase : int = 0 , ): '''simple docstring''' if trained_betas is not None: lowercase__ = torch.tensor(UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase__ = torch.linspace(UpperCamelCase , UpperCamelCase , UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase__ = betas_for_alpha_bar(UpperCamelCase ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase__ = 1.0 - self.betas lowercase__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Any , UpperCamelCase : Optional[int] , UpperCamelCase : int=None ): '''simple docstring''' if schedule_timesteps is None: lowercase__ = self.timesteps lowercase__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase__ = 1 if len(UpperCamelCase ) > 1 else 0 else: lowercase__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep lowercase__ = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase__ (self : List[str] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase__ (self : str , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Union[float, torch.FloatTensor] , ): '''simple docstring''' lowercase__ = self.index_for_timestep(UpperCamelCase ) if self.state_in_first_order: lowercase__ = self.sigmas[step_index] else: lowercase__ = self.sigmas_interpol[step_index] lowercase__ = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Union[str, torch.device] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' lowercase__ = num_inference_steps lowercase__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase__ = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase , dtype=UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase__ = (np.arange(0 , UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase__ = (np.arange(UpperCamelCase , 0 , -step_ratio )).round().copy().astype(UpperCamelCase ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) lowercase__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase__ = torch.from_numpy(np.log(UpperCamelCase ) ).to(UpperCamelCase ) lowercase__ = np.interp(UpperCamelCase , np.arange(0 , len(UpperCamelCase ) ) , UpperCamelCase ) lowercase__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase__ = torch.from_numpy(UpperCamelCase ).to(device=UpperCamelCase ) # interpolate sigmas lowercase__ = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() lowercase__ = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) lowercase__ = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCamelCase ).startswith('''mps''' ): # mps does not support float64 lowercase__ = torch.from_numpy(UpperCamelCase ).to(UpperCamelCase , dtype=torch.floataa ) else: lowercase__ = torch.from_numpy(UpperCamelCase ).to(UpperCamelCase ) # interpolate timesteps lowercase__ = self.sigma_to_t(UpperCamelCase ).to(UpperCamelCase , dtype=timesteps.dtype ) lowercase__ = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() lowercase__ = torch.cat([timesteps[:1], interleaved_timesteps] ) lowercase__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase__ = defaultdict(UpperCamelCase ) def UpperCamelCase__ (self : List[str] , UpperCamelCase : List[Any] ): '''simple docstring''' lowercase__ = sigma.log() # get distribution lowercase__ = log_sigma - self.log_sigmas[:, None] # get sigmas range lowercase__ = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) lowercase__ = low_idx + 1 lowercase__ = self.log_sigmas[low_idx] lowercase__ = self.log_sigmas[high_idx] # interpolate sigmas lowercase__ = (low - log_sigma) / (low - high) lowercase__ = w.clamp(0 , 1 ) # transform interpolation to time range lowercase__ = (1 - w) * low_idx + w * high_idx lowercase__ = t.view(sigma.shape ) return t @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return self.sample is None def UpperCamelCase__ (self : str , UpperCamelCase : Union[torch.FloatTensor, np.ndarray] , UpperCamelCase : Union[float, torch.FloatTensor] , UpperCamelCase : Union[torch.FloatTensor, np.ndarray] , UpperCamelCase : bool = True , ): '''simple docstring''' lowercase__ = self.index_for_timestep(UpperCamelCase ) # advance index counter by 1 lowercase__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase__ = self.sigmas[step_index] lowercase__ = self.sigmas_interpol[step_index + 1] lowercase__ = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowercase__ = self.sigmas[step_index - 1] lowercase__ = self.sigmas_interpol[step_index] lowercase__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase__ = 0 lowercase__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase__ = sigma_hat if self.state_in_first_order else sigma_interpol lowercase__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase__ = sigma_hat if self.state_in_first_order else sigma_interpol lowercase__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase__ = sigma_interpol - sigma_hat # store for 2nd order step lowercase__ = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowercase__ = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowercase__ = sigma_next - sigma_hat lowercase__ = self.sample lowercase__ = None lowercase__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : torch.FloatTensor , UpperCamelCase : torch.FloatTensor , ): '''simple docstring''' lowercase__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase ): # mps does not support float64 lowercase__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowercase__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowercase__ = self.timesteps.to(original_samples.device ) lowercase__ = timesteps.to(original_samples.device ) lowercase__ = [self.index_for_timestep(UpperCamelCase , UpperCamelCase ) for t in timesteps] lowercase__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase__ = sigma.unsqueeze(-1 ) lowercase__ = original_samples + noise * sigma return noisy_samples def __len__(self : List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
2
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart lowerCAmelCase__ : Optional[int] = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } lowerCAmelCase__ : Tuple = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ["""input_ids""", """attention_mask"""] __lowerCamelCase = BartTokenizer def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="replace" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<mask>" , __UpperCamelCase=False , __UpperCamelCase=True , **__UpperCamelCase , ) -> int: '''simple docstring''' super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCamelCase ) != add_prefix_space: snake_case__ : Any = getattr(__UpperCamelCase , pre_tok_state.pop('type' ) ) snake_case__ : List[str] = add_prefix_space snake_case__ : Any = pre_tok_class(**__UpperCamelCase ) snake_case__ : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case__ : Dict = 'post_processor' snake_case__ : Union[str, Any] = getattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) if tokenizer_component_instance: snake_case__ : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case__ : List[Any] = tuple(state['sep'] ) if "cls" in state: snake_case__ : List[str] = tuple(state['cls'] ) snake_case__ : int = False if state.get('add_prefix_space' , __UpperCamelCase ) != add_prefix_space: snake_case__ : Tuple = add_prefix_space snake_case__ : Any = True if state.get('trim_offsets' , __UpperCamelCase ) != trim_offsets: snake_case__ : Dict = trim_offsets snake_case__ : List[Any] = True if changes_to_apply: snake_case__ : Union[str, Any] = getattr(__UpperCamelCase , state.pop('type' ) ) snake_case__ : int = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) @property def __a ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Tuple = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else value snake_case__ : Optional[Any] = value def __a ( self , *__UpperCamelCase , **__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' snake_case__ : str = kwargs.get('is_split_into_words' , __UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def __a ( self , *__UpperCamelCase , **__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' snake_case__ : Optional[int] = kwargs.get('is_split_into_words' , __UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' snake_case__ : Union[str, Any] = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' snake_case__ : Union[str, Any] = [self.sep_token_id] snake_case__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
143
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0 , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = projection_dim def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) _UpperCAmelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = TFDPRContextEncoder(config=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = TFDPRQuestionEncoder(config=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = TFDPRReader(config=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids} return config, inputs_dict @require_tf class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : Any = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _a : Optional[int] = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} _a : Optional[Any] = False _a : int = False _a : str = False _a : Dict = False _a : int = False def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = TFDPRModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFDPRContextEncoder.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFDPRContextEncoder.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFDPRQuestionEncoder.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFDPRReader.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_tf class __a ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) _UpperCAmelCase = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCAmelCase = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
352
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=9 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.002 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = encoder_seq_length _UpperCAmelCase = decoder_seq_length # For common tests _UpperCAmelCase = self.decoder_seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = d_ff _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = dropout_rate _UpperCAmelCase = initializer_factor _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = decoder_start_token_id _UpperCAmelCase = None _UpperCAmelCase = decoder_layers def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return TaConfig.from_pretrained('google/umt5-base' ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" if attention_mask is None: _UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) if decoder_head_mask is None: _UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) if cross_attn_head_mask is None: _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = self.get_config() _UpperCAmelCase = config.num_attention_heads _UpperCAmelCase = self.prepare_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, input_dict def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" _UpperCAmelCase = UMTaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model( input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = result.last_hidden_state _UpperCAmelCase = result.past_key_values _UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_SCREAMING_SNAKE_CASE ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = UMTaModel(config=_SCREAMING_SNAKE_CASE ).get_decoder().to(_SCREAMING_SNAKE_CASE ).eval() # first forward pass _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) + 1 ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )['last_hidden_state'] _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )['last_hidden_state'] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" _UpperCAmelCase = UMTaModel(config=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ).half().eval() _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )['last_hidden_state'] self.parent.assertFalse(torch.isnan(_SCREAMING_SNAKE_CASE ).any().item() ) @require_torch class __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : Union[str, Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _a : List[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () _a : Tuple = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) _a : List[str] = True _a : List[Any] = False _a : Tuple = False _a : List[Any] = True _a : str = True # The small UMT5 model needs higher percentages for CPU/MP tests _a : Tuple = [0.8, 0.9] def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _SCREAMING_SNAKE_CASE , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_SCREAMING_SNAKE_CASE , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = config_and_inputs[0] _UpperCAmelCase = UMTaForConditionalGeneration(_SCREAMING_SNAKE_CASE ).eval() model.to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), } for attn_name, (name, mask) in zip(_SCREAMING_SNAKE_CASE , head_masking.items() ): _UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=_SCREAMING_SNAKE_CASE , return_dict_in_generate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # We check the state of decoder_attentions and cross_attentions just from the last step _UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class __a ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=_SCREAMING_SNAKE_CASE , legacy=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors='pt' , padding=_SCREAMING_SNAKE_CASE ).input_ids # fmt: off _UpperCAmelCase = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.generate(input_ids.to(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] _UpperCAmelCase = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
185
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCamelCase__ = logging.get_logger(__name__) class A__ ( __magic_name__ ): lowercase = 'vision-encoder-decoder' lowercase = True def __init__( self : List[str] , **a : str ): '''simple docstring''' super().__init__(**a ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) lowerCAmelCase__ : Tuple = kwargs.pop('encoder' ) lowerCAmelCase__ : Dict = encoder_config.pop('model_type' ) lowerCAmelCase__ : Any = kwargs.pop('decoder' ) lowerCAmelCase__ : Any = decoder_config.pop('model_type' ) lowerCAmelCase__ : Union[str, Any] = AutoConfig.for_model(a , **a ) lowerCAmelCase__ : Optional[int] = AutoConfig.for_model(a , **a ) lowerCAmelCase__ : List[Any] = True @classmethod def _lowerCamelCase ( cls : int , a : PretrainedConfig , a : PretrainedConfig , **a : List[Any] ): '''simple docstring''' logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) lowerCAmelCase__ : Any = True lowerCAmelCase__ : List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : str = self.encoder.to_dict() lowerCAmelCase__ : Optional[int] = self.decoder.to_dict() lowerCAmelCase__ : Optional[Any] = self.__class__.model_type return output class A__ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 1E-4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class A__ ( __magic_name__ ): @property def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = OrderedDict() lowerCAmelCase__ : Optional[int] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} lowerCAmelCase__ : Optional[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} lowerCAmelCase__ : Dict = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _lowerCamelCase ( self : List[str] , a : "PreTrainedTokenizerBase" , a : int = -1 , a : int = -1 , a : bool = False , a : Optional["TensorType"] = None , ): '''simple docstring''' import torch lowerCAmelCase__ : List[str] = OrderedDict() lowerCAmelCase__ : Any = super().generate_dummy_inputs( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = dummy_input['input_ids'].shape lowerCAmelCase__ : Union[str, Any] = (batch, encoder_sequence, self._config.encoder_hidden_size) lowerCAmelCase__ : List[str] = dummy_input.pop('input_ids' ) lowerCAmelCase__ : Dict = dummy_input.pop('attention_mask' ) lowerCAmelCase__ : List[str] = torch.zeros(a ) return common_inputs class A__ ( __magic_name__ ): @property def _lowerCamelCase ( self : int ): '''simple docstring''' pass def _lowerCamelCase ( self : int , a : PretrainedConfig ): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(a ) def _lowerCamelCase ( self : Optional[int] , a : PretrainedConfig , a : PretrainedConfig , a : str = "default" ): '''simple docstring''' lowerCAmelCase__ : Any = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(a , a )
212
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A__ ( __magic_name__ ): lowercase = 42 lowercase = 42 def __init__( self : Any , a : UNetaDModel , a : ScoreSdeVeScheduler ): '''simple docstring''' super().__init__() self.register_modules(unet=a , scheduler=a ) @torch.no_grad() def __call__( self : List[str] , a : int = 1 , a : int = 2_000 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[str] = "pil" , a : bool = True , **a : int , ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.unet.config.sample_size lowerCAmelCase__ : Union[str, Any] = (batch_size, 3, img_size, img_size) lowerCAmelCase__ : Tuple = self.unet lowerCAmelCase__ : Optional[Any] = randn_tensor(a , generator=a ) * self.scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(self.device ) self.scheduler.set_timesteps(a ) self.scheduler.set_sigmas(a ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase__ : Dict = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCAmelCase__ : Optional[Any] = self.unet(a , a ).sample lowerCAmelCase__ : Dict = self.scheduler.step_correct(a , a , generator=a ).prev_sample # prediction step lowerCAmelCase__ : Optional[int] = model(a , a ).sample lowerCAmelCase__ : Optional[Any] = self.scheduler.step_pred(a , a , a , generator=a ) lowerCAmelCase__ , lowerCAmelCase__ : str = output.prev_sample, output.prev_sample_mean lowerCAmelCase__ : Any = sample_mean.clamp(0 , 1 ) lowerCAmelCase__ : List[str] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase__ : int = self.numpy_to_pil(a ) if not return_dict: return (sample,) return ImagePipelineOutput(images=a )
212
1
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger("""transformers.models.encodec""") UpperCAmelCase_ = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } UpperCAmelCase_ = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } UpperCAmelCase_ = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } UpperCAmelCase_ = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } UpperCAmelCase_ = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } UpperCAmelCase_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } UpperCAmelCase_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } UpperCAmelCase_ = [] UpperCAmelCase_ = [] def _A (__a , __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE_ : Tuple = getattr(a__ , a__ ) if weight_type is not None: SCREAMING_SNAKE_CASE_ : int = getattr(a__ , a__ ).shape else: SCREAMING_SNAKE_CASE_ : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": SCREAMING_SNAKE_CASE_ : Optional[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE_ : Any = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE_ : List[str] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE_ : int = value elif weight_type == "running_mean": SCREAMING_SNAKE_CASE_ : str = value elif weight_type == "running_var": SCREAMING_SNAKE_CASE_ : int = value elif weight_type == "num_batches_tracked": SCREAMING_SNAKE_CASE_ : str = value elif weight_type == "weight_ih_l0": SCREAMING_SNAKE_CASE_ : str = value elif weight_type == "weight_hh_l0": SCREAMING_SNAKE_CASE_ : List[Any] = value elif weight_type == "bias_ih_l0": SCREAMING_SNAKE_CASE_ : List[str] = value elif weight_type == "bias_hh_l0": SCREAMING_SNAKE_CASE_ : Any = value elif weight_type == "weight_ih_l1": SCREAMING_SNAKE_CASE_ : Union[str, Any] = value elif weight_type == "weight_hh_l1": SCREAMING_SNAKE_CASE_ : Optional[int] = value elif weight_type == "bias_ih_l1": SCREAMING_SNAKE_CASE_ : Any = value elif weight_type == "bias_hh_l1": SCREAMING_SNAKE_CASE_ : Optional[Any] = value else: SCREAMING_SNAKE_CASE_ : int = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def _A (__a , __a ) -> Union[str, Any]: """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _A (__a , __a , __a ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [] if model_name == "encodec_24khz" or "encodec_32khz": SCREAMING_SNAKE_CASE_ : Dict = MAPPING_24K elif model_name == "encodec_48khz": SCREAMING_SNAKE_CASE_ : List[str] = MAPPING_48K else: raise ValueError(f'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(a__ , a__ ): logger.info(f'{name} was ignored' ) continue SCREAMING_SNAKE_CASE_ : str = False for key, mapped_key in MAPPING.items(): if "*" in key: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = key.split('''.*.''' ) if prefix in name and suffix in name: SCREAMING_SNAKE_CASE_ : List[str] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue SCREAMING_SNAKE_CASE_ : Optional[int] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE_ : Optional[int] = name.split(a__ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE_ : Optional[int] = mapped_key.replace('''*''' , a__ ) if "weight_g" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] = '''weight_v''' elif "weight_ih_l0" in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''weight_ih_l0''' elif "weight_hh_l0" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = '''weight_hh_l0''' elif "bias_ih_l0" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] = '''bias_ih_l0''' elif "bias_hh_l0" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = '''bias_hh_l0''' elif "weight_ih_l1" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = '''weight_ih_l1''' elif "weight_hh_l1" in name: SCREAMING_SNAKE_CASE_ : List[str] = '''weight_hh_l1''' elif "bias_ih_l1" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] = '''bias_ih_l1''' elif "bias_hh_l1" in name: SCREAMING_SNAKE_CASE_ : Dict = '''bias_hh_l1''' elif "bias" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE_ : Tuple = '''weight''' elif "running_mean" in name: SCREAMING_SNAKE_CASE_ : List[str] = '''running_mean''' elif "running_var" in name: SCREAMING_SNAKE_CASE_ : int = '''running_var''' elif "num_batches_tracked" in name: SCREAMING_SNAKE_CASE_ : Tuple = '''num_batches_tracked''' else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = None set_recursively(a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(f'Unused weights: {unused_weights}' ) @torch.no_grad() def _A (__a , __a , __a , __a=None , __a=None , ) -> Optional[Any]: """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE_ : Tuple = EncodecConfig.from_pretrained(a__ ) else: SCREAMING_SNAKE_CASE_ : Any = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": SCREAMING_SNAKE_CASE_ : Tuple = [8, 5, 4, 4] SCREAMING_SNAKE_CASE_ : List[str] = [2.2] SCREAMING_SNAKE_CASE_ : Dict = 64 SCREAMING_SNAKE_CASE_ : int = 3_20_00 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 20_48 SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Optional[int] = False elif model_name == "encodec_48khz": SCREAMING_SNAKE_CASE_ : List[str] = [8, 5, 4, 2] SCREAMING_SNAKE_CASE_ : Optional[int] = [3.0, 6.0, 12.0, 24.0] SCREAMING_SNAKE_CASE_ : Optional[int] = 4_80_00 SCREAMING_SNAKE_CASE_ : int = 2 SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : List[str] = '''time_group_norm''' SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : Optional[int] = 1.0 SCREAMING_SNAKE_CASE_ : List[Any] = 0.01 else: raise ValueError(f'Unknown model name: {model_name}' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = EncodecModel(a__ ) SCREAMING_SNAKE_CASE_ : List[str] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(a__ ) SCREAMING_SNAKE_CASE_ : int = torch.load(a__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights SCREAMING_SNAKE_CASE_ : Optional[Any] = original_checkpoint['''best_state'''] recursively_load_weights(a__ , a__ , a__ ) model.save_pretrained(a__ ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(a__ ) model.push_to_hub(a__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
361
"""simple docstring""" from collections import defaultdict def _A (__a , __a ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = first_str.lower().strip() SCREAMING_SNAKE_CASE_ : List[Any] = second_str.lower().strip() # Remove whitespace SCREAMING_SNAKE_CASE_ : Dict = first_str.replace(''' ''' , '''''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(__a ) != len(__a ): return False # Default values for count should be 0 SCREAMING_SNAKE_CASE_ : defaultdict[str, int] = defaultdict(__a ) # For each character in input strings, # increment count in the corresponding for i in range(len(__a ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase_ : Any = input("""Enter the first string """).strip() UpperCAmelCase_ : Optional[int] = input("""Enter the second string """).strip() UpperCAmelCase_ : Union[str, Any] = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
318
0
_snake_case = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _snake_case = [{"type": "code", "content": INSTALL_CONTENT}] _snake_case = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
26
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCamelCase__ ( _A = "laptop" ): a : Any = f"""https://www.amazon.in/laptop/s?k={product}""" a : Tuple = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } a : Any = BeautifulSoup(requests.get(_A , headers=_A ).text ) # Initialize a Pandas dataframe with the column titles a : Any = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: a : Optional[int] = item.ha.text a : str = 'https://www.amazon.in/' + item.ha.a['href'] a : List[str] = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: a : Optional[Any] = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: a : Union[str, Any] = 'Not available' try: a : str = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: a : int = '' try: a : Union[str, Any] = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: a : Any = float('nan' ) except AttributeError: pass a : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] a : Any = ' ' a : List[str] = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCAmelCase: str = 'headphones' get_amazon_product_data(product).to_csv(F"Amazon Product Data for {product}.csv")
297
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig a__ : Any = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class a_ ( lowerCamelCase__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = """albert""" def __init__( self , _lowerCamelCase=3_0000 , _lowerCamelCase=128 , _lowerCamelCase=4096 , _lowerCamelCase=12 , _lowerCamelCase=1 , _lowerCamelCase=64 , _lowerCamelCase=1_6384 , _lowerCamelCase=1 , _lowerCamelCase="gelu_new" , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=0.1 , _lowerCamelCase="absolute" , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=3 , **_lowerCamelCase , ) ->Optional[int]: super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : int = embedding_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_groups SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : Any = inner_group_num SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = classifier_dropout_prob SCREAMING_SNAKE_CASE : str = position_embedding_type class a_ ( lowerCamelCase__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
361
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
0
def UpperCamelCase__ ( A__ = 100_0000 ) -> int: snake_case__ : int = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , A__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
143
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case : def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=30 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.0_2 , __UpperCamelCase=3 , __UpperCamelCase=None , ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = parent snake_case__ : List[Any] = batch_size snake_case__ : str = image_size snake_case__ : Union[str, Any] = patch_size snake_case__ : int = num_channels snake_case__ : Union[str, Any] = is_training snake_case__ : Optional[int] = use_labels snake_case__ : str = hidden_size snake_case__ : Any = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : int = intermediate_size snake_case__ : Any = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Optional[Any] = type_sequence_label_size snake_case__ : int = initializer_range snake_case__ : Dict = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ : int = (image_size // patch_size) ** 2 snake_case__ : Union[str, Any] = num_patches + 1 def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Any = self.get_config() return config, pixel_values, labels def __a ( self ) -> int: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: '''simple docstring''' snake_case__ : Optional[Any] = TFViTModel(config=__UpperCamelCase ) snake_case__ : Union[str, Any] = model(__UpperCamelCase , training=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. snake_case__ : Any = self.image_size // 2 snake_case__ : str = pixel_values[:, :, :image_size, :image_size] snake_case__ : Dict = model(__UpperCamelCase , interpolate_pos_encoding=__UpperCamelCase , training=__UpperCamelCase ) snake_case__ : Any = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: '''simple docstring''' snake_case__ : int = self.type_sequence_label_size snake_case__ : Optional[int] = TFViTForImageClassification(__UpperCamelCase ) snake_case__ : Tuple = model(__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. snake_case__ : str = self.image_size // 2 snake_case__ : Dict = pixel_values[:, :, :image_size, :image_size] snake_case__ : Tuple = model(__UpperCamelCase , interpolate_pos_encoding=__UpperCamelCase , training=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : Union[str, Any] = 1 snake_case__ : List[str] = TFViTForImageClassification(__UpperCamelCase ) snake_case__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Optional[int] = config_and_inputs snake_case__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () __lowerCamelCase = ( {"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification} if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Dict = TFViTModelTester(self ) snake_case__ : int = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __a ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def __a ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def __a ( self ) -> Tuple: '''simple docstring''' pass def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Union[str, Any] = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , tf.keras.layers.Layer ) ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = model_class(__UpperCamelCase ) snake_case__ : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : str = [*signature.parameters.keys()] snake_case__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def __a ( self ) -> str: '''simple docstring''' snake_case__ : str = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(__UpperCamelCase ) def UpperCamelCase__ ( ) -> int: snake_case__ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): @cached_property def __a ( self ) -> Optional[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) snake_case__ : Any = self.default_image_processor snake_case__ : Union[str, Any] = prepare_img() snake_case__ : Tuple = image_processor(images=__UpperCamelCase , return_tensors='tf' ) # forward pass snake_case__ : str = model(**__UpperCamelCase ) # verify the logits snake_case__ : Optional[int] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case__ : List[Any] = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 )
143
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): # ===== initialization ===== lowerCAmelCase__ = Mock() lowerCAmelCase__ = conn, Mock() lowerCAmelCase__ = iter([1, None] ) lowerCAmelCase__ = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
368
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __lowerCamelCase ( ): lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=lowerCAmelCase__ , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=lowerCAmelCase__ , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=lowerCAmelCase__ , default=4_2 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=lowerCAmelCase__ , default=0 , help='cuda_id.' , ) lowerCAmelCase__ = parser.parse_args() return args def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if not len(lowerCAmelCase__ ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase__ , lowerCAmelCase__ = imgs[0].size lowerCAmelCase__ = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase__ , lowerCAmelCase__ = grid.size for i, img in enumerate(lowerCAmelCase__ ): grid.paste(lowerCAmelCase__ , box=(i % cols * w, i // cols * h) ) return grid def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__="robotic cat with wings" , lowerCAmelCase__=7.5 , lowerCAmelCase__=5_0 , lowerCAmelCase__=1 , lowerCAmelCase__=4_2 , ): lowerCAmelCase__ = torch.Generator(pipeline.device ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase__ = pipeline( lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , ).images lowerCAmelCase__ = int(math.sqrt(lowerCAmelCase__ ) ) lowerCAmelCase__ = image_grid(lowerCAmelCase__ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowerCAmelCase__ = parse_args() # Load models and create wrapper for stable diffusion lowerCAmelCase__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') lowerCAmelCase__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') lowerCAmelCase__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') lowerCAmelCase__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowerCAmelCase__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): lowerCAmelCase__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: lowerCAmelCase__ = unet.to(torch.device('cuda', args.cuda_id)) lowerCAmelCase__ = pipeline.to(unet.device) lowerCAmelCase__ , lowerCAmelCase__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) lowerCAmelCase__ = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
119
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') lowerCAmelCase = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) lowerCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _a : _lowercase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) _lowercase : Optional[str] = field(default=UpperCamelCase__ , metadata={'''help''': '''A folder containing the training data.'''} ) _lowercase : Optional[str] = field(default=UpperCamelCase__ , metadata={'''help''': '''A folder containing the validation data.'''} ) _lowercase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) _lowercase : int = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) _lowercase : float = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" lowercase__ = {} if self.train_dir is not None: lowercase__ = self.train_dir if self.validation_dir is not None: lowercase__ = self.validation_dir lowercase__ = data_files if data_files else None @dataclass class _a : _lowercase : str = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(UpperCamelCase__ )} , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) _lowercase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _lowercase : str = field(default=UpperCamelCase__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) _lowercase : bool = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class _a : def __init__( self: Optional[int] , UpperCamelCase_: Optional[Any]=192 , UpperCamelCase_: Optional[int]=32 , UpperCamelCase_: int=4 , UpperCamelCase_: List[Any]=0.6 ) -> Tuple: """simple docstring""" lowercase__ = input_size lowercase__ = mask_patch_size lowercase__ = model_patch_size lowercase__ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) lowercase__ = self.input_size // self.mask_patch_size lowercase__ = self.mask_patch_size // self.model_patch_size lowercase__ = self.rand_size**2 lowercase__ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self: Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = np.random.permutation(self.token_count )[: self.mask_count] lowercase__ = np.zeros(self.token_count , dtype=UpperCamelCase_ ) lowercase__ = 1 lowercase__ = mask.reshape((self.rand_size, self.rand_size) ) lowercase__ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = torch.stack([example['''pixel_values'''] for example in examples] ) lowercase__ = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _a ( ): """simple docstring""" lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE ) and data_args.train_val_split > 0.0: lowercase__ = ds['''train'''].train_test_split(data_args.train_val_split ) lowercase__ = split['''train'''] lowercase__ = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase__ = AutoConfig.from_pretrained(model_args.config_name_or_path , **SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: lowercase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE ) else: lowercase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(SCREAMING_SNAKE_CASE , '''decoder_type''' ): lowercase__ = '''simmim''' # adapt config lowercase__ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase__ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase__ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase__ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: lowercase__ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE ) else: lowercase__ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase__ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase__ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase__ = AutoModelForMaskedImageModeling.from_config(SCREAMING_SNAKE_CASE ) if training_args.do_train: lowercase__ = ds['''train'''].column_names else: lowercase__ = ds['''validation'''].column_names if data_args.image_column_name is not None: lowercase__ = data_args.image_column_name elif "image" in column_names: lowercase__ = '''image''' elif "img" in column_names: lowercase__ = '''img''' else: lowercase__ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase__ = Compose( [ Lambda(lambda SCREAMING_SNAKE_CASE : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase__ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(SCREAMING_SNAKE_CASE ): lowercase__ = [transforms(SCREAMING_SNAKE_CASE ) for image in examples[image_column_name]] lowercase__ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase__ = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(SCREAMING_SNAKE_CASE ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase__ = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(SCREAMING_SNAKE_CASE ) # Initialize our trainer lowercase__ = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ = trainer.evaluate() trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE ) trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub lowercase__ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
110
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
110
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __a ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _lowerCAmelCase ( self : Tuple , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : List[Any] ): UpperCamelCase__ : Dict =TextaTextGenerationPipeline(model=lowercase_ , tokenizer=lowercase_ ) return generator, ["Something to write", "Something else"] def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : int , lowercase_ : Dict ): UpperCamelCase__ : Optional[int] =generator('''Something there''' ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) UpperCamelCase__ : Dict =generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], ] , ) UpperCamelCase__ : Dict =generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], ] , ) with self.assertRaises(lowercase_ ): generator(4 ) @require_torch def _lowerCAmelCase ( self : str ): UpperCamelCase__ : List[Any] =pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility UpperCamelCase__ : Dict =generator('''Something there''' , do_sample=lowercase_ ) self.assertEqual(lowercase_ , [{'''generated_text''': ''''''}] ) UpperCamelCase__ : List[str] =3 UpperCamelCase__ : str =generator( '''Something there''' , num_return_sequences=lowercase_ , num_beams=lowercase_ , ) UpperCamelCase__ : int =[ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(lowercase_ , lowercase_ ) UpperCamelCase__ : Tuple =generator('''This is a test''' , do_sample=lowercase_ , num_return_sequences=2 , return_tensors=lowercase_ ) self.assertEqual( lowercase_ , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) UpperCamelCase__ : Tuple =generator.model.config.eos_token_id UpperCamelCase__ : str ='''<pad>''' UpperCamelCase__ : Union[str, Any] =generator( ['''This is a test''', '''This is a second test'''] , do_sample=lowercase_ , num_return_sequences=2 , batch_size=2 , return_tensors=lowercase_ , ) self.assertEqual( lowercase_ , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ : Tuple =pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility UpperCamelCase__ : int =generator('''Something there''' , do_sample=lowercase_ ) self.assertEqual(lowercase_ , [{'''generated_text''': ''''''}] )
157
"""simple docstring""" from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __a : """simple docstring""" def __init__( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Any=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : int=True , lowercase_ : List[str]=True , lowercase_ : int=True , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=99 , lowercase_ : int=32 , lowercase_ : List[Any]=2 , lowercase_ : Optional[int]=4 , lowercase_ : Dict=37 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : Dict=16 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[int]=0.0_2 , lowercase_ : Dict=3 , lowercase_ : Optional[int]=4 , lowercase_ : Any=None , ): UpperCamelCase__ : Any =parent UpperCamelCase__ : Any =13 UpperCamelCase__ : int =7 UpperCamelCase__ : Tuple =True UpperCamelCase__ : Dict =True UpperCamelCase__ : int =True UpperCamelCase__ : Tuple =True UpperCamelCase__ : Any =99 UpperCamelCase__ : Any =32 UpperCamelCase__ : Union[str, Any] =2 UpperCamelCase__ : List[Any] =4 UpperCamelCase__ : Any =37 UpperCamelCase__ : Union[str, Any] ='''gelu''' UpperCamelCase__ : Dict =0.1 UpperCamelCase__ : int =0.1 UpperCamelCase__ : Union[str, Any] =512 UpperCamelCase__ : Dict =16 UpperCamelCase__ : List[Any] =2 UpperCamelCase__ : str =0.0_2 UpperCamelCase__ : Optional[Any] =3 UpperCamelCase__ : List[str] =4 UpperCamelCase__ : Optional[int] =None def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ : Any =None if self.use_input_mask: UpperCamelCase__ : List[Any] =random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : List[Any] =None if self.use_token_type_ids: UpperCamelCase__ : int =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ : str =None UpperCamelCase__ : Union[str, Any] =None UpperCamelCase__ : str =None if self.use_labels: UpperCamelCase__ : Optional[int] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ : Union[str, Any] =ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ : int =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Any , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : int ): UpperCamelCase__ : str =TFRoFormerModel(config=lowercase_ ) UpperCamelCase__ : List[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase__ : Dict =[input_ids, input_mask] UpperCamelCase__ : Tuple =model(lowercase_ ) UpperCamelCase__ : str =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : int ): UpperCamelCase__ : Optional[Any] =True UpperCamelCase__ : List[Any] =TFRoFormerForCausalLM(config=lowercase_ ) UpperCamelCase__ : Optional[Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase__ : Any =model(lowercase_ )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _lowerCAmelCase ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : List[Any] ): UpperCamelCase__ : str =TFRoFormerForMaskedLM(config=lowercase_ ) UpperCamelCase__ : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase__ : Optional[int] =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : int ): UpperCamelCase__ : Tuple =self.num_labels UpperCamelCase__ : List[str] =TFRoFormerForSequenceClassification(config=lowercase_ ) UpperCamelCase__ : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase__ : Optional[Any] =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : List[str] ): UpperCamelCase__ : Tuple =self.num_choices UpperCamelCase__ : Tuple =TFRoFormerForMultipleChoice(config=lowercase_ ) UpperCamelCase__ : Optional[int] =tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ : int =tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ : List[str] =tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ : int ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCamelCase__ : Tuple =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Dict , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Tuple ): UpperCamelCase__ : Optional[int] =self.num_labels UpperCamelCase__ : List[str] =TFRoFormerForTokenClassification(config=lowercase_ ) UpperCamelCase__ : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase__ : int =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : str , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str ): UpperCamelCase__ : Dict =TFRoFormerForQuestionAnswering(config=lowercase_ ) UpperCamelCase__ : Optional[Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase__ : List[str] =model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : List[str] =self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) : Tuple =config_and_inputs UpperCamelCase__ : Any ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __a ( snake_case__, snake_case__, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def _lowerCAmelCase ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Tuple , lowercase_ : int ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : List[Any] =TFRoFormerModelTester(self ) UpperCamelCase__ : Any =ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def _lowerCAmelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : int ): UpperCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowercase_ ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ ) def _lowerCAmelCase ( self : str ): UpperCamelCase__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def _lowerCAmelCase ( self : str ): UpperCamelCase__ : Optional[Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(lowercase_ ) @require_tf class __a ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : List[str] =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) UpperCamelCase__ : List[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ : Any =model(lowercase_ )[0] # TODO Replace vocab size UpperCamelCase__ : Union[str, Any] =5_0000 UpperCamelCase__ : Optional[Any] =[1, 6, vocab_size] self.assertEqual(output.shape , lowercase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCamelCase__ : Optional[Any] =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1e-4 ) @require_tf class __a ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1e-4 def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : str =tf.constant([[4, 10]] ) UpperCamelCase__ : Dict =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCamelCase__ : Any =emba(input_ids.shape ) UpperCamelCase__ : Union[str, Any] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(lowercase_ , lowercase_ , atol=self.tolerance ) def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : Dict =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) UpperCamelCase__ : int =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) UpperCamelCase__ : Optional[int] =emba.weight[:3, :5] tf.debugging.assert_near(lowercase_ , lowercase_ , atol=self.tolerance ) @require_tf class __a ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1e-4 def _lowerCAmelCase ( self : str ): # 2,12,16,64 UpperCamelCase__ : Optional[int] =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCamelCase__ : Optional[int] =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCamelCase__ : Optional[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) UpperCamelCase__ : Union[str, Any] =embed_positions([2, 16, 768] )[None, None, :, :] UpperCamelCase__ , UpperCamelCase__ : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowercase_ , lowercase_ , lowercase_ ) UpperCamelCase__ : Optional[int] =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) UpperCamelCase__ : List[str] =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowercase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowercase_ , atol=self.tolerance )
157
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Optional[int] = ["image_processor", "tokenizer"] a : Dict = "ViltImageProcessor" a : Tuple = ("BertTokenizer", "BertTokenizerFast") def __init__( self, __magic_name__=None, __magic_name__=None, **__magic_name__ ) -> List[str]: """simple docstring""" UpperCamelCase__ : List[str] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', __magic_name__, ) UpperCamelCase__ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCamelCase__ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__magic_name__, __magic_name__ ) UpperCamelCase__ : str = self.image_processor def __call__( self, __magic_name__, __magic_name__ = None, __magic_name__ = True, __magic_name__ = False, __magic_name__ = None, __magic_name__ = None, __magic_name__ = 0, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = False, __magic_name__ = False, __magic_name__ = False, __magic_name__ = False, __magic_name__ = True, __magic_name__ = None, **__magic_name__, ) -> BatchEncoding: """simple docstring""" UpperCamelCase__ : str = self.tokenizer( text=__magic_name__, add_special_tokens=__magic_name__, padding=__magic_name__, truncation=__magic_name__, max_length=__magic_name__, stride=__magic_name__, pad_to_multiple_of=__magic_name__, return_token_type_ids=__magic_name__, return_attention_mask=__magic_name__, return_overflowing_tokens=__magic_name__, return_special_tokens_mask=__magic_name__, return_offsets_mapping=__magic_name__, return_length=__magic_name__, verbose=__magic_name__, return_tensors=__magic_name__, **__magic_name__, ) # add pixel_values + pixel_mask UpperCamelCase__ : List[str] = self.image_processor(__magic_name__, return_tensors=__magic_name__ ) encoding.update(__magic_name__ ) return encoding def UpperCamelCase__ ( self, *__magic_name__, **__magic_name__ ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__, **__magic_name__ ) def UpperCamelCase__ ( self, *__magic_name__, **__magic_name__ ) -> Optional[int]: """simple docstring""" return self.tokenizer.decode(*__magic_name__, **__magic_name__ ) @property def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : List[Any] = self.tokenizer.model_input_names UpperCamelCase__ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', __magic_name__, ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', __magic_name__, ) return self.image_processor
201
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = 256 class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : List[str] = ["melgan"] def __init__( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, ) -> None: """simple docstring""" super().__init__() # From MELGAN UpperCamelCase__ : Optional[int] = math.log(1E-5 ) # Matches MelGAN training. UpperCamelCase__ : int = 4.0 # Largest value for most examples UpperCamelCase__ : Optional[int] = 128 self.register_modules( notes_encoder=__magic_name__, continuous_encoder=__magic_name__, decoder=__magic_name__, scheduler=__magic_name__, melgan=__magic_name__, ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__=(-1.0, 1.0), __magic_name__=False ) -> Any: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : str = output_range if clip: UpperCamelCase__ : Union[str, Any] = torch.clip(__magic_name__, self.min_value, self.max_value ) # Scale to [0, 1]. UpperCamelCase__ : List[str] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCamelCase__ ( self, __magic_name__, __magic_name__=(-1.0, 1.0), __magic_name__=False ) -> Optional[int]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : List[str] = input_range UpperCamelCase__ : Any = torch.clip(__magic_name__, __magic_name__, __magic_name__ ) if clip else outputs # Scale to [0, 1]. UpperCamelCase__ : Any = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> List[str]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = input_tokens > 0 UpperCamelCase__ ,UpperCamelCase__ : Any = self.notes_encoder( encoder_input_tokens=__magic_name__, encoder_inputs_mask=__magic_name__ ) UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = self.continuous_encoder( encoder_inputs=__magic_name__, encoder_inputs_mask=__magic_name__ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> str: """simple docstring""" UpperCamelCase__ : Any = noise_time if not torch.is_tensor(__magic_name__ ): UpperCamelCase__ : Tuple = torch.tensor([timesteps], dtype=torch.long, device=input_tokens.device ) elif torch.is_tensor(__magic_name__ ) and len(timesteps.shape ) == 0: UpperCamelCase__ : Union[str, Any] = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase__ : Dict = timesteps * torch.ones(input_tokens.shape[0], dtype=timesteps.dtype, device=timesteps.device ) UpperCamelCase__ : List[str] = self.decoder( encodings_and_masks=__magic_name__, decoder_input_tokens=__magic_name__, decoder_noise_time=__magic_name__ ) return logits @torch.no_grad() def __call__( self, __magic_name__, __magic_name__ = None, __magic_name__ = 100, __magic_name__ = True, __magic_name__ = "numpy", __magic_name__ = None, __magic_name__ = 1, ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__, __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(__magic_name__ )}." ) UpperCamelCase__ : Dict = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims], dtype=np.floataa ) UpperCamelCase__ : Tuple = np.zeros([1, 0, self.n_dims], np.floataa ) UpperCamelCase__ : List[Any] = torch.ones((1, TARGET_FEATURE_LENGTH), dtype=__magic_name__, device=self.device ) for i, encoder_input_tokens in enumerate(__magic_name__ ): if i == 0: UpperCamelCase__ : str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device, dtype=self.decoder.dtype ) # The first chunk has no previous context. UpperCamelCase__ : Any = torch.zeros((1, TARGET_FEATURE_LENGTH), dtype=__magic_name__, device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. UpperCamelCase__ : List[str] = ones UpperCamelCase__ : int = self.scale_features( __magic_name__, output_range=[-1.0, 1.0], clip=__magic_name__ ) UpperCamelCase__ : Union[str, Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ), continuous_inputs=__magic_name__, continuous_mask=__magic_name__, ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop UpperCamelCase__ : Optional[int] = randn_tensor( shape=encoder_continuous_inputs.shape, generator=__magic_name__, device=self.device, dtype=self.decoder.dtype, ) # set step values self.scheduler.set_timesteps(__magic_name__ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase__ : Union[str, Any] = self.decode( encodings_and_masks=__magic_name__, input_tokens=__magic_name__, noise_time=t / self.scheduler.config.num_train_timesteps, ) # Compute previous output: x_t -> x_t-1 UpperCamelCase__ : List[Any] = self.scheduler.step(__magic_name__, __magic_name__, __magic_name__, generator=__magic_name__ ).prev_sample UpperCamelCase__ : List[Any] = self.scale_to_features(__magic_name__, input_range=[-1.0, 1.0] ) UpperCamelCase__ : List[Any] = mel[:1] UpperCamelCase__ : int = mel.cpu().float().numpy() UpperCamelCase__ : Union[str, Any] = np.concatenate([full_pred_mel, pred_mel[:1]], axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__, __magic_name__ ) logger.info('''Generated segment''', __magic_name__ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": UpperCamelCase__ : Optional[int] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: UpperCamelCase__ : Any = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__magic_name__ )
201
1
'''simple docstring''' import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case__ : List[str] = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self , snake_case_=3_2 ): '''simple docstring''' set_seed(0 ) UpperCAmelCase_ : Union[str, Any] = UNetaDModel(sample_size=snake_case_ , in_channels=3 , out_channels=3 ) UpperCAmelCase_ : str = torch.optim.SGD(model.parameters() , lr=0.00_01 ) return model, optimizer @slow def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : List[str] = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable UpperCAmelCase_ : Dict = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=snake_case_ , ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=snake_case_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) UpperCAmelCase_ : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(snake_case_ ) for _ in range(4 )] UpperCAmelCase_ : Tuple = [torch.randn((4, 3, 3_2, 3_2) ).to(snake_case_ ) for _ in range(4 )] UpperCAmelCase_ : Tuple = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(snake_case_ ) for _ in range(4 )] # train with a DDPM scheduler UpperCAmelCase_ , UpperCAmelCase_ : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(snake_case_ ) for i in range(4 ): optimizer.zero_grad() UpperCAmelCase_ : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) UpperCAmelCase_ : List[str] = model(snake_case_ , timesteps[i] ).sample UpperCAmelCase_ : str = torch.nn.functional.mse_loss(snake_case_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(snake_case_ ) for i in range(4 ): optimizer.zero_grad() UpperCAmelCase_ : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) UpperCAmelCase_ : List[str] = model(snake_case_ , timesteps[i] ).sample UpperCAmelCase_ : Optional[Any] = torch.nn.functional.mse_loss(snake_case_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) )
274
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" return int(input_a == input_a == 0 ) def _lowerCamelCase ( ): """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
274
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase_ ( unittest.TestCase ): def __a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def __a ( self ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def __a ( self ): torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) UpperCamelCase__ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def __a ( self ): UpperCamelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) UpperCamelCase__ = DDPMScheduler() UpperCamelCase__ = AudioDiffusionPipeline(vqvae=a , unet=self.dummy_unet , mel=a , scheduler=a ) UpperCamelCase__ = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) UpperCamelCase__ = torch.Generator(device=a ).manual_seed(42 ) UpperCamelCase__ = pipe(generator=a , steps=4 ) UpperCamelCase__ = output.audios[0] UpperCamelCase__ = output.images[0] UpperCamelCase__ = torch.Generator(device=a ).manual_seed(42 ) UpperCamelCase__ = pipe(generator=a , steps=4 , return_dict=a ) UpperCamelCase__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCamelCase__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCamelCase__ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] UpperCamelCase__ = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCamelCase__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) UpperCamelCase__ = DDIMScheduler() UpperCamelCase__ = self.dummy_vqvae_and_unet UpperCamelCase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=a , scheduler=a ) UpperCamelCase__ = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) np.random.seed(0 ) UpperCamelCase__ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCamelCase__ = torch.Generator(device=a ).manual_seed(42 ) UpperCamelCase__ = pipe(raw_audio=a , generator=a , start_step=5 , steps=10 ) UpperCamelCase__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCamelCase__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCamelCase__ = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCamelCase__ = self.dummy_unet_condition UpperCamelCase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=a , mel=a , scheduler=a ) UpperCamelCase__ = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) np.random.seed(0 ) UpperCamelCase__ = torch.rand((1, 1, 10) ) UpperCamelCase__ = pipe(generator=a , encoding=a ) UpperCamelCase__ = output.images[0] UpperCamelCase__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCamelCase__ = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def __a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ): UpperCamelCase__ = torch_device UpperCamelCase__ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) UpperCamelCase__ = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) UpperCamelCase__ = torch.Generator(device=a ).manual_seed(42 ) UpperCamelCase__ = pipe(generator=a ) UpperCamelCase__ = output.audios[0] UpperCamelCase__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCamelCase__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCamelCase__ = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
80
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _UpperCamelCase ( __A , __A , __A=1024 , __A=1024 , __A=False , **__A ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = AutoTokenizer.from_pretrained(__A ) UpperCamelCase__ = SeqaSeqDataset(__A , __A , __A , __A , type_path="train" , **__A ) UpperCamelCase__ = tok.pad_token_id def get_lens(__A ): UpperCamelCase__ = tqdm( DataLoader(__A , batch_size=512 , num_workers=8 , shuffle=__A , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCamelCase__ = [] for batch in dl: UpperCamelCase__ = batch["input_ids"].ne(__A ).sum(1 ).tolist() UpperCamelCase__ = batch["labels"].ne(__A ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__A , __A ): max_lens.append(max(__A , __A ) ) else: max_lens.extend(__A ) return max_lens UpperCamelCase__ = get_lens(__A ) UpperCamelCase__ = SeqaSeqDataset(__A , __A , __A , __A , type_path="val" , **__A ) UpperCamelCase__ = get_lens(__A ) pickle_save(__A , train_ds.len_file ) pickle_save(__A , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
80
1
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def A_ ( A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file a__ : List[Any] = TapasConfig.from_json_file(A__ ) # set absolute/relative position embeddings parameter a__ : Tuple = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": a__ : int = TapasForQuestionAnswering(config=A__ ) elif task == "WTQ": # run_task_main.py hparams a__ : Union[str, Any] = 4 a__ : str = True # hparam_utils.py hparams a__ : Optional[int] = 0.66_46_94 a__ : Optional[int] = 0.20_79_51 a__ : Optional[int] = 0.12_11_94 a__ : Optional[Any] = True a__ : Union[str, Any] = True a__ : str = False a__ : Any = 0.0_35_25_13 a__ : List[str] = TapasForQuestionAnswering(config=A__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams a__ : str = 4 a__ : List[Any] = False # hparam_utils.py hparams a__ : List[str] = 36.45_19 a__ : List[str] = 0.90_34_21 a__ : Optional[Any] = 2_22.0_88 a__ : Union[str, Any] = True a__ : Optional[Any] = True a__ : Optional[Any] = True a__ : Any = 0.76_31_41 a__ : List[str] = TapasForQuestionAnswering(config=A__ ) elif task == "TABFACT": a__ : Optional[Any] = TapasForSequenceClassification(config=A__ ) elif task == "MLM": a__ : List[Any] = TapasForMaskedLM(config=A__ ) elif task == "INTERMEDIATE_PRETRAINING": a__ : str = TapasModel(config=A__ ) else: raise ValueError(F'Task {task} not supported.' ) print(F'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(A__ , A__ , A__ ) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(A__ ) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}' ) a__ : Any = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(A__ ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
225
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase : str = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
1
"""simple docstring""" def _snake_case ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : List[str]=None ) -> int: lowerCamelCase_ : List[Any] =(path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowerCamelCase_ : Dict =True, True lowerCamelCase_ : str =dfs(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return path def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[int] ) -> Any: lowerCamelCase_ : List[str] =0 lowerCamelCase_ : List[str] =-1 for i in range(snake_case__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowerCamelCase_ : int =i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] ) -> int: lowerCamelCase_ : Tuple =[[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowerCamelCase_ : Dict =check_circuit_or_path(snake_case__ , snake_case__ ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return lowerCamelCase_ : int =1 if check == 2: lowerCamelCase_ : Optional[int] =odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) lowerCamelCase_ : Optional[int] =dfs(snake_case__ , snake_case__ , snake_case__ ) print(snake_case__ ) def _snake_case ( ) -> str: lowerCamelCase_ : List[str] ={1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowerCamelCase_ : Dict ={1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowerCamelCase_ : Optional[Any] ={1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowerCamelCase_ : List[str] ={1: [2, 3], 2: [1, 3], 3: [1, 2]} lowerCamelCase_ : List[str] ={ 1: [], 2: [] # all degree is zero } lowerCamelCase_ : List[Any] =10 check_euler(snake_case__ , snake_case__ ) check_euler(snake_case__ , snake_case__ ) check_euler(snake_case__ , snake_case__ ) check_euler(snake_case__ , snake_case__ ) check_euler(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
144
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str ): """simple docstring""" _snake_case : Optional[Any] = list(snake_case__ ) _snake_case : List[Any] = list(snake_case__ ) _snake_case : List[Any] = 0 for i in range(len(snake_case__ ) ): if lista[i] != lista[i]: count += 1 _snake_case : Any = """_""" if count > 1: return False else: return "".join(snake_case__ ) def UpperCAmelCase__ (snake_case__ : list[str] ): """simple docstring""" _snake_case : int = [] while True: _snake_case : Union[str, Any] = ["""$"""] * len(snake_case__ ) _snake_case : int = [] for i in range(len(snake_case__ ) ): for j in range(i + 1 , len(snake_case__ ) ): _snake_case : List[Any] = compare_string(binary[i] , binary[j] ) if k is False: _snake_case : Dict = """*""" _snake_case : List[Any] = """*""" temp.append("""X""" ) for i in range(len(snake_case__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case__ ) == 0: return pi _snake_case : Optional[int] = list(set(snake_case__ ) ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Sequence[float] ): """simple docstring""" _snake_case : Optional[int] = [] for minterm in minterms: _snake_case : Any = """""" for _ in range(snake_case__ ): _snake_case : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case__ ) return temp def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : int ): """simple docstring""" _snake_case : Dict = list(snake_case__ ) _snake_case : List[str] = list(snake_case__ ) _snake_case : Tuple = 0 for i in range(len(snake_case__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCAmelCase__ (snake_case__ : list[list[int]] , snake_case__ : list[str] ): """simple docstring""" _snake_case : Any = [] _snake_case : Union[str, Any] = [0] * len(snake_case__ ) for i in range(len(chart[0] ) ): _snake_case : Tuple = 0 _snake_case : str = -1 for j in range(len(snake_case__ ) ): if chart[j][i] == 1: count += 1 _snake_case : Union[str, Any] = j if count == 1: _snake_case : Union[str, Any] = 1 for i in range(len(snake_case__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case__ ) ): _snake_case : List[Any] = 0 temp.append(prime_implicants[i] ) while True: _snake_case : Optional[int] = 0 _snake_case : str = -1 _snake_case : Any = 0 for i in range(len(snake_case__ ) ): _snake_case : Union[str, Any] = chart[i].count(1 ) if count_n > max_n: _snake_case : Dict = count_n _snake_case : Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case__ ) ): _snake_case : Optional[Any] = 0 def UpperCAmelCase__ (snake_case__ : list[str] , snake_case__ : list[str] ): """simple docstring""" _snake_case : int = [[0 for x in range(len(snake_case__ ) )] for x in range(len(snake_case__ ) )] for i in range(len(snake_case__ ) ): _snake_case : Any = prime_implicants[i].count("""_""" ) for j in range(len(snake_case__ ) ): if is_for_table(prime_implicants[i] , binary[j] , snake_case__ ): _snake_case : Tuple = 1 return chart def UpperCAmelCase__ (): """simple docstring""" _snake_case : int = int(input("""Enter the no. of variables\n""" ) ) _snake_case : List[str] = [ float(snake_case__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _snake_case : List[str] = decimal_to_binary(snake_case__ , snake_case__ ) _snake_case : str = check(snake_case__ ) print("""Prime Implicants are:""" ) print(snake_case__ ) _snake_case : int = prime_implicant_chart(snake_case__ , snake_case__ ) _snake_case : str = selection(snake_case__ , snake_case__ ) print("""Essential Prime Implicants are:""" ) print(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
64
0
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } UpperCamelCase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[Any]: """simple docstring""" for attribute in key.split('''.''' ): a = getattr(__lowerCAmelCase, __lowerCAmelCase ) if weight_type is not None: a = getattr(__lowerCAmelCase, __lowerCAmelCase ).shape else: a = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value else: a = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" a = [] a = fairseq_model.state_dict() a = hf_model.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) a = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: a = True if "*" in mapped_key: a = name.split(__lowerCAmelCase )[0].split('''.''' )[-2] a = mapped_key.replace('''*''', __lowerCAmelCase ) if "weight_g" in name: a = '''weight_g''' elif "weight_v" in name: a = '''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj a = '''weight''' else: a = None set_recursively(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = full_name.split('''conv_layers.''' )[-1] a = name.split('''.''' ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None ) -> Optional[int]: """simple docstring""" a = torch.load(__lowerCAmelCase ) a = WavLMConfigOrig(checkpoint['''cfg'''] ) a = WavLMOrig(__lowerCAmelCase ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: a = WavLMConfig.from_pretrained(__lowerCAmelCase ) else: a = WavLMConfig() a = WavLMModel(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase, __lowerCAmelCase ) hf_wavlm.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") UpperCamelCase__ : Union[str, Any] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
371
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'yolos' def __init__( self : Union[str, Any] ,__lowerCamelCase : int=7_68 ,__lowerCamelCase : Dict=12 ,__lowerCamelCase : Union[str, Any]=12 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : int=0.0 ,__lowerCamelCase : str=0.0 ,__lowerCamelCase : Optional[Any]=0.02 ,__lowerCamelCase : int=1e-12 ,__lowerCamelCase : Any=[5_12, 8_64] ,__lowerCamelCase : Tuple=16 ,__lowerCamelCase : int=3 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Optional[int]=1_00 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : int=1 ,__lowerCamelCase : List[Any]=5 ,__lowerCamelCase : Optional[int]=2 ,__lowerCamelCase : int=5 ,__lowerCamelCase : str=2 ,__lowerCamelCase : Tuple=0.1 ,**__lowerCamelCase : List[Any] ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = num_detection_tokens a = use_mid_position_embeddings a = auxiliary_loss # Hungarian matcher a = class_cost a = bbox_cost a = giou_cost # Loss coefficients a = bbox_loss_coefficient a = giou_loss_coefficient a = eos_coefficient class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return 12
330
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
295
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=3 , __UpperCamelCase=3_2 , __UpperCamelCase=3 , __UpperCamelCase=1_0 , __UpperCamelCase=[1_0, 2_0, 3_0, 4_0] , __UpperCamelCase=[1, 1, 2, 1] , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=3 , __UpperCamelCase=None , ): """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = num_channels UpperCamelCase_ = embeddings_size UpperCamelCase_ = hidden_sizes UpperCamelCase_ = depths UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = hidden_act UpperCamelCase_ = num_labels UpperCamelCase_ = scope UpperCamelCase_ = len(__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = self.get_config() return config, pixel_values def lowerCamelCase_ ( self ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = FlaxRegNetModel(config=__UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = FlaxRegNetForImageClassification(config=__UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () A__ : Any = False A__ : List[Any] = False A__ : Dict = False def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = FlaxRegNetModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ): """simple docstring""" return def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(__UpperCamelCase ) UpperCamelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ = model_class(__UpperCamelCase ) UpperCamelCase_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase_ = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = model_class(__UpperCamelCase ) @jax.jit def model_jitted(__UpperCamelCase , **__UpperCamelCase ): return model(pixel_values=__UpperCamelCase , **__UpperCamelCase ) with self.subTest("""JIT Enabled""" ): UpperCamelCase_ = model_jitted(**__UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCamelCase_ = model_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class lowercase_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=__UpperCamelCase , return_tensors="""np""" ) UpperCamelCase_ = model(**__UpperCamelCase ) # verify the logits UpperCamelCase_ = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCamelCase_ = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
122
0
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Dict: '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def lowerCAmelCase_ ( )-> Union[str, Any]: '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
361
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __snake_case ( lowerCamelCase__ ): def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[Any] =tempfile.mkdtemp() UpperCAmelCase : Any =8 # DPR tok UpperCAmelCase : List[Any] =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : Optional[Any] =os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) UpperCAmelCase : Union[str, Any] =os.path.join(snake_case__ , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok UpperCAmelCase : int =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase : List[str] =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase : Optional[int] =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase : str ={'''unk_token''': '''<unk>'''} UpperCAmelCase : Optional[int] =os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) UpperCAmelCase : int =os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase : int =os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(snake_case__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(snake_case__ ) ) def UpperCAmelCase__ ( self ) -> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def UpperCAmelCase__ ( self ) -> DPRContextEncoderTokenizer: '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def UpperCAmelCase__ ( self ) -> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Optional[int] =self.get_dummy_dataset() UpperCAmelCase : int =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: UpperCAmelCase : Union[str, Any] =dataset UpperCAmelCase : Any =RagRetriever( snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : List[str] =self.get_dummy_dataset() UpperCAmelCase : Union[str, Any] =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: UpperCAmelCase : List[Any] =os.path.join(self.tmpdirname , '''dataset''' ) UpperCAmelCase : str =os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset UpperCAmelCase : Union[str, Any] =RagRetriever( snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: UpperCAmelCase : List[str] =RagRetriever( snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , snake_case__ ) , ) return retriever def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : int =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCAmelCase : int =os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) UpperCAmelCase : Dict =os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) UpperCAmelCase : List[Any] ={sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(snake_case__ , open(snake_case__ , '''wb''' ) ) UpperCAmelCase : Tuple =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) UpperCAmelCase : Union[str, Any] =RagRetriever( snake_case__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Any =1 UpperCAmelCase : Tuple =self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase : Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str =retriever.retrieve(snake_case__ , n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , snake_case__ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple =self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: UpperCAmelCase : Optional[int] =self.get_dummy_dataset() retriever.save_pretrained(snake_case__ ) UpperCAmelCase : List[str] =RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Dict =retriever.retrieve(snake_case__ , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] =1 UpperCAmelCase : Any =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) UpperCAmelCase : Tuple =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple =retriever.retrieve(snake_case__ , n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , snake_case__ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Tuple =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(snake_case__ ) UpperCAmelCase : List[Any] =RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Dict =retriever.retrieve(snake_case__ , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int =1 UpperCAmelCase : List[str] =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) UpperCAmelCase : str =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any =retriever.retrieve(snake_case__ , n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , snake_case__ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(snake_case__ ) UpperCAmelCase : Dict =RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase : str =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : List[Any] =retriever.retrieve(snake_case__ , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Optional[int] =1 UpperCAmelCase : List[str] =self.get_dummy_legacy_index_retriever() UpperCAmelCase : Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] =retriever.retrieve(snake_case__ , n_docs=snake_case__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(snake_case__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , snake_case__ ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : str =self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(snake_case__ ) UpperCAmelCase : Any =RagRetriever.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase : str =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Union[str, Any] =retriever.retrieve(snake_case__ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' import torch UpperCAmelCase : Union[str, Any] =1 UpperCAmelCase : Optional[Any] =self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase : Any =[[5, 7], [10, 11]] UpperCAmelCase : int =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : int =retriever(snake_case__ , snake_case__ , prefix=retriever.config.generator.prefix , n_docs=snake_case__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple =( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertIsInstance(snake_case__ , np.ndarray ) UpperCAmelCase : Optional[int] =retriever( snake_case__ , snake_case__ , prefix=retriever.config.generator.prefix , n_docs=snake_case__ , return_tensors='''pt''' , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict =( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(snake_case__ , torch.Tensor ) self.assertIsInstance(snake_case__ , torch.Tensor ) self.assertIsInstance(snake_case__ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =self.get_dpr_ctx_encoder_tokenizer() UpperCAmelCase : str =1 UpperCAmelCase : Any =self.get_dummy_custom_hf_index_retriever(from_disk=snake_case__ ) retriever.set_ctx_encoder_tokenizer(snake_case__ ) UpperCAmelCase : Tuple =[[5, 7], [10, 11]] UpperCAmelCase : Dict =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Any =retriever(snake_case__ , snake_case__ , prefix=retriever.config.generator.prefix , n_docs=snake_case__ ) self.assertEqual( len(snake_case__ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , snake_case__ ) # check for doc token related keys in dictionary.
78
0
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase = logging.getLogger() def lowercase__ ( __snake_case : Path , __snake_case : list ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = '\n'.join(__snake_case ) Path(__snake_case ).open('w' ).writelines(__snake_case ) __UpperCAmelCase = 'patrickvonplaten/t5-tiny-random' __UpperCAmelCase = 'sshleifer/bart-tiny-random' __UpperCAmelCase = 'sshleifer/tiny-mbart' __UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowerCamelCase (_snake_case ): '''simple docstring''' def __UpperCAmelCase ( self , _UpperCamelCase ) -> Union[str, Any]: UpperCAmelCase_ : Dict = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' UpperCAmelCase_ : Optional[int] = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() UpperCAmelCase_ : Tuple = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) UpperCAmelCase_ : Optional[Any] = 'translation_en_to_de' if model == T5_TINY else 'summarization' UpperCAmelCase_ : List[Any] = f"\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n ".split() with patch.object(_UpperCamelCase , 'argv' , _UpperCamelCase ): run_generate() assert Path(_UpperCamelCase ).exists() # os.remove(Path(output_file_name)) def __UpperCAmelCase ( self ) -> Dict: self.run_eval_tester(_UpperCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: self.run_eval_tester(_UpperCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def __UpperCAmelCase ( self , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : str = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' UpperCAmelCase_ : Tuple = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() UpperCAmelCase_ : List[Any] = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } UpperCAmelCase_ : List[str] = Path(self.get_auto_remove_tmp_dir() ) UpperCAmelCase_ : Union[str, Any] = str(tmp_dir / 'scores.json' ) UpperCAmelCase_ : Any = str(tmp_dir / 'val.target' ) _dump_articles(_UpperCamelCase , text['en'] ) _dump_articles(_UpperCamelCase , text['de'] ) UpperCAmelCase_ : Any = 'translation_en_to_de' if model == T5_TINY else 'summarization' UpperCAmelCase_ : int = f"\n run_eval_search.py\n {model}\n {str(_UpperCamelCase )}\n {str(_UpperCamelCase )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n ".split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(_UpperCamelCase , 'argv' , _UpperCamelCase ): with CaptureStdout() as cs: run_search() UpperCAmelCase_ : Tuple = [' num_beams | length_penalty', model, 'Best score args'] UpperCAmelCase_ : List[Any] = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(_UpperCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_UpperCamelCase ).exists() os.remove(Path(_UpperCamelCase ) )
29
"""simple docstring""" from __future__ import annotations from collections import namedtuple def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
165
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __UpperCamelCase = TaTokenizerFast __UpperCamelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __UpperCamelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
13
1
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _A = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' _A = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' _A = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' _A = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' _A = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def _a ( self ) -> Union[str, Any]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def _a ( self , A_ , A_ , A_=[1, 10, 100] , A_=4 , A_=3.0 ) -> str: if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=A_ ) as executor: __UpperCamelCase =[] __UpperCamelCase =Counter() __UpperCamelCase =0 __UpperCamelCase =defaultdict(A_ ) for task_id, (candidates, test_case) in enumerate(zip(A_ , A_ ) ): for candidate in candidates: __UpperCamelCase =candidate + '\n' + test_case __UpperCamelCase =(test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase =executor.submit(A_ , *A_ ) futures.append(A_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(A_ ): __UpperCamelCase =future.result() results[result["task_id"]].append((result['completion_id'], result) ) __UpperCamelCase , __UpperCamelCase =[], [] for result in results.values(): result.sort() __UpperCamelCase =[r[1]['passed'] for r in result] total.append(len(A_ ) ) correct.append(sum(A_ ) ) __UpperCamelCase =np.array(A_ ) __UpperCamelCase =np.array(A_ ) __UpperCamelCase =k __UpperCamelCase ={f'pass@{k}': estimate_pass_at_k(A_ , A_ , A_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple ): def estimator(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =itertools.repeat(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) else: assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =iter(SCREAMING_SNAKE_CASE__ ) return np.array([estimator(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) for n, c in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] )
62
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "yolos" def __init__( self , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1E-12 , A_=[512, 864] , A_=16 , A_=3 , A_=True , A_=100 , A_=True , A_=False , A_=1 , A_=5 , A_=2 , A_=5 , A_=2 , A_=0.1 , **A_ , ) -> Any: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =qkv_bias __UpperCamelCase =num_detection_tokens __UpperCamelCase =use_mid_position_embeddings __UpperCamelCase =auxiliary_loss # Hungarian matcher __UpperCamelCase =class_cost __UpperCamelCase =bbox_cost __UpperCamelCase =giou_cost # Loss coefficients __UpperCamelCase =bbox_loss_coefficient __UpperCamelCase =giou_loss_coefficient __UpperCamelCase =eos_coefficient class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _a ( self ) -> float: return 1E-4 @property def _a ( self ) -> int: return 12
62
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self ,A__ ,A__=9_9 ,A__=1_3 ,A__=1_6 ,A__=7 ,A__=True ,A__=True ,A__=True ,A__=False ,A__=True ,A__=2 ,A__=3_2 ,A__=4 ,A__=4 ,A__=3_0 ,A__=0 ,A__=1 ,A__=2 ,A__=None ,): lowercase = parent lowercase = batch_size lowercase = decoder_seq_length # For common tests lowercase = self.decoder_seq_length lowercase = is_training lowercase = use_attention_mask lowercase = use_labels lowercase = vocab_size lowercase = d_model lowercase = d_model lowercase = decoder_layers lowercase = decoder_layers lowercase = decoder_ffn_dim lowercase = decoder_attention_heads lowercase = decoder_attention_heads lowercase = eos_token_id lowercase = bos_token_id lowercase = pad_token_id lowercase = decoder_start_token_id lowercase = use_cache lowercase = max_position_embeddings lowercase = None lowercase = decoder_seq_length lowercase = 2 lowercase = 1 def A__ ( self): lowercase = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size) lowercase = None if self.use_attention_mask: lowercase = ids_tensor([self.batch_size, self.decoder_seq_length] ,vocab_size=2) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size) lowercase = TrOCRConfig( vocab_size=self.vocab_size ,d_model=self.d_model ,decoder_layers=self.decoder_layers ,decoder_ffn_dim=self.decoder_ffn_dim ,decoder_attention_heads=self.decoder_attention_heads ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,use_cache=self.use_cache ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,max_position_embeddings=self.max_position_embeddings ,) return (config, input_ids, attention_mask, lm_labels) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,): lowercase = True lowercase = TrOCRDecoder(config=A__).to(A__).eval() lowercase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase = model(A__ ,use_cache=A__) lowercase = model(A__) lowercase = model(A__ ,use_cache=A__) self.parent.assertTrue(len(A__) == len(A__)) self.parent.assertTrue(len(A__) == len(A__) + 1) lowercase = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase = ids_tensor((2, 1) ,config.vocab_size - 1) + 1 # append to next input_ids and lowercase = torch.cat([input_ids, next_tokens] ,dim=-1) lowercase = model(A__)['''last_hidden_state'''] lowercase = model(A__ ,past_key_values=A__)['''last_hidden_state'''] # select random slice lowercase = ids_tensor((1,) ,output_from_past.shape[-1]).item() lowercase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(A__ ,A__ ,atol=1E-3) def A__ ( self): lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Any =(TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowercase_ : Dict =(TrOCRForCausalLM,) if is_torch_available() else () lowercase_ : int ={'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowercase_ : List[Any] =True lowercase_ : int =False def A__ ( self): lowercase = TrOCRStandaloneDecoderModelTester(self ,is_training=A__) lowercase = ConfigTester(self ,config_class=A__) def A__ ( self): pass def A__ ( self): pass def A__ ( self): pass def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*A__) def A__ ( self): return @unittest.skip('''The model doesn\'t support left padding''') # and it's not used enough to be worth fixing :) def A__ ( self): pass
97
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : def __init__( self ,A__ ,A__=1_3 ,A__=7 ,A__=True ,A__=True ,A__=True ,A__=True ,A__=9_9 ,A__=1_6 ,A__=3_6 ,A__=6 ,A__=6 ,A__=6 ,A__=3_7 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=1_6 ,A__=2 ,A__=0.02 ,A__=3 ,A__=4 ,A__=None ,): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = embedding_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_hidden_groups lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = scope def A__ ( self): lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length]) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size) lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels) lowercase = ids_tensor([self.batch_size] ,self.num_choices) lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return AlbertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,num_hidden_groups=self.num_hidden_groups ,) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = AlbertModel(config=A__) model.to(A__) model.eval() lowercase = model(A__ ,attention_mask=A__ ,token_type_ids=A__) lowercase = model(A__ ,token_type_ids=A__) lowercase = model(A__) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = AlbertForPreTraining(config=A__) model.to(A__) model.eval() lowercase = model( A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__ ,sentence_order_label=A__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape ,(self.batch_size, config.num_labels)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = AlbertForMaskedLM(config=A__) model.to(A__) model.eval() lowercase = model(A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = AlbertForQuestionAnswering(config=A__) model.to(A__) model.eval() lowercase = model( A__ ,attention_mask=A__ ,token_type_ids=A__ ,start_positions=A__ ,end_positions=A__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = self.num_labels lowercase = AlbertForSequenceClassification(A__) model.to(A__) model.eval() lowercase = model(A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = self.num_labels lowercase = AlbertForTokenClassification(config=A__) model.to(A__) model.eval() lowercase = model(A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = self.num_choices lowercase = AlbertForMultipleChoice(config=A__) model.to(A__) model.eval() lowercase = input_ids.unsqueeze(1).expand(-1 ,self.num_choices ,-1).contiguous() lowercase = token_type_ids.unsqueeze(1).expand(-1 ,self.num_choices ,-1).contiguous() lowercase = input_mask.unsqueeze(1).expand(-1 ,self.num_choices ,-1).contiguous() lowercase = model( A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices)) def A__ ( self): lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Union[str, Any] =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowercase_ : int =( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : str =True def A__ ( self ,A__ ,A__ ,A__=False): lowercase = super()._prepare_for_class(A__ ,A__ ,return_labels=A__) if return_labels: if model_class in get_values(A__): lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=A__) lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A__) return inputs_dict def A__ ( self): lowercase = AlbertModelTester(self) lowercase = ConfigTester(self ,config_class=A__ ,hidden_size=3_7) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase = type self.model_tester.create_and_check_model(*A__) @slow def A__ ( self): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = AlbertModel.from_pretrained(A__) self.assertIsNotNone(A__) @require_torch class lowercase ( unittest.TestCase ): @slow def A__ ( self): lowercase = AlbertModel.from_pretrained('''albert-base-v2''') lowercase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): lowercase = model(A__ ,attention_mask=A__)[0] lowercase = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape ,A__) lowercase = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,A__ ,atol=1E-4))
97
1
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Optional[Any]="pt" ): '''simple docstring''' lowercase__ : Optional[int] = {'add_prefix_space': True} if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and not line.startswith(' ' ) else {} lowercase__ : str = padding_side return tokenizer( [line] , max_length=_lowerCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str=None , ): '''simple docstring''' lowercase__ : List[Any] = input_ids.ne(_lowerCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase_ ( _a): def __init__( self , a , a , a , a , a="train" , a=None , a=None , a=None , a="" , ) -> Any: super().__init__() lowercase__ : Any = Path(a ).joinpath(type_path + '.source' ) lowercase__ : Union[str, Any] = Path(a ).joinpath(type_path + '.target' ) lowercase__ : List[str] = self.get_char_lens(self.src_file ) lowercase__ : Any = max_source_length lowercase__ : str = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" lowercase__ : List[Any] = tokenizer lowercase__ : Optional[Any] = prefix if n_obs is not None: lowercase__ : str = self.src_lens[:n_obs] lowercase__ : Optional[Any] = src_lang lowercase__ : Tuple = tgt_lang def __len__( self ) -> List[Any]: return len(self.src_lens ) def __getitem__( self , a ) -> Dict[str, torch.Tensor]: lowercase__ : Optional[Any] = index + 1 # linecache starts at 1 lowercase__ : Tuple = self.prefix + linecache.getline(str(self.src_file ) , a ).rstrip('\n' ) lowercase__ : List[Any] = linecache.getline(str(self.tgt_file ) , a ).rstrip('\n' ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase__ : str = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , a ) else self.tokenizer ) lowercase__ : List[Any] = self.tokenizer.generator if isinstance(self.tokenizer , a ) else self.tokenizer lowercase__ : Dict = encode_line(a , a , self.max_source_length , 'right' ) lowercase__ : Optional[int] = encode_line(a , a , self.max_target_length , 'right' ) lowercase__ : Dict = source_inputs['input_ids'].squeeze() lowercase__ : Any = target_inputs['input_ids'].squeeze() lowercase__ : Any = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _UpperCAmelCase ( a ) -> Optional[Any]: return [len(a ) for x in Path(a ).open().readlines()] def _UpperCAmelCase ( self , a ) -> Dict[str, torch.Tensor]: lowercase__ : Union[str, Any] = torch.stack([x['input_ids'] for x in batch] ) lowercase__ : Dict = torch.stack([x['attention_mask'] for x in batch] ) lowercase__ : List[str] = torch.stack([x['decoder_input_ids'] for x in batch] ) lowercase__ : Optional[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , a ) else self.tokenizer.pad_token_id ) lowercase__ : Optional[int] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , a ) else self.tokenizer.pad_token_id ) lowercase__ : Optional[Any] = trim_batch(a , a ) lowercase__ , lowercase__ : Optional[int] = trim_batch(a , a , attention_mask=a ) lowercase__ : str = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch _UpperCamelCase : Any = getLogger(__name__) def a_ ( _lowerCAmelCase : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : int = get_git_info() save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , 'git_log.json' ) ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=4 , **_lowerCAmelCase : Dict ): '''simple docstring''' with open(_lowerCAmelCase , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase , indent=_lowerCAmelCase , **_lowerCAmelCase ) def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' with open(_lowerCAmelCase ) as f: return json.load(_lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : int = git.Repo(search_parent_directories=_lowerCAmelCase ) lowercase__ : Union[str, Any] = { 'repo_id': str(_lowerCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def a_ ( _lowerCAmelCase : Callable , _lowerCAmelCase : Iterable ): '''simple docstring''' return list(map(_lowerCAmelCase , _lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ): '''simple docstring''' with open(_lowerCAmelCase , 'wb' ) as f: return pickle.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : Any ): '''simple docstring''' def remove_articles(_lowerCAmelCase : Union[str, Any] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : Optional[Any] ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : int ): lowercase__ : str = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Union[str, Any] = normalize_answer(_lowerCAmelCase ).split() lowercase__ : Dict = normalize_answer(_lowerCAmelCase ).split() lowercase__ : Tuple = Counter(_lowerCAmelCase ) & Counter(_lowerCAmelCase ) lowercase__ : Tuple = sum(common.values() ) if num_same == 0: return 0 lowercase__ : List[str] = 1.0 * num_same / len(_lowerCAmelCase ) lowercase__ : List[Any] = 1.0 * num_same / len(_lowerCAmelCase ) lowercase__ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): '''simple docstring''' return normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] ): '''simple docstring''' assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) lowercase__ : Dict = 0 for hypo, pred in zip(_lowerCAmelCase , _lowerCAmelCase ): em += exact_match_score(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: em /= len(_lowerCAmelCase ) return {"em": em} def a_ ( _lowerCAmelCase : Any ): '''simple docstring''' return model_prefix.startswith('rag' ) def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ): '''simple docstring''' lowercase__ : Union[str, Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase__ : int = 'dropout_rate' for p in extra_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if not hasattr(_lowerCAmelCase , _lowerCAmelCase ) and not hasattr(_lowerCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowerCAmelCase ) ) delattr(_lowerCAmelCase , _lowerCAmelCase ) continue lowercase__ : Any = p if hasattr(_lowerCAmelCase , _lowerCAmelCase ) else equivalent_param[p] setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) delattr(_lowerCAmelCase , _lowerCAmelCase ) return hparams, config
77
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A ={'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
def lowerCamelCase__ ( a__ : Optional[int] , a__ : Any ) -> Optional[Any]: UpperCamelCase_ = 0 UpperCamelCase_ = len(a__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCamelCase_ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(a__ ): return None UpperCamelCase_ = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCamelCase_ = left UpperCamelCase_ = point elif point > right: UpperCamelCase_ = right UpperCamelCase_ = point else: if item < current_item: UpperCamelCase_ = point - 1 else: UpperCamelCase_ = point + 1 return None def lowerCamelCase__ ( a__ : List[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : List[Any] ) -> Any: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCamelCase_ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(a__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(a__ , a__ , a__ , a__ ) elif point > right: return interpolation_search_by_recursion(a__ , a__ , a__ , a__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( a__ , a__ , a__ , point - 1 ) else: return interpolation_search_by_recursion( a__ , a__ , point + 1 , a__ ) def lowerCamelCase__ ( a__ : Tuple ) -> Any: if collection != sorted(a__ ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys _A = 0 if debug == 1: _A = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') _A = 67 _A = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('''Not found''')
356
import comet # From: unbabel-comet import torch import datasets _A = datasets.logging.get_logger(__name__) _A = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' _A = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' _A = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): def lowerCamelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if self.config_name == "default": UpperCamelCase_ = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: UpperCamelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=False ): """simple docstring""" if gpus is None: UpperCamelCase_ = 1 if torch.cuda.is_available() else 0 UpperCamelCase_ = {"""src""": sources, """mt""": predictions, """ref""": references} UpperCamelCase_ = [dict(zip(__UpperCamelCase , __UpperCamelCase ) ) for t in zip(*data.values() )] UpperCamelCase_ , UpperCamelCase_ = self.scorer.predict(__UpperCamelCase , gpus=__UpperCamelCase , progress_bar=__UpperCamelCase ) return {"mean_score": mean_score, "scores": scores}
261
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model SCREAMING_SNAKE_CASE_ : List[str] = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def _snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any=None ): if rng is None: A__ = random.Random() A__ = 1 for dim in shape: total_dims *= dim A__ = [] for _ in range(UpperCAmelCase_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) A__ = np.array(UpperCAmelCase_ , dtype=jnp.intaa ).reshape(UpperCAmelCase_ ) return output def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple=None ): A__ = ids_tensor(UpperCAmelCase_ , vocab_size=2 , rng=UpperCAmelCase_ ) # make sure that at least one token is attended to for each batch A__ = 1 return attn_mask @require_flax class a : """simple docstring""" UpperCAmelCase = None UpperCAmelCase = () def UpperCamelCase ( self: Any ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 A__ = 2 A__ = inputs["""input_ids"""].shape[-1] // 2 A__ = inputs["""input_ids"""][:max_batch_size, :sequence_length] A__ = jnp.ones_like(UpperCamelCase ) A__ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens A__ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` A__ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ , A__ , A__ , A__ = self._get_input_ids_and_config() A__ = False A__ = max_length A__ = 0 for model_class in self.all_generative_model_classes: A__ = model_class(UpperCamelCase ) A__ = model_class.__name__[4:] # Skip the "Flax" at the beginning A__ = getattr(UpperCamelCase , UpperCamelCase ) A__ = pt_model_class(UpperCamelCase ).eval() A__ = load_flax_weights_in_pytorch_model(UpperCamelCase , flax_model.params ) A__ = flax_model.generate(UpperCamelCase ).sequences A__ = pt_model.generate(torch.tensor(UpperCamelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: A__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def UpperCamelCase ( self: str ): """simple docstring""" A__ , A__ , A__ , A__ = self._get_input_ids_and_config() A__ = False A__ = max_length for model_class in self.all_generative_model_classes: A__ = model_class(UpperCamelCase ) A__ = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) A__ = jit(model.generate ) A__ = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ , A__ , A__ , A__ = self._get_input_ids_and_config() A__ = True A__ = max_length for model_class in self.all_generative_model_classes: A__ = model_class(UpperCamelCase ) A__ = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) A__ = jit(model.generate ) A__ = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ , A__ , A__ , A__ = self._get_input_ids_and_config() A__ = False A__ = max_length A__ = 2 for model_class in self.all_generative_model_classes: A__ = model_class(UpperCamelCase ) A__ = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) A__ = jit(model.generate ) A__ = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase ( self: str ): """simple docstring""" A__ , A__ , A__ , A__ = self._get_input_ids_and_config() A__ = False A__ = max_length A__ = 2 A__ = 2 for model_class in self.all_generative_model_classes: A__ = model_class(UpperCamelCase ) A__ = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ , A__ , A__ , A__ = self._get_input_ids_and_config() A__ = True A__ = max_length A__ = 0.8 A__ = 10 A__ = 0.3 A__ = 1 A__ = 8 A__ = 9 for model_class in self.all_generative_model_classes: A__ = model_class(UpperCamelCase ) A__ = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) A__ = jit(model.generate ) A__ = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ , A__ , A__ , A__ = self._get_input_ids_and_config() A__ = max_length A__ = 1 A__ = 8 A__ = 9 for model_class in self.all_generative_model_classes: A__ = model_class(UpperCamelCase ) A__ = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) A__ = jit(model.generate ) A__ = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ , A__ , A__ , A__ = self._get_input_ids_and_config() A__ = max_length A__ = 2 A__ = 1 A__ = 8 A__ = 9 for model_class in self.all_generative_model_classes: A__ = model_class(UpperCamelCase ) A__ = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) A__ = jit(model.generate ) A__ = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ , A__ , A__ , A__ = self._get_input_ids_and_config() # pad attention mask on the left A__ = attention_mask.at[(0, 0)].set(0 ) A__ = False A__ = max_length for model_class in self.all_generative_model_classes: A__ = model_class(UpperCamelCase ) A__ = model.generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) A__ = jit(model.generate ) A__ = jit_generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ , A__ , A__ , A__ = self._get_input_ids_and_config() # pad attention mask on the left A__ = attention_mask.at[(0, 0)].set(0 ) A__ = True A__ = max_length for model_class in self.all_generative_model_classes: A__ = model_class(UpperCamelCase ) A__ = model.generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) A__ = jit(model.generate ) A__ = jit_generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ , A__ , A__ , A__ = self._get_input_ids_and_config() # pad attention mask on the left A__ = attention_mask.at[(0, 0)].set(0 ) A__ = 2 A__ = max_length for model_class in self.all_generative_model_classes: A__ = model_class(UpperCamelCase ) A__ = model.generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) A__ = jit(model.generate ) A__ = jit_generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) A__ = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) A__ = """Hello world""" A__ = tokenizer(UpperCamelCase , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(UpperCamelCase , """do_samples""" ): model.generate(UpperCamelCase , do_samples=UpperCamelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(UpperCamelCase , """foo""" ): A__ = {"""foo""": """bar"""} model.generate(UpperCamelCase , **UpperCamelCase )
335
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : Optional[int] = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
335
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class A__ ( A__ ): A__ = ['image_processor', 'feature_extractor'] A__ = 'TvltImageProcessor' A__ = 'TvltFeatureExtractor' def __init__( self : Any , _a : Tuple , _a : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__(image_processor=_a , feature_extractor=_a ) _SCREAMING_SNAKE_CASE =image_processor _SCREAMING_SNAKE_CASE =feature_extractor def __call__( self : str , _a : str=None , _a : Tuple=None , _a : Optional[int]=None , _a : Tuple=None , _a : Any=False , _a : str=False , *_a : List[Any] , **_a : int , ) -> List[str]: '''simple docstring''' if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.' ) _SCREAMING_SNAKE_CASE =None if images is not None: _SCREAMING_SNAKE_CASE =self.image_processor(_a , mask_pixel=_a , *_a , **_a ) if images_mixed is not None: _SCREAMING_SNAKE_CASE =self.image_processor(_a , is_mixed=_a , *_a , **_a ) if audio is not None: _SCREAMING_SNAKE_CASE =self.feature_extractor( _a , *_a , sampling_rate=_a , mask_audio=_a , **_a ) _SCREAMING_SNAKE_CASE ={} if audio is not None: output_dict.update(_a ) if images is not None: output_dict.update(_a ) if images_mixed_dict is not None: output_dict.update(_a ) return output_dict @property def A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.image_processor.model_input_names _SCREAMING_SNAKE_CASE =self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
114
'''simple docstring''' from math import factorial def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : float ) -> float: """simple docstring""" if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _SCREAMING_SNAKE_CASE =(prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _SCREAMING_SNAKE_CASE =float(factorial(_UpperCamelCase ) ) coefficient /= factorial(_UpperCamelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.7_5))
114
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __A (snake_case__): '''simple docstring''' __lowercase: List[Any] = """dandelin/vilt-b32-finetuned-vqa""" __lowercase: List[Any] = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) __lowercase: Optional[Any] = """image_qa""" __lowercase: Optional[Any] = AutoProcessor __lowercase: Any = AutoModelForVisualQuestionAnswering __lowercase: Union[str, Any] = ["""image""", """text"""] __lowercase: int = ["""text"""] def __init__( self : str , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int ) ->Any: """simple docstring""" requires_backends(self , ["""vision"""] ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : "Image" , UpperCAmelCase_ : str ) ->Optional[Any]: """simple docstring""" return self.pre_processor(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""pt""" ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple ) ->Optional[int]: """simple docstring""" with torch.no_grad(): return self.model(**UpperCAmelCase_ ).logits def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : str ) ->Any: """simple docstring""" snake_case_ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
347
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = {'vocab_file': 'spiece.model'} __SCREAMING_SNAKE_CASE : int = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 __SCREAMING_SNAKE_CASE : Dict = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } __SCREAMING_SNAKE_CASE : Optional[int] = '▁' class __A (snake_case__): '''simple docstring''' __lowercase: Optional[int] = VOCAB_FILES_NAMES __lowercase: Any = PRETRAINED_VOCAB_FILES_MAP __lowercase: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase: List[str] = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any]="</s>" , UpperCAmelCase_ : Optional[Any]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Tuple=100 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , UpperCAmelCase_ : Optional[int]=True , **UpperCAmelCase_ : Dict , ) ->None: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: snake_case_ = [F"""<extra_id_{i}>""" for i in range(UpperCAmelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case_ = len(set(filter(lambda UpperCAmelCase_ : bool("""extra_id""" in str(UpperCAmelCase_ ) ) , UpperCAmelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) snake_case_ = legacy snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , extra_ids=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCAmelCase_ , **UpperCAmelCase_ , ) snake_case_ = vocab_file snake_case_ = extra_ids snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @staticmethod def lowerCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ) ->Union[str, Any]: """simple docstring""" if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: snake_case_ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCAmelCase_ , ) return max_model_length @property def lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" return self.sp_model.get_piece_size() + self._extra_ids def lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCAmelCase_ )) + [1] return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1] def lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" return list( set(filter(lambda UpperCAmelCase_ : bool(re.search(R"""<extra_id_\d+>""" , UpperCAmelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" return [self._convert_token_to_id(UpperCAmelCase_ ) for token in self.get_sentinel_tokens()] def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] ) ->List[int]: """simple docstring""" if len(UpperCAmelCase_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCAmelCase ( self : str , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" snake_case_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" snake_case_ = self._add_eos_if_not_present(UpperCAmelCase_ ) if token_ids_a is None: return token_ids_a else: snake_case_ = self._add_eos_if_not_present(UpperCAmelCase_ ) return token_ids_a + token_ids_a def __getstate__( self : Optional[Any] ) ->Tuple: """simple docstring""" snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : Optional[Any] , UpperCAmelCase_ : List[Any] ) ->List[Any]: """simple docstring""" snake_case_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : "TextInput" , **UpperCAmelCase_ : Tuple ) ->List[str]: """simple docstring""" if not self.legacy: snake_case_ = SPIECE_UNDERLINE + text.replace(UpperCAmelCase_ , """ """ ) return super().tokenize(UpperCAmelCase_ , **UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ) ->Tuple: """simple docstring""" if not self.legacy: snake_case_ = text.startswith(UpperCAmelCase_ ) if is_first: snake_case_ = text[1:] snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(UpperCAmelCase_ ): snake_case_ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[Any] ) ->Tuple: """simple docstring""" if token.startswith("""<extra_id_""" ): snake_case_ = re.match(R"""<extra_id_(\d+)>""" , UpperCAmelCase_ ) snake_case_ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]: """simple docstring""" if index < self.sp_model.get_piece_size(): snake_case_ = self.sp_model.IdToPiece(UpperCAmelCase_ ) else: snake_case_ = F"""<extra_id_{self.vocab_size - 1 - index}>""" return token def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[str] ) ->Optional[Any]: """simple docstring""" snake_case_ = [] snake_case_ = """""" snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_ ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(UpperCAmelCase_ ) snake_case_ = False out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
347
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : str ={ "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __lowerCAmelCase : Optional[Any] =[ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def UpperCamelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] ): for attribute in key.split("." ): A__ = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: A__ = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: A__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": A__ = value elif weight_type == "weight_g": A__ = value elif weight_type == "weight_v": A__ = value elif weight_type == "bias": A__ = value elif weight_type == "running_mean": A__ = value elif weight_type == "running_var": A__ = value elif weight_type == "num_batches_tracked": A__ = value elif weight_type == "inv_freq": A__ = value else: A__ = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : str ): A__ = [] A__ = fairseq_model.state_dict() A__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): A__ = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) A__ = True else: for key, mapped_key in MAPPING.items(): A__ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A__ = True if "*" in mapped_key: A__ = name.split(_lowerCamelCase )[0].split("." )[-2] A__ = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: A__ = None elif "pos_bias_v" in name: A__ = None elif "weight_g" in name: A__ = "weight_g" elif "weight_v" in name: A__ = "weight_v" elif "bias" in name: A__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj A__ = "weight" elif "running_mean" in name: A__ = "running_mean" elif "inv_freq" in name: A__ = "inv_freq" elif "running_var" in name: A__ = "running_var" elif "num_batches_tracked" in name: A__ = "num_batches_tracked" else: A__ = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def UpperCamelCase ( _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] ): A__ = full_name.split("conv_layers." )[-1] A__ = name.split("." ) A__ = int(items[0] ) A__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A__ = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A__ = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) A__ = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) A__ = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Dict=None , _lowerCamelCase : Dict=None , _lowerCamelCase : Optional[int]=True ): if config_path is not None: A__ = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: A__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: A__ = "rotary" if is_finetuned: if dict_path: A__ = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A__ = target_dict.pad_index A__ = target_dict.bos_index A__ = target_dict.eos_index A__ = len(target_dict.symbols ) A__ = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) A__ = target_dict.indices # fairseq has the <pad> and <s> switched A__ = 0 A__ = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) A__ = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) A__ = True if config.feat_extract_norm == "layer" else False A__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) A__ = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) A__ = WavaVecaConformerForCTC(_lowerCamelCase ) else: A__ = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: A__, A__, A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: A__ = argparse.Namespace(task="audio_pretraining" ) A__ = fairseq.tasks.setup_task(_lowerCamelCase ) A__, A__, A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) A__ = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __lowerCAmelCase : int =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __lowerCAmelCase : int =parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
358
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : int ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): A__ = F"Input value of [number={number}] must be an integer" raise TypeError(_lowerCamelCase ) if number < 1: A__ = F"Input value of [number={number}] must be > 0" raise ValueError(_lowerCamelCase ) A__ = 1 for i in range(1 , _lowerCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
123
0
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) < 2: return collection def circle_sort_util(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: lowercase__ = False if low == high: return swapped lowercase__ = low lowercase__ = high while left < right: if collection[left] > collection[right]: lowercase__ , lowercase__ = ( collection[right], collection[left], ) lowercase__ = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: lowercase__ , lowercase__ = ( collection[right + 1], collection[left], ) lowercase__ = True lowercase__ = low + int((high - low) / 2 ) lowercase__ = circle_sort_util(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = circle_sort_util(SCREAMING_SNAKE_CASE , mid + 1 , SCREAMING_SNAKE_CASE ) return swapped or left_swap or right_swap lowercase__ = True while is_not_sorted is True: lowercase__ = circle_sort_util(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) - 1 ) return collection if __name__ == "__main__": lowerCAmelCase = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
110
from ..utils import DummyObject, requires_backends class _a ( metaclass=UpperCamelCase__ ): _lowercase : Any = ['''torch''', '''scipy'''] def __init__( self: int , *UpperCamelCase_: Any , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def lowerCamelCase_ ( cls: Optional[int] , *UpperCamelCase_: Any , **UpperCamelCase_: List[Any] ) -> int: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def lowerCamelCase_ ( cls: Any , *UpperCamelCase_: Any , **UpperCamelCase_: Dict ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] )
110
1
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCAmelCase : List[str] = logging.getLogger(__name__) @dataclass(frozen=A ) class lowerCamelCase__ : """simple docstring""" __a = 42 __a = 42 __a = None __a = None __a = None @dataclass(frozen=A ) class lowerCamelCase__ : """simple docstring""" __a = 42 __a = None __a = None __a = None __a = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCamelCase__ ( A ): """simple docstring""" __a = 42 def __init__( self : str , UpperCamelCase : str , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : str , UpperCamelCase : Optional[int] = None , UpperCamelCase : str=False , UpperCamelCase : bool = False , ): '''simple docstring''' __UpperCAmelCase : int = hans_processors[task]() __UpperCAmelCase : Optional[Any] = os.path.join( _a , """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(_a ) , _a , ) , ) __UpperCAmelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __UpperCAmelCase ,__UpperCAmelCase : Tuple = label_list[2], label_list[1] __UpperCAmelCase : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __UpperCAmelCase : List[str] = cached_features_file + """.lock""" with FileLock(_a ): if os.path.exists(_a ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) __UpperCAmelCase : Optional[int] = torch.load(_a ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) __UpperCAmelCase : Tuple = ( processor.get_dev_examples(_a ) if evaluate else processor.get_train_examples(_a ) ) logger.info("""Training examples: %s""" , len(_a ) ) __UpperCAmelCase : str = hans_convert_examples_to_features(_a , _a , _a , _a ) logger.info("""Saving features into cached file %s""" , _a ) torch.save(self.features , _a ) def __len__( self : Union[str, Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : int , UpperCamelCase : int ): '''simple docstring''' return self.features[i] def lowerCamelCase__ ( self : str ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class lowerCamelCase__ : """simple docstring""" __a = 42 def __init__( self : List[str] , UpperCamelCase : str , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : str , UpperCamelCase : Optional[int] = 128 , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : bool = False , ): '''simple docstring''' __UpperCAmelCase : List[str] = hans_processors[task]() __UpperCAmelCase : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __UpperCAmelCase ,__UpperCAmelCase : Any = label_list[2], label_list[1] __UpperCAmelCase : Optional[Any] = label_list __UpperCAmelCase : int = processor.get_dev_examples(_a ) if evaluate else processor.get_train_examples(_a ) __UpperCAmelCase : List[Any] = hans_convert_examples_to_features(_a , _a , _a , _a ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ): if ex_index % 10_000 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(_a )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __UpperCAmelCase : Optional[int] = tf.data.Dataset.from_generator( _a , ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ) , ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return self.dataset def __len__( self : int ): '''simple docstring''' return len(self.features ) def __getitem__( self : List[str] , UpperCamelCase : Tuple ): '''simple docstring''' return self.features[i] def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' return self.label_list class lowerCamelCase__ ( A ): """simple docstring""" def lowerCamelCase__ ( self : str , UpperCamelCase : List[str] ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(_a , """heuristics_train_set.txt""" ) ) , """train""" ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(_a , """heuristics_evaluation_set.txt""" ) ) , """dev""" ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [] for i, line in enumerate(_a ): if i == 0: continue __UpperCAmelCase : Optional[Any] = """%s-%s""" % (set_type, line[0]) __UpperCAmelCase : List[Any] = line[5] __UpperCAmelCase : str = line[6] __UpperCAmelCase : List[Any] = line[7][2:] if line[7].startswith("""ex""" ) else line[7] __UpperCAmelCase : Union[str, Any] = line[0] examples.append(InputExample(guid=_a , text_a=_a , text_b=_a , label=_a , pairID=_a ) ) return examples def lowerCamelCase ( _UpperCamelCase : List[InputExample] , _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : PreTrainedTokenizer , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : str = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase : str = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCamelCase__ ) , desc="""convert examples to features""" ): if ex_index % 1_0_0_0_0 == 0: logger.info("""Writing example %d""" % (ex_index) ) __UpperCAmelCase : List[str] = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" , truncation=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , ) __UpperCAmelCase : Any = label_map[example.label] if example.label in label_map else 0 __UpperCAmelCase : Tuple = int(example.pairID ) features.append(InputFeatures(**UpperCamelCase__ , label=UpperCamelCase__ , pairID=UpperCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(f'''guid: {example}''' ) logger.info(f'''features: {features[i]}''' ) return features UpperCAmelCase : Tuple = { 'hans': 3, } UpperCAmelCase : Tuple = { 'hans': HansProcessor, }
363
"""simple docstring""" from collections.abc import Sequence def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : Dict = 0.0 for coeff in reversed(_UpperCamelCase ): __UpperCAmelCase : Any = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
320
0
"""simple docstring""" import torch from diffusers import DiffusionPipeline class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) def __call__( self ): '''simple docstring''' __A : Tuple = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) __A : List[str] = 1 __A : Optional[Any] = self.unet(UpperCAmelCase__ , UpperCAmelCase__ ).sample __A : str = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample __A : Optional[Any] = scheduler_output - scheduler_output + torch.ones_like(UpperCAmelCase__ ) return result
179
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __lowercase ( _A , _A , _A ) -> int: SCREAMING_SNAKE_CASE : Optional[Any] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE : int = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } SCREAMING_SNAKE_CASE : List[Any] = F"{src_lang}-{tgt_lang}" SCREAMING_SNAKE_CASE : List[str] = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(_A , exist_ok=_A ) SCREAMING_SNAKE_CASE : int = os.path.join(_A , """README.md""" ) print(F"Generating {path}" ) with open(_A , """w""" , encoding="""utf-8""" ) as f: f.write(_A ) # make sure we are under the root of the project UpperCAmelCase__ : List[str] = Path(__file__).resolve().parent.parent.parent UpperCAmelCase__ : Dict = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = model_name.split("""-""") UpperCAmelCase__ : Tuple = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
245
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : List[Any] = logging.get_logger(__name__) snake_case : Union[str, Any] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = '''lxmert''' UpperCAmelCase__ : str = {} def __init__( self :int ,__snake_case :Union[str, Any]=3_05_22 ,__snake_case :Tuple=7_68 ,__snake_case :int=12 ,__snake_case :Optional[Any]=95_00 ,__snake_case :Union[str, Any]=16_00 ,__snake_case :List[str]=4_00 ,__snake_case :Optional[Any]=30_72 ,__snake_case :List[Any]="gelu" ,__snake_case :str=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Optional[Any]=5_12 ,__snake_case :List[str]=2 ,__snake_case :List[Any]=0.02 ,__snake_case :int=1E-12 ,__snake_case :Union[str, Any]=9 ,__snake_case :Tuple=5 ,__snake_case :List[Any]=5 ,__snake_case :Tuple=20_48 ,__snake_case :Optional[int]=4 ,__snake_case :Union[str, Any]=6.67 ,__snake_case :Dict=True ,__snake_case :Tuple=True ,__snake_case :str=True ,__snake_case :Dict=True ,__snake_case :str=True ,__snake_case :Union[str, Any]=True ,__snake_case :Tuple=True ,**__snake_case :List[Any] ,) -> str: a__ = vocab_size a__ = hidden_size a__ = num_attention_heads a__ = hidden_act a__ = intermediate_size a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = initializer_range a__ = layer_norm_eps a__ = num_qa_labels a__ = num_object_labels a__ = num_attr_labels a__ = l_layers a__ = x_layers a__ = r_layers a__ = visual_feat_dim a__ = visual_pos_dim a__ = visual_loss_normalizer a__ = task_matched a__ = task_mask_lm a__ = task_obj_predict a__ = task_qa a__ = visual_obj_loss a__ = visual_attr_loss a__ = visual_feat_loss a__ = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**__snake_case )
359
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
109
0
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase : Optional[int] =logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase : Any =""" Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=8): UpperCamelCase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCamelCase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase=5_12 , _lowerCAmelCase=5_12): UpperCamelCase_ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1) UpperCamelCase_ = np.array(pil_image.convert("RGB")) UpperCamelCase_ = arr.astype(np.floataa) / 127.5 - 1 UpperCamelCase_ = np.transpose(_lowerCAmelCase , [2, 0, 1]) UpperCamelCase_ = torch.from_numpy(_lowerCAmelCase).unsqueeze(0) return image class _lowercase (a_ ): '''simple docstring''' def __init__( self , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) UpperCamelCase_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = min(int(num_inference_steps * strength ) , snake_case__ ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): '''simple docstring''' if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) UpperCamelCase_ = image.to(device=snake_case__ , dtype=snake_case__ ) UpperCamelCase_ = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCamelCase_ = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] UpperCamelCase_ = torch.cat(snake_case__ , dim=0 ) else: UpperCamelCase_ = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) UpperCamelCase_ = self.movq.config.scaling_factor * init_latents UpperCamelCase_ = torch.cat([init_latents] , dim=0 ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents UpperCamelCase_ = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase_ = init_latents return latents def _lowerCamelCase ( self , snake_case__=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCamelCase_ = torch.device(F"""cuda:{gpu_id}""" ) UpperCamelCase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def _lowerCamelCase ( self , snake_case__=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCamelCase_ = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCamelCase_ = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCamelCase_ , UpperCamelCase_ = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. UpperCamelCase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowerCamelCase ( self ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 100 , snake_case__ = 4.0 , snake_case__ = 0.3 , snake_case__ = 1 , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , ): '''simple docstring''' UpperCamelCase_ = self._execution_device UpperCamelCase_ = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = torch.cat(snake_case__ , dim=0 ) UpperCamelCase_ = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: UpperCamelCase_ = image_embeds.repeat_interleave(snake_case__ , dim=0 ) UpperCamelCase_ = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) UpperCamelCase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) UpperCamelCase_ = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) UpperCamelCase_ = image.to(dtype=image_embeds.dtype , device=snake_case__ ) UpperCamelCase_ = self.movq.encode(snake_case__ )["latents"] UpperCamelCase_ = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase_ = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCamelCase_ , UpperCamelCase_ = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) UpperCamelCase_ = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase_ = {"image_embeds": image_embeds} UpperCamelCase_ = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: UpperCamelCase_ , UpperCamelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCamelCase_ , UpperCamelCase_ = noise_pred.chunk(2 ) UpperCamelCase_ , UpperCamelCase_ = variance_pred.chunk(2 ) UpperCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCamelCase_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCamelCase_ , UpperCamelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing UpperCamelCase_ = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCamelCase_ = image * 0.5 + 0.5 UpperCamelCase_ = image.clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
128
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase (a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = AltDiffusionPipeline lowercase__ = TEXT_TO_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCamelCase_ = CLIPTextModel(snake_case__ ) UpperCamelCase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCamelCase_ = 77 UpperCamelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowerCamelCase ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(snake_case__ ) else: UpperCamelCase_ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowerCamelCase ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(snake_case__ ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = self.get_dummy_inputs(snake_case__ ) UpperCamelCase_ = "A photo of an astronaut" UpperCamelCase_ = alt_pipe(**snake_case__ ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = PNDMScheduler(skip_prk_steps=snake_case__ ) torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(snake_case__ ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = self.get_dummy_inputs(snake_case__ ) UpperCamelCase_ = alt_pipe(**snake_case__ ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _lowercase (unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=snake_case__ , safety_checker=snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=snake_case__ , num_inference_steps=2 , output_type="numpy" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
128
1
def _UpperCamelCase ( snake_case__ ) -> bool: if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) __UpperCAmelCase : Optional[Any] = sorted(string.lower() ) return len(snake_case__ ) == len(set(snake_case__ ) ) if __name__ == "__main__": _snake_case = input('''Enter a string ''').strip() _snake_case = is_isogram(input_str) print(F'{input_str} is {"an" if isogram else "not an"} isogram.')
342
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[str] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = num_choices def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_attention_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self: List[Any] ) -> Dict: __UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : str = (1, 11, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
342
1
__lowerCamelCase = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
59
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = """pytorch_model.bin""" @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} ,) @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "A csv or a json file containing the validation data."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "The name of the task to train on."} ,) A__ : Optional[List[str]] = dataclasses.field( default=A_ ,metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) A__ : Optional[str] = dataclasses.field( default="accuracy" ,metadata={"help": "The evaluation metric used for the task."} ) A__ : Optional[str] = dataclasses.field( default="no" ,metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } ,) A__ : Optional[int] = dataclasses.field( default=10 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,) A__ : Optional[float] = dataclasses.field( default=0.0 ,metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} ,) A__ : Optional[float] = dataclasses.field( default=0.0 ,metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} ,) A__ : Optional[int] = dataclasses.field( default=1_00 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,) A__ : Optional[int] = dataclasses.field( default=A_ ,metadata={"help": "Random seed for initialization."} ,) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ): snake_case : Tuple = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case : Optional[int] = dataset.filter(lambda __lowerCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case : int = int(eval_result * len(__lowerCamelCase ) ) print(__lowerCamelCase ) snake_case : List[str] = dataset.sort("probability" , reverse=__lowerCamelCase ) snake_case : Tuple = dataset.select(range(__lowerCamelCase ) ) snake_case : List[Any] = dataset.remove_columns(["label", "probability"] ) snake_case : Any = dataset.rename_column("prediction" , "label" ) snake_case : str = dataset.map(lambda __lowerCamelCase : {"label": idalabel[example["label"]]} ) snake_case : List[str] = dataset.shuffle(seed=args.seed ) snake_case : int = os.path.join(__lowerCamelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(__lowerCamelCase , index=__lowerCamelCase ) else: dataset.to_json(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , **__lowerCamelCase : List[Any] ): snake_case : int = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case : Dict = STModelArguments(model_name_or_path=__lowerCamelCase ) snake_case : Tuple = STDataArguments(train_file=__lowerCamelCase , infer_file=__lowerCamelCase ) snake_case : str = STTrainingArguments(output_dir=__lowerCamelCase ) snake_case : int = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__lowerCamelCase ).items(): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for key, value in kwargs.items(): if hasattr(__lowerCamelCase , __lowerCamelCase ): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Sanity checks snake_case : List[str] = {} snake_case : Optional[int] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case : str = args.train_file snake_case : Tuple = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case : Tuple = args.eval_file for key in data_files: snake_case : List[Any] = data_files[key].split("." )[-1] assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: snake_case : Union[str, Any] = extension else: assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) snake_case : List[Any] = f"""{args.output_dir}/self-train_iter-{{}}""".format snake_case : Optional[int] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) accelerator.wait_for_everyone() snake_case : Dict = None snake_case : Union[str, Any] = None snake_case : Tuple = 0 snake_case : List[Any] = False # Show the progress bar snake_case : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case : str = data_dir_format(__lowerCamelCase ) assert os.path.exists(__lowerCamelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case : Dict = os.path.join(__lowerCamelCase , "stage-1" ) snake_case : Optional[Any] = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__lowerCamelCase , __lowerCamelCase ): arguments_dict.update({key: value} ) snake_case : int = os.path.join(__lowerCamelCase , "best-checkpoint" , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , __lowerCamelCase , __lowerCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 1." , __lowerCamelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case : str = os.path.join(__lowerCamelCase , "best-checkpoint" ) snake_case : Dict = os.path.join(__lowerCamelCase , "stage-2" ) # Update arguments_dict snake_case : List[str] = model_path snake_case : Optional[Any] = data_files["train"] snake_case : Optional[Any] = current_output_dir snake_case : Union[str, Any] = os.path.join(__lowerCamelCase , "best-checkpoint" , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , __lowerCamelCase , __lowerCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 2." , __lowerCamelCase ) snake_case : int = iteration snake_case : Tuple = data_dir_format(iteration + 1 ) snake_case : Tuple = AutoConfig.from_pretrained(os.path.join(__lowerCamelCase , "best-checkpoint" ) ) snake_case : Optional[int] = config.idalabel snake_case : List[Any] = os.path.join(__lowerCamelCase , "eval_results_best-checkpoint.json" ) snake_case : Union[str, Any] = os.path.join(__lowerCamelCase , "test_results_best-checkpoint.json" ) assert os.path.exists(__lowerCamelCase ) with open(__lowerCamelCase , "r" ) as f: snake_case : Dict = float(json.load(__lowerCamelCase )[args.eval_metric] ) snake_case : Optional[int] = os.path.join(__lowerCamelCase , "infer_output_best-checkpoint.csv" ) assert os.path.exists(__lowerCamelCase ) # Loading the dataset from local csv or json files. snake_case : Optional[Any] = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] snake_case : Dict = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) shutil.copy(__lowerCamelCase , os.path.join(__lowerCamelCase , f"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(__lowerCamelCase ): shutil.copy(__lowerCamelCase , os.path.join(__lowerCamelCase , f"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) accelerator.wait_for_everyone() snake_case : str = os.path.join(__lowerCamelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case : List[Any] = eval_result if best_iteration is None: snake_case : List[Any] = new_iteration snake_case : int = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case : int = new_iteration snake_case : Union[str, Any] = new_eval_result snake_case : str = 0 else: if new_eval_result == best_eval_result: snake_case : Any = new_iteration snake_case : Union[str, Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case : Tuple = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , __lowerCamelCase ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase , f"""eval_results_iter-{iteration}.json""" ) , os.path.join(__lowerCamelCase , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase , f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(__lowerCamelCase , "eval_results_best-iteration.json" ) , )
59
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=True , _lowerCAmelCase="pt" ) -> List[Any]: UpperCamelCase : Any = {"add_prefix_space": True} if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and not line.startswith(" " ) else {} UpperCamelCase : List[str] = padding_side return tokenizer( [line] , max_length=_lowerCAmelCase , padding="max_length" if pad_to_max_length else None , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , ) -> List[str]: UpperCamelCase : Any = input_ids.ne(_lowerCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A__ ( __snake_case ): def __init__( self , A_ , A_ , A_ , A_ , A_="train" , A_=None , A_=None , A_=None , A_="" , ): '''simple docstring''' super().__init__() UpperCamelCase : Any = Path(A_ ).joinpath(type_path + ".source" ) UpperCamelCase : str = Path(A_ ).joinpath(type_path + ".target" ) UpperCamelCase : int = self.get_char_lens(self.src_file ) UpperCamelCase : List[Any] = max_source_length UpperCamelCase : Any = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" UpperCamelCase : str = tokenizer UpperCamelCase : Any = prefix if n_obs is not None: UpperCamelCase : Optional[Any] = self.src_lens[:n_obs] UpperCamelCase : List[str] = src_lang UpperCamelCase : Optional[int] = tgt_lang def __len__( self ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self , A_ ): '''simple docstring''' UpperCamelCase : Any = index + 1 # linecache starts at 1 UpperCamelCase : Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) , A_ ).rstrip("\n" ) UpperCamelCase : List[Any] = linecache.getline(str(self.tgt_file ) , A_ ).rstrip("\n" ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right UpperCamelCase : str = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A_ ) else self.tokenizer ) UpperCamelCase : int = self.tokenizer.generator if isinstance(self.tokenizer , A_ ) else self.tokenizer UpperCamelCase : Union[str, Any] = encode_line(A_ , A_ , self.max_source_length , "right" ) UpperCamelCase : Optional[int] = encode_line(A_ , A_ , self.max_target_length , "right" ) UpperCamelCase : List[str] = source_inputs["input_ids"].squeeze() UpperCamelCase : List[str] = target_inputs["input_ids"].squeeze() UpperCamelCase : Union[str, Any] = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __UpperCamelCase( A_ ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[str] = torch.stack([x["input_ids"] for x in batch] ) UpperCamelCase : Any = torch.stack([x["attention_mask"] for x in batch] ) UpperCamelCase : List[Any] = torch.stack([x["decoder_input_ids"] for x in batch] ) UpperCamelCase : List[str] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A_ ) else self.tokenizer.pad_token_id ) UpperCamelCase : List[str] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A_ ) else self.tokenizer.pad_token_id ) UpperCamelCase : List[Any] = trim_batch(A_ , A_ ) UpperCamelCase , UpperCamelCase : List[str] = trim_batch(A_ , A_ , attention_mask=A_ ) UpperCamelCase : str = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch __lowerCamelCase : Any = getLogger(__name__) def A_ ( _lowerCAmelCase ) -> Union[str, Any]: return list(itertools.chain.from_iterable(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase ) -> None: UpperCamelCase : Any = get_git_info() save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , "git_log.json" ) ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=4 , **_lowerCAmelCase ) -> Optional[int]: with open(_lowerCAmelCase , "w" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase , indent=_lowerCAmelCase , **_lowerCAmelCase ) def A_ ( _lowerCAmelCase ) -> Any: with open(_lowerCAmelCase ) as f: return json.load(_lowerCAmelCase ) def A_ ( ) -> str: UpperCamelCase : int = git.Repo(search_parent_directories=_lowerCAmelCase ) UpperCamelCase : Dict = { "repo_id": str(_lowerCAmelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> List: return list(map(_lowerCAmelCase , _lowerCAmelCase ) ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: with open(_lowerCAmelCase , "wb" ) as f: return pickle.dump(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase ) -> Dict: def remove_articles(_lowerCAmelCase ): return re.sub(r"\b(a|an|the)\b" , " " , _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase ): UpperCamelCase : Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: UpperCamelCase : Optional[int] = normalize_answer(_lowerCAmelCase ).split() UpperCamelCase : Optional[Any] = normalize_answer(_lowerCAmelCase ).split() UpperCamelCase : List[str] = Counter(_lowerCAmelCase ) & Counter(_lowerCAmelCase ) UpperCamelCase : int = sum(common.values() ) if num_same == 0: return 0 UpperCamelCase : Optional[int] = 1.0 * num_same / len(_lowerCAmelCase ) UpperCamelCase : Optional[int] = 1.0 * num_same / len(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = (2 * precision * recall) / (precision + recall) return fa def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: return normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) UpperCamelCase : List[str] = 0 for hypo, pred in zip(_lowerCAmelCase , _lowerCAmelCase ): em += exact_match_score(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: em /= len(_lowerCAmelCase ) return {"em": em} def A_ ( _lowerCAmelCase ) -> List[Any]: return model_prefix.startswith("rag" ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: UpperCamelCase : int = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead UpperCamelCase : str = "dropout_rate" for p in extra_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if not hasattr(_lowerCAmelCase , _lowerCAmelCase ) and not hasattr(_lowerCAmelCase , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(_lowerCAmelCase ) ) delattr(_lowerCAmelCase , _lowerCAmelCase ) continue UpperCamelCase : str = p if hasattr(_lowerCAmelCase , _lowerCAmelCase ) else equivalent_param[p] setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) delattr(_lowerCAmelCase , _lowerCAmelCase ) return hparams, config
140
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( __snake_case ): def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' super().__init__() self.register_modules( vae=A_ , text_encoder=A_ , tokenizer=A_ , unet=A_ , scheduler=A_ , safety_checker=A_ , feature_extractor=A_ , ) def __UpperCamelCase( self , A_ = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A_ ) def __UpperCamelCase( self ): '''simple docstring''' self.enable_attention_slicing(A_ ) @torch.no_grad() def __call__( self , A_ , A_ = 512 , A_ = 512 , A_ = 50 , A_ = 7.5 , A_ = None , A_ = 1 , A_ = 0.0 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , A_ = None , **A_ , ): '''simple docstring''' if isinstance(A_ , A_ ): UpperCamelCase : Any = 1 elif isinstance(A_ , A_ ): UpperCamelCase : Optional[Any] = len(A_ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(A_ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(A_ )}.""" ) # get prompt text embeddings UpperCamelCase : int = self.tokenizer( A_ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCamelCase : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase : List[str] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCamelCase : Any = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCamelCase : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase , UpperCamelCase , UpperCamelCase : str = text_embeddings.shape UpperCamelCase : int = text_embeddings.repeat(1 , A_ , 1 ) UpperCamelCase : str = text_embeddings.view(bs_embed * num_images_per_prompt , A_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase : List[str] if negative_prompt is None: UpperCamelCase : Tuple = [""] elif type(A_ ) is not type(A_ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(A_ )} !=""" F""" {type(A_ )}.""" ) elif isinstance(A_ , A_ ): UpperCamelCase : Optional[int] = [negative_prompt] elif batch_size != len(A_ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(A_ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: UpperCamelCase : Union[str, Any] = negative_prompt UpperCamelCase : Tuple = text_input_ids.shape[-1] UpperCamelCase : str = self.tokenizer( A_ , padding="max_length" , max_length=A_ , truncation=A_ , return_tensors="pt" , ) UpperCamelCase : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase : Optional[int] = uncond_embeddings.shape[1] UpperCamelCase : Optional[Any] = uncond_embeddings.repeat(A_ , A_ , 1 ) UpperCamelCase : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , A_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCamelCase : Any = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase : Optional[Any] = torch.randn( A_ , generator=A_ , device="cpu" , dtype=A_ ).to(self.device ) UpperCamelCase : Dict = torch.randn(A_ , generator=A_ , device="cpu" , dtype=A_ ).to( self.device ) else: UpperCamelCase : Tuple = torch.randn( A_ , generator=A_ , device=self.device , dtype=A_ ) UpperCamelCase : str = torch.randn(A_ , generator=A_ , device=self.device , dtype=A_ ) else: if latents_reference.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) UpperCamelCase : List[Any] = latents_reference.to(self.device ) UpperCamelCase : Optional[Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCamelCase : List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCamelCase : str = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCamelCase : List[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCamelCase : Optional[Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCamelCase : str = 0 if dx < 0 else dx UpperCamelCase : Union[str, Any] = 0 if dy < 0 else dy UpperCamelCase : Union[str, Any] = max(-dx , 0 ) UpperCamelCase : Tuple = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCamelCase : Optional[Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(A_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase : List[str] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase : str = {} if accepts_eta: UpperCamelCase : int = eta for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase : Tuple = self.scheduler.scale_model_input(A_ , A_ ) # predict the noise residual UpperCamelCase : List[str] = self.unet(A_ , A_ , encoder_hidden_states=A_ ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase : Any = noise_pred.chunk(2 ) UpperCamelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase : Optional[Any] = self.scheduler.step(A_ , A_ , A_ , **A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ , A_ ) UpperCamelCase : int = 1 / 0.1_82_15 * latents UpperCamelCase : Tuple = self.vae.decode(A_ ).sample UpperCamelCase : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCamelCase : int = self.feature_extractor(self.numpy_to_pil(A_ ) , return_tensors="pt" ).to( self.device ) UpperCamelCase , UpperCamelCase : int = self.safety_checker( images=A_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCamelCase : int = None if output_type == "pil": UpperCamelCase : Tuple = self.numpy_to_pil(A_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=A_ , nsfw_content_detected=A_ )
140
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase : int = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __snake_case : Union[str, Any] = ['gpt2'] __snake_case : List[str] = 'gpt2' if is_tf_available(): class lowerCamelCase ( tf.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : str ) -> List[Any]: '''simple docstring''' super().__init__() A__ : Any =tokenizer A__ : Tuple =AutoConfig.from_pretrained(lowerCAmelCase_ ) A__ : Any =TFGPTaLMHeadModel.from_config(lowerCAmelCase_ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Dict ) -> Dict: '''simple docstring''' A__ : Dict =self.tokenizer(lowerCAmelCase_ ) A__ : Optional[Any] =tokenized["""input_ids"""].to_tensor() A__ : Optional[Any] =tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) A__ : Optional[int] =self.model(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )["""logits"""] return outputs @require_tf @require_keras_nlp class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' super().setUp() A__ : Optional[Any] =[GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] A__ : Optional[int] =[TFGPTaTokenizer.from_pretrained(lowerCAmelCase_ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) A__ : Tuple =[ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] A__ : Optional[int] =list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: A__ : Any =tokenizer([test_inputs] , return_tensors="""tf""" ) A__ : str =tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors A__ : Optional[int] =python_outputs[key].numpy() A__ : Union[str, Any] =tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowerCAmelCase_ , tf.intaa ) == tf_outputs_values ) ) @slow def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A__ : Optional[int] =tf.function(lowerCAmelCase_ ) for test_inputs in self.test_sentences: A__ : List[str] =tf.constant(lowerCAmelCase_ ) A__ : Union[str, Any] =compiled_tokenizer(lowerCAmelCase_ ) A__ : Dict =tf_tokenizer(lowerCAmelCase_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowercase__ ( self : Any ) -> Any: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A__ : Union[str, Any] =ModelToSave(tokenizer=lowerCAmelCase_ ) A__ : List[Any] =tf.convert_to_tensor([self.test_sentences[0]] ) A__ : Tuple =model.serving(lowerCAmelCase_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: A__ : Optional[int] =Path(lowerCAmelCase_ ) / """saved.model""" tf.saved_model.save(lowerCAmelCase_ , lowerCAmelCase_ , signatures={"""serving_default""": model.serving} ) A__ : Union[str, Any] =tf.saved_model.load(lowerCAmelCase_ ) A__ : str =loaded_model.signatures["""serving_default"""](lowerCAmelCase_ )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowercase__ ( self : Dict ) -> Tuple: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A__ : Optional[Any] =tf.convert_to_tensor([self.test_sentences[0]] ) A__ : Dict =tf_tokenizer(lowerCAmelCase_ ) # Build model with some sample inputs A__ : List[Any] =tf_tokenizer.get_config() A__ : str =TFGPTaTokenizer.from_config(lowerCAmelCase_ ) A__ : Any =model_from_config(lowerCAmelCase_ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run A__ : List[str] =12_31_23 for max_length in [3, 5, 10_24]: A__ : List[str] =tf.convert_to_tensor([self.test_sentences[0]] ) A__ : str =tf_tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ ) A__ : int =out["""input_ids"""].numpy().shape[1] assert out_length == max_length
136
'''simple docstring''' def __lowerCamelCase ( __snake_case : int ) -> bool: """simple docstring""" if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True A__ : Any =4 A__ : int =(1 << p) - 1 for _ in range(p - 2 ): A__ : Dict =((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
136
1
__lowerCAmelCase : Tuple = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __magic_name__ ( ): '''simple docstring''' a = input("Enter message: " ) a = input("Enter key [alphanumeric]: " ) a = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): a = "encrypt" a = encrypt_message(A, A ) elif mode.lower().startswith("d" ): a = "decrypt" a = decrypt_message(A, A ) print(F"""\n{mode.title()}ed message:""" ) print(A ) def __magic_name__ ( A : str, A : str ): '''simple docstring''' return translate_message(A, A, "encrypt" ) def __magic_name__ ( A : str, A : str ): '''simple docstring''' return translate_message(A, A, "decrypt" ) def __magic_name__ ( A : str, A : str, A : str ): '''simple docstring''' a = [] a = 0 a = key.upper() for symbol in message: a = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(A ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(A ): a = 0 else: translated.append(A ) return "".join(A ) if __name__ == "__main__": main()
107
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowerCamelCase_ = logging.getLogger(__name__) def __lowercase ( __lowercase , __lowercase ) -> Optional[int]: '''simple docstring''' if os.path.exists(__lowercase ): if os.path.exists(os.path.join(__lowercase , "config.json" ) ) and os.path.isfile( os.path.join(__lowercase , "config.json" ) ): os.remove(os.path.join(__lowercase , "config.json" ) ) if os.path.exists(os.path.join(__lowercase , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(__lowercase , "pytorch_model.bin" ) ): os.remove(os.path.join(__lowercase , "pytorch_model.bin" ) ) else: os.makedirs(__lowercase ) model.save_pretrained(__lowercase ) def __lowercase ( __lowercase , __lowercase=False ) -> Optional[int]: '''simple docstring''' _A = 2 if unlogit: _A = torch.pow(__lowercase , __lowercase ) _A = p * torch.log(__lowercase ) _A = 0 return -plogp.sum(dim=-1 ) def __lowercase ( __lowercase ) -> Optional[Any]: '''simple docstring''' logger.info("lv, h >\t" + "\t".join(F'''{x + 1}''' for x in range(len(__lowercase ) ) ) ) for row in range(len(__lowercase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase=True , __lowercase=True , __lowercase=None , __lowercase=False ) -> int: '''simple docstring''' _A , _A = model.config.num_hidden_layers, model.config.num_attention_heads _A = torch.zeros(__lowercase , __lowercase ).to(args.device ) _A = torch.zeros(__lowercase , __lowercase ).to(args.device ) if head_mask is None: _A = torch.ones(__lowercase , __lowercase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowercase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _A = None _A = 0.0 _A = 0.0 for step, inputs in enumerate(tqdm(__lowercase , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): _A = tuple(t.to(args.device ) for t in inputs ) ((_A) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _A = model(__lowercase , labels=__lowercase , head_mask=__lowercase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _A , _A , _A = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowercase ): _A = entropy(attn.detach() , __lowercase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowercase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _A = 2 _A = torch.pow(torch.pow(__lowercase , __lowercase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: _A = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(__lowercase ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(__lowercase ) logger.info("Head ranked by importance scores" ) _A = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _A = torch.arange( head_importance.numel() , device=args.device ) _A = head_ranks.view_as(__lowercase ) print_ad_tensor(__lowercase ) return attn_entropy, head_importance, total_loss def __lowercase ( __lowercase , __lowercase , __lowercase ) -> List[str]: '''simple docstring''' _A , _A , _A = compute_heads_importance(__lowercase , __lowercase , __lowercase , compute_entropy=__lowercase ) _A = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , __lowercase , original_score * args.masking_threshold ) _A = torch.ones_like(__lowercase ) _A = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _A = original_score while current_score >= original_score * args.masking_threshold: _A = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _A = float("Inf" ) _A = head_importance.view(-1 ).sort()[1] if len(__lowercase ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads _A = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) _A = new_head_mask.view(-1 ) _A = 0.0 _A = new_head_mask.view_as(__lowercase ) _A = new_head_mask.clone().detach() print_ad_tensor(__lowercase ) # Compute metric and head importance again _A , _A , _A = compute_heads_importance( __lowercase , __lowercase , __lowercase , compute_entropy=__lowercase , head_mask=__lowercase ) _A = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , __lowercase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(__lowercase ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[str]: '''simple docstring''' _A = datetime.now() _A , _A , _A = compute_heads_importance( __lowercase , __lowercase , __lowercase , compute_entropy=__lowercase , compute_importance=__lowercase , head_mask=__lowercase ) _A = 1 / loss _A = datetime.now() - before_time _A = sum(p.numel() for p in model.parameters() ) _A = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowercase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowercase , __lowercase ): _A = [ v, ] assert sum(len(__lowercase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowercase ) _A = sum(p.numel() for p in model.parameters() ) _A = datetime.now() _A , _A , _A = compute_heads_importance( __lowercase , __lowercase , __lowercase , compute_entropy=__lowercase , compute_importance=__lowercase , head_mask=__lowercase , actually_pruned=__lowercase , ) _A = 1 / loss _A = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , __lowercase , __lowercase , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , __lowercase , __lowercase ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(__lowercase , args.output_dir ) def __lowercase ( ) -> Union[str, Any]: '''simple docstring''' _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=__lowercase , type=__lowercase , required=__lowercase , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=__lowercase , type=__lowercase , required=__lowercase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=__lowercase , type=__lowercase , required=__lowercase , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=__lowercase , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=__lowercase , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=__lowercase , type=__lowercase , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=__lowercase , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=__lowercase , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=__lowercase , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=__lowercase , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=__lowercase , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=__lowercase , help="Batch size." ) parser.add_argument("--seed" , type=__lowercase , default=42 ) parser.add_argument("--local_rank" , type=__lowercase , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=__lowercase , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=__lowercase , default="" , help="Can be used for distant debugging." ) _A = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowercase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _A = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) _A = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _A = torch.device("cuda" , args.local_rank ) _A = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _A = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _A = nn.parallel.DistributedDataParallel( __lowercase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowercase ) elif args.n_gpu > 1: _A = nn.DataParallel(__lowercase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowercase ) torch.save(__lowercase , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , __lowercase ) # Prepare dataset _A = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _A = (torch.from_numpy(__lowercase ),) _A = TensorDataset(*__lowercase ) _A = RandomSampler(__lowercase ) _A = DataLoader(__lowercase , sampler=__lowercase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowercase , __lowercase , __lowercase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _A = mask_heads(__lowercase , __lowercase , __lowercase ) prune_heads(__lowercase , __lowercase , __lowercase , __lowercase ) if __name__ == "__main__": main()
79
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __A = logging.get_logger(__name__) __A = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) __A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase__: Optional[Any] =model_type_to_module_name(__a ) lowerCamelCase__: Dict =importlib.import_module(F""".{module_name}""" , "transformers.models" ) try: return getattr(__a , __a ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__a , "__name__" , __a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase__: Any =importlib.import_module("transformers" ) if hasattr(__a , __a ): return getattr(__a , __a ) return None def lowerCAmelCase_ ( __a , __a = None , __a = False , __a = False , __a = None , __a = None , __a = None , __a = False , **__a , ) -> int: """simple docstring""" lowerCamelCase__: List[str] =get_file_from_repo( __a , __a , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(__a , encoding="utf-8" ) as reader: return json.load(__a ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : str) ->int: '''simple docstring''' raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.") @classmethod @replace_list_option_in_docstrings(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (cls : str , UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any]) ->Any: '''simple docstring''' lowerCamelCase__: int =kwargs.pop("config" , UpperCAmelCase_) lowerCamelCase__: str =kwargs.pop("trust_remote_code" , UpperCAmelCase_) lowerCamelCase__: int =True lowerCamelCase__ , lowerCamelCase__: str =ImageProcessingMixin.get_image_processor_dict(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =config_dict.get("image_processor_type" , UpperCAmelCase_) lowerCamelCase__: str =None if "AutoImageProcessor" in config_dict.get("auto_map" , {}): lowerCamelCase__: Union[str, Any] =config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: lowerCamelCase__: Dict =config_dict.pop("feature_extractor_type" , UpperCAmelCase_) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration.") lowerCamelCase__: Tuple =feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor") if "AutoFeatureExtractor" in config_dict.get("auto_map" , {}): lowerCamelCase__: Optional[Any] =config_dict["auto_map"]["AutoFeatureExtractor"] lowerCamelCase__: str =feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor") logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration.") # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: List[str] =AutoConfig.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) # It could be in `config.image_processor_type`` lowerCamelCase__: List[str] =getattr(UpperCAmelCase_ , "image_processor_type" , UpperCAmelCase_) if hasattr(UpperCAmelCase_ , "auto_map") and "AutoImageProcessor" in config.auto_map: lowerCamelCase__: Optional[Any] =config.auto_map["AutoImageProcessor"] if image_processor_class is not None: lowerCamelCase__: Union[str, Any] =image_processor_class_from_name(UpperCAmelCase_) lowerCamelCase__: Tuple =image_processor_auto_map is not None lowerCamelCase__: List[Any] =image_processor_class is not None or type(UpperCAmelCase_) in IMAGE_PROCESSOR_MAPPING lowerCamelCase__: Union[str, Any] =resolve_trust_remote_code( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) if has_remote_code and trust_remote_code: lowerCamelCase__: List[Any] =get_class_from_dynamic_module( UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Dict =kwargs.pop("code_revision" , UpperCAmelCase_) if os.path.isdir(UpperCAmelCase_): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_) elif image_processor_class is not None: return image_processor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(UpperCAmelCase_) in IMAGE_PROCESSOR_MAPPING: lowerCamelCase__: Optional[int] =IMAGE_PROCESSOR_MAPPING[type(UpperCAmelCase_)] return image_processor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys())}""") @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]) ->List[Any]: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(UpperCAmelCase_ , UpperCAmelCase_)
273
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __A = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : ArgumentParser) ->str: '''simple docstring''' lowerCamelCase__: Dict =parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Model's type.") train_parser.add_argument( "--tf_checkpoint" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="TensorFlow checkpoint path or folder.") train_parser.add_argument( "--pytorch_dump_output" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to the PyTorch saved model output.") train_parser.add_argument("--config" , type=UpperCAmelCase_ , default="" , help="Configuration file path or folder.") train_parser.add_argument( "--finetuning_task_name" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=UpperCAmelCase_) def __init__(self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , *UpperCAmelCase_ : Optional[int] , ) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =logging.get_logger("transformers-cli/converting") self._logger.info(F"""Loading model {model_type}""") lowerCamelCase__: Any =model_type lowerCamelCase__: Optional[int] =tf_checkpoint lowerCamelCase__: Any =pytorch_dump_output lowerCamelCase__: Union[str, Any] =config lowerCamelCase__: str =finetuning_task_name def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) if "ckpt" in self._tf_checkpoint.lower(): lowerCamelCase__: Tuple =self._tf_checkpoint lowerCamelCase__: List[str] ="" else: lowerCamelCase__: Any =self._tf_checkpoint lowerCamelCase__: Dict ="" convert_transfo_xl_checkpoint_to_pytorch( UpperCAmelCase_ , self._config , self._pytorch_dump_output , UpperCAmelCase_) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]")
273
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = IFInpaintingPipeline __UpperCAmelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __UpperCAmelCase : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : Any = PipelineTesterMixin.required_optional_params - {"""latents"""} def __lowercase ( self : str ): '''simple docstring''' return self._get_dummy_components() def __lowercase ( self : Any ,_a : Optional[Any] ,_a : Tuple=0 ): '''simple docstring''' if str(UpperCamelCase__ ).startswith('mps' ): _a : Union[str, Any] = torch.manual_seed(UpperCamelCase__ ) else: _a : str = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) _a : List[str] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) _a : str = floats_tensor((1, 3, 32, 32) ,rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) _a : Union[str, Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' ,reason='float16 requires CUDA' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowercase ( self : Optional[int] ): '''simple docstring''' self._test_save_load_local() def __lowercase ( self : str ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,)
271
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } __A = { "google/rembert": 256, } __A = "▁" class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Dict = RemBertTokenizer def __init__( self : Tuple , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=True , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : int="[CLS]" , UpperCamelCase__ : Optional[Any]="[SEP]" , UpperCamelCase__ : List[str]="<unk>" , UpperCamelCase__ : Dict="[SEP]" , UpperCamelCase__ : int="<pad>" , UpperCamelCase__ : Any="[CLS]" , UpperCamelCase__ : str="[MASK]" , **UpperCamelCase__ : Optional[Any] , )-> List[Any]: '''simple docstring''' __lowerCAmelCase: int = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__) if isinstance(UpperCamelCase__ , UpperCamelCase__) else mask_token super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , **UpperCamelCase__ , ) __lowerCAmelCase: Optional[int] = do_lower_case __lowerCAmelCase: int = remove_space __lowerCAmelCase: int = keep_accents __lowerCAmelCase: str = vocab_file __lowerCAmelCase: Tuple = False if not self.vocab_file else True def lowercase_ ( self : Any , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Optional[int] = [self.sep_token_id] __lowerCAmelCase: Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False)-> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model.") return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__)) + [1] + ([0] * len(UpperCamelCase__)) + [1] return [1] + ([0] * len(UpperCamelCase__)) + [1] def lowercase_ ( self : Tuple , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Optional[int] = [self.sep_token_id] __lowerCAmelCase: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None)-> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase__): logger.error("Vocabulary path ({}) should be a directory".format(UpperCamelCase__)) return __lowerCAmelCase: Optional[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase__): copyfile(self.vocab_file , UpperCamelCase__) return (out_vocab_file,)
217
0
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class a ( _A ): '''simple docstring''' def __init__( self : Dict , __snake_case : List[Any] , __snake_case : str , __snake_case : Tuple ): UpperCAmelCase_ = dataset UpperCAmelCase_ = process UpperCAmelCase_ = params def __len__( self : int ): return len(self.dataset ) def __getitem__( self : int , __snake_case : int ): UpperCAmelCase_ = self.dataset[i] UpperCAmelCase_ = self.process(__snake_case , **self.params ) return processed class a ( _A ): '''simple docstring''' def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : List[str]=None ): UpperCAmelCase_ = loader UpperCAmelCase_ = infer UpperCAmelCase_ = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether UpperCAmelCase_ = None UpperCAmelCase_ = loader_batch_size # Internal bookkeeping UpperCAmelCase_ = None UpperCAmelCase_ = None def __len__( self : Dict ): return len(self.loader ) def __iter__( self : Dict ): UpperCAmelCase_ = iter(self.loader ) return self def lowerCamelCase_ ( self : Any ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice UpperCAmelCase_ = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) UpperCAmelCase_ = {} for k, element in self._loader_batch_data.items(): if isinstance(__snake_case , __snake_case ): # Convert ModelOutput to tuple first UpperCAmelCase_ = element.to_tuple() if isinstance(element[0] , torch.Tensor ): UpperCAmelCase_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__snake_case , __snake_case ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): UpperCAmelCase_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around UpperCAmelCase_ = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase_ = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase_ = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. UpperCAmelCase_ = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 UpperCAmelCase_ = self._loader_batch_data.__class__(__snake_case ) self._loader_batch_index += 1 return result def lowerCamelCase_ ( self : str ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch UpperCAmelCase_ = next(self.iterator ) UpperCAmelCase_ = self.infer(__snake_case , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(__snake_case , torch.Tensor ): UpperCAmelCase_ = processed else: UpperCAmelCase_ = list(processed.keys() )[0] UpperCAmelCase_ = processed[key] if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ = len(__snake_case ) else: UpperCAmelCase_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase_ = observed_batch_size # Setting internal index to unwrap the batch UpperCAmelCase_ = processed UpperCAmelCase_ = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class a ( _A ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Union[str, Any]=None ): super().__init__(__snake_case , __snake_case , __snake_case ) def __iter__( self : List[Any] ): UpperCAmelCase_ = iter(self.loader ) UpperCAmelCase_ = None return self def lowerCamelCase_ ( self : Any ): if self.subiterator is None: UpperCAmelCase_ = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item UpperCAmelCase_ = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators UpperCAmelCase_ = self.infer(next(self.iterator ) , **self.params ) UpperCAmelCase_ = next(self.subiterator ) return processed class a ( _A ): '''simple docstring''' def __iter__( self : Dict ): UpperCAmelCase_ = iter(self.loader ) return self def lowerCamelCase_ ( self : List[str] ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. UpperCAmelCase_ = False UpperCAmelCase_ = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase_ = self.loader_batch_item() UpperCAmelCase_ = item.pop('''is_last''' ) accumulator.append(__snake_case ) if is_last: return accumulator while not is_last: UpperCAmelCase_ = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(__snake_case , torch.Tensor ): UpperCAmelCase_ = processed else: UpperCAmelCase_ = list(processed.keys() )[0] UpperCAmelCase_ = processed[key] if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ = len(__snake_case ) else: UpperCAmelCase_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase_ = observed_batch_size UpperCAmelCase_ = processed UpperCAmelCase_ = 0 while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase_ = self.loader_batch_item() UpperCAmelCase_ = item.pop('''is_last''' ) accumulator.append(__snake_case ) if is_last: return accumulator else: UpperCAmelCase_ = processed UpperCAmelCase_ = item.pop('''is_last''' ) accumulator.append(__snake_case ) return accumulator class a ( _A ): '''simple docstring''' def __init__( self : Optional[int] , __snake_case : Dataset , __snake_case : str ): UpperCAmelCase_ = dataset UpperCAmelCase_ = key def __len__( self : Tuple ): return len(self.dataset ) def __getitem__( self : List[str] , __snake_case : Optional[int] ): return self.dataset[i][self.key] class a ( _A ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : Dataset , __snake_case : str , __snake_case : str ): UpperCAmelCase_ = dataset UpperCAmelCase_ = keya UpperCAmelCase_ = keya def __len__( self : Any ): return len(self.dataset ) def __getitem__( self : List[str] , __snake_case : str ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
177
from __future__ import annotations import os from collections.abc import Mapping _lowerCamelCase = tuple[int, int] class a : '''simple docstring''' def __init__( self : str , __snake_case : set[int] , __snake_case : Mapping[EdgeT, int] ): UpperCAmelCase_ = vertices UpperCAmelCase_ = { (min(__snake_case ), max(__snake_case )): weight for edge, weight in edges.items() } def lowerCamelCase_ ( self : Any , __snake_case : EdgeT , __snake_case : int ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCAmelCase_ = weight def lowerCamelCase_ ( self : Union[str, Any] ): UpperCAmelCase_ = Graph({min(self.vertices )} , {} ) UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 while len(subgraph.vertices ) < len(self.vertices ): UpperCAmelCase_ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCAmelCase_ = edge UpperCAmelCase_ = weight subgraph.add_edge(__snake_case , __snake_case ) return subgraph def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "p107_network.txt" ) -> int: UpperCAmelCase_ = os.path.abspath(os.path.dirname(__UpperCamelCase ) ) UpperCAmelCase_ = os.path.join(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase_ = {} UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 with open(__UpperCamelCase ) as f: UpperCAmelCase_ = f.read().strip().split('''\n''' ) UpperCAmelCase_ = [line.split(''',''' ) for line in data] for edgea in range(1 , len(__UpperCamelCase ) ): for edgea in range(__UpperCamelCase ): if adjaceny_matrix[edgea][edgea] != "-": UpperCAmelCase_ = int(adjaceny_matrix[edgea][edgea] ) UpperCAmelCase_ = Graph(set(range(len(__UpperCamelCase ) ) ) , __UpperCamelCase ) UpperCAmelCase_ = graph.prims_algorithm() UpperCAmelCase_ = sum(graph.edges.values() ) UpperCAmelCase_ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
177
1
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->Tuple: a_ = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") a_ = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") model.to(__UpperCAmelCase) from datasets import load_dataset a_ = load_dataset("nielsr/rvlcdip-demo") a_ = dataset["train"][0]["image"].convert("RGB") a_ = image_processor(__UpperCAmelCase , return_tensors="pt").to(__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(**__UpperCAmelCase) a_ = outputs.logits a_ = torch.Size((1, 16)) self.assertEqual(logits.shape , __UpperCAmelCase) a_ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=__UpperCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4))
243
"""simple docstring""" import math import os import sys def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" a_ = "" try: with open(UpperCAmelCase , "rb" ) as binary_file: a_ = binary_file.read() for dat in data: a_ = F'''{dat:08b}''' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" lexicon.pop(UpperCAmelCase ) a_ = last_match_id if math.loga(UpperCAmelCase ).is_integer(): for curr_key in lexicon: a_ = "0" + lexicon[curr_key] a_ = bin(UpperCAmelCase )[2:] def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" a_ = {"0": "0", "1": "1"} a_ , a_ = "", "" a_ = len(UpperCAmelCase ) for i in range(len(UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue a_ = lexicon[curr_string] result += last_match_id add_key_to_lexicon(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) index += 1 a_ = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": a_ = lexicon[curr_string] result += last_match_id return result def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" a_ = os.path.getsize(UpperCAmelCase ) a_ = bin(UpperCAmelCase )[2:] a_ = len(UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" a_ = 8 try: with open(UpperCAmelCase , "wb" ) as opened_file: a_ = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCAmelCase ) , UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(UpperCAmelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" a_ = read_file_binary(UpperCAmelCase ) a_ = compress_data(UpperCAmelCase ) a_ = add_file_length(UpperCAmelCase , UpperCAmelCase ) write_file_binary(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
243
1
"""simple docstring""" import os def lowerCamelCase () -> Tuple: with open(os.path.dirname(a_) + '''/grid.txt''') as f: lowercase :Union[str, Any] = [] # noqa: E741 for _ in range(20): l.append([int(a_) for x in f.readline().split()]) lowercase :Optional[Any] = 0 # right for i in range(20): for j in range(17): lowercase :Tuple = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowercase :int = temp # down for i in range(17): for j in range(20): lowercase :Tuple = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowercase :int = temp # diagonal 1 for i in range(17): for j in range(17): lowercase :str = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowercase :Union[str, Any] = temp # diagonal 2 for i in range(17): for j in range(3 , 20): lowercase :Union[str, Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowercase :Optional[Any] = temp return maximum if __name__ == "__main__": print(solution())
172
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCamelCase (a_ :int) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCamelCase () -> Optional[int]: with parallel_backend('''spark'''): assert ParallelBackendConfig.backend_name == "spark" lowercase :Optional[int] = [1, 2, 3] with pytest.raises(a_): with parallel_backend('''unsupported backend'''): map_nested(a_ , a_ , num_proc=2) with pytest.raises(a_): with parallel_backend('''unsupported backend'''): map_nested(a_ , a_ , num_proc=-1) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1]) def lowerCamelCase (a_ :Union[str, Any]) -> Optional[Any]: lowercase :Optional[Any] = [1, 2] lowercase :int = {'''a''': 1, '''b''': 2} lowercase :List[Any] = {'''a''': [1, 2], '''b''': [3, 4]} lowercase :Optional[int] = {'''a''': {'''1''': 1}, '''b''': 2} lowercase :List[Any] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowercase :Optional[int] = [2, 3] lowercase :Tuple = {'''a''': 2, '''b''': 3} lowercase :Union[str, Any] = {'''a''': [2, 3], '''b''': [4, 5]} lowercase :List[str] = {'''a''': {'''1''': 2}, '''b''': 3} lowercase :Union[str, Any] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark'''): assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa
172
1
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __a = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __a = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( A__ ): A : List[str] = 'maskformer' A : Tuple = {'hidden_size': 'mask_feature_size'} A : List[str] = ['resnet', 'swin'] A : List[Any] = ['detr'] def __init__( self , SCREAMING_SNAKE_CASE__ = 256 , SCREAMING_SNAKE_CASE__ = 256 , SCREAMING_SNAKE_CASE__ = 0.1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 0.02 , SCREAMING_SNAKE_CASE__ = 1.0 , SCREAMING_SNAKE_CASE__ = 1.0 , SCREAMING_SNAKE_CASE__ = 1.0 , SCREAMING_SNAKE_CASE__ = 20.0 , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase : Dict = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Any = backbone_config.pop('''model_type''' ) lowercase : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase : str = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase : str = DetrConfig() else: # verify that the decoder is supported lowercase : Optional[int] = ( decoder_config.pop('''model_type''' ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {','.join(self.decoders_supported )}""" ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase : Dict = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = backbone_config lowercase : int = decoder_config # main feature dimension for the model lowercase : int = fpn_feature_size lowercase : Dict = mask_feature_size # initializer lowercase : str = init_std lowercase : Optional[int] = init_xavier_std # Hungarian matcher && loss lowercase : List[Any] = cross_entropy_weight lowercase : List[Any] = dice_weight lowercase : Optional[int] = mask_weight lowercase : Optional[int] = use_auxiliary_loss lowercase : Any = no_object_weight lowercase : List[str] = output_auxiliary_logits lowercase : List[Any] = self.decoder_config.encoder_attention_heads lowercase : int = self.decoder_config.num_hidden_layers super().__init__(**SCREAMING_SNAKE_CASE__ ) @classmethod def __lowerCamelCase ( cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): return cls( backbone_config=SCREAMING_SNAKE_CASE__ , decoder_config=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __lowerCamelCase ( self ): lowercase : str = copy.deepcopy(self.__dict__ ) lowercase : List[Any] = self.backbone_config.to_dict() lowercase : Any = self.decoder_config.to_dict() lowercase : List[Any] = self.__class__.model_type return output
337
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __a = logging.get_logger(__name__) __a = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __SCREAMING_SNAKE_CASE ( A__ ): A : List[str] = 'perceiver' def __init__( self , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=1280 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=26 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="kv" , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=262 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=56 , SCREAMING_SNAKE_CASE__=[368, 496] , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=1920 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=[1, 16, 224, 224] , **SCREAMING_SNAKE_CASE__ , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowercase : Any = num_latents lowercase : Union[str, Any] = d_latents lowercase : str = d_model lowercase : int = num_blocks lowercase : str = num_self_attends_per_block lowercase : List[str] = num_self_attention_heads lowercase : List[str] = num_cross_attention_heads lowercase : int = qk_channels lowercase : List[Any] = v_channels lowercase : int = cross_attention_shape_for_attention lowercase : Tuple = self_attention_widening_factor lowercase : Dict = cross_attention_widening_factor lowercase : Any = hidden_act lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : Union[str, Any] = initializer_range lowercase : Any = layer_norm_eps lowercase : Any = use_query_residual # masked language modeling attributes lowercase : List[str] = vocab_size lowercase : Dict = max_position_embeddings # image classification attributes lowercase : int = image_size # flow attributes lowercase : List[Any] = train_size # multimodal autoencoding attributes lowercase : List[Any] = num_frames lowercase : Union[str, Any] = audio_samples_per_frame lowercase : int = samples_per_patch lowercase : Optional[int] = output_shape class __SCREAMING_SNAKE_CASE ( A__ ): @property def __lowerCamelCase ( self ): if self.task == "multiple-choice": lowercase : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def __lowerCamelCase ( self ): return 1E-4 def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 3 , SCREAMING_SNAKE_CASE__ = 40 , SCREAMING_SNAKE_CASE__ = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase : str = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase : Union[str, Any] = preprocessor.num_special_tokens_to_add(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE__ ) # Generate dummy inputs according to compute batch and sequence lowercase : Optional[Any] = [''' '''.join(['''a'''] ) * seq_length] * batch_size lowercase : Any = dict(preprocessor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) ) lowercase : Union[str, Any] = inputs.pop('''input_ids''' ) return inputs elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase : List[str] = compute_effective_axis_dimension(SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch ) lowercase : List[str] = self._generate_dummy_images(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = dict(preprocessor(images=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) ) lowercase : Union[str, Any] = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
337
1
'''simple docstring''' import pprint import requests __UpperCamelCase = "https://zenquotes.io/api" def _a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __UpperCamelCase = random_quotes() pprint.pprint(response)
364
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : str ,_UpperCamelCase : List[str] ): return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def a__ ( _UpperCamelCase : int ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Tuple ,_UpperCamelCase : Any="attention" ): __lowerCamelCase = __lowerCamelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) __lowerCamelCase = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) __lowerCamelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) __lowerCamelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) __lowerCamelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) __lowerCamelCase = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) __lowerCamelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) __lowerCamelCase = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def a__ ( _UpperCamelCase : str ,_UpperCamelCase : List[Any] ,_UpperCamelCase : List[Any] ,_UpperCamelCase : Optional[int]=False ): if split_mlp_wi: __lowerCamelCase = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] __lowerCamelCase = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] __lowerCamelCase = (wi_a, wi_a) else: __lowerCamelCase = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] __lowerCamelCase = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : Any ,_UpperCamelCase : List[str] ,_UpperCamelCase : Optional[int] ): return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def a__ ( _UpperCamelCase : dict ,*, _UpperCamelCase : int ,_UpperCamelCase : bool ,_UpperCamelCase : bool = False ): __lowerCamelCase = traverse_util.flatten_dict(variables['''target'''] ) __lowerCamelCase = {'''/'''.join(_UpperCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowerCamelCase = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,_UpperCamelCase ) __lowerCamelCase = collections.OrderedDict() # Shared embeddings. __lowerCamelCase = old['''token_embedder/embedding'''] # Encoder. for i in range(_UpperCamelCase ): # Block i, layer 0 (Self Attention). __lowerCamelCase = tax_layer_norm_lookup(_UpperCamelCase ,_UpperCamelCase ,'''encoder''' ,'''pre_attention_layer_norm''' ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = tax_attention_lookup(_UpperCamelCase ,_UpperCamelCase ,'''encoder''' ,'''attention''' ) __lowerCamelCase = layer_norm __lowerCamelCase = k.T __lowerCamelCase = o.T __lowerCamelCase = q.T __lowerCamelCase = v.T # Block i, layer 1 (MLP). __lowerCamelCase = tax_layer_norm_lookup(_UpperCamelCase ,_UpperCamelCase ,'''encoder''' ,'''pre_mlp_layer_norm''' ) __lowerCamelCase ,__lowerCamelCase = tax_mlp_lookup(_UpperCamelCase ,_UpperCamelCase ,'''encoder''' ,_UpperCamelCase ) __lowerCamelCase = layer_norm if split_mlp_wi: __lowerCamelCase = wi[0].T __lowerCamelCase = wi[1].T else: __lowerCamelCase = wi.T __lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCamelCase = tax_relpos_bias_lookup( _UpperCamelCase ,_UpperCamelCase ,'''encoder''' ).T __lowerCamelCase = old['''encoder/encoder_norm/scale'''] if not scalable_attention: __lowerCamelCase = tax_relpos_bias_lookup( _UpperCamelCase ,0 ,'''encoder''' ).T __lowerCamelCase = tax_relpos_bias_lookup( _UpperCamelCase ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(_UpperCamelCase ): # Block i, layer 0 (Self Attention). __lowerCamelCase = tax_layer_norm_lookup(_UpperCamelCase ,_UpperCamelCase ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = tax_attention_lookup(_UpperCamelCase ,_UpperCamelCase ,'''decoder''' ,'''self_attention''' ) __lowerCamelCase = layer_norm __lowerCamelCase = k.T __lowerCamelCase = o.T __lowerCamelCase = q.T __lowerCamelCase = v.T # Block i, layer 1 (Cross Attention). __lowerCamelCase = tax_layer_norm_lookup(_UpperCamelCase ,_UpperCamelCase ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = tax_attention_lookup(_UpperCamelCase ,_UpperCamelCase ,'''decoder''' ,'''encoder_decoder_attention''' ) __lowerCamelCase = layer_norm __lowerCamelCase = k.T __lowerCamelCase = o.T __lowerCamelCase = q.T __lowerCamelCase = v.T # Block i, layer 2 (MLP). __lowerCamelCase = tax_layer_norm_lookup(_UpperCamelCase ,_UpperCamelCase ,'''decoder''' ,'''pre_mlp_layer_norm''' ) __lowerCamelCase ,__lowerCamelCase = tax_mlp_lookup(_UpperCamelCase ,_UpperCamelCase ,'''decoder''' ,_UpperCamelCase ) __lowerCamelCase = layer_norm if split_mlp_wi: __lowerCamelCase = wi[0].T __lowerCamelCase = wi[1].T else: __lowerCamelCase = wi.T __lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCamelCase = tax_relpos_bias_lookup(_UpperCamelCase ,_UpperCamelCase ,'''decoder''' ).T __lowerCamelCase = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowerCamelCase = old['''decoder/logits_dense/kernel'''].T return new def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : bool ): __lowerCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowerCamelCase = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowerCamelCase = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) __lowerCamelCase = state_dict['''shared.weight'''] return state_dict def a__ ( _UpperCamelCase : int ,_UpperCamelCase : str ,_UpperCamelCase : Any ,_UpperCamelCase : int ,_UpperCamelCase : str ): __lowerCamelCase = checkpoints.load_tax_checkpoint(_UpperCamelCase ) __lowerCamelCase = convert_tax_to_pytorch( _UpperCamelCase ,num_layers=config.num_layers ,is_encoder_only=_UpperCamelCase ,scalable_attention=_UpperCamelCase ) __lowerCamelCase = make_state_dict(_UpperCamelCase ,_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) def a__ ( _UpperCamelCase : int ,_UpperCamelCase : str ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : bool = False ,_UpperCamelCase : bool = False ,): __lowerCamelCase = MTaConfig.from_json_file(_UpperCamelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowerCamelCase = UMTaEncoderModel(_UpperCamelCase ) else: __lowerCamelCase = UMTaForConditionalGeneration(_UpperCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_UpperCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_UpperCamelCase ) print('''Done''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) a_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
330
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } a_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def a__ ( _UpperCamelCase : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Dict ): for attribute in key.split('''.''' ): __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ) if weight_type is not None: __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : Any ): __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hf_model.config.feat_extract_norm == '''group''' ,) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCamelCase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(_UpperCamelCase )[0].split('''.''' )[-2] __lowerCamelCase = mapped_key.replace('''*''' ,_UpperCamelCase ) if "weight_g" in name: __lowerCamelCase = '''weight_g''' elif "weight_v" in name: __lowerCamelCase = '''weight_v''' elif "bias" in name: __lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = '''weight''' else: __lowerCamelCase = None set_recursively(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ): __lowerCamelCase = full_name.split('''conv_layers.''' )[-1] __lowerCamelCase = name.split('''.''' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : List[str] ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : List[Any]=True ): if config_path is not None: __lowerCamelCase = UniSpeechSatConfig.from_pretrained(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatConfig() __lowerCamelCase = '''''' if is_finetuned: __lowerCamelCase = UniSpeechSatForCTC(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatForPreTraining(_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowerCamelCase = model[0].eval() recursively_load_weights(_UpperCamelCase ,_UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
1
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase__ : List[Any] ='.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowerCAmelCase__ : List[str] =[ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : str = SavedModel() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] with open(os.path.join(A__, 'utils', 'tf_ops', 'onnx.json' ) ) as f: SCREAMING_SNAKE_CASE_ : List[str] = json.load(A__ )['opsets'] for i in range(1, opset + 1 ): onnx_ops.extend(onnx_opsets[str(A__ )] ) with open(A__, 'rb' ) as f: saved_model.ParseFromString(f.read() ) SCREAMING_SNAKE_CASE_ : Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(A__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(A__ ) if strict and len(A__ ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(A__ ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*A__, sep='\n' ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": lowerCAmelCase__ : Optional[int] =argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) lowerCAmelCase__ : Any =parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
162
import numpy # List of input, output pairs lowerCAmelCase__ : int =( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowerCAmelCase__ : Any =(((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) lowerCAmelCase__ : List[str] =[2, 4, 1, 5] lowerCAmelCase__ : Dict =len(train_data) lowerCAmelCase__ : Union[str, Any] =0.0_0_9 def a__ ( A__, A__="train" ): return calculate_hypothesis_value(A__, A__ ) - output( A__, A__ ) def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Tuple = 0 for i in range(len(A__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( A__, A__ ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( A__, A__ ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( A__, A__=m ): SCREAMING_SNAKE_CASE_ : Tuple = 0 for i in range(A__ ): if index == -1: summation_value += _error(A__ ) else: summation_value += _error(A__ ) * train_data[i][0][index] return summation_value def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Any = summation_of_cost_derivative(A__, A__ ) / m return cost_derivative_value def a__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output SCREAMING_SNAKE_CASE_ : str = 0.00_00_02 SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Any = 0 while True: j += 1 SCREAMING_SNAKE_CASE_ : int = [0, 0, 0, 0] for i in range(0, len(A__ ) ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_cost_derivative(i - 1 ) SCREAMING_SNAKE_CASE_ : str = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( A__, A__, atol=A__, rtol=A__, ): break SCREAMING_SNAKE_CASE_ : Optional[Any] = temp_parameter_vector print(('Number of iterations:', j) ) def a__ ( ): for i in range(len(A__ ) ): print(('Actual output value:', output(A__, 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(A__, 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
162
1
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE( a_ , unittest.TestCase ): _UpperCAmelCase = KandinskyVaaPipeline _UpperCAmelCase = [ "image_embeds", "negative_image_embeds", ] _UpperCAmelCase = ["image_embeds", "negative_image_embeds"] _UpperCAmelCase = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _UpperCAmelCase = False @property def lowerCAmelCase_ ( self: List[str] ) -> int: return 32 @property def lowerCAmelCase_ ( self: List[str] ) -> List[Any]: return 32 @property def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]: return self.time_input_dim @property def lowerCAmelCase_ ( self: str ) -> Dict: return self.time_input_dim * 4 @property def lowerCAmelCase_ ( self: str ) -> int: return 1_00 @property def lowerCAmelCase_ ( self: Any ) -> Dict: torch.manual_seed(0 ) snake_case__ = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case__ = UNetaDConditionModel(**UpperCamelCase ) return model @property def lowerCAmelCase_ ( self: List[Any] ) -> List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase_ ( self: Tuple ) -> List[Any]: torch.manual_seed(0 ) snake_case__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase_ ( self: Optional[int] ) -> Union[str, Any]: snake_case__ = self.dummy_unet snake_case__ = self.dummy_movq snake_case__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=UpperCamelCase , ) snake_case__ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: List[Any] , UpperCamelCase: int=0 ) -> Union[str, Any]: snake_case__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) snake_case__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase ) if str(UpperCamelCase ).startswith('mps' ): snake_case__ = torch.manual_seed(UpperCamelCase ) else: snake_case__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) snake_case__ = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def lowerCAmelCase_ ( self: Tuple ) -> List[str]: snake_case__ = 'cpu' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**UpperCamelCase ) snake_case__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) snake_case__ = output.images snake_case__ = pipe( **self.get_dummy_inputs(UpperCamelCase ) , return_dict=UpperCamelCase , )[0] snake_case__ = image[0, -3:, -3:, -1] snake_case__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ = np.array( [0.6_237_976, 1.0, 0.36_441_332, 1.0, 0.70_639_634, 0.29_877_186, 0.85_652_125, 0.5_216_843, 0.54_454_046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: Any ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self: List[Any] ) -> Optional[int]: snake_case__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' ) snake_case__ = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase ) snake_case__ = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) snake_case__ = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ = 'red cat, 4k photo' snake_case__ = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ , snake_case__ = pipe_prior( UpperCamelCase , generator=UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() snake_case__ = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ = pipeline( image_embeds=UpperCamelCase , negative_image_embeds=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=1_00 , output_type='np' , ) snake_case__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
307
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( _A , _A=0.999 , _A="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case__ = [] for i in range(_A ): snake_case__ = i / num_diffusion_timesteps snake_case__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE( a_ , a_ ): _UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] _UpperCAmelCase = 2 @register_to_config def __init__( self: Dict , UpperCamelCase: int = 10_00 , UpperCamelCase: float = 0.00_085 , UpperCamelCase: float = 0.012 , UpperCamelCase: str = "linear" , UpperCamelCase: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase: str = "epsilon" , UpperCamelCase: Optional[bool] = False , UpperCamelCase: Optional[bool] = False , UpperCamelCase: float = 1.0 , UpperCamelCase: str = "linspace" , UpperCamelCase: int = 0 , ) -> str: if trained_betas is not None: snake_case__ = torch.tensor(UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case__ = torch.linspace(UpperCamelCase , UpperCamelCase , UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='cosine' ) elif beta_schedule == "exp": snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='exp' ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case__ = 1.0 - self.betas snake_case__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase ) snake_case__ = use_karras_sigmas def lowerCAmelCase_ ( self: str , UpperCamelCase: int , UpperCamelCase: Optional[int]=None ) -> str: if schedule_timesteps is None: snake_case__ = self.timesteps snake_case__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case__ = 1 if len(UpperCamelCase ) > 1 else 0 else: snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep snake_case__ = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase_ ( self: Optional[Any] ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: snake_case__ = self.index_for_timestep(UpperCamelCase ) snake_case__ = self.sigmas[step_index] snake_case__ = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: int , UpperCamelCase: Union[str, torch.device] = None , UpperCamelCase: Optional[int] = None , ) -> str: snake_case__ = num_inference_steps snake_case__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case__ = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase , dtype=UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(0 , UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(UpperCamelCase , 0 , -step_ratio )).round().copy().astype(UpperCamelCase ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) snake_case__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case__ = np.log(UpperCamelCase ) snake_case__ = np.interp(UpperCamelCase , np.arange(0 , len(UpperCamelCase ) ) , UpperCamelCase ) if self.config.use_karras_sigmas: snake_case__ = self._convert_to_karras(in_sigmas=UpperCamelCase , num_inference_steps=self.num_inference_steps ) snake_case__ = np.array([self._sigma_to_t(UpperCamelCase , UpperCamelCase ) for sigma in sigmas] ) snake_case__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case__ = torch.from_numpy(UpperCamelCase ).to(device=UpperCamelCase ) snake_case__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) snake_case__ = torch.from_numpy(UpperCamelCase ) snake_case__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCamelCase ).startswith('mps' ): # mps does not support float64 snake_case__ = timesteps.to(UpperCamelCase , dtype=torch.floataa ) else: snake_case__ = timesteps.to(device=UpperCamelCase ) # empty dt and derivative snake_case__ = None snake_case__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case__ = defaultdict(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Dict ) -> Tuple: # get log sigma snake_case__ = np.log(UpperCamelCase ) # get distribution snake_case__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range snake_case__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) snake_case__ = low_idx + 1 snake_case__ = log_sigmas[low_idx] snake_case__ = log_sigmas[high_idx] # interpolate sigmas snake_case__ = (low - log_sigma) / (low - high) snake_case__ = np.clip(UpperCamelCase , 0 , 1 ) # transform interpolation to time range snake_case__ = (1 - w) * low_idx + w * high_idx snake_case__ = t.reshape(sigma.shape ) return t def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Dict ) -> torch.FloatTensor: snake_case__ = in_sigmas[-1].item() snake_case__ = in_sigmas[0].item() snake_case__ = 7.0 # 7.0 is the value used in the paper snake_case__ = np.linspace(0 , 1 , UpperCamelCase ) snake_case__ = sigma_min ** (1 / rho) snake_case__ = sigma_max ** (1 / rho) snake_case__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]: return self.dt is None def lowerCAmelCase_ ( self: int , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: Union[float, torch.FloatTensor] , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: bool = True , ) -> Union[SchedulerOutput, Tuple]: snake_case__ = self.index_for_timestep(UpperCamelCase ) # advance index counter by 1 snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case__ = self.sigmas[step_index] snake_case__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method snake_case__ = self.sigmas[step_index - 1] snake_case__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case__ = 0 snake_case__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": snake_case__ = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: snake_case__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case__ = sigma_next - sigma_hat # store for 2nd order step snake_case__ = derivative snake_case__ = dt snake_case__ = sample else: # 2. 2nd order / Heun's method snake_case__ = (sample - pred_original_sample) / sigma_next snake_case__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample snake_case__ = self.dt snake_case__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase ): # mps does not support float64 snake_case__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) snake_case__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: snake_case__ = self.timesteps.to(original_samples.device ) snake_case__ = timesteps.to(original_samples.device ) snake_case__ = [self.index_for_timestep(UpperCamelCase , UpperCamelCase ) for t in timesteps] snake_case__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case__ = sigma.unsqueeze(-1 ) snake_case__ = original_samples + noise * sigma return noisy_samples def __len__( self: List[Any] ) -> Union[str, Any]: return self.config.num_train_timesteps
307
1
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) _SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() _SCREAMING_SNAKE_CASE : Dict = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _SCREAMING_SNAKE_CASE : Optional[Any] = CLIPImageProcessor() _SCREAMING_SNAKE_CASE : Any = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") _SCREAMING_SNAKE_CASE : Dict = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
157
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __a : """simple docstring""" def __init__( self : int , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any]=99 , lowercase_ : Optional[Any]=13 , lowercase_ : Tuple=7 , lowercase_ : Any=9 , lowercase_ : Dict=True , lowercase_ : str=True , lowercase_ : Optional[int]=False , lowercase_ : str=32 , lowercase_ : Tuple=5 , lowercase_ : Union[str, Any]=4 , lowercase_ : Tuple=37 , lowercase_ : int=8 , lowercase_ : str=0.1 , lowercase_ : Optional[Any]=0.0_0_2 , lowercase_ : Any=1 , lowercase_ : Tuple=0 , lowercase_ : Any=0 , lowercase_ : Optional[Any]=None , lowercase_ : str=None , ): UpperCamelCase__ : Optional[int] =parent UpperCamelCase__ : int =batch_size UpperCamelCase__ : Tuple =encoder_seq_length UpperCamelCase__ : List[Any] =decoder_seq_length # For common tests UpperCamelCase__ : str =self.decoder_seq_length UpperCamelCase__ : List[Any] =is_training UpperCamelCase__ : Optional[int] =use_attention_mask UpperCamelCase__ : Union[str, Any] =use_labels UpperCamelCase__ : List[str] =vocab_size UpperCamelCase__ : Union[str, Any] =hidden_size UpperCamelCase__ : Any =num_hidden_layers UpperCamelCase__ : Optional[int] =num_attention_heads UpperCamelCase__ : str =d_ff UpperCamelCase__ : Union[str, Any] =relative_attention_num_buckets UpperCamelCase__ : Dict =dropout_rate UpperCamelCase__ : Dict =initializer_factor UpperCamelCase__ : str =eos_token_id UpperCamelCase__ : List[str] =pad_token_id UpperCamelCase__ : List[str] =decoder_start_token_id UpperCamelCase__ : Optional[Any] =None UpperCamelCase__ : int =decoder_layers def _lowerCAmelCase ( self : List[str] ): return TaConfig.from_pretrained('''google/umt5-base''' ) def _lowerCAmelCase ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Optional[int]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Tuple=None , lowercase_ : Any=None , ): if attention_mask is None: UpperCamelCase__ : List[str] =input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase__ : Union[str, Any] =decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase__ : List[Any] =torch.ones(config.num_hidden_layers , config.num_attention_heads , device=lowercase_ ) if decoder_head_mask is None: UpperCamelCase__ : List[Any] =torch.ones(config.num_decoder_layers , config.num_attention_heads , device=lowercase_ ) if cross_attn_head_mask is None: UpperCamelCase__ : Any =torch.ones( config.num_decoder_layers , config.num_attention_heads , device=lowercase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : Dict =ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCamelCase__ : Any =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase__ : Tuple =input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase__ : Tuple =decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase__ : List[str] =self.get_config() UpperCamelCase__ : int =config.num_attention_heads UpperCamelCase__ : List[Any] =self.prepare_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, input_dict def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ , UpperCamelCase__ : Any =self.prepare_config_and_inputs() return config, inputs_dict def _lowerCAmelCase ( self : Optional[int] ): return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCAmelCase ( self : Any ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCAmelCase ( self : int , lowercase_ : str , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Dict , ): UpperCamelCase__ : int =UMTaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : str =model( input_ids=lowercase_ , decoder_input_ids=lowercase_ , attention_mask=lowercase_ , decoder_attention_mask=lowercase_ , ) UpperCamelCase__ : Union[str, Any] =model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ) UpperCamelCase__ : List[str] =result.last_hidden_state UpperCamelCase__ : str =result.past_key_values UpperCamelCase__ : Any =result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(lowercase_ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _lowerCAmelCase ( self : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : List[Any] , ): UpperCamelCase__ : Any =UMTaModel(config=lowercase_ ).get_decoder().to(lowercase_ ).eval() # first forward pass UpperCamelCase__ : List[Any] =model(lowercase_ , use_cache=lowercase_ ) UpperCamelCase__ : Optional[Any] =model(lowercase_ ) UpperCamelCase__ : Dict =model(lowercase_ , use_cache=lowercase_ ) self.parent.assertTrue(len(lowercase_ ) == len(lowercase_ ) ) self.parent.assertTrue(len(lowercase_ ) == len(lowercase_ ) + 1 ) UpperCamelCase__ , UpperCamelCase__ : str =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase__ : List[Any] =ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCamelCase__ : Union[str, Any] =torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ : Optional[int] =model(lowercase_ )['''last_hidden_state'''] UpperCamelCase__ : Dict =model(lowercase_ , past_key_values=lowercase_ )['''last_hidden_state'''] # select random slice UpperCamelCase__ : List[str] =ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ : Any =output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase__ : Dict =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : Tuple , lowercase_ : Tuple , ): UpperCamelCase__ : Tuple =UMTaModel(config=lowercase_ ).to(lowercase_ ).half().eval() UpperCamelCase__ : Any =model(**lowercase_ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(lowercase_ ).any().item() ) @require_torch class __a ( snake_case__, snake_case__, snake_case__, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = (UMTaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True # The small UMT5 model needs higher percentages for CPU/MP tests SCREAMING_SNAKE_CASE_ = [0.8, 0.9] def _lowerCAmelCase ( self : Union[str, Any] ): UpperCamelCase__ : Union[str, Any] =UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() UpperCamelCase__ : Optional[int] =UMTaModel(config_and_inputs[0] ).to(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( lowercase_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=lowercase_ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*lowercase_ ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : Dict =['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] UpperCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs() UpperCamelCase__ : str =config_and_inputs[0] UpperCamelCase__ : Tuple =UMTaForConditionalGeneration(lowercase_ ).eval() model.to(lowercase_ ) UpperCamelCase__ : Dict ={ '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=lowercase_ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowercase_ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowercase_ ), } for attn_name, (name, mask) in zip(lowercase_ , head_masking.items() ): UpperCamelCase__ : Optional[int] ={name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCamelCase__ : Tuple =torch.ones( config.num_decoder_layers , config.num_heads , device=lowercase_ ) UpperCamelCase__ : str =model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=lowercase_ , return_dict_in_generate=lowercase_ , **lowercase_ , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCamelCase__ : Union[str, Any] =out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _lowerCAmelCase ( self : Any ): pass @require_torch @require_sentencepiece @require_tokenizers class __a ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : Optional[int] =UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=lowercase_ ).to(lowercase_ ) UpperCamelCase__ : Any =AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=lowercase_ , legacy=lowercase_ ) UpperCamelCase__ : int =[ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] UpperCamelCase__ : Optional[int] =tokenizer(lowercase_ , return_tensors='''pt''' , padding=lowercase_ ).input_ids # fmt: off UpperCamelCase__ : int =torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(lowercase_ , lowercase_ ) UpperCamelCase__ : Optional[int] =model.generate(input_ids.to(lowercase_ ) ) UpperCamelCase__ : int =[ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] UpperCamelCase__ : Optional[Any] =tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ )
157
1
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowerCAmelCase__ : Union[str, Any] ='''hf-internal-testing/tiny-random-bert''' lowerCAmelCase__ : Tuple =os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowerCAmelCase__ : Any ='''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = cached_file(_A , _A ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_A ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_A , _A ) ) ) with open(os.path.join(_A , 'refs' , 'main' ) ) as f: __SCREAMING_SNAKE_CASE = f.read() self.assertEqual(_A , os.path.join(_A , 'snapshots' , _A , _A ) ) self.assertTrue(os.path.isfile(_A ) ) # File is cached at the same place the second time. __SCREAMING_SNAKE_CASE = cached_file(_A , _A ) self.assertEqual(_A , _A ) # Using a specific revision to test the full commit hash. __SCREAMING_SNAKE_CASE = cached_file(_A , _A , revision='9b8c223' ) self.assertEqual(_A , os.path.join(_A , 'snapshots' , _A , _A ) ) def _A ( self ): '''simple docstring''' with self.assertRaisesRegex(_A , 'is not a valid model identifier' ): __SCREAMING_SNAKE_CASE = cached_file('tiny-random-bert' , _A ) with self.assertRaisesRegex(_A , 'is not a valid git identifier' ): __SCREAMING_SNAKE_CASE = cached_file(_A , _A , revision='aaaa' ) with self.assertRaisesRegex(_A , 'does not appear to have a file named' ): __SCREAMING_SNAKE_CASE = cached_file(_A , 'conf' ) def _A ( self ): '''simple docstring''' with self.assertRaisesRegex(_A , 'does not appear to have a file named' ): __SCREAMING_SNAKE_CASE = cached_file(_A , 'conf' ) with open(os.path.join(_A , 'refs' , 'main' ) ) as f: __SCREAMING_SNAKE_CASE = f.read() self.assertTrue(os.path.isfile(os.path.join(_A , '.no_exist' , _A , 'conf' ) ) ) __SCREAMING_SNAKE_CASE = cached_file(_A , 'conf' , _raise_exceptions_for_missing_entries=_A ) self.assertIsNone(_A ) __SCREAMING_SNAKE_CASE = cached_file(_A , 'conf' , local_files_only=_A , _raise_exceptions_for_missing_entries=_A ) self.assertIsNone(_A ) __SCREAMING_SNAKE_CASE = mock.Mock() __SCREAMING_SNAKE_CASE = 500 __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = HTTPError __SCREAMING_SNAKE_CASE = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_A ) as mock_head: __SCREAMING_SNAKE_CASE = cached_file(_A , 'conf' , _raise_exceptions_for_connection_errors=_A ) self.assertIsNone(_A ) # This check we did call the fake head request mock_head.assert_called() def _A ( self ): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _A ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _A ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _A ) ) def _A ( self ): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_A , 'is not a valid model identifier' ): get_file_from_repo('bert-base-case' , _A ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_A , 'is not a valid git identifier' ): get_file_from_repo('bert-base-cased' , _A , revision='ahaha' ) __SCREAMING_SNAKE_CASE = get_file_from_repo('bert-base-cased' , _A ) # The name is the cached name which is not very easy to test, so instead we load the content. __SCREAMING_SNAKE_CASE = json.loads(open(_A , 'r' ).read() ) self.assertEqual(config['hidden_size'] , 768 ) def _A ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE = Path(_A ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_A , 'a.txt' ) , str(_A ) ) self.assertIsNone(get_file_from_repo(_A , 'b.txt' ) )
257
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase__ : List[Any] =None lowerCAmelCase__ : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase__ : Optional[int] ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : int ={ '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : int ={ '''facebook/nllb-large-en-ro''': 1024, '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off lowerCAmelCase__ : Dict =['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase__ : List[str] = NllbTokenizer UpperCamelCase__ : List[int] = [] UpperCamelCase__ : List[int] = [] def __init__( self , _A=None , _A=None , _A="<s>" , _A="</s>" , _A="</s>" , _A="<s>" , _A="<unk>" , _A="<pad>" , _A="<mask>" , _A=None , _A=None , _A=None , _A=False , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token __SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=_A , tokenizer_file=_A , bos_token=_A , eos_token=_A , sep_token=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , legacy_behaviour=_A , **_A , ) __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = False if not self.vocab_file else True __SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) __SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(_A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else 'eng_Latn' __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) __SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _A ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _A ( self , _A , _A = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _A ( self , _A , _A = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _A ( self , _A , _A , _A , _A , **_A ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __SCREAMING_SNAKE_CASE = src_lang __SCREAMING_SNAKE_CASE = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(_A ) __SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def _A ( self , _A , _A = "eng_Latn" , _A = None , _A = "fra_Latn" , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = src_lang __SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def _A ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _A ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(_A ) if self.legacy_behaviour: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: __SCREAMING_SNAKE_CASE = [self.cur_lang_code] __SCREAMING_SNAKE_CASE = [self.eos_token_id] __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) __SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(_A ) if self.legacy_behaviour: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: __SCREAMING_SNAKE_CASE = [self.cur_lang_code] __SCREAMING_SNAKE_CASE = [self.eos_token_id] __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) __SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _A ( self , _A , _A = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __SCREAMING_SNAKE_CASE = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
257
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( __lowercase , unittest.TestCase): '''simple docstring''' _A = LongformerTokenizer _A = True _A = LongformerTokenizerFast _A = True def _lowerCamelCase ( self :str ) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase : str = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] __UpperCamelCase : Dict = dict(zip(a , range(len(a ) ) ) ) __UpperCamelCase : List[str] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __UpperCamelCase : Tuple = {"unk_token": "<unk>"} __UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a ) ) def _lowerCamelCase ( self :Dict , **a :Dict ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a ) def _lowerCamelCase ( self :List[str] , **a :Tuple ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **a ) def _lowerCamelCase ( self :List[Any] , a :Optional[int] ) -> Optional[Any]: __UpperCamelCase : Optional[int] = "lower newer" __UpperCamelCase : List[str] = "lower newer" return input_text, output_text def _lowerCamelCase ( self :Dict ) -> str: __UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase : str = "lower newer" __UpperCamelCase : Tuple = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] __UpperCamelCase : str = tokenizer.tokenize(a ) # , add_prefix_space=True) self.assertListEqual(a , a ) __UpperCamelCase : Optional[Any] = tokens + [tokenizer.unk_token] __UpperCamelCase : str = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) def _lowerCamelCase ( self :Dict ) -> Optional[Any]: __UpperCamelCase : int = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=a ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=a ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def _lowerCamelCase ( self :Optional[Any] ) -> List[str]: __UpperCamelCase : str = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) __UpperCamelCase : Optional[int] = tokenizer.encode("sequence builders" , add_special_tokens=a ) __UpperCamelCase : Optional[int] = tokenizer.encode("multi-sequence build" , add_special_tokens=a ) __UpperCamelCase : Union[str, Any] = tokenizer.encode( "sequence builders" , add_special_tokens=a , add_prefix_space=a ) __UpperCamelCase : int = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=a , add_prefix_space=a ) __UpperCamelCase : Dict = tokenizer.build_inputs_with_special_tokens(a ) __UpperCamelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowerCamelCase ( self :Union[str, Any] ) -> int: __UpperCamelCase : Any = self.get_tokenizer() __UpperCamelCase : Any = "Encode this sequence." __UpperCamelCase : Any = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments __UpperCamelCase : Any = tokenizer.encode(a , add_special_tokens=a , add_prefix_space=a ) __UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(a , a ) __UpperCamelCase : Any = tokenizer.encode(a , add_special_tokens=a , add_prefix_space=a ) __UpperCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(a , a ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) __UpperCamelCase : Any = tokenizer.encode(a , add_special_tokens=a ) __UpperCamelCase : Any = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(a , a ) # Testing spaces after special tokens __UpperCamelCase : Tuple = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(a , lstrip=a , rstrip=a )} ) # mask token has a left space __UpperCamelCase : int = tokenizer.convert_tokens_to_ids(a ) __UpperCamelCase : Union[str, Any] = "Encode <mask> sequence" __UpperCamelCase : Optional[Any] = "Encode <mask>sequence" __UpperCamelCase : Any = tokenizer.encode(a ) __UpperCamelCase : Optional[int] = encoded.index(a ) __UpperCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(a , a ) __UpperCamelCase : List[str] = tokenizer.encode(a ) __UpperCamelCase : Union[str, Any] = encoded.index(a ) __UpperCamelCase : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(a , a ) def _lowerCamelCase ( self :int ) -> Union[str, Any]: pass def _lowerCamelCase ( self :List[Any] ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a , **a ) __UpperCamelCase : List[str] = self.tokenizer_class.from_pretrained(a , **a ) __UpperCamelCase : List[Any] = "A, <mask> AllenNLP sentence." __UpperCamelCase : List[str] = tokenizer_r.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) __UpperCamelCase : Tuple = tokenizer_p.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) __UpperCamelCase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) __UpperCamelCase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( a , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( a , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def _lowerCamelCase ( self :Dict ) -> str: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=a , add_prefix_space=a , trim_offsets=a ) __UpperCamelCase : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCamelCase : List[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , a ) self.assertEqual(post_processor_state["add_prefix_space"] , a ) self.assertEqual(post_processor_state["trim_offsets"] , a ) def _lowerCamelCase ( self :Any ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase : Union[str, Any] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` __UpperCamelCase : Dict = f'{text_of_1_token} {text_of_1_token}' __UpperCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __UpperCamelCase : str = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , ) __UpperCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __UpperCamelCase : List[str] = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , ) __UpperCamelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __UpperCamelCase : Optional[Any] = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ), len(a ) + 1 + len(a )) , ) __UpperCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __UpperCamelCase : List[str] = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ), len(a ) + 1 + len(a )) , ) __UpperCamelCase : Optional[int] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __UpperCamelCase : Optional[int] = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ) + 1, 1 + len(a ) + 1 + len(a )) , ) __UpperCamelCase : Any = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __UpperCamelCase : str = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ), 1 + len(a ) + 1 + len(a )) , ) __UpperCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __UpperCamelCase : Dict = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ), 1 + len(a ) + 1 + len(a )) , )
151
import random def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : float , _lowerCamelCase : bool = False) -> dict: '''simple docstring''' __UpperCamelCase : dict = {i: [] for i in range(_lowerCamelCase)} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_lowerCamelCase) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_lowerCamelCase): for j in range(i + 1 , _lowerCamelCase): if random.random() < probability: graph[i].append(_lowerCamelCase) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_lowerCamelCase) return graph def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> dict: '''simple docstring''' return { i: [j for j in range(_lowerCamelCase) if i != j] for i in range(_lowerCamelCase) } if __name__ == "__main__": import doctest doctest.testmod()
151
1
'''simple docstring''' from collections.abc import Sequence def __a(SCREAMING_SNAKE_CASE_ : Sequence[float] , SCREAMING_SNAKE_CASE_ : bool = False ): '''simple docstring''' if not arr: return 0 _lowerCAmelCase = 0 if allow_empty_subarrays else float("-inf" ) _lowerCAmelCase = 0.0 for num in arr: _lowerCAmelCase = max(0 if allow_empty_subarrays else num , curr_sum + num ) _lowerCAmelCase = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _SCREAMING_SNAKE_CASE = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
158
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
158
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _SCREAMING_SNAKE_CASE : Any = False class _snake_case ( unittest.TestCase ): pass @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) snake_case_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( image=a__ , generator=a__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images snake_case_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) snake_case_ = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
92
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE : List[str] = {"facebook/bart-base": BartForConditionalGeneration} _SCREAMING_SNAKE_CASE : Union[str, Any] = {"facebook/bart-base": BartTokenizer} def UpperCamelCase_( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=snake_case , default=snake_case , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=snake_case , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=snake_case , default=snake_case , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=snake_case , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case , ) parser.add_argument( "--config_name" , type=snake_case , default=snake_case , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=snake_case , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=snake_case , default=snake_case , help="Where to store the final ONNX file." ) snake_case_ = parser.parse_args() return args def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : List[str]="cpu" ): '''simple docstring''' snake_case_ = model_dict[model_name].from_pretrained(snake_case ).to(snake_case ) snake_case_ = tokenizer_dict[model_name].from_pretrained(snake_case ) if model_name in ["facebook/bart-base"]: snake_case_ = 0 snake_case_ = None snake_case_ = 0 return huggingface_model, tokenizer def UpperCamelCase_( snake_case : int , snake_case : Tuple , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : Optional[Any] ): '''simple docstring''' model.eval() snake_case_ = None snake_case_ = torch.jit.script(BARTBeamSearchGenerator(snake_case ) ) with torch.no_grad(): snake_case_ = "My friends are cool but they eat too many carbs." snake_case_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="pt" ).to(model.device ) snake_case_ = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=snake_case , max_length=snake_case , early_stopping=snake_case , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( snake_case , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , snake_case , opset_version=1_4 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=snake_case , ) logger.info("Model exported to {}".format(snake_case ) ) snake_case_ = remove_dup_initializers(os.path.abspath(snake_case ) ) logger.info("Deduplicated and optimized model written to {}".format(snake_case ) ) snake_case_ = onnxruntime.InferenceSession(snake_case ) snake_case_ = ort_sess.run( snake_case , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(snake_case ), "max_length": np.array(snake_case ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = parse_args() snake_case_ = 5 snake_case_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() snake_case_ = torch.device(args.device ) snake_case_ , snake_case_ = load_model_tokenizer(args.model_name_or_path , snake_case ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(snake_case ) if args.max_length: snake_case_ = args.max_length if args.num_beams: snake_case_ = args.num_beams if args.output_file_path: snake_case_ = args.output_file_path else: snake_case_ = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(snake_case , snake_case , snake_case , snake_case , snake_case ) if __name__ == "__main__": main()
92
1
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _UpperCamelCase : List[Any] = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _UpperCamelCase : Tuple = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _UpperCamelCase : List[str] = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _UpperCamelCase : Any = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _UpperCamelCase : List[Any] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _UpperCamelCase : Any = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _UpperCamelCase : List[Any] = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def a_ ( ): '''simple docstring''' lowercase__ , lowercase__ : Dict = randrange(len(_lowerCAmelCase ) ), randrange(len(_lowerCAmelCase ) ) lowercase__ : str = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] lowercase__ , lowercase__ : Dict = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' return (generate_random_hand() for _ in range(_lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] ): '''simple docstring''' assert PokerHand(_lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' assert PokerHand(_lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): '''simple docstring''' lowercase__ : Any = PokerHand(_lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): '''simple docstring''' assert PokerHand(_lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' assert PokerHand(_lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' assert PokerHand(_lowerCAmelCase ).compare_with(PokerHand(_lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ): '''simple docstring''' assert PokerHand(_lowerCAmelCase ).compare_with(PokerHand(_lowerCAmelCase ) ) == expected def a_ ( ): '''simple docstring''' lowercase__ : List[str] = [PokerHand(_lowerCAmelCase ) for hand in SORTED_HANDS] lowercase__ : int = poker_hands.copy() shuffle(_lowerCAmelCase ) lowercase__ : Optional[int] = chain(sorted(_lowerCAmelCase ) ) for index, hand in enumerate(_lowerCAmelCase ): assert hand == poker_hands[index] def a_ ( ): '''simple docstring''' lowercase__ : List[str] = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=_lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a_ ( ): '''simple docstring''' lowercase__ : int = PokerHand('2C 4S AS 3D 5C' ) lowercase__ : Optional[Any] = True lowercase__ : Optional[int] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a_ ( ): '''simple docstring''' lowercase__ : Tuple = 0 lowercase__ : Tuple = os.path.abspath(os.path.dirname(_lowerCAmelCase ) ) lowercase__ : Any = os.path.join(_lowerCAmelCase , 'poker_hands.txt' ) with open(_lowerCAmelCase ) as file_hand: for line in file_hand: lowercase__ : List[str] = line[:14].strip() lowercase__ : Tuple = line[15:].strip() lowercase__ , lowercase__ : List[Any] = PokerHand(_lowerCAmelCase ), PokerHand(_lowerCAmelCase ) lowercase__ : Optional[int] = player.compare_with(_lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
77
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_a) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) lowerCamelCase__ : ClassVar[Features] = Features({"text": Value("string")}) lowerCamelCase__ : ClassVar[Features] = Features({}) lowerCamelCase__ : str = "text" @property def _UpperCAmelCase ( self ) -> Dict[str, str]: return {self.text_column: "text"}
77
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : List[Any] =1_6 A_ : List[Any] =3_2 def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] , snake_case : List[str] = 16 )-> List[str]: _lowerCamelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) _lowerCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(snake_case : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCamelCase = datasets.map( __snake_case , batched=__snake_case , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCamelCase = 16 elif accelerator.mixed_precision != "no": _lowerCamelCase = 8 else: _lowerCamelCase = None return tokenizer.pad( __snake_case , padding='longest' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='pt' , ) # Instantiate dataloaders. _lowerCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) _lowerCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders A_ : List[Any] =mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, Any] , snake_case : List[Any] )-> Union[str, Any]: if os.environ.get('TESTING_MOCKED_DATALOADERS' , __snake_case ) == "1": _lowerCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _lowerCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: _lowerCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCamelCase = config['lr'] _lowerCamelCase = int(config['num_epochs'] ) _lowerCamelCase = int(config['seed'] ) _lowerCamelCase = int(config['batch_size'] ) set_seed(__snake_case ) _lowerCamelCase , _lowerCamelCase = get_dataloaders(__snake_case , __snake_case ) _lowerCamelCase = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _lowerCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowerCamelCase = batch_size // MAX_GPU_BATCH_SIZE _lowerCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCamelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer _lowerCamelCase = AdamW(params=model.parameters() , lr=__snake_case ) # Instantiate scheduler _lowerCamelCase = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _lowerCamelCase = os.path.split(__snake_case )[-1].split('.' )[0] accelerator.init_trackers(__snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _lowerCamelCase = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCamelCase = model(**__snake_case ) _lowerCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _lowerCamelCase = model(**__snake_case ) _lowerCamelCase = outputs.logits.argmax(dim=-1 ) _lowerCamelCase , _lowerCamelCase = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) _lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , __snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(__snake_case ), 'epoch': epoch, } , step=__snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def SCREAMING_SNAKE_CASE_ ( )-> int: _lowerCamelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__snake_case , default=__snake_case , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=__snake_case , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) _lowerCamelCase = parser.parse_args() _lowerCamelCase = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
361
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def SCREAMING_SNAKE_CASE_ ( )-> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _lowerCamelCase = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]: assert _test_patching.open is open _lowerCamelCase = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def SCREAMING_SNAKE_CASE_ ( )-> Tuple: # pandas.read_csv is not present in _test_patching _lowerCamelCase = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , snake_case ): pass def SCREAMING_SNAKE_CASE_ ( )-> Any: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point _lowerCamelCase = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , snake_case ) is None with patch_submodule(_test_patching , 'len' , snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def SCREAMING_SNAKE_CASE_ ( )-> Any: _lowerCamelCase = '__test_patch_submodule_start_and_stop_mock__' _lowerCamelCase = patch_submodule(_test_patching , 'open' , snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def SCREAMING_SNAKE_CASE_ ( )-> Tuple: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _lowerCamelCase = '__test_patch_submodule_successive_join__' _lowerCamelCase = '__test_patch_submodule_successive_dirname__' _lowerCamelCase = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , snake_case ): with patch_submodule(_test_patching , 'os.rename' , snake_case ): with patch_submodule(_test_patching , 'os.path.dirname' , snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , snake_case ): with patch_submodule(_test_patching , 'os.path.join' , snake_case ): with patch_submodule(_test_patching , 'os.path.dirname' , snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]: _lowerCamelCase = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , snake_case ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , snake_case ): pass
80
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __A : List[Any] = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class A_ (a_ ): @staticmethod def _lowercase ( _A ): '''simple docstring''' UpperCAmelCase = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=_A , required=_A , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=_A , required=_A , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=_A , required=_A , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=_A , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=_A , default=_A , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=_A ) def __init__( self , _A , _A , _A , _A , _A , *_A , ): '''simple docstring''' UpperCAmelCase = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F"""Loading model {model_type}""" ) UpperCAmelCase = model_type UpperCAmelCase = tf_checkpoint UpperCAmelCase = pytorch_dump_output UpperCAmelCase = config UpperCAmelCase = finetuning_task_name def _lowercase ( self ): '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase = self._tf_checkpoint UpperCAmelCase = '''''' else: UpperCAmelCase = self._tf_checkpoint UpperCAmelCase = '''''' convert_transfo_xl_checkpoint_to_pytorch( _A , self._config , self._pytorch_dump_output , _A ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
273
from __future__ import annotations from collections import namedtuple def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> tuple: '''simple docstring''' UpperCAmelCase = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
273
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE = { "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["LayoutLMv3FeatureExtractor"] SCREAMING_SNAKE_CASE = ["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
230
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE = "#" class UpperCAmelCase_ : def __init__( self : Dict ) -> None: '''simple docstring''' A__ = {} def __magic_name__ ( self : Optional[Any] , snake_case_ : str ) -> None: '''simple docstring''' A__ = self._trie for char in text: if char not in trie: A__ = {} A__ = trie[char] A__ = True def __magic_name__ ( self : List[Any] , snake_case_ : str ) -> tuple | list: '''simple docstring''' A__ = self._trie for char in prefix: if char in trie: A__ = trie[char] else: return [] return self._elements(snake_case_ ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : dict ) -> tuple: '''simple docstring''' A__ = [] for c, v in d.items(): A__ = [" "] if c == END else [(c + s) for s in self._elements(snake_case_ )] result.extend(snake_case_ ) return tuple(snake_case_ ) SCREAMING_SNAKE_CASE = Trie() SCREAMING_SNAKE_CASE = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> tuple: A__ = trie.find_word(lowercase_ ) return tuple(string + word for word in suffixes ) def _SCREAMING_SNAKE_CASE ( ) -> None: print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
230
1
"""simple docstring""" from __future__ import annotations import math class _lowerCamelCase : def __init__( self : List[str] , UpperCamelCase : str ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Any = size # approximate the overall size of segment tree with given value lowerCAmelCase__ : Optional[int] = [0 for i in range(0 , 4 * size )] # create array to store lazy update lowerCAmelCase__ : List[str] = [0 for i in range(0 , 4 * size )] lowerCAmelCase__ : Dict = [0 for i in range(0 , 4 * size )] # flag for lazy update def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : Any ) -> Union[str, Any]: """simple docstring""" return idx * 2 def _lowerCAmelCase ( self : List[str] , UpperCamelCase : int ) -> List[str]: """simple docstring""" return idx * 2 + 1 def _lowerCAmelCase ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" if left_element == right_element: lowerCAmelCase__ : List[str] = a[left_element - 1] else: lowerCAmelCase__ : Tuple = (left_element + right_element) // 2 self.build(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ ) self.build(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ ) lowerCAmelCase__ : Tuple = max( self.segment_tree[self.left(snake_case__ )] , self.segment_tree[self.right(snake_case__ )] ) def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : str , UpperCamelCase : Tuple ) -> Any: """simple docstring""" if self.flag[idx] is True: lowerCAmelCase__ : Optional[int] = self.lazy[idx] lowerCAmelCase__ : List[str] = False if left_element != right_element: lowerCAmelCase__ : Optional[Any] = self.lazy[idx] lowerCAmelCase__ : List[Any] = self.lazy[idx] lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Optional[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowerCAmelCase__ : str = val if left_element != right_element: lowerCAmelCase__ : Optional[Any] = val lowerCAmelCase__ : Union[str, Any] = val lowerCAmelCase__ : int = True lowerCAmelCase__ : int = True return True lowerCAmelCase__ : List[str] = (left_element + right_element) // 2 self.update(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.update(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase__ : Optional[int] = max( self.segment_tree[self.left(snake_case__ )] , self.segment_tree[self.right(snake_case__ )] ) return True def _lowerCAmelCase ( self : List[str] , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] ) -> List[str]: """simple docstring""" if self.flag[idx] is True: lowerCAmelCase__ : List[Any] = self.lazy[idx] lowerCAmelCase__ : str = False if left_element != right_element: lowerCAmelCase__ : Tuple = self.lazy[idx] lowerCAmelCase__ : List[Any] = self.lazy[idx] lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : str = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowerCAmelCase__ : Any = (left_element + right_element) // 2 lowerCAmelCase__ : Optional[int] = self.query(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase__ : Dict = self.query(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ , snake_case__ ) return max(snake_case__ , snake_case__ ) def __str__( self : List[str] ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , snake_case__ , snake_case__ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _A = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] _A = 1_5 _A = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
242
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] ="data2vec-vision" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=[3, 5, 7, 11] , snake_case__=[1, 2, 3, 6] , snake_case__=True , snake_case__=0.4 , snake_case__=256 , snake_case__=1 , snake_case__=False , snake_case__=255 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : int = initializer_range lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : Union[str, Any] = use_mask_token lowerCAmelCase : str = use_absolute_position_embeddings lowerCAmelCase : Any = use_relative_position_bias lowerCAmelCase : List[str] = use_shared_relative_position_bias lowerCAmelCase : str = layer_scale_init_value lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase : Optional[int] = out_indices lowerCAmelCase : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase : str = use_auxiliary_head lowerCAmelCase : int = auxiliary_loss_weight lowerCAmelCase : Tuple = auxiliary_channels lowerCAmelCase : List[str] = auxiliary_num_convs lowerCAmelCase : Tuple = auxiliary_concat_input lowerCAmelCase : List[str] = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
108
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __lowercase = logging.get_logger(__name__) class lowerCamelCase_ ( UpperCamelCase__ ): '''simple docstring''' a__ : Optional[Any] = ["""pixel_values"""] def __init__( self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = True , __lowercase = 1 / 255 , __lowercase = True , __lowercase = None , __lowercase = None , **__lowercase , ) -> List[Any]: super().__init__(**__a) __UpperCamelCase :Optional[Any] = size if size is not None else {'''shortest_edge''': 256} __UpperCamelCase :int = get_size_dict(__a , default_to_square=__a) __UpperCamelCase :List[str] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase :Any = get_size_dict(__a , param_name='''crop_size''') __UpperCamelCase :Optional[Any] = do_resize __UpperCamelCase :Optional[Any] = size __UpperCamelCase :int = resample __UpperCamelCase :List[Any] = do_center_crop __UpperCamelCase :List[Any] = crop_size __UpperCamelCase :Any = do_rescale __UpperCamelCase :int = rescale_factor __UpperCamelCase :int = do_normalize __UpperCamelCase :Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCamelCase :Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = PILImageResampling.BICUBIC , __lowercase = None , **__lowercase , ) -> str: __UpperCamelCase :List[Any] = get_size_dict(__a , default_to_square=__a) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") __UpperCamelCase :Tuple = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> Optional[int]: __UpperCamelCase :str = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = None , **__lowercase) -> Tuple: return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> List[str]: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ) -> Optional[int]: __UpperCamelCase :List[str] = do_resize if do_resize is not None else self.do_resize __UpperCamelCase :List[str] = size if size is not None else self.size __UpperCamelCase :int = get_size_dict(__a , default_to_square=__a) __UpperCamelCase :Any = resample if resample is not None else self.resample __UpperCamelCase :Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase :Optional[int] = crop_size if crop_size is not None else self.crop_size __UpperCamelCase :Dict = get_size_dict(__a , param_name='''crop_size''') __UpperCamelCase :Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase :List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase :Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase :List[str] = image_mean if image_mean is not None else self.image_mean __UpperCamelCase :Tuple = image_std if image_std is not None else self.image_std __UpperCamelCase :List[Any] = make_list_of_images(__a) if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. __UpperCamelCase :Optional[Any] = [to_numpy_array(__a) for image in images] if do_resize: __UpperCamelCase :Union[str, Any] = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: __UpperCamelCase :Any = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: __UpperCamelCase :Optional[Any] = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: __UpperCamelCase :Dict = [self.normalize(image=__a , mean=__a , std=__a) for image in images] __UpperCamelCase :Tuple = [to_channel_dimension_format(__a , __a) for image in images] __UpperCamelCase :List[Any] = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a) def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[Any]: __UpperCamelCase :Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a) != len(__a): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''') if is_torch_tensor(__a): __UpperCamelCase :Tuple = target_sizes.numpy() __UpperCamelCase :Optional[Any] = [] for idx in range(len(__a)): __UpperCamelCase :Union[str, Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__a) __UpperCamelCase :int = resized_logits[0].argmax(dim=0) semantic_segmentation.append(__a) else: __UpperCamelCase :Tuple = logits.argmax(dim=1) __UpperCamelCase :List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
367
from __future__ import annotations from math import pi def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if inductance < 0: raise ValueError('''Inductance cannot be negative''' ) if frequency < 0: raise ValueError('''Frequency cannot be negative''' ) if reactance < 0: raise ValueError('''Inductive reactance cannot be negative''' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
105
0