code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : str, __A : int, __A : List[Any], __A : Tuple ): UpperCAmelCase : Any = dataset UpperCAmelCase : Any = process UpperCAmelCase : Union[str, Any] = params def __len__( self : int ): return len(self.dataset ) def __getitem__( self : List[Any], __A : Tuple ): UpperCAmelCase : Union[str, Any] = self.dataset[i] UpperCAmelCase : Optional[Any] = self.process(__A, **self.params ) return processed class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Any, __A : int, __A : List[str], __A : Optional[int], __A : Union[str, Any]=None ): UpperCAmelCase : Any = loader UpperCAmelCase : str = infer UpperCAmelCase : Dict = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether UpperCAmelCase : List[Any] = None UpperCAmelCase : Dict = loader_batch_size # Internal bookkeeping UpperCAmelCase : List[str] = None UpperCAmelCase : Optional[int] = None def __len__( self : Optional[int] ): return len(self.loader ) def __iter__( self : int ): UpperCAmelCase : Dict = iter(self.loader ) return self def __magic_name__ ( self : Dict ): if isinstance(self._loader_batch_data, torch.Tensor ): # Batch data is simple tensor, just fetch the slice UpperCAmelCase : Optional[int] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) UpperCAmelCase : Union[str, Any] = {} for k, element in self._loader_batch_data.items(): if isinstance(__A, __A ): # Convert ModelOutput to tuple first UpperCAmelCase : str = element.to_tuple() if isinstance(element[0], torch.Tensor ): UpperCAmelCase : Optional[int] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0], np.ndarray ): UpperCAmelCase : str = tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__A, __A ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0], torch.Tensor ): UpperCAmelCase : Optional[int] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0], np.ndarray ): UpperCAmelCase : Tuple = tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around UpperCAmelCase : Tuple = None elif isinstance(element[self._loader_batch_index], torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase : Union[str, Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index], np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase : str = np.expand_dims(element[self._loader_batch_index], 0 ) else: # This is typically a list, so no need to `unsqueeze`. UpperCAmelCase : int = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 UpperCAmelCase : Tuple = self._loader_batch_data.__class__(__A ) self._loader_batch_index += 1 return result def __magic_name__ ( self : List[Any] ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch UpperCAmelCase : List[Any] = next(self.iterator ) UpperCAmelCase : List[Any] = self.infer(__A, **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(__A, torch.Tensor ): UpperCAmelCase : Dict = processed else: UpperCAmelCase : Optional[Any] = list(processed.keys() )[0] UpperCAmelCase : Union[str, Any] = processed[key] if isinstance(__A, __A ): UpperCAmelCase : int = len(__A ) else: UpperCAmelCase : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase : Union[str, Any] = observed_batch_size # Setting internal index to unwrap the batch UpperCAmelCase : Dict = processed UpperCAmelCase : str = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Optional[Any], __A : Optional[int], __A : str, __A : str, __A : Tuple=None ): super().__init__(__A, __A, __A ) def __iter__( self : List[str] ): UpperCAmelCase : List[str] = iter(self.loader ) UpperCAmelCase : int = None return self def __magic_name__ ( self : Tuple ): if self.subiterator is None: UpperCAmelCase : Dict = self.infer(next(self.iterator ), **self.params ) try: # Try to return next item UpperCAmelCase : Tuple = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators UpperCAmelCase : Dict = self.infer(next(self.iterator ), **self.params ) UpperCAmelCase : Tuple = next(self.subiterator ) return processed class __UpperCAmelCase ( lowerCamelCase__ ): def __iter__( self : Union[str, Any] ): UpperCAmelCase : Union[str, Any] = iter(self.loader ) return self def __magic_name__ ( self : int ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. UpperCAmelCase : Tuple = False UpperCAmelCase : Union[str, Any] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase : Optional[Any] = self.loader_batch_item() UpperCAmelCase : Dict = item.pop('''is_last''' ) accumulator.append(__A ) if is_last: return accumulator while not is_last: UpperCAmelCase : List[Any] = self.infer(next(self.iterator ), **self.params ) if self.loader_batch_size is not None: if isinstance(__A, torch.Tensor ): UpperCAmelCase : int = processed else: UpperCAmelCase : List[str] = list(processed.keys() )[0] UpperCAmelCase : Optional[int] = processed[key] if isinstance(__A, __A ): UpperCAmelCase : Optional[int] = len(__A ) else: UpperCAmelCase : Optional[int] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase : Optional[Any] = observed_batch_size UpperCAmelCase : Optional[Any] = processed UpperCAmelCase : Any = 0 while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase : List[Any] = self.loader_batch_item() UpperCAmelCase : Dict = item.pop('''is_last''' ) accumulator.append(__A ) if is_last: return accumulator else: UpperCAmelCase : Dict = processed UpperCAmelCase : Optional[Any] = item.pop('''is_last''' ) accumulator.append(__A ) return accumulator class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : List[Any], __A : Dataset, __A : str ): UpperCAmelCase : Optional[Any] = dataset UpperCAmelCase : List[Any] = key def __len__( self : str ): return len(self.dataset ) def __getitem__( self : Any, __A : List[str] ): return self.dataset[i][self.key] class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Optional[Any], __A : Dataset, __A : str, __A : str ): UpperCAmelCase : int = dataset UpperCAmelCase : Optional[Any] = keya UpperCAmelCase : Optional[Any] = keya def __len__( self : List[Any] ): return len(self.dataset ) def __getitem__( self : Optional[int], __A : int ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
336
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else '''''' UpperCAmelCase : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''), (f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any: for i in range(config.num_hidden_layers ): UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : str = q_bias UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase : str = gamma_a UpperCAmelCase : Dict = gamma_a def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : str = val def a__ ( ) -> Optional[int]: UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]: UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase : List[Any] = 1_024 UpperCAmelCase : Optional[Any] = 4_096 UpperCAmelCase : Any = 24 UpperCAmelCase : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase : Optional[Any] = 16 UpperCAmelCase : List[Any] = '''huggingface/label-files''' UpperCAmelCase : Any = '''rvlcdip-id2label.json''' UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = idalabel UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model'''] UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase ) # load HuggingFace model UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase ) model.eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image UpperCAmelCase : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase ) UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ) UpperCAmelCase : str = encoding['''pixel_values'''] UpperCAmelCase : Any = model(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = outputs.logits # verify logits UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected" Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: if has_lm_head: UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
336
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
244
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(_lowercase ) class _lowerCamelCase ( _lowercase ): def __init__(self , **__a ) -> Optional[int]: super().__init__(**__a ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__a ) def snake_case_ (self , **__a ) -> List[Any]: UpperCamelCase = {} UpperCamelCase = {} UpperCamelCase = {} # preprocess args if "points_per_batch" in kwargs: UpperCamelCase = kwargs["points_per_batch"] if "points_per_crop" in kwargs: UpperCamelCase = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: UpperCamelCase = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: UpperCamelCase = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: UpperCamelCase = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: UpperCamelCase = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: UpperCamelCase = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: UpperCamelCase = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: UpperCamelCase = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: UpperCamelCase = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: UpperCamelCase = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: UpperCamelCase = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> str: return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def snake_case_ (self , __a , __a=64 , __a = 0 , __a = 5_12 / 15_00 , __a = 32 , __a = 1 , ) -> List[str]: UpperCamelCase = load_image(__a ) UpperCamelCase = self.image_processor.size["longest_edge"] UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) UpperCamelCase = self.image_processor(images=__a , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": UpperCamelCase = self.get_inference_context() with inference_context(): UpperCamelCase = self._ensure_tensor_on_device(__a , device=self.device ) UpperCamelCase = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) UpperCamelCase = image_embeddings UpperCamelCase = grid_points.shape[1] UpperCamelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , __a , __a ): UpperCamelCase = grid_points[:, i : i + points_per_batch, :, :] UpperCamelCase = input_labels[:, i : i + points_per_batch] UpperCamelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def snake_case_ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> int: UpperCamelCase = model_inputs.pop("input_boxes" ) UpperCamelCase = model_inputs.pop("is_last" ) UpperCamelCase = model_inputs.pop("original_sizes" ).tolist() UpperCamelCase = model_inputs.pop("reshaped_input_sizes" ).tolist() UpperCamelCase = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCamelCase = model_outputs["pred_masks"] UpperCamelCase = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) UpperCamelCase = model_outputs["iou_scores"] UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def snake_case_ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Optional[int]: UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) UpperCamelCase = torch.cat(__a ) UpperCamelCase = torch.cat(__a ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) UpperCamelCase = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) UpperCamelCase = {} if output_rle_mask: UpperCamelCase = rle_mask if output_bboxes_mask: UpperCamelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
244
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowercase : Optional[int] = 10 def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: for i in range(_UpperCAmelCase , _UpperCAmelCase ): if array[i] == target: return i return -1 def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: lowercase : Optional[int] = 0 lowercase : str = len(_UpperCAmelCase ) while left <= right: if right - left < precision: return lin_search(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase : List[str] = (left + right) // 3 + 1 lowercase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowercase : Optional[Any] = one_third - 1 elif array[two_third] < target: lowercase : Dict = two_third + 1 else: lowercase : List[Any] = one_third + 1 lowercase : Any = two_third - 1 else: return -1 def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: if left < right: if right - left < precision: return lin_search(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase : str = (left + right) // 3 + 1 lowercase : int = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_UpperCAmelCase , one_third - 1 , _UpperCAmelCase , _UpperCAmelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _UpperCAmelCase , _UpperCAmelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowercase : int = input("""Enter numbers separated by comma:\n""").strip() lowercase : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." lowercase : Optional[int] = int(input("""Enter the number to be found in the list:\n""").strip()) lowercase : List[Any] = ite_ternary_search(collection, target) lowercase : Dict = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
20
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : List[str] = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Dict = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : int = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
263
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : Dict = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "wavlm" def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=320 , __UpperCAmelCase=800 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.0_5 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=(512, 512, 512, 512, 1500) , __UpperCAmelCase=(5, 3, 3, 1, 1) , __UpperCAmelCase=(1, 2, 3, 1, 1) , __UpperCAmelCase=512 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) __UpperCamelCase = hidden_size __UpperCamelCase = feat_extract_norm __UpperCamelCase = feat_extract_activation __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = conv_bias __UpperCamelCase = num_buckets __UpperCamelCase = max_bucket_distance __UpperCamelCase = num_conv_pos_embeddings __UpperCamelCase = num_conv_pos_embedding_groups __UpperCamelCase = len(self.conv_dim ) __UpperCamelCase = num_hidden_layers __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = feat_proj_dropout __UpperCamelCase = final_dropout __UpperCamelCase = layerdrop __UpperCamelCase = layer_norm_eps __UpperCamelCase = initializer_range __UpperCamelCase = num_ctc_classes __UpperCamelCase = vocab_size __UpperCamelCase = do_stable_layer_norm __UpperCamelCase = use_weighted_layer_sum __UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations __UpperCamelCase = num_codevectors_per_group __UpperCamelCase = num_codevector_groups __UpperCamelCase = contrastive_logits_temperature __UpperCamelCase = num_negatives __UpperCamelCase = codevector_dim __UpperCamelCase = proj_codevector_dim __UpperCamelCase = diversity_loss_weight # ctc loss __UpperCamelCase = ctc_loss_reduction __UpperCamelCase = ctc_zero_infinity # adapter __UpperCamelCase = add_adapter __UpperCamelCase = adapter_kernel_size __UpperCamelCase = adapter_stride __UpperCamelCase = num_adapter_layers __UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
263
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) A : List[Any] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(snake_case__ ) ) return round(snake_case__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' lowerCAmelCase__ = '''Input must be a string of 8 numbers plus letter''' lowerCAmelCase__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def _A ( A__ ): """simple docstring""" if not isinstance(A__ , A__ ): __lowercase = F"Expected string as input, found {type(A__ ).__name__}" raise TypeError(A__ ) __lowercase = spanish_id.replace('''-''' , '''''' ).upper() if len(A__ ) != 9: raise ValueError(A__ ) try: __lowercase = int(spanish_id_clean[0:8] ) __lowercase = spanish_id_clean[8] except ValueError as ex: raise ValueError(A__ ) from ex if letter.isdigit(): raise ValueError(A__ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
104
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "sentencepiece.bpe.model"} __A = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), } } __A = { "facebook/mbart-large-en-ro": 10_24, "facebook/mbart-large-cc25": 10_24, } # fmt: off __A = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowerCAmelCase ( snake_case_ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = ["input_ids", "attention_mask"] snake_case_ = [] snake_case_ = [] def __init__( self , lowerCamelCase__ , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__ = None , lowerCamelCase__=None , **lowerCamelCase__ , ) -> Any: '''simple docstring''' __lowerCamelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token __lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , tokenizer_file=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) __lowerCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowerCamelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCamelCase = 1 __lowerCamelCase = len(self.sp_model ) __lowerCamelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A ) } __lowerCamelCase = {v: k for k, v in self.lang_code_to_id.items()} __lowerCamelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __lowerCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __lowerCamelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __lowerCamelCase = src_lang if src_lang is not None else 'en_XX' __lowerCamelCase = self.lang_code_to_id[self._src_lang] __lowerCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None __lowerCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCamelCase = {} __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase_ ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def lowercase_ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' __lowerCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) __lowerCamelCase = [1] * len(self.prefix_tokens ) __lowerCamelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __lowerCamelCase = src_lang __lowerCamelCase = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) __lowerCamelCase = self.convert_tokens_to_ids(_A ) __lowerCamelCase = tgt_lang_id return inputs def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_A , out_type=_A ) def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCamelCase = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = ''.join(_A ).replace(_A , ' ' ).strip() return out_string def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , 'wb' ) as fi: __lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = "en_XX" , lowerCamelCase__ = None , lowerCamelCase__ = "ro_RO" , **lowerCamelCase__ , ) -> BatchEncoding: '''simple docstring''' __lowerCamelCase = src_lang __lowerCamelCase = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def lowercase_ ( self ) -> str: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowercase_ ( self ) -> Any: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase_ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' __lowerCamelCase = self.lang_code_to_id[src_lang] __lowerCamelCase = [] __lowerCamelCase = [self.eos_token_id, self.cur_lang_code] def lowercase_ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' __lowerCamelCase = self.lang_code_to_id[lang] __lowerCamelCase = [] __lowerCamelCase = [self.eos_token_id, self.cur_lang_code]
350
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowercase_ ( self , lowerCamelCase__=0 ) -> int: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) __lowerCamelCase = np.random.RandomState(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # warmup pass to apply optimizations __lowerCamelCase = pipe(**self.get_dummy_inputs() ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> int: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
348
0
def lowerCAmelCase_ ( __a = 50 ) -> int: """simple docstring""" lowerCamelCase__: List[str] =[1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
10
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : Tuple ="FlavaImageProcessor" UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if text is not None and images is not None: encoding.update(UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''Speech2TextFeatureExtractor''' UpperCAmelCase__ = '''Speech2TextTokenizer''' def __init__( self : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str) ->Optional[Any]: '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) A__ = self.feature_extractor A__ = False def __call__( self : Tuple , *UpperCAmelCase__ : int , **UpperCAmelCase__ : Optional[Any]) ->int: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''') A__ = kwargs.pop('''raw_speech''') else: A__ = kwargs.pop('''audio''' , _SCREAMING_SNAKE_CASE) A__ = kwargs.pop('''sampling_rate''' , _SCREAMING_SNAKE_CASE) A__ = kwargs.pop('''text''' , _SCREAMING_SNAKE_CASE) if len(_SCREAMING_SNAKE_CASE) > 0: A__ = args[0] A__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''') if audio is not None: A__ = self.feature_extractor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) if text is not None: A__ = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) if text is None: return inputs elif audio is None: return encodings else: A__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE ( self : Tuple , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Union[str, Any]) ->List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE ( self : List[str] , *UpperCAmelCase__ : int , **UpperCAmelCase__ : int) ->Tuple: '''simple docstring''' return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) @contextmanager def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple: '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''') A__ = True A__ = self.tokenizer yield A__ = self.feature_extractor A__ = False
371
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" return " ".join( ''''''.join(word[::-1] ) if len(lowercase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
231
0
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class A : '''simple docstring''' def __init__( self : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=13 , __lowerCAmelCase : Optional[int]=7 , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Any=True , __lowerCAmelCase : str=99 , __lowerCAmelCase : Optional[Any]=32 , __lowerCAmelCase : Any=5 , __lowerCAmelCase : List[str]=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : List[Any]="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : List[str]=5_12 , __lowerCAmelCase : List[str]=16 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Any=0.0_2 , __lowerCAmelCase : int=3 , __lowerCAmelCase : Union[str, Any]=4 , __lowerCAmelCase : List[Any]=None , ) -> Optional[int]: """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def a_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , use_stable_embedding=__lowerCAmelCase , ) def a_ ( self : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ) -> int: """simple docstring""" A__ = OpenLlamaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) A__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int , ) -> List[Any]: """simple docstring""" A__ = True A__ = OpenLlamaModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , ) A__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , ) A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" A__ = OpenLlamaForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" A__ = True A__ = True A__ = OpenLlamaForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # first forward pass A__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase , ) A__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ = torch.cat([input_mask, next_mask] , dim=-1 ) A__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )["""hidden_states"""][0] A__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )["""hidden_states"""][0] # select random slice A__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ = output_from_no_past[:, -3:, random_slice_idx].detach() A__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-3 ) ) def a_ ( self : Tuple ) -> str: """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : int = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : int = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False def a_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" A__ = OpenLlamaModelTester(self ) A__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def a_ ( self : List[Any] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : List[Any] ) -> Dict: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def a_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) def a_ ( self : Union[str, Any] ) -> Any: """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = input_dict["""input_ids"""] A__ = input_ids.ne(1 ).to(__lowerCAmelCase ) A__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ = OpenLlamaForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a_ ( self : Dict ) -> str: """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = """single_label_classification""" A__ = input_dict["""input_ids"""] A__ = input_ids.ne(1 ).to(__lowerCAmelCase ) A__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ = OpenLlamaForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a_ ( self : Any ) -> Union[str, Any]: """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = """multi_label_classification""" A__ = input_dict["""input_ids"""] A__ = input_ids.ne(1 ).to(__lowerCAmelCase ) A__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A__ = OpenLlamaForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def a_ ( self : List[Any] ) -> List[str]: """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def a_ ( self : str , __lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = ids_tensor([1, 10] , config.vocab_size ) A__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ = OpenLlamaModel(__lowerCAmelCase ) original_model.to(__lowerCAmelCase ) original_model.eval() A__ = original_model(__lowerCAmelCase ).last_hidden_state A__ = original_model(__lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ = {"""type""": scaling_type, """factor""": 1_0.0} A__ = OpenLlamaModel(__lowerCAmelCase ) scaled_model.to(__lowerCAmelCase ) scaled_model.eval() A__ = scaled_model(__lowerCAmelCase ).last_hidden_state A__ = scaled_model(__lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-5 ) )
274
def __lowerCamelCase ( __a :str ) -> list: """simple docstring""" A__ = [0] * len(__a ) for i in range(1 , len(__a ) ): # use last results for better performance - dynamic programming A__ = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: A__ = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 A__ = j return prefix_result def __lowerCamelCase ( __a :str ) -> int: """simple docstring""" return max(prefix_function(__a ) ) if __name__ == "__main__": import doctest doctest.testmod()
274
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[Any] = "Speech2TextFeatureExtractor" _UpperCAmelCase :Dict = "Speech2TextTokenizer" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = self.feature_extractor lowercase__: Optional[int] = False def __call__( self , *_UpperCAmelCase , **_UpperCAmelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_UpperCAmelCase , **_UpperCAmelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowercase__: Optional[Any] = kwargs.pop('''raw_speech''' ) else: lowercase__: Tuple = kwargs.pop('''audio''' , _UpperCAmelCase ) lowercase__: Dict = kwargs.pop('''sampling_rate''' , _UpperCAmelCase ) lowercase__: Optional[int] = kwargs.pop('''text''' , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: lowercase__: Tuple = args[0] lowercase__: List[str] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowercase__: Any = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None: lowercase__: Optional[int] = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: lowercase__: Optional[int] = encodings['''input_ids'''] return inputs def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @contextmanager def _snake_case ( self ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowercase__: List[str] = True lowercase__: Dict = self.tokenizer yield lowercase__: str = self.feature_extractor lowercase__: Optional[Any] = False
2
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "unispeech-sat" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Union[str, Any] = feat_extract_norm lowercase__: Any = feat_extract_activation lowercase__: List[Any] = list(_UpperCAmelCase ) lowercase__: Optional[int] = list(_UpperCAmelCase ) lowercase__: int = list(_UpperCAmelCase ) lowercase__: Any = conv_bias lowercase__: List[str] = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: int = len(self.conv_dim ) lowercase__: Dict = num_hidden_layers lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: Optional[Any] = num_attention_heads lowercase__: Union[str, Any] = hidden_dropout lowercase__: List[Any] = attention_dropout lowercase__: str = activation_dropout lowercase__: Optional[Any] = feat_proj_dropout lowercase__: Optional[int] = final_dropout lowercase__: Any = layerdrop lowercase__: int = layer_norm_eps lowercase__: Any = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[Any] = num_clusters lowercase__: Dict = do_stable_layer_norm lowercase__: List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: Dict = apply_spec_augment lowercase__: Union[str, Any] = mask_time_prob lowercase__: List[str] = mask_time_length lowercase__: Union[str, Any] = mask_time_min_masks lowercase__: str = mask_feature_prob lowercase__: Dict = mask_feature_length lowercase__: List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__: Tuple = num_codevectors_per_group lowercase__: Optional[Any] = num_codevector_groups lowercase__: int = contrastive_logits_temperature lowercase__: Any = feat_quantizer_dropout lowercase__: int = num_negatives lowercase__: Optional[Any] = codevector_dim lowercase__: int = proj_codevector_dim lowercase__: str = diversity_loss_weight # ctc loss lowercase__: int = ctc_loss_reduction lowercase__: Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = list(_UpperCAmelCase ) lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = xvector_output_dim @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
2
1
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def __lowerCamelCase ( ) -> Any: _a : Dict = 10 _a : Union[str, Any] = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) _a : Optional[int] = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(lowerCAmelCase_ ) ), } , features=lowerCAmelCase_ , ) return dataset @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _a : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowerCAmelCase_ ) return filename # FILE_CONTENT + files __lowerCAmelCase = '''\ Text data. Second line of data.''' @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]: _a : str = tmp_path_factory.mktemp('data' ) / 'file.txt' _a : Optional[Any] = FILE_CONTENT with open(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ ) return filename @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[str, Any]: import bza _a : Dict = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' _a : Any = bytes(lowerCAmelCase_ , 'utf-8' ) with bza.open(lowerCAmelCase_ , 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]: import gzip _a : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) _a : Union[str, Any] = bytes(lowerCAmelCase_ , 'utf-8' ) with gzip.open(lowerCAmelCase_ , 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> str: if datasets.config.LZ4_AVAILABLE: import lza.frame _a : List[str] = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' _a : Optional[int] = bytes(lowerCAmelCase_ , 'utf-8' ) with lza.frame.open(lowerCAmelCase_ , 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: if datasets.config.PY7ZR_AVAILABLE: import pyazr _a : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowerCAmelCase_ , 'w' ) as archive: archive.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: import tarfile _a : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowerCAmelCase_ , 'w' ) as f: f.add(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[str, Any]: import lzma _a : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' _a : int = bytes(lowerCAmelCase_ , 'utf-8' ) with lzma.open(lowerCAmelCase_ , 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: import zipfile _a : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _a : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' _a : Optional[Any] = bytes(lowerCAmelCase_ , 'utf-8' ) with zstd.open(lowerCAmelCase_ , 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: _a : Any = tmp_path_factory.mktemp('data' ) / 'file.xml' _a : int = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ ) return filename __lowerCAmelCase = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope='session' ) def __lowerCamelCase ( ) -> List[str]: return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> int: _a : Dict = datasets.Dataset.from_dict(lowerCAmelCase_ ) _a : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> int: _a : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowerCAmelCase_ ) ) as con: _a : Tuple = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: _a : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowerCAmelCase_ , 'w' , newline='' ) as f: _a : Dict = csv.DictWriter(lowerCAmelCase_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Tuple: _a : int = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowerCAmelCase_ , 'w' , newline='' ) as f: _a : int = csv.DictWriter(lowerCAmelCase_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: import bza _a : str = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowerCAmelCase_ , 'rb' ) as f: _a : Optional[Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCAmelCase_ , 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _a : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _a : str = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _a : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) ) f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> str: _a : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) _a : Optional[int] = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowerCAmelCase_ , 'wb' ) as f: _a : Optional[int] = pq.ParquetWriter(lowerCAmelCase_ , schema=lowerCAmelCase_ ) _a : List[str] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCAmelCase_ ) )] for k in DATA[0]} , schema=lowerCAmelCase_ ) writer.write_table(lowerCAmelCase_ ) writer.close() return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]: _a : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _a : Tuple = {'data': DATA} with open(lowerCAmelCase_ , 'w' ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> str: _a : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _a : Optional[int] = {'data': DATA_DICT_OF_LISTS} with open(lowerCAmelCase_ , 'w' ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> int: _a : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowerCAmelCase_ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[int]: _a : int = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowerCAmelCase_ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Dict: _a : int = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowerCAmelCase_ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Dict: _a : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowerCAmelCase_ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: import gzip _a : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowerCAmelCase_ , 'rb' ) as orig_file: with gzip.open(lowerCAmelCase_ , 'wb' ) as zipped_file: zipped_file.writelines(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: import gzip _a : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowerCAmelCase_ , 'rb' ) as orig_file: with gzip.open(lowerCAmelCase_ , 'wb' ) as zipped_file: zipped_file.writelines(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _a : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _a : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.join('nested' , os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _a : Tuple = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) ) f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _a : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowerCAmelCase_ , 'w' ) as f: f.add(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) f.add(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _a : Any = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowerCAmelCase_ , 'w' ) as f: f.add(lowerCAmelCase_ , arcname=os.path.join('nested' , os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: _a : Any = ['0', '1', '2', '3'] _a : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowerCAmelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: _a : List[Any] = ['0', '1', '2', '3'] _a : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowerCAmelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Tuple: _a : List[str] = ['0', '1', '2', '3'] _a : Any = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowerCAmelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _a : Dict = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _a : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) ) f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _a : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> int: _a : int = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) _a : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( ) -> List[str]: return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def __lowerCamelCase ( ) -> Union[str, Any]: return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _a : Dict = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> str: _a : Tuple = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
89
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] lowercase__ = [] lowercase__ = [] for rt in rc.restypes: lowercase__ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowercase__ = {name: i for i, name in enumerate(lowerCamelCase_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) lowercase__ = torch.tensor( lowerCamelCase_ , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase__ = torch.tensor( lowerCamelCase_ , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase__ = torch.tensor( lowerCamelCase_ , dtype=torch.floataa , device=protein['''aatype'''].device , ) lowercase__ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowercase__ = restype_atomaa_to_atomaa[protein_aatype] lowercase__ = restype_atomaa_mask[protein_aatype] lowercase__ = residx_atomaa_mask lowercase__ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowercase__ = restype_atomaa_to_atomaa[protein_aatype] lowercase__ = residx_atomaa_to_atomaa.long() # create the corresponding mask lowercase__ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): lowercase__ = rc.restype_atoa[restype_letter] lowercase__ = rc.residue_atoms[restype_name] for atom_name in atom_names: lowercase__ = rc.atom_order[atom_name] lowercase__ = 1 lowercase__ = restype_atomaa_mask[protein_aatype] lowercase__ = residx_atomaa_mask return protein def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = tree_map(lambda lowerCamelCase_ : torch.tensor(lowerCamelCase_ , device=batch['''aatype'''].device ) , lowerCamelCase_ , np.ndarray ) lowercase__ = tensor_tree_map(lambda lowerCamelCase_ : np.array(lowerCamelCase_ ) , make_atomaa_masks(lowerCamelCase_ ) ) return out
207
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ : List[Any] = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCAmelCase_ : Any = logging.getLogger(__name__) class __lowerCAmelCase ( __a ): def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ): _UpperCAmelCase : str = self.layer[current_layer](lowerCAmelCase__ , lowerCAmelCase__ , head_mask[current_layer] ) _UpperCAmelCase : List[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , __a , ) class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ ): super().__init__(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = BertEncoderWithPabee(lowerCAmelCase__ ) self.init_weights() _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : int = 0 def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = threshold def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = patience def snake_case_ (self ): _UpperCAmelCase : int = 0 _UpperCAmelCase : Optional[Any] = 0 def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = self.inference_layers_num / self.inference_instances_num _UpperCAmelCase : Optional[int] = ( F"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" F" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(lowerCAmelCase__ ) @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: _UpperCAmelCase : Optional[Any] = input_ids.size() elif inputs_embeds is not None: _UpperCAmelCase : str = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) _UpperCAmelCase : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _UpperCAmelCase : Optional[Any] = torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ ) if token_type_ids is None: _UpperCAmelCase : Optional[int] = torch.zeros(lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = encoder_hidden_states.size() _UpperCAmelCase : List[str] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _UpperCAmelCase : Tuple = torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = self.invert_attention_mask(lowerCAmelCase__ ) else: _UpperCAmelCase : List[str] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _UpperCAmelCase : Any = self.get_head_mask(lowerCAmelCase__ , self.config.num_hidden_layers ) _UpperCAmelCase : int = self.embeddings( input_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = embedding_output if self.training: _UpperCAmelCase : Union[str, Any] = [] for i in range(self.config.num_hidden_layers ): _UpperCAmelCase : Tuple = self.encoder.adaptive_forward( lowerCAmelCase__ , current_layer=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) _UpperCAmelCase : Any = self.pooler(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output_layers[i](output_dropout(lowerCAmelCase__ ) ) res.append(lowerCAmelCase__ ) elif self.patience == 0: # Use all layers for inference _UpperCAmelCase : int = self.encoder( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) _UpperCAmelCase : List[str] = self.pooler(encoder_outputs[0] ) _UpperCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase__ )] else: _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : int = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _UpperCAmelCase : int = self.encoder.adaptive_forward( lowerCAmelCase__ , current_layer=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.pooler(lowerCAmelCase__ ) _UpperCAmelCase : int = output_layers[i](lowerCAmelCase__ ) if regression: _UpperCAmelCase : List[Any] = logits.detach() if patient_result is not None: _UpperCAmelCase : Union[str, Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _UpperCAmelCase : List[str] = 0 else: _UpperCAmelCase : Optional[int] = logits.detach().argmax(dim=1 ) if patient_result is not None: _UpperCAmelCase : str = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase__ ) ): patient_counter += 1 else: _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : List[str] = logits if patient_counter == self.patience: break _UpperCAmelCase : List[str] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , __a , ) class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ ): super().__init__(lowerCAmelCase__ ) _UpperCAmelCase : int = config.num_labels _UpperCAmelCase : List[Any] = BertModelWithPabee(lowerCAmelCase__ ) _UpperCAmelCase : int = nn.Dropout(config.hidden_dropout_prob ) _UpperCAmelCase : str = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ): _UpperCAmelCase : Optional[int] = self.bert( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _UpperCAmelCase : Any = (logits[-1],) if labels is not None: _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : int = 0 for ix, logits_item in enumerate(lowerCAmelCase__ ): if self.num_labels == 1: # We are doing regression _UpperCAmelCase : Dict = MSELoss() _UpperCAmelCase : List[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _UpperCAmelCase : Optional[Any] = CrossEntropyLoss() _UpperCAmelCase : Union[str, Any] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _UpperCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _UpperCAmelCase : Tuple = (total_loss / total_weights,) + outputs return outputs
170
0
'''simple docstring''' from __future__ import annotations def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> str: # noqa: E741 '''simple docstring''' while r - l > 1: snake_case_ = (l + r) // 2 if v[m] >= key: snake_case_ = m else: snake_case_ = m # noqa: E741 return r def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' if len(__UpperCAmelCase ) == 0: return 0 snake_case_ = [0] * len(__UpperCAmelCase ) snake_case_ = 1 snake_case_ = v[0] for i in range(1, len(__UpperCAmelCase ) ): if v[i] < tail[0]: snake_case_ = v[i] elif v[i] > tail[length - 1]: snake_case_ = v[i] length += 1 else: snake_case_ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' # Algorithm for the pigeonhole sorting def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : List[Any] = min(_lowerCamelCase ) # min() finds the minimum value _lowerCAmelCase : Tuple = max(_lowerCamelCase ) # max() finds the maximum value _lowerCAmelCase : int = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _lowerCAmelCase : Dict = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCamelCase , _lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _lowerCAmelCase : Any = 0 for count in range(_lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 _lowerCAmelCase : Optional[int] = count + min_val i += 1 def _UpperCAmelCase ( ) -> Optional[int]: _lowerCAmelCase : Optional[int] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCamelCase ) print("""Sorted order is:""" , """ """.join(_lowerCamelCase ) ) if __name__ == "__main__": main()
309
0
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __snake_case : Tuple ='\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' __snake_case : str ='\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' __snake_case : Tuple ='\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Any): '''simple docstring''' return float((preds == labels).mean()) def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : Optional[int] = simple_accuracy(lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : Any = float(fa_score(y_true=lowerCamelCase_ ,y_pred=lowerCamelCase_)) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : Tuple): '''simple docstring''' lowerCAmelCase__ : List[Any] = np.array(lowerCamelCase_) lowerCAmelCase__ : List[Any] = np.array(lowerCamelCase_) lowerCAmelCase__ : Any = en_sentvecs.shape[0] # mean centering lowerCAmelCase__ : Tuple = en_sentvecs - np.mean(lowerCamelCase_ ,axis=0) lowerCAmelCase__ : Optional[int] = in_sentvecs - np.mean(lowerCamelCase_ ,axis=0) lowerCAmelCase__ : Any = cdist(lowerCamelCase_ ,lowerCamelCase_ ,'''cosine''') lowerCAmelCase__ : Tuple = np.array(range(lowerCamelCase_)) lowerCAmelCase__ : List[str] = sim.argsort(axis=1)[:, :10] lowerCAmelCase__ : Optional[int] = np.any(preds == actual[:, None] ,axis=1) return float(matches.mean()) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): '''simple docstring''' def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None ,) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__lowerCamelCase ,__lowerCamelCase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__lowerCamelCase ,__lowerCamelCase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__lowerCamelCase ,__lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
352
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Any =logging.get_logger(__name__) __snake_case : Tuple ={ 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""vit_msn""" def __init__(self ,__lowerCamelCase=7_68 ,__lowerCamelCase=12 ,__lowerCamelCase=12 ,__lowerCamelCase=30_72 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.02 ,__lowerCamelCase=1e-06 ,__lowerCamelCase=2_24 ,__lowerCamelCase=16 ,__lowerCamelCase=3 ,__lowerCamelCase=True ,**__lowerCamelCase ,) -> Any: """simple docstring""" super().__init__(**__lowerCamelCase ) lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : Optional[int] = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : Union[str, Any] = layer_norm_eps lowerCAmelCase__ : List[str] = image_size lowerCAmelCase__ : str = patch_size lowerCAmelCase__ : Optional[int] = num_channels lowerCAmelCase__ : int = qkv_bias
94
0
from __future__ import annotations import time import numpy as np UpperCAmelCase_ = [8, 5, 9, 7] UpperCAmelCase_ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] UpperCAmelCase_ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__, __magic_name__, __magic_name__, ) -> None: """simple docstring""" UpperCamelCase__ : Optional[Any] = claim_vector UpperCamelCase__ : List[str] = allocated_resources_table UpperCamelCase__ : List[str] = maximum_claim_table def UpperCamelCase__ ( self ) -> list[int]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCamelCase__ ( self ) -> list[int]: """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCamelCase__ ( self ) -> list[list[int]]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__SCREAMING_SNAKE_CASE ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCamelCase__ ( self ) -> dict[int, list[int]]: """simple docstring""" return {self.__need().index(__SCREAMING_SNAKE_CASE ): i for i in self.__need()} def UpperCamelCase__ ( self, **__magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.__need() UpperCamelCase__ : Optional[Any] = self.__allocated_resources_table UpperCamelCase__ : Optional[Any] = self.__available_resources() UpperCamelCase__ : Dict = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: UpperCamelCase__ : List[str] = False for each_need in need_list: UpperCamelCase__ : int = True for index, need in enumerate(__SCREAMING_SNAKE_CASE ): if need > available_resources[index]: UpperCamelCase__ : List[Any] = False break if execution: UpperCamelCase__ : Tuple = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCamelCase__ : Dict = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__SCREAMING_SNAKE_CASE ) # update available/freed resources stack UpperCamelCase__ : List[str] = np.array(__SCREAMING_SNAKE_CASE ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(__SCREAMING_SNAKE_CASE ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__SCREAMING_SNAKE_CASE ) + 1}" + ''' '''.join(f"{it:>8}" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__SCREAMING_SNAKE_CASE ) + 1}" + ''' '''.join(f"{it:>8}" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(__SCREAMING_SNAKE_CASE ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(__SCREAMING_SNAKE_CASE ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
201
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase__ : Dict = logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase_ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class lowercase_ ( UpperCamelCase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray: if self.framework == "tf": lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE ) else: raise ValueError('''Unsupported framework''' ) return masked_index def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray: lowerCAmelCase = self.get_masked_index(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Dict[str, GenericTensor]: if return_tensors is None: lowerCAmelCase = self.framework lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) self.ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple: lowerCAmelCase = self.model(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = model_inputs['''input_ids'''] return model_outputs def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=None ) ->str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: lowerCAmelCase = target_ids.shape[0] lowerCAmelCase = model_outputs['''input_ids'''][0] lowerCAmelCase = model_outputs['''logits'''] if self.framework == "tf": lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowerCAmelCase = outputs.numpy() lowerCAmelCase = outputs[0, masked_index, :] lowerCAmelCase = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) if target_ids is not None: lowerCAmelCase = tf.gather_nd(tf.squeeze(__SCREAMING_SNAKE_CASE , 0 ) , target_ids.reshape(-1 , 1 ) ) lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE , 0 ) lowerCAmelCase = tf.math.top_k(__SCREAMING_SNAKE_CASE , k=__SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase = topk.values.numpy(), topk.indices.numpy() else: lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowerCAmelCase = outputs[0, masked_index, :] lowerCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: lowerCAmelCase = probs[..., target_ids] lowerCAmelCase , lowerCAmelCase = probs.topk(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = [] lowerCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): lowerCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place lowerCAmelCase = input_ids.numpy().copy() if target_ids is not None: lowerCAmelCase = target_ids[p].tolist() lowerCAmelCase = p # Filter padding out: lowerCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowerCAmelCase = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(__SCREAMING_SNAKE_CASE ) result.append(__SCREAMING_SNAKE_CASE ) if single_mask: return result[0] return result def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Optional[Any]: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = [targets] try: lowerCAmelCase = self.tokenizer.get_vocab() except Exception: lowerCAmelCase = {} lowerCAmelCase = [] for target in targets: lowerCAmelCase = vocab.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if id_ is None: lowerCAmelCase = self.tokenizer( __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , max_length=1 , truncation=__SCREAMING_SNAKE_CASE , )['''input_ids'''] if len(__SCREAMING_SNAKE_CASE ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " '''We cannot replace it with anything meaningful, ignoring it''' ) continue lowerCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) lowerCAmelCase = list(set(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) return target_ids def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) ->Dict: lowerCAmelCase = {} if targets is not None: lowerCAmelCase = self.get_target_ids(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = target_ids if top_k is not None: lowerCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]: lowerCAmelCase = super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) == 1: return outputs[0] return outputs
338
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowercase__ :Tuple = logging.getLogger(__name__) @dataclass class lowercase : lowercase_ : str =field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowercase_ : Optional[str] =field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowercase_ : Optional[str] =field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowercase_ : Optional[str] =field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowercase_ : bool =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) lowercase_ : bool =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class lowercase : lowercase_ : str =field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) lowercase_ : Optional[str] =field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) lowercase_ : Optional[int] =field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowercase_ : Optional[int] =field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowercase_ : Optional[int] =field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) lowercase_ : Optional[int] =field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowercase_ : Optional[int] =field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) lowercase_ : Optional[int] =field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) lowercase_ : Optional[int] =field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) lowercase_ : Optional[str] =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Source language id for translation.'''} ) lowercase_ : Optional[str] =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Target language id for translation.'''} ) lowercase_ : Optional[int] =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) lowercase_ : bool =field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' logger.info(f'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(f' {key} = {metrics[key]}' ) save_json(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , f'{split}_results.json' ) ) def UpperCamelCase ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() check_output_dir(lowerCAmelCase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): assert hasattr(lowerCAmelCase__ , lowerCAmelCase__ ), f'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(lowerCAmelCase__ , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowerCAmelCase__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowerCAmelCase__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowerCAmelCase__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase = SeqaSeqDataset # Get datasets lowercase = ( dataset_class( lowerCAmelCase__ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) lowercase = ( dataset_class( lowerCAmelCase__ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase = ( dataset_class( lowerCAmelCase__ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase = ( build_compute_metrics_fn(data_args.task , lowerCAmelCase__ ) if training_args.predict_with_generate else None ) lowercase = SeqaSeqTrainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , data_args=lowerCAmelCase__ , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , data_collator=SeqaSeqDataCollator( lowerCAmelCase__ , lowerCAmelCase__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , ) lowercase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) lowercase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase = train_result.metrics lowercase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , lowerCAmelCase__ , training_args.output_dir ) all_metrics.update(lowerCAmelCase__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase = trainer.evaluate(metric_key_prefix='''val''' ) lowercase = data_args.n_val lowercase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , lowerCAmelCase__ , training_args.output_dir ) all_metrics.update(lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) lowercase = trainer.predict(test_dataset=lowerCAmelCase__ , metric_key_prefix='''test''' ) lowercase = test_output.metrics lowercase = data_args.n_test if trainer.is_world_process_zero(): lowercase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , lowerCAmelCase__ , training_args.output_dir ) all_metrics.update(lowerCAmelCase__ ) if training_args.predict_with_generate: lowercase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) lowercase = lmap(str.strip , lowerCAmelCase__ ) write_txt_file(lowerCAmelCase__ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(lowerCAmelCase__ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
97
import numpy as np import datasets lowercase__ :Dict = "\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n" lowercase__ :List[Any] = "\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n" lowercase__ :Dict = "\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {'mahalanobis': array([0.5])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def A__ ( self): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' ,id='''sequence''') ,id='''X'''), }) ,) def A__ ( self ,A__ ,A__): # convert to numpy arrays lowercase = np.array(A__) lowercase = np.array(A__) # Assert that arrays are 2D if len(X.shape) != 2: raise ValueError('''Expected `X` to be a 2D vector''') if len(reference_distribution.shape) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''') if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''') # Get mahalanobis distance for each prediction lowercase = X - np.mean(A__) lowercase = np.cov(reference_distribution.T) try: lowercase = np.linalg.inv(A__) except np.linalg.LinAlgError: lowercase = np.linalg.pinv(A__) lowercase = np.dot(A__ ,A__) lowercase = np.dot(A__ ,X_minus_mu.T).diagonal() return {"mahalanobis": mahal_dist}
97
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( a__ , a__ , unittest.TestCase): _UpperCamelCase:Union[str, Any] = StableDiffusionSAGPipeline _UpperCamelCase:Optional[int] = TEXT_TO_IMAGE_PARAMS _UpperCamelCase:int = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase:Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase:Any = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase:Tuple = False def _snake_case ( self )-> List[str]: torch.manual_seed(0 ) lowerCamelCase_ =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowerCamelCase_ =DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) lowerCamelCase_ =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCamelCase_ =CLIPTextModel(lowerCAmelCase__ ) lowerCamelCase_ =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase_ ={ "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )-> Optional[int]: if str(lowerCAmelCase__ ).startswith("""mps""" ): lowerCamelCase_ =torch.manual_seed(lowerCAmelCase__ ) else: lowerCamelCase_ =torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCamelCase_ ={ "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def _snake_case ( self )-> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self )-> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self )-> Dict: lowerCamelCase_ =StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) lowerCamelCase_ =sag_pipe.to(lowerCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCamelCase_ ="." lowerCamelCase_ =torch.manual_seed(0 ) lowerCamelCase_ =sag_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) lowerCamelCase_ =output.images lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ =np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) lowerCamelCase_ =sag_pipe.to(lowerCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCamelCase_ ="." lowerCamelCase_ =torch.manual_seed(0 ) lowerCamelCase_ =sag_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) lowerCamelCase_ =output.images lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ =np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _snake_case ( self )-> Dict: lowerCamelCase_ =StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) lowerCamelCase_ =sag_pipe.to(lowerCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCamelCase_ ="." lowerCamelCase_ =torch.manual_seed(0 ) lowerCamelCase_ =sag_pipe( [prompt] , width=768 , height=512 , generator=lowerCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) lowerCamelCase_ =output.images assert image.shape == (1, 512, 768, 3)
154
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a : Union[str, Any] = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE ( ) ->Tuple: '''simple docstring''' a : Dict = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=_lowercase , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=_lowercase , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=_lowercase , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=_lowercase , default="data/dump" , help="The dump file prefix." ) a : Dict = parser.parse_args() logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": a : Optional[Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) a : str = tokenizer.special_tokens_map["cls_token"] # `[CLS]` a : List[str] = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": a : Tuple = RobertaTokenizer.from_pretrained(args.tokenizer_name ) a : Union[str, Any] = tokenizer.special_tokens_map["cls_token"] # `<s>` a : str = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": a : List[Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) a : Optional[int] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` a : List[Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F"""Loading text from {args.file_path}""" ) with open(args.file_path , "r" , encoding="utf8" ) as fp: a : List[Any] = fp.readlines() logger.info("Start encoding" ) logger.info(F"""{len(_lowercase )} examples to process.""" ) a : Optional[Any] = [] a : Optional[Any] = 0 a : int = 1_0000 a : Dict = time.time() for text in data: a : List[Any] = F"""{bos} {text.strip()} {sep}""" a : Optional[int] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) rslt.append(_lowercase ) iter += 1 if iter % interval == 0: a : Optional[Any] = time.time() logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) a : Optional[Any] = time.time() logger.info("Finished binarization" ) logger.info(F"""{len(_lowercase )} examples processed.""" ) a : Optional[int] = F"""{args.dump_file}.{args.tokenizer_name}.pickle""" a : Tuple = tokenizer.vocab_size if vocab_size < (1 << 16): a : Optional[int] = [np.uintaa(_lowercase ) for d in rslt] else: a : Optional[Any] = [np.intaa(_lowercase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"""Dump to {dp_file}""" ) with open(_lowercase , "wb" ) as handle: pickle.dump(rslt_ , _lowercase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
105
0
'''simple docstring''' snake_case__ : List[str] = {str(digit): digit**5 for digit in range(10)} def _lowerCamelCase ( lowerCamelCase_ : int ): """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase_ ) ) def _lowerCamelCase ( ): """simple docstring""" return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(lowerCamelCase_ ) ) if __name__ == "__main__": print(solution())
274
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort snake_case__ : Optional[int] = '''1''' snake_case__ : str = '''0''' snake_case__ : List[str] = '''1''' snake_case__ : List[str] = ort.SessionOptions() snake_case__ : str = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') snake_case__ : Dict = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] snake_case__ : Dict = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) snake_case__ : str = ort.RunOptions() snake_case__ : List[Any] = 128 snake_case__ : Union[str, Any] = 1 snake_case__ : Tuple = np.ones((batch, sequence), dtype=np.intaa) snake_case__ : Tuple = np.ones((batch, sequence), dtype=np.intaa) snake_case__ : Union[str, Any] = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') snake_case__ : Union[str, Any] = time.time() snake_case__ : str = 2000 snake_case__ : Tuple = {} for iter in range(max_iters): snake_case__ : str = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 1000 / max_iters))
274
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __snake_case : def __init__( self ,snake_case ,snake_case=2 ,snake_case=True ,snake_case=False ,snake_case=10 ,snake_case=3 ,snake_case=32 * 4 ,snake_case=32 * 6 ,snake_case=4 ,snake_case=32 ,): '''simple docstring''' lowercase : Optional[Any] = parent lowercase : Tuple = batch_size lowercase : Optional[int] = is_training lowercase : Optional[Any] = use_auxiliary_loss lowercase : str = num_queries lowercase : Optional[int] = num_channels lowercase : Tuple = min_size lowercase : int = max_size lowercase : int = num_labels lowercase : Optional[Any] = mask_feature_size def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase_ ) lowercase : int = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=lowerCamelCase_ ) lowercase : List[str] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=lowerCamelCase_ ) > 0.5 ).float() lowercase : Any = (torch.rand((self.batch_size, self.num_labels) ,device=lowerCamelCase_ ) > 0.5).long() lowercase : List[str] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] ,) ,decoder_config=DetrConfig( decoder_ffn_dim=128 ,num_queries=self.num_queries ,decoder_attention_heads=2 ,d_model=self.mask_feature_size ,) ,mask_feature_size=self.mask_feature_size ,fpn_feature_size=self.mask_feature_size ,num_channels=self.num_channels ,num_labels=self.num_labels ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.prepare_config_and_inputs() lowercase : Any = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = output.encoder_hidden_states lowercase : Any = output.pixel_decoder_hidden_states lowercase : Dict = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase_ ) ,config.decoder_config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=False ): '''simple docstring''' with torch.no_grad(): lowercase : str = MaskFormerModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowercase : Dict = model(pixel_values=lowerCamelCase_ ,pixel_mask=lowerCamelCase_ ) lowercase : Optional[int] = model(lowerCamelCase_ ,output_hidden_states=lowerCamelCase_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.mask_feature_size) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase_ ,lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = MaskFormerForInstanceSegmentation(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() def comm_check_on_output(snake_case ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase : Dict = model(pixel_values=lowerCamelCase_ ,pixel_mask=lowerCamelCase_ ) lowercase : Any = model(lowerCamelCase_ ) comm_check_on_output(lowerCamelCase_ ) lowercase : Union[str, Any] = model( pixel_values=lowerCamelCase_ ,pixel_mask=lowerCamelCase_ ,mask_labels=lowerCamelCase_ ,class_labels=lowerCamelCase_ ) comm_check_on_output(lowerCamelCase_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class __snake_case ( __snake_case , __snake_case , unittest.TestCase ): _a : str= (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () _a : Any= ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) _a : Dict= False _a : List[Any]= False _a : int= False _a : int= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = MaskFormerModelTester(self ) lowercase : List[Any] = ConfigTester(self ,config_class=lowerCamelCase_ ,has_text_modality=lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase_ ,**lowerCamelCase_ ,output_hidden_states=lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowerCamelCase_ ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : str = model_class(lowerCamelCase_ ) lowercase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Optional[int] = [*signature.parameters.keys()] lowercase : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: lowercase : str = MaskFormerModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = (self.model_tester.min_size,) * 2 lowercase : List[str] = { """pixel_values""": torch.randn((2, 3, *size) ,device=lowerCamelCase_ ), """mask_labels""": torch.randn((2, 10, *size) ,device=lowerCamelCase_ ), """class_labels""": torch.zeros(2 ,10 ,device=lowerCamelCase_ ).long(), } lowercase : Union[str, Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowerCamelCase_ ) lowercase : Dict = model(**lowerCamelCase_ ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase_ ,**lowerCamelCase_ ,output_hidden_states=lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Any = model_class(lowerCamelCase_ ).to(lowerCamelCase_ ) lowercase : Optional[Any] = model(**lowerCamelCase_ ,output_attentions=lowerCamelCase_ ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowercase : str = self.all_model_classes[1] lowercase : Dict = self.model_tester.prepare_config_and_inputs() lowercase : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.train() lowercase : Optional[int] = model(lowerCamelCase_ ,mask_labels=lowerCamelCase_ ,class_labels=lowerCamelCase_ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.all_model_classes[1] lowercase : int = self.model_tester.prepare_config_and_inputs() lowercase : Tuple = True lowercase : Tuple = True lowercase : int = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.train() lowercase : Optional[int] = model(lowerCamelCase_ ,mask_labels=lowerCamelCase_ ,class_labels=lowerCamelCase_ ) lowercase : List[str] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase : Optional[int] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowercase : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase : List[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase : List[str] = 1e-4 def _snake_case( ) -> List[Any]: lowercase : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __snake_case ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(lowerCamelCase_ ) lowercase : Optional[int] = self.default_image_processor lowercase : int = prepare_img() lowercase : Union[str, Any] = image_processor(lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) lowercase : Union[str, Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase_ ,(1, 3, 800, 1088) ) with torch.no_grad(): lowercase : Any = model(**lowerCamelCase_ ) lowercase : Tuple = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(lowerCamelCase_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) ) lowercase : Tuple = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(lowerCamelCase_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) ) lowercase : List[str] = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(lowerCamelCase_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(lowerCamelCase_ ) .eval() ) lowercase : Union[str, Any] = self.default_image_processor lowercase : Union[str, Any] = prepare_img() lowercase : Any = image_processor(lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) lowercase : Optional[int] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase_ ,(1, 3, 800, 1088) ) with torch.no_grad(): lowercase : Optional[Any] = model(**lowerCamelCase_ ) # masks_queries_logits lowercase : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) lowercase : List[str] = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] lowercase : str = torch.tensor(lowerCamelCase_ ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) ) # class_queries_logits lowercase : int = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowercase : List[str] = torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(lowerCamelCase_ ) .eval() ) lowercase : List[Any] = self.default_image_processor lowercase : Optional[int] = prepare_img() lowercase : str = image_processor(lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) lowercase : Union[str, Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase_ ,(1, 3, 800, 1088) ) with torch.no_grad(): lowercase : Tuple = model(**lowerCamelCase_ ) # masks_queries_logits lowercase : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) lowercase : List[Any] = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7711]] lowercase : Optional[int] = torch.tensor(lowerCamelCase_ ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) ) # class_queries_logits lowercase : List[str] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowercase : Optional[int] = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(lowerCamelCase_ ) .eval() ) lowercase : Union[str, Any] = self.default_image_processor lowercase : int = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors="""pt""" ,) lowercase : Any = inputs["""pixel_values"""].to(lowerCamelCase_ ) lowercase : Tuple = [el.to(lowerCamelCase_ ) for el in inputs["""mask_labels"""]] lowercase : str = [el.to(lowerCamelCase_ ) for el in inputs["""class_labels"""]] with torch.no_grad(): lowercase : str = model(**lowerCamelCase_ ) self.assertTrue(outputs.loss is not None )
20
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Union[str, Any] = "ernie_m" A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : List[Any] = classifier_dropout UpperCAmelCase_ : str = is_decoder UpperCAmelCase_ : List[str] = act_dropout
345
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def A (__A : Namespace ) -> Dict: """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) snake_case_ : int = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class __snake_case ( a ): @staticmethod def lowerCamelCase ( _snake_case : ArgumentParser): """simple docstring""" UpperCAmelCase_ = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=_snake_case , required=_snake_case , help='''Model\'s type.''') train_parser.add_argument( '''--tf_checkpoint''' , type=_snake_case , required=_snake_case , help='''TensorFlow checkpoint path or folder.''') train_parser.add_argument( '''--pytorch_dump_output''' , type=_snake_case , required=_snake_case , help='''Path to the PyTorch saved model output.''') train_parser.add_argument('''--config''' , type=_snake_case , default='''''' , help='''Configuration file path or folder.''') train_parser.add_argument( '''--finetuning_task_name''' , type=_snake_case , default=_snake_case , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=_snake_case) def __init__( self : Optional[int] , _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : str , *_snake_case : List[Any] , ): """simple docstring""" UpperCAmelCase_ = logging.get_logger('''transformers-cli/converting''') self._logger.info(F"""Loading model {model_type}""") UpperCAmelCase_ = model_type UpperCAmelCase_ = tf_checkpoint UpperCAmelCase_ = pytorch_dump_output UpperCAmelCase_ = config UpperCAmelCase_ = finetuning_task_name def lowerCamelCase ( self : Optional[Any]): """simple docstring""" if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_snake_case) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase_ = self._tf_checkpoint UpperCAmelCase_ = '''''' else: UpperCAmelCase_ = self._tf_checkpoint UpperCAmelCase_ = '''''' convert_transfo_xl_checkpoint_to_pytorch( _snake_case , self._config , self._pytorch_dump_output , _snake_case) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''')
7
import sys def A (__A : int ) -> Dict: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] for chain_length in range(2 , __A ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__A , __A ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]: """simple docstring""" if i == j: print('''A''' + str(__A ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__A , __A , optimal_solution[i][j] ) print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A ) print(''')''' , end=''' ''' ) def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__A , 1 , n - 1 ) if __name__ == "__main__": main()
7
1
'''simple docstring''' def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any ): __a , __a : Tuple = [], [] while len(_SCREAMING_SNAKE_CASE ) > 1: __a , __a : Tuple = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) start.append(_SCREAMING_SNAKE_CASE ) end.append(_SCREAMING_SNAKE_CASE ) collection.remove(_SCREAMING_SNAKE_CASE ) collection.remove(_SCREAMING_SNAKE_CASE ) end.reverse() return start + collection + end if __name__ == "__main__": __lowercase : List[str] = input('Enter numbers separated by a comma:\n').strip() __lowercase : Tuple = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
27
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {} class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : List[Any] = '''llama''' SCREAMING_SNAKE_CASE_ : Optional[int] = ['''past_key_values'''] def __init__( self ,SCREAMING_SNAKE_CASE__=3_20_00 ,SCREAMING_SNAKE_CASE__=40_96 ,SCREAMING_SNAKE_CASE__=1_10_08 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__="silu" ,SCREAMING_SNAKE_CASE__=20_48 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-6 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ,) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE :int = max_position_embeddings __SCREAMING_SNAKE_CASE :List[str] = hidden_size __SCREAMING_SNAKE_CASE :Tuple = intermediate_size __SCREAMING_SNAKE_CASE :List[str] = num_hidden_layers __SCREAMING_SNAKE_CASE :List[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: __SCREAMING_SNAKE_CASE :Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE :str = num_key_value_heads __SCREAMING_SNAKE_CASE :Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE :List[str] = initializer_range __SCREAMING_SNAKE_CASE :Union[str, Any] = rms_norm_eps __SCREAMING_SNAKE_CASE :Dict = pretraining_tp __SCREAMING_SNAKE_CASE :Optional[Any] = use_cache __SCREAMING_SNAKE_CASE :Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,tie_word_embeddings=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'''got {self.rope_scaling}''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = self.rope_scaling.get('''type''' ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = self.rope_scaling.get('''factor''' ,SCREAMING_SNAKE_CASE__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
191
0
from functools import reduce __snake_case :Optional[Any] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __snake_case ( _UpperCAmelCase = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda _UpperCAmelCase , _UpperCAmelCase : str(int(_UpperCAmelCase ) * int(_UpperCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(_UpperCAmelCase ) - 12 ) ) if __name__ == "__main__": print(f'{solution() = }')
131
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __snake_case :Dict = logging.get_logger(__name__) __snake_case :List[str] = {'''vocab_file''': '''spiece.model'''} __snake_case :Dict = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class _A ( __UpperCAmelCase ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]="<s>" , __SCREAMING_SNAKE_CASE : Optional[Any]="</s>" , __SCREAMING_SNAKE_CASE : Union[str, Any]="<unk>" , __SCREAMING_SNAKE_CASE : Optional[int]="<sep>" , __SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , __SCREAMING_SNAKE_CASE : List[Any]="<cls>" , __SCREAMING_SNAKE_CASE : Optional[int]="<mask>" , __SCREAMING_SNAKE_CASE : Any=["<eop>", "<eod>"] , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' __a = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else mask_token __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __a = 3 __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(__SCREAMING_SNAKE_CASE) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''') __a = jieba __a = str.maketrans(''' \n''' , '''\u2582\u2583''') @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowerCamelCase ( self : int): '''simple docstring''' return len(self.sp_model) def _lowerCamelCase ( self : str): '''simple docstring''' __a = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any): '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self : Tuple , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' if self.remove_space: __a = ''' '''.join(inputs.strip().split()) else: __a = inputs __a = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: __a = unicodedata.normalize('''NFKD''' , __SCREAMING_SNAKE_CASE) __a = ''''''.join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE)]) if self.do_lower_case: __a = outputs.lower() return outputs def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = self.preprocess_text(__SCREAMING_SNAKE_CASE) __a = self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE) __a = [] for piece in pieces: if len(__SCREAMING_SNAKE_CASE) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): __a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __a = cur_pieces[1:] else: __a = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(__SCREAMING_SNAKE_CASE) else: new_pieces.append(__SCREAMING_SNAKE_CASE) return new_pieces def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = ''''''.join(__SCREAMING_SNAKE_CASE).replace(__SCREAMING_SNAKE_CASE , ''' ''').strip() return out_string def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE) if token_ids_a is not None: return ([0] * len(__SCREAMING_SNAKE_CASE)) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE)) + [1, 1] return ([0] * len(__SCREAMING_SNAKE_CASE)) + [1, 1] def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = [self.sep_token_id] __a = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __a = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__SCREAMING_SNAKE_CASE) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE) elif not os.path.isfile(self.vocab_file): with open(__SCREAMING_SNAKE_CASE , '''wb''') as fi: __a = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE) return (out_vocab_file,) def _lowerCamelCase ( self : Any , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = super()._decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = text.replace(''' ''' , '''''').replace('''\u2582''' , ''' ''').replace('''\u2583''' , '''\n''') return text
131
1
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Dict=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F"{torch_layer} layer.weight does not match" UpperCAmelCase : List[str] = nn.Parameter(UpperCamelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"{torch_layer} layer.bias does not match" UpperCAmelCase : Optional[Any] = nn.Parameter(UpperCamelCase ) def _snake_case ( UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] ): # set torch weights for 1-to-1 comparison UpperCAmelCase : List[str] = np.asarray(weights[0] ) UpperCAmelCase : Any = np.asarray(weights[1] ) UpperCAmelCase : str = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(UpperCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase ).view(-1 , UpperCamelCase ).contiguous().transpose(0 , 1 ) , ) def _snake_case ( UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : Any ): # set torch weights for 1-to-1 comparison UpperCAmelCase : Any = np.asarray(weights[0] ) UpperCAmelCase : List[str] = np.asarray(weights[1] ) UpperCAmelCase : Tuple = np.asarray(weights[2] ) UpperCAmelCase : Optional[int] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(UpperCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(UpperCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase ).view(-1 , UpperCamelCase ).contiguous().transpose(0 , 1 ) , ) def _snake_case ( UpperCamelCase : List[str] , UpperCamelCase : List[str] , UpperCamelCase : str ): # layernorm 1 UpperCAmelCase : Union[str, Any] = weights[0][0][0] UpperCAmelCase : Tuple = np.asarray(layer_norm_a[0] ) UpperCAmelCase : str = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(UpperCamelCase ) , torch.tensor(UpperCamelCase ) , ) # lsh weights + output UpperCAmelCase : List[Any] = weights[0][1] if len(UpperCamelCase ) < 4: set_layer_weights_in_torch_lsh(UpperCamelCase , torch_block.attention , UpperCamelCase ) else: set_layer_weights_in_torch_local(UpperCamelCase , torch_block.attention , UpperCamelCase ) # intermediate weighs UpperCAmelCase : List[Any] = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCamelCase ) == 4: UpperCAmelCase : List[Any] = intermediate_weights[2] # layernorm 2 UpperCAmelCase : int = np.asarray(intermediate_weights[0][0] ) UpperCAmelCase : Tuple = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(UpperCamelCase ) , torch.tensor(UpperCamelCase ) , ) # intermediate dense UpperCAmelCase : Optional[Any] = np.asarray(intermediate_weights[1][0] ) UpperCAmelCase : str = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(UpperCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase ) , ) # intermediate out UpperCAmelCase : List[Any] = np.asarray(intermediate_weights[4][0] ) UpperCAmelCase : Optional[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(UpperCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase ) , ) def _snake_case ( UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Any ): # reformer model UpperCAmelCase : str = torch_model.reformer # word embeds UpperCAmelCase : Optional[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCamelCase ) , ) if isinstance(weights[3] , UpperCamelCase ): UpperCAmelCase : Any = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): UpperCAmelCase : Any = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"{position_embeddings[emb_idx]} emb does not match" UpperCAmelCase : Any = nn.Parameter(torch.tensor(UpperCamelCase ) ) UpperCAmelCase : List[str] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCamelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): UpperCAmelCase : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # output layer norm UpperCAmelCase : Any = np.asarray(weights[7][0] ) UpperCAmelCase : str = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCamelCase ) , torch.tensor(UpperCamelCase ) , ) # output embeddings UpperCAmelCase : List[str] = np.asarray(weights[9][0] ) UpperCAmelCase : Dict = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(UpperCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase ) , ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str ): # Initialise PyTorch model UpperCAmelCase : int = ReformerConfig.from_json_file(UpperCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) UpperCAmelCase : List[Any] = ReformerModelWithLMHead(UpperCamelCase ) with open(UpperCamelCase , """rb""" ) as f: UpperCAmelCase : List[str] = pickle.load(UpperCamelCase )["""weights"""] set_model_weights_in_torch(UpperCamelCase , UpperCamelCase , config.hidden_size ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , UpperCamelCase ) if __name__ == "__main__": A: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A: Any = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
109
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase_ = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
243
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Optional[int] ="levit" def __init__( self : Optional[Any] , lowerCAmelCase : Dict=2_24 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : str=3 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : int=16 , lowerCAmelCase : Any=[1_28, 2_56, 3_84] , lowerCAmelCase : int=[4, 8, 12] , lowerCAmelCase : Optional[int]=[4, 4, 4] , lowerCAmelCase : Optional[int]=[16, 16, 16] , lowerCAmelCase : Dict=0 , lowerCAmelCase : Optional[int]=[2, 2, 2] , lowerCAmelCase : Any=[2, 2, 2] , lowerCAmelCase : str=0.02 , **lowerCAmelCase : List[Any] , ) -> Dict: """simple docstring""" super().__init__(**lowerCAmelCase ) __lowerCAmelCase : Optional[int] = image_size __lowerCAmelCase : Tuple = num_channels __lowerCAmelCase : Any = kernel_size __lowerCAmelCase : str = stride __lowerCAmelCase : List[Any] = padding __lowerCAmelCase : Any = hidden_sizes __lowerCAmelCase : Any = num_attention_heads __lowerCAmelCase : Optional[Any] = depths __lowerCAmelCase : List[str] = key_dim __lowerCAmelCase : Optional[Any] = drop_path_rate __lowerCAmelCase : int = patch_size __lowerCAmelCase : int = attention_ratio __lowerCAmelCase : Any = mlp_ratio __lowerCAmelCase : int = initializer_range __lowerCAmelCase : Optional[int] = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Optional[Any] =version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> float: """simple docstring""" return 1e-4
355
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict=13 , lowerCAmelCase : int=7 , lowerCAmelCase : Any=True , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : int=64 , lowerCAmelCase : Any=32 , lowerCAmelCase : str=5 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : str=37 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=5_12 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : str=2 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : Dict=3 , lowerCAmelCase : int=4 , lowerCAmelCase : Union[str, Any]=None , ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = parent __lowerCAmelCase : Tuple = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : List[str] = is_training __lowerCAmelCase : Dict = use_input_mask __lowerCAmelCase : Optional[int] = use_token_type_ids __lowerCAmelCase : List[str] = use_labels __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : List[str] = hidden_size __lowerCAmelCase : Optional[int] = embedding_size __lowerCAmelCase : Optional[int] = num_hidden_layers __lowerCAmelCase : Optional[Any] = num_attention_heads __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : Optional[int] = hidden_act __lowerCAmelCase : Any = hidden_dropout_prob __lowerCAmelCase : Optional[int] = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : Optional[Any] = type_vocab_size __lowerCAmelCase : Optional[Any] = type_sequence_label_size __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : Optional[Any] = num_labels __lowerCAmelCase : Union[str, Any] = num_choices __lowerCAmelCase : Union[str, Any] = scope def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Dict = None if self.use_input_mask: __lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : List[str] = None if self.use_token_type_ids: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : List[Any] = None __lowerCAmelCase : Tuple = None __lowerCAmelCase : int = None if self.use_labels: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Any = MobileBertModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase ) __lowerCAmelCase : List[Any] = model(lowerCAmelCase , token_type_ids=lowerCAmelCase ) __lowerCAmelCase : Tuple = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = MobileBertForMaskedLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = MobileBertForNextSentencePrediction(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[Any] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = MobileBertForPreTraining(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[int] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , next_sentence_label=lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = MobileBertForQuestionAnswering(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : int = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.num_labels __lowerCAmelCase : int = MobileBertForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[int] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.num_labels __lowerCAmelCase : Dict = MobileBertForTokenClassification(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Tuple = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = self.num_choices __lowerCAmelCase : List[Any] = MobileBertForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) , ) : List[Any] = config_and_inputs __lowerCAmelCase : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : str =( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase : Optional[int] =( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : Union[str, Any] =True def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=False ) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class in get_values(lowerCAmelCase ): __lowerCAmelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = MobileBertModelTester(self ) __lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase ) def snake_case_ (__A : Any ) -> Optional[Any]: return torch.tensor( __A , dtype=torch.long , device=__A , ) __UpperCAmelCase = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCAmelCase ) __lowerCAmelCase : int = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __lowerCAmelCase : List[str] = model(lowerCAmelCase )[0] __lowerCAmelCase : List[Any] = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , lowerCAmelCase ) __lowerCAmelCase : int = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] , device=lowerCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
139
0
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 4_0_0 * 2**2_0, 6_0_0 * 2**2_0] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 1_0_0 * 2**2_0, 9_0_0 * 2**2_0] ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , __UpperCAmelCase ) lowercase__: str = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: lowercase__: List[Any] = dataset_size < in_memory_max_size else: lowercase__: Dict = False lowercase__: Optional[Any] = is_small_dataset(__UpperCAmelCase ) assert result == expected
177
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase=2_8_1_2_3 ) -> Any: lowercase__: Optional[Any] = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase__: Union[str, Any] = set() lowercase__: Optional[Any] = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__UpperCAmelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
177
1
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ = namedtuple("covid_data", "cases deaths recovered") def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
350
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowerCamelCase , __lowerCamelCase = y, x % y return abs(__lowerCAmelCase ) def __magic_name__ ( ) -> Tuple: try: __lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __lowerCamelCase = int(nums[0] ) __lowerCamelCase = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
339
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[Any] = """Speech2TextFeatureExtractor""" lowerCAmelCase__ : Tuple = """Speech2TextTokenizer""" def __init__(self : Dict , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) lowercase__ = self.feature_extractor lowercase__ = False def __call__(self : Dict , *UpperCamelCase : Optional[Any] , **UpperCamelCase : List[Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*UpperCamelCase , **UpperCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowercase__ = kwargs.pop('''raw_speech''' ) else: lowercase__ = kwargs.pop('''audio''' , UpperCamelCase ) lowercase__ = kwargs.pop('''sampling_rate''' , UpperCamelCase ) lowercase__ = kwargs.pop('''text''' , UpperCamelCase ) if len(UpperCamelCase ) > 0: lowercase__ = args[0] lowercase__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowercase__ = self.feature_extractor(UpperCamelCase , *UpperCamelCase , sampling_rate=UpperCamelCase , **UpperCamelCase ) if text is not None: lowercase__ = self.tokenizer(UpperCamelCase , **UpperCamelCase ) if text is None: return inputs elif audio is None: return encodings else: lowercase__ = encodings['''input_ids'''] return inputs def UpperCamelCase__ (self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] , *UpperCamelCase : Dict , **UpperCamelCase : List[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @contextmanager def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowercase__ = True lowercase__ = self.tokenizer yield lowercase__ = self.feature_extractor lowercase__ = False
2
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Dict = ShapEImgaImgPipeline lowerCAmelCase__ : List[str] = ["""image"""] lowerCAmelCase__ : Any = ["""image"""] lowerCAmelCase__ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCAmelCase__ : Tuple = False @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : str ): '''simple docstring''' return 32 @property def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase__ (self : int ): '''simple docstring''' return 8 @property def UpperCamelCase__ (self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase ) return model @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def UpperCamelCase__ (self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase ) return model @property def UpperCamelCase__ (self : int ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase ) return model def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase ) else: lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
2
1
'''simple docstring''' snake_case__ : str = [0, 2, 4, 6, 8] snake_case__ : Optional[int] = [1, 3, 5, 7, 9] def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[int] , lowerCamelCase_ : int ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 UpperCAmelCase_ : List[Any] = 0 for digit in range(10 ): UpperCAmelCase_ : Optional[Any] = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , lowerCamelCase_ , lowerCamelCase_ ) return result UpperCAmelCase_ : Optional[int] = 0 for digita in range(10 ): UpperCAmelCase_ : Optional[int] = digita if (remainder + digita) % 2 == 0: UpperCAmelCase_ : int = ODD_DIGITS else: UpperCAmelCase_ : str = EVEN_DIGITS for digita in other_parity_digits: UpperCAmelCase_ : int = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , lowerCamelCase_ , lowerCamelCase_ , ) return result def _lowerCamelCase ( lowerCamelCase_ : int = 9 ): """simple docstring""" UpperCAmelCase_ : Dict = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(lowerCamelCase_ , 0 , [0] * length , lowerCamelCase_ ) return result if __name__ == "__main__": print(f'''{solution() = }''')
360
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=9_9 , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Dict = seq_length UpperCAmelCase_ : Any = is_training UpperCAmelCase_ : List[Any] = use_input_mask UpperCAmelCase_ : Tuple = use_token_type_ids UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : List[Any] = type_vocab_size UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : Any = num_choices UpperCAmelCase_ : List[str] = scope def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , use_stable_embedding=snake_case_ , ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = OpenLlamaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : str = model(snake_case_ , attention_mask=snake_case_ ) UpperCAmelCase_ : Dict = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Dict = OpenLlamaModel(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , ) UpperCAmelCase_ : Any = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , ) UpperCAmelCase_ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = OpenLlamaForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Tuple = OpenLlamaForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() # first forward pass UpperCAmelCase_ : Tuple = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , use_cache=snake_case_ , ) UpperCAmelCase_ : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase_ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase_ : List[Any] = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , output_hidden_states=snake_case_ , )['hidden_states'][0] UpperCAmelCase_ : List[str] = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , past_key_values=snake_case_ , output_hidden_states=snake_case_ , )['hidden_states'][0] # select random slice UpperCAmelCase_ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Tuple = config_and_inputs UpperCAmelCase_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ :Tuple = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCamelCase_ :Tuple = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCamelCase_ :Union[str, Any] = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase_ :str = False lowerCamelCase_ :Optional[int] = False def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : List[str] = OpenLlamaModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def _UpperCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : int = type self.model_tester.create_and_check_model(*snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : Union[str, Any] = input_dict['input_ids'] UpperCAmelCase_ : int = input_ids.ne(1 ).to(snake_case_ ) UpperCAmelCase_ : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : Any = OpenLlamaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : str = 'single_label_classification' UpperCAmelCase_ : List[str] = input_dict['input_ids'] UpperCAmelCase_ : Optional[Any] = input_ids.ne(1 ).to(snake_case_ ) UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = OpenLlamaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : List[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : int = 'multi_label_classification' UpperCAmelCase_ : Dict = input_dict['input_ids'] UpperCAmelCase_ : int = input_ids.ne(1 ).to(snake_case_ ) UpperCAmelCase_ : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_ : Union[str, Any] = OpenLlamaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : int = ids_tensor([1, 1_0] , config.vocab_size ) UpperCAmelCase_ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ : Tuple = OpenLlamaModel(snake_case_ ) original_model.to(snake_case_ ) original_model.eval() UpperCAmelCase_ : List[str] = original_model(snake_case_ ).last_hidden_state UpperCAmelCase_ : Any = original_model(snake_case_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ : Tuple = {'type': scaling_type, 'factor': 10.0} UpperCAmelCase_ : List[str] = OpenLlamaModel(snake_case_ ) scaled_model.to(snake_case_ ) scaled_model.eval() UpperCAmelCase_ : Tuple = scaled_model(snake_case_ ).last_hidden_state UpperCAmelCase_ : Optional[int] = scaled_model(snake_case_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) )
274
0
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ (enum.Enum ): __lowerCamelCase : Tuple = 0 __lowerCamelCase : Any = 1 @add_end_docstrings(__snake_case ) class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : List[str] = """generated""" def __init__( self , *a , **a): super().__init__(*a , **a) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING) def snake_case_ ( self , a=None , a=None , a=None , a=None , a=None , a=None , **a , ): lowercase__ : Optional[Any] = {} if truncation is not None: lowercase__ : List[Any] = truncation lowercase__ : Optional[Any] = generate_kwargs lowercase__ : str = {} if return_tensors is not None and return_type is None: lowercase__ : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase__ : Any = return_type if clean_up_tokenization_spaces is not None: lowercase__ : Union[str, Any] = clean_up_tokenization_spaces if stop_sequence is not None: lowercase__ : Union[str, Any] = self.tokenizer.encode(a , add_special_tokens=a) if len(a) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.') lowercase__ : int = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def snake_case_ ( self , a , a , a): return True def snake_case_ ( self , *a , a): lowercase__ : Any = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , a): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input') lowercase__ : List[str] = ([prefix + arg for arg in args[0]],) lowercase__ : Union[str, Any] = True elif isinstance(args[0] , a): lowercase__ : Tuple = (prefix + args[0],) lowercase__ : Optional[Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""") lowercase__ : Optional[Any] = self.tokenizer(*a , padding=a , truncation=a , return_tensors=self.framework) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *a , **a): lowercase__ : int = super().__call__(*a , **a) if ( isinstance(args[0] , a) and all(isinstance(a , a) for el in args[0]) and all(len(a) == 1 for res in result) ): return [res[0] for res in result] return result def snake_case_ ( self , a , a=TruncationStrategy.DO_NOT_TRUNCATE , **a): lowercase__ : int = self._parse_and_tokenize(a , truncation=a , **a) return inputs def snake_case_ ( self , a , **a): if self.framework == "pt": lowercase__ , lowercase__ : Any = model_inputs['input_ids'].shape elif self.framework == "tf": lowercase__ , lowercase__ : Any = tf.shape(model_inputs['input_ids']).numpy() lowercase__ : Any = generate_kwargs.get('min_length' , self.model.config.min_length) lowercase__ : Union[str, Any] = generate_kwargs.get('max_length' , self.model.config.max_length) self.check_inputs(a , generate_kwargs['min_length'] , generate_kwargs['max_length']) lowercase__ : Optional[Any] = self.model.generate(**a , **a) lowercase__ : Any = output_ids.shape[0] if self.framework == "pt": lowercase__ : Dict = output_ids.reshape(a , out_b // in_b , *output_ids.shape[1:]) elif self.framework == "tf": lowercase__ : Dict = tf.reshape(a , (in_b, out_b // in_b, *output_ids.shape[1:])) return {"output_ids": output_ids} def snake_case_ ( self , a , a=ReturnType.TEXT , a=False): lowercase__ : Optional[Any] = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase__ : int = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase__ : Tuple = { f"""{self.return_name}_text""": self.tokenizer.decode( a , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) } records.append(a) return records @add_end_docstrings(__snake_case ) class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Union[str, Any] = """summary""" def __call__( self , *a , **a): return super().__call__(*a , **a) def snake_case_ ( self , a , a , a): if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""") if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ 'a summarization task, where outputs shorter than the input are typically wanted, you might ' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""") @add_end_docstrings(__snake_case ) class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Any = """translation""" def snake_case_ ( self , a , a , a): if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)') return True def snake_case_ ( self , *a , a=TruncationStrategy.DO_NOT_TRUNCATE , a=None , a=None): if getattr(self.tokenizer , '_build_translation_inputs' , a): return self.tokenizer._build_translation_inputs( *a , return_tensors=self.framework , truncation=a , src_lang=a , tgt_lang=a) else: return super()._parse_and_tokenize(*a , truncation=a) def snake_case_ ( self , a=None , a=None , **a): lowercase__ , lowercase__ , lowercase__ : str = super()._sanitize_parameters(**a) if src_lang is not None: lowercase__ : Tuple = src_lang if tgt_lang is not None: lowercase__ : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase__ : int = kwargs.get('task' , self.task) lowercase__ : List[str] = task.split('_') if task and len(a) == 4: # translation, XX, to YY lowercase__ : List[Any] = items[1] lowercase__ : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *a , **a): return super().__call__(*a , **a)
214
def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) lowercase__ : Optional[int] = sorted(string.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == len(set(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": snake_case_ = input('''Enter a string ''').strip() snake_case_ = is_isogram(input_str) print(F'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
214
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def UpperCAmelCase__ ( *lowerCamelCase__ : Dict , **lowerCamelCase__ : int ) -> Optional[Any]: '''simple docstring''' pass def _a ( SCREAMING_SNAKE_CASE : Image ): """simple docstring""" UpperCamelCase__ : List[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase): A: Tuple = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ) -> Dict: '''simple docstring''' UpperCamelCase__ : List[str] = DepthEstimationPipeline(model=lowerCamelCase__ , image_processor=lowerCamelCase__ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase__ ( self : int , lowerCamelCase__ : str , lowerCamelCase__ : int ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[int] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , lowerCamelCase__ ) import datasets UpperCamelCase__ : str = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) UpperCamelCase__ : Union[str, Any] = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , lowerCamelCase__ , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' pass @slow @require_torch def UpperCAmelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[int] = '''Intel/dpt-large''' UpperCamelCase__ : Tuple = pipeline('''depth-estimation''' , model=lowerCamelCase__ ) UpperCamelCase__ : int = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) UpperCamelCase__ : Any = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def UpperCAmelCase__ ( self : int ) -> int: '''simple docstring''' self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
51
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple=7 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Optional[int]=18 , lowerCamelCase__ : Any=30 , lowerCamelCase__ : int=400 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=False , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=True , lowerCamelCase__ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase__ : str=[0.5, 0.5, 0.5] , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = parent UpperCamelCase__ : Dict = batch_size UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : int = image_size UpperCamelCase__ : str = min_resolution UpperCamelCase__ : str = max_resolution UpperCamelCase__ : Tuple = do_resize UpperCamelCase__ : str = size if size is not None else {'''height''': 18, '''width''': 20} UpperCamelCase__ : Optional[Any] = do_thumbnail UpperCamelCase__ : int = do_align_axis UpperCamelCase__ : List[Any] = do_pad UpperCamelCase__ : List[Any] = do_normalize UpperCamelCase__ : Dict = image_mean UpperCamelCase__ : List[Any] = image_std def UpperCAmelCase__ ( self : List[Any] ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: Tuple = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : str ) -> int: '''simple docstring''' UpperCamelCase__ : int = DonutImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_thumbnail''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_std''' ) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) UpperCamelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def UpperCAmelCase__ ( self : Any ) -> str: '''simple docstring''' pass @is_flaky() def UpperCAmelCase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input UpperCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input UpperCamelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[Any] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCAmelCase__ ( self : str ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input UpperCamelCase__ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
51
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ) -> list: if len(_lowerCamelCase ) <= 1: return [tuple(_lowerCamelCase )] _lowerCAmelCase : Dict = [] def generate(_lowerCamelCase : int ,_lowerCamelCase : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 ,_lowerCamelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even _lowerCAmelCase , _lowerCAmelCase : List[Any] = arr[k - 1], arr[i] else: # k is odd _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 ,_lowerCamelCase ) generate(len(_lowerCamelCase ) ,_lowerCamelCase ) return res if __name__ == "__main__": _a : Tuple = input('Enter numbers separated by a comma:\n').strip() _a : Optional[Any] = [int(item) for item in user_input.split(',')] print(heaps(arr))
44
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[Any] = XGLMTokenizer _UpperCamelCase : List[Any] = XGLMTokenizerFast _UpperCamelCase : Dict = True _UpperCamelCase : Tuple = True def __A ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = XGLMTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self ): _lowerCAmelCase : List[str] = """<pad>""" _lowerCAmelCase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __A ( self ): _lowerCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(a__ ) , 1008 ) def __A ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def __A ( self ): _lowerCAmelCase : List[Any] = XGLMTokenizer(a__ , keep_accents=a__ ) _lowerCAmelCase : Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __A ( self ): return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def __A ( self ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(a__ , f.name ) _lowerCAmelCase : Union[str, Any] = XGLMTokenizer(f.name , keep_accents=a__ ) _lowerCAmelCase : List[str] = pickle.dumps(a__ ) pickle.loads(a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer() _lowerCAmelCase : Tuple = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : List[Any] = tokenizer.tokenize(a__ ) _lowerCAmelCase : Tuple = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ ) _lowerCAmelCase : str = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : int = self.get_rust_tokenizer() _lowerCAmelCase : Dict = tokenizer.encode(a__ ) _lowerCAmelCase : List[Any] = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def __A ( self ): _lowerCAmelCase : int = """Hello World!""" _lowerCAmelCase : Optional[int] = [2, 31227, 4447, 35] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __A ( self ): _lowerCAmelCase : Any = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off _lowerCAmelCase : List[str] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __A ( self ): # fmt: off _lowerCAmelCase : List[str] = { """input_ids""": [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name="""facebook/xglm-564M""" , padding=a__ , )
44
1
"""simple docstring""" import mpmath # for roots of unity import numpy as np class lowercase: '''simple docstring''' def __init__( self: str, a_: List[Any]=None, a_: Tuple=None ): '''simple docstring''' _snake_case : Dict = list(poly_a or [0] )[:] _snake_case : List[str] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _snake_case : Dict = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _snake_case : str = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _snake_case : str = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _snake_case : str = complex(mpmath.root(x=1, n=self.c_max_length, k=1 ) ) # The product _snake_case : int = self.__multiply() def UpperCamelCase_ ( self: Dict, a_: Optional[int] ): '''simple docstring''' _snake_case : Tuple = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(lowercase_ ) <= 1: return dft[0] # _snake_case : Union[str, Any] = self.c_max_length // 2 while next_ncol > 0: _snake_case : Tuple = [[] for i in range(lowercase_ )] _snake_case : Optional[int] = self.root**next_ncol # First half of next step _snake_case : Tuple = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowercase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _snake_case : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowercase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _snake_case : Any = new_dft _snake_case : Union[str, Any] = next_ncol // 2 return dft[0] def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : List[Any] = self.__dft("""A""" ) _snake_case : str = self.__dft("""B""" ) _snake_case : Tuple = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _snake_case : List[str] = 2 while next_ncol <= self.c_max_length: _snake_case : Dict = [[] for i in range(lowercase_ )] _snake_case : List[Any] = self.root ** (next_ncol // 2) _snake_case : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _snake_case : List[str] = new_inverse_c next_ncol *= 2 # Unpack _snake_case : str = [round(x[0].real, 8 ) + round(x[0].imag, 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self: Optional[Any] ): '''simple docstring''' _snake_case : Tuple = """A = """ + """ + """.join( f"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A] ) ) _snake_case : Tuple = """B = """ + """ + """.join( f"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B] ) ) _snake_case : Optional[Any] = """A*B = """ + """ + """.join( f"{coef}*x^{i}" for coef, i in enumerate(self.product ) ) return f"{a}\n{b}\n{c}" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = (16, 32, 96, 2_56) lowercase__ = jnp.floataa def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = nn.Conv( self.block_out_channels[0], kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) _snake_case : int = [] for i in range(len(self.block_out_channels ) - 1 ): _snake_case : int = self.block_out_channels[i] _snake_case : Tuple = self.block_out_channels[i + 1] _snake_case : Dict = nn.Conv( a_, kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(a_ ) _snake_case : List[Any] = nn.Conv( a_, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(a_ ) _snake_case : Any = blocks _snake_case : Optional[Any] = nn.Conv( self.conditioning_embedding_channels, kernel_size=(3, 3), padding=((1, 1), (1, 1)), kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self: Optional[Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : int = self.conv_in(a_ ) _snake_case : Optional[int] = nn.silu(a_ ) for block in self.blocks: _snake_case : Tuple = block(a_ ) _snake_case : int = nn.silu(a_ ) _snake_case : Optional[int] = self.conv_out(a_ ) return embedding @flax_register_to_config class lowercase( nn.Module , __a , __a ): '''simple docstring''' lowercase__ = 32 lowercase__ = 4 lowercase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase__ = False lowercase__ = (3_20, 6_40, 12_80, 12_80) lowercase__ = 2 lowercase__ = 8 lowercase__ = None lowercase__ = 12_80 lowercase__ = 0.0 lowercase__ = False lowercase__ = jnp.floataa lowercase__ = True lowercase__ = 0 lowercase__ = "rgb" lowercase__ = (16, 32, 96, 2_56) def UpperCamelCase_ ( self: int, a_: jax.random.KeyArray ): '''simple docstring''' _snake_case : str = (1, self.in_channels, self.sample_size, self.sample_size) _snake_case : Optional[Any] = jnp.zeros(a_, dtype=jnp.floataa ) _snake_case : List[str] = jnp.ones((1,), dtype=jnp.intaa ) _snake_case : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.floataa ) _snake_case : Any = (1, 3, self.sample_size * 8, self.sample_size * 8) _snake_case : Optional[int] = jnp.zeros(a_, dtype=jnp.floataa ) _snake_case , _snake_case : Tuple = jax.random.split(a_ ) _snake_case : str = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(a_, a_, a_, a_, a_ )["params"] def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Optional[int] = self.block_out_channels _snake_case : Optional[int] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _snake_case : int = self.num_attention_heads or self.attention_head_dim # input _snake_case : Union[str, Any] = nn.Conv( block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # time _snake_case : int = FlaxTimesteps( block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift ) _snake_case : Any = FlaxTimestepEmbedding(a_, dtype=self.dtype ) _snake_case : Optional[Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=self.conditioning_embedding_out_channels, ) _snake_case : List[str] = self.only_cross_attention if isinstance(a_, a_ ): _snake_case : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(a_, a_ ): _snake_case : Optional[Any] = (num_attention_heads,) * len(self.down_block_types ) # down _snake_case : List[str] = [] _snake_case : Tuple = [] _snake_case : int = block_out_channels[0] _snake_case : Optional[Any] = nn.Conv( a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(a_ ) for i, down_block_type in enumerate(self.down_block_types ): _snake_case : List[Any] = output_channel _snake_case : Any = block_out_channels[i] _snake_case : List[str] = i == len(a_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _snake_case : Optional[int] = FlaxCrossAttnDownBlockaD( in_channels=a_, out_channels=a_, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], dtype=self.dtype, ) else: _snake_case : List[Any] = FlaxDownBlockaD( in_channels=a_, out_channels=a_, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, ) down_blocks.append(a_ ) for _ in range(self.layers_per_block ): _snake_case : List[Any] = nn.Conv( a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(a_ ) if not is_final_block: _snake_case : List[Any] = nn.Conv( a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(a_ ) _snake_case : str = down_blocks _snake_case : Union[str, Any] = controlnet_down_blocks # mid _snake_case : Tuple = block_out_channels[-1] _snake_case : Optional[int] = FlaxUNetMidBlockaDCrossAttn( in_channels=a_, dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, dtype=self.dtype, ) _snake_case : Tuple = nn.Conv( a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self: str, a_: Any, a_: Tuple, a_: Any, a_: int, a_: float = 1.0, a_: bool = True, a_: bool = False, ): '''simple docstring''' _snake_case : Dict = self.controlnet_conditioning_channel_order if channel_order == "bgr": _snake_case : List[Any] = jnp.flip(a_, axis=1 ) # 1. time if not isinstance(a_, jnp.ndarray ): _snake_case : Any = jnp.array([timesteps], dtype=jnp.intaa ) elif isinstance(a_, jnp.ndarray ) and len(timesteps.shape ) == 0: _snake_case : Union[str, Any] = timesteps.astype(dtype=jnp.floataa ) _snake_case : List[str] = jnp.expand_dims(a_, 0 ) _snake_case : List[str] = self.time_proj(a_ ) _snake_case : str = self.time_embedding(a_ ) # 2. pre-process _snake_case : List[str] = jnp.transpose(a_, (0, 2, 3, 1) ) _snake_case : List[Any] = self.conv_in(a_ ) _snake_case : Union[str, Any] = jnp.transpose(a_, (0, 2, 3, 1) ) _snake_case : Any = self.controlnet_cond_embedding(a_ ) sample += controlnet_cond # 3. down _snake_case : List[str] = (sample,) for down_block in self.down_blocks: if isinstance(a_, a_ ): _snake_case , _snake_case : Optional[Any] = down_block(a_, a_, a_, deterministic=not train ) else: _snake_case , _snake_case : Dict = down_block(a_, a_, deterministic=not train ) down_block_res_samples += res_samples # 4. mid _snake_case : Dict = self.mid_block(a_, a_, a_, deterministic=not train ) # 5. contronet blocks _snake_case : Tuple = () for down_block_res_sample, controlnet_block in zip(a_, self.controlnet_down_blocks ): _snake_case : Any = controlnet_block(a_ ) controlnet_down_block_res_samples += (down_block_res_sample,) _snake_case : List[Any] = controlnet_down_block_res_samples _snake_case : int = self.controlnet_mid_block(a_ ) # 6. scaling _snake_case : int = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=a_, mid_block_res_sample=a_ )
132
0
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __snake_case = input('''Enter image url: ''').strip() print(F"""Downloading image from {url} ...""") __snake_case = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image __snake_case = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] __snake_case = requests.get(image_url).content __snake_case = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, '''wb''') as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
97
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a__ ( unittest.TestCase ): @property def _lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowercase : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = self.dummy_uncond_unet _lowercase : Dict = KarrasVeScheduler() _lowercase : Any = KarrasVePipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _lowercase : Any = torch.manual_seed(0 ) _lowercase : List[Any] = pipe(num_inference_steps=2 , generator=_UpperCamelCase , output_type="numpy" ).images _lowercase : Optional[Any] = torch.manual_seed(0 ) _lowercase : List[str] = pipe(num_inference_steps=2 , generator=_UpperCamelCase , output_type="numpy" , return_dict=_UpperCamelCase )[0] _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class a__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = "google/ncsnpp-celebahq-256" _lowercase : Any = UNetaDModel.from_pretrained(_UpperCamelCase ) _lowercase : List[Any] = KarrasVeScheduler() _lowercase : int = KarrasVePipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _lowercase : Optional[Any] = torch.manual_seed(0 ) _lowercase : Tuple = pipe(num_inference_steps=20 , generator=_UpperCamelCase , output_type="numpy" ).images _lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowercase : Tuple = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
250
0
'''simple docstring''' def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ) -> bool: """simple docstring""" lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) + 1 lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowerCAmelCase = [[0 for i in range(_SCREAMING_SNAKE_CASE )] for j in range(_SCREAMING_SNAKE_CASE )] # since string of zero length match pattern of zero length lowerCAmelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _SCREAMING_SNAKE_CASE ): for j in range(1 , _SCREAMING_SNAKE_CASE ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowerCAmelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowerCAmelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowerCAmelCase = dp[i - 1][j] else: lowerCAmelCase = 0 else: lowerCAmelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") UpperCAmelCase = 'aab' UpperCAmelCase = 'c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
187
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( _SCREAMING_SNAKE_CASE : Namespace ) -> Tuple: """simple docstring""" return TrainCommand(_SCREAMING_SNAKE_CASE ) class __snake_case( _lowerCAmelCase ): '''simple docstring''' @staticmethod def __snake_case ( A_ ) -> Optional[int]: lowerCAmelCase = parser.add_parser("""train""" , help="""CLI tool to train a model on a task.""" ) train_parser.add_argument( """--train_data""" , type=A_ , required=A_ , help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""" , ) train_parser.add_argument( """--column_label""" , type=A_ , default=0 , help="""Column of the dataset csv file with example labels.""" ) train_parser.add_argument( """--column_text""" , type=A_ , default=1 , help="""Column of the dataset csv file with example texts.""" ) train_parser.add_argument( """--column_id""" , type=A_ , default=2 , help="""Column of the dataset csv file with example ids.""" ) train_parser.add_argument( """--skip_first_row""" , action="""store_true""" , help="""Skip the first row of the csv file (headers).""" ) train_parser.add_argument("""--validation_data""" , type=A_ , default="""""" , help="""path to validation dataset.""" ) train_parser.add_argument( """--validation_split""" , type=A_ , default=0.1 , help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""" , ) train_parser.add_argument("""--output""" , type=A_ , default="""./""" , help="""path to saved the trained model.""" ) train_parser.add_argument( """--task""" , type=A_ , default="""text_classification""" , help="""Task to train the model on.""" ) train_parser.add_argument( """--model""" , type=A_ , default="""bert-base-uncased""" , help="""Model's name or path to stored model.""" ) train_parser.add_argument("""--train_batch_size""" , type=A_ , default=32 , help="""Batch size for training.""" ) train_parser.add_argument("""--valid_batch_size""" , type=A_ , default=64 , help="""Batch size for validation.""" ) train_parser.add_argument("""--learning_rate""" , type=A_ , default=3e-5 , help="""Learning rate.""" ) train_parser.add_argument("""--adam_epsilon""" , type=A_ , default=1e-08 , help="""Epsilon for Adam optimizer.""" ) train_parser.set_defaults(func=A_ ) def __init__( self , A_ ) -> Tuple: lowerCAmelCase = logging.get_logger("""transformers-cli/training""" ) lowerCAmelCase = """tf""" if is_tf_available() else """torch""" os.makedirs(args.output , exist_ok=A_ ) lowerCAmelCase = args.output lowerCAmelCase = args.column_label lowerCAmelCase = args.column_text lowerCAmelCase = args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": lowerCAmelCase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) lowerCAmelCase = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCAmelCase = None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) lowerCAmelCase = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCAmelCase = args.validation_split lowerCAmelCase = args.train_batch_size lowerCAmelCase = args.valid_batch_size lowerCAmelCase = args.learning_rate lowerCAmelCase = args.adam_epsilon def __snake_case ( self ) -> Optional[int]: if self.framework == "tf": return self.run_tf() return self.run_torch() def __snake_case ( self ) -> Tuple: raise NotImplementedError def __snake_case ( self ) -> Tuple: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
187
1
import os # Precomputes a list of the 100 first triangular numbers lowerCamelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCAmelCase__ ( ) -> Optional[Any]: lowerCAmelCase__ : Dict = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : List[Any] = os.path.join(SCREAMING_SNAKE_CASE_ , 'words.txt' ) lowerCAmelCase__ : Dict = "" with open(SCREAMING_SNAKE_CASE_ ) as f: lowerCAmelCase__ : Tuple = f.readline() lowerCAmelCase__ : Union[str, Any] = [word.strip('\"' ) for word in words.strip('\r\n' ).split(',' )] lowerCAmelCase__ : List[str] = [ word for word in [sum(ord(SCREAMING_SNAKE_CASE_ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(solution())
212
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {} class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : str ="llama" a : List[str] =["past_key_values"] def __init__( self , snake_case__=32_000 , snake_case__=4_096 , snake_case__=11_008 , snake_case__=32 , snake_case__=32 , snake_case__=None , snake_case__="silu" , snake_case__=2_048 , snake_case__=0.02 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=1 , snake_case__=False , snake_case__=None , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : str = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : Dict = num_key_value_heads lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Any = rms_norm_eps lowerCAmelCase : List[Any] = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : List[str] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) lowerCAmelCase : Optional[Any] = self.rope_scaling.get("type" , snake_case__ ) lowerCAmelCase : int = self.rope_scaling.get("factor" , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
108
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCamelCase__ ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCamelCase__ ): http_head('https://huggingface.co' )
113
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed a ="""true""" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=8_2 , lowerCamelCase__=1_6 ) -> List[Any]: set_seed(4_2 ) __lowerCamelCase : Tuple = RegressionModel() __lowerCamelCase : str = deepcopy(lowerCamelCase__ ) __lowerCamelCase : Optional[int] = RegressionDataset(length=lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = DataLoader(lowerCamelCase__ , batch_size=lowerCamelCase__ ) model.to(accelerator.device ) __lowerCamelCase , __lowerCamelCase : Tuple = accelerator.prepare(lowerCamelCase__ , lowerCamelCase__ ) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=False ) -> List[Any]: __lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) __lowerCamelCase : Any = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs with accelerator.main_process_first(): __lowerCamelCase : Union[str, Any] = dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) __lowerCamelCase : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase__ ): if use_longest: return tokenizer.pad(lowerCamelCase__ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(lowerCamelCase__ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return DataLoader(lowerCamelCase__ , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1_6 ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: __lowerCamelCase : Optional[int] = Accelerator(dispatch_batches=lowerCamelCase__ , split_batches=lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = get_dataloader(lowerCamelCase__ , not dispatch_batches ) __lowerCamelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : Tuple = accelerator.prepare(lowerCamelCase__ , lowerCamelCase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: __lowerCamelCase : str = [] for batch in dataloader: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = batch.values() with torch.no_grad(): __lowerCamelCase : Tuple = model(lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __lowerCamelCase , __lowerCamelCase : Dict = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase__ ) targs.append(lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = torch.cat(lowerCamelCase__ ), torch.cat(lowerCamelCase__ ) return logits, targs def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=8_2 , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=1_6 ) -> Dict: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = get_basic_setup(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : Dict = generate_predictions(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) assert ( len(lowerCamelCase__ ) == num_samples ), F"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase__ )}" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = False , lowerCamelCase__ = False ) -> Dict: __lowerCamelCase : Dict = evaluate.load('glue' , 'mrpc' ) __lowerCamelCase , __lowerCamelCase : Optional[int] = get_mrpc_setup(lowerCamelCase__ , lowerCamelCase__ ) # First do baseline __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = setup['no'] model.to(lowerCamelCase__ ) model.eval() for batch in dataloader: batch.to(lowerCamelCase__ ) with torch.inference_mode(): __lowerCamelCase : Dict = model(**lowerCamelCase__ ) __lowerCamelCase : Any = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowerCamelCase__ , references=batch['labels'] ) __lowerCamelCase : str = metric.compute() # Then do distributed __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCamelCase : List[str] = model(**lowerCamelCase__ ) __lowerCamelCase : List[Any] = outputs.logits.argmax(dim=-1 ) __lowerCamelCase : List[str] = batch['labels'] __lowerCamelCase , __lowerCamelCase : Union[str, Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowerCamelCase__ , references=lowerCamelCase__ ) __lowerCamelCase : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: __lowerCamelCase : int = Accelerator(split_batches=lowerCamelCase__ , dispatch_batches=lowerCamelCase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(lowerCamelCase__ , lowerCamelCase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCamelCase : Optional[Any] = Accelerator(split_batches=lowerCamelCase__ , dispatch_batches=lowerCamelCase__ ) if accelerator.is_local_main_process: print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(lowerCamelCase__ , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) __lowerCamelCase : Dict = Accelerator() test_torch_metrics(lowerCamelCase__ , 5_1_2 ) accelerator.state._reset_state() def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
113
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _snake_case( SCREAMING_SNAKE_CASE__ : Namespace ) -> str: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowercase_ = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class A ( _UpperCAmelCase ): """simple docstring""" @staticmethod def snake_case__ ( lowercase_ : ArgumentParser )-> List[Any]: '''simple docstring''' A__ = parser.add_parser( 'convert',help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.',) train_parser.add_argument('--model_type',type=lowercase_,required=lowercase_,help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint',type=lowercase_,required=lowercase_,help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output',type=lowercase_,required=lowercase_,help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config',type=lowercase_,default='',help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name',type=lowercase_,default=lowercase_,help='Optional fine-tuning task name if the TF model was a finetuned model.',) train_parser.set_defaults(func=lowercase_ ) def __init__( self : Tuple,lowercase_ : str,lowercase_ : str,lowercase_ : str,lowercase_ : str,lowercase_ : str,*lowercase_ : Dict,)-> Dict: '''simple docstring''' A__ = logging.get_logger('transformers-cli/converting' ) self._logger.info(F'Loading model {model_type}' ) A__ = model_type A__ = tf_checkpoint A__ = pytorch_dump_output A__ = config A__ = finetuning_task_name def snake_case__ ( self : List[str] )-> Optional[Any]: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint,self._config,self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint,self._config,self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint,self._config,self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(lowercase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint,self._config,self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint,self._config,self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase_ ) if "ckpt" in self._tf_checkpoint.lower(): A__ = self._tf_checkpoint A__ = '' else: A__ = self._tf_checkpoint A__ = '' convert_transfo_xl_checkpoint_to_pytorch( lowercase_,self._config,self._pytorch_dump_output,lowercase_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint,self._config,self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint,self._config,self._pytorch_dump_output,self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint,self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint,self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint,self._config,self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
7
class A : """simple docstring""" def __init__( self : Any,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : List[str] )-> List[Any]: '''simple docstring''' A__ = name A__ = value A__ = weight def __repr__( self : int )-> Tuple: '''simple docstring''' return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def snake_case__ ( self : Any )-> str: '''simple docstring''' return self.value def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' return self.name def snake_case__ ( self : Any )-> Dict: '''simple docstring''' return self.weight def snake_case__ ( self : Union[str, Any] )-> Optional[Any]: '''simple docstring''' return self.value / self.weight def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: '''simple docstring''' A__ = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Any: '''simple docstring''' A__ = sorted(SCREAMING_SNAKE_CASE__ , key=SCREAMING_SNAKE_CASE__ , reverse=SCREAMING_SNAKE_CASE__ ) A__ = [] A__ , A__ = 0.0, 0.0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _snake_case( ) -> Any: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
7
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=_UpperCAmelCase , ) assert hasattr(self , 'env' ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[int] ): # configuration for running training on smdistributed Model Parallel _A = { 'enabled': True, 'processes_per_host': 8, } _A = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } _A = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} _A = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=_UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCAmelCase , hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 500, } , metric_definitions=self.env.metric_definitions , distribution=_UpperCAmelCase , py_version='py36' , ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Tuple ): TrainingJobAnalytics(_UpperCAmelCase ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Dict ): # create estimator _A = self.create_estimator(_UpperCAmelCase ) # run training estimator.fit() # result dataframe _A = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _A = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) _A = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _A = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _UpperCAmelCase )
271
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = (IPNDMScheduler,) UpperCAmelCase : Optional[Any] = (('''num_inference_steps''', 50),) def lowerCAmelCase_ ( self : Union[str, Any] , **_UpperCAmelCase : List[Any] ): _A = {'num_train_timesteps': 1_000} config.update(**_UpperCAmelCase ) return config def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] ): _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config(**_UpperCAmelCase ) _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _A = dummy_past_residuals[:] if time_step is None: _A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _A = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _A = dummy_past_residuals[:] _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Any=0 , **_UpperCAmelCase : Any ): _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _A = dummy_past_residuals[:] if time_step is None: _A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _A = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _A = dummy_past_residuals[:] _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self : List[str] , **_UpperCAmelCase : Optional[int] ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config(**_UpperCAmelCase ) _A = scheduler_class(**_UpperCAmelCase ) _A = 10 _A = self.dummy_model() _A = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def lowerCAmelCase_ ( self : Union[str, Any] ): _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , 'set_timesteps' ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , 'set_timesteps' ): _A = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _A = dummy_past_residuals[:] _A = scheduler.timesteps[5] _A = scheduler.timesteps[6] _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ ( self : Tuple ): for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase , time_step=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase , time_step=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A = self.full_loop() _A = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
271
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCAmelCase__ = Features({"""audio""": Audio()} ) lowerCAmelCase__ = Features({"""labels""": ClassLabel} ) lowerCAmelCase__ = "audio" lowerCAmelCase__ = "labels" def UpperCAmelCase__ ( self : Optional[int] , A : List[str] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __snake_case: Tuple = copy.deepcopy(self ) __snake_case: Optional[int] = self.label_schema.copy() __snake_case: Dict = features[self.label_column] __snake_case: Dict = label_schema return task_template @property def UpperCAmelCase__ ( self : Tuple ): return { self.audio_column: "audio", self.label_column: "labels", }
111
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __UpperCAmelCase : Tuple = logging.get_logger(__name__) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , *A : Union[str, Any] , **A : Optional[int] ): warnings.warn( """The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PerceiverImageProcessor instead.""" , A , ) super().__init__(*A , **A )
111
1
"""simple docstring""" import os import sys import unittest lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase__ = os.path.join(git_repo_path, '''src''', '''diffusers''') class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self ) -> Any: UpperCamelCase = find_backend(" if not is_torch_available():" ) self.assertEqual(lowercase_ , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") UpperCamelCase = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(lowercase_ , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") UpperCamelCase = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(lowercase_ , "torch_and_transformers_and_onnx" ) def snake_case_ (self ) -> List[str]: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , lowercase_ ) self.assertIn("torch_and_transformers" , lowercase_ ) self.assertIn("flax_and_transformers" , lowercase_ ) self.assertIn("torch_and_transformers_and_onnx" , lowercase_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def snake_case_ (self ) -> Dict: UpperCamelCase = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(lowercase_ , "\nCONSTANT = None\n" ) UpperCamelCase = create_dummy_object("function" , "'torch'" ) self.assertEqual( lowercase_ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) UpperCamelCase = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" UpperCamelCase = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(lowercase_ , lowercase_ ) def snake_case_ (self ) -> Dict: UpperCamelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" UpperCamelCase = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , lowercase_ )
351
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = math.inf , _SCREAMING_SNAKE_CASE = -math.inf , _SCREAMING_SNAKE_CASE = math.inf , _SCREAMING_SNAKE_CASE = -math.inf , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 0.01 , _SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" UpperCamelCase = False UpperCamelCase = search_prob UpperCamelCase = start_temperate UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = None while not search_end: UpperCamelCase = current_state.score() if best_state is None or current_score > best_state.score(): UpperCamelCase = current_state scores.append(_SCREAMING_SNAKE_CASE ) iterations += 1 UpperCamelCase = None UpperCamelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCamelCase = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) # picking a random neighbor UpperCamelCase = neighbors.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCamelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCamelCase = picked_neighbor else: UpperCamelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCamelCase = picked_neighbor UpperCamelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCamelCase = True else: UpperCamelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return (3 * x**2) - (6 * y) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' ) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' )
244
0
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase=1024 , UpperCamelCase=1024 , UpperCamelCase=False , **UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = AutoTokenizer.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = SeqaSeqDataset(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , type_path="""train""" , **UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = tok.pad_token_id def get_lens(UpperCamelCase ): lowerCAmelCase__ : Optional[int] = tqdm( DataLoader(UpperCamelCase , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ : List[str] = [] for batch in dl: lowerCAmelCase__ : Dict = batch["""input_ids"""].ne(UpperCamelCase ).sum(1 ).tolist() lowerCAmelCase__ : str = batch["""labels"""].ne(UpperCamelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase , UpperCamelCase ): max_lens.append(max(UpperCamelCase , UpperCamelCase ) ) else: max_lens.extend(UpperCamelCase ) return max_lens lowerCAmelCase__ : int = get_lens(UpperCamelCase ) lowerCAmelCase__ : int = SeqaSeqDataset(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , type_path="""val""" , **UpperCamelCase ) lowerCAmelCase__ : str = get_lens(UpperCamelCase ) pickle_save(UpperCamelCase , train_ds.len_file ) pickle_save(UpperCamelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
37
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) __lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _a : List[Any] = model_type_to_module_name(lowerCAmelCase_ ) _a : Optional[Any] = importlib.import_module(f""".{module_name}""" , 'transformers.models' ) try: return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase_ , '__name__' , lowerCAmelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _a : Dict = importlib.import_module('transformers' ) if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) return None def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , **lowerCAmelCase_ , ) -> Tuple: _a : List[str] = get_file_from_repo( lowerCAmelCase_ , lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(lowerCAmelCase_ , encoding='utf-8' ) as reader: return json.load(lowerCAmelCase_ ) class __magic_name__ : def __init__( self : List[str] ): raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(_UpperCAmelCase ) def __lowercase ( cls : Dict ,_UpperCAmelCase : Union[str, Any] ,**_UpperCAmelCase : Optional[Any] ): _a : Any = kwargs.pop('config' ,_UpperCAmelCase ) _a : Dict = kwargs.pop('trust_remote_code' ,_UpperCAmelCase ) _a : Any = True _a , _a : Tuple = ImageProcessingMixin.get_image_processor_dict(_UpperCAmelCase ,**_UpperCAmelCase ) _a : List[Any] = config_dict.get('image_processor_type' ,_UpperCAmelCase ) _a : int = None if "AutoImageProcessor" in config_dict.get('auto_map' ,{} ): _a : Any = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _a : List[Any] = config_dict.pop('feature_extractor_type' ,_UpperCAmelCase ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) _a : Optional[int] = feature_extractor_class.replace('FeatureExtractor' ,'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' ,{} ): _a : List[Any] = config_dict['auto_map']['AutoFeatureExtractor'] _a : List[str] = feature_extractor_auto_map.replace('FeatureExtractor' ,'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : Dict = AutoConfig.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) # It could be in `config.image_processor_type`` _a : Optional[int] = getattr(_UpperCAmelCase ,'image_processor_type' ,_UpperCAmelCase ) if hasattr(_UpperCAmelCase ,'auto_map' ) and "AutoImageProcessor" in config.auto_map: _a : Union[str, Any] = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: _a : Optional[int] = image_processor_class_from_name(_UpperCAmelCase ) _a : List[str] = image_processor_auto_map is not None _a : Optional[int] = image_processor_class is not None or type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING _a : Optional[int] = resolve_trust_remote_code( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) if has_remote_code and trust_remote_code: _a : Dict = get_class_from_dynamic_module( _UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase ) _a : int = kwargs.pop('code_revision' ,_UpperCAmelCase ) if os.path.isdir(_UpperCAmelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_UpperCAmelCase ,**_UpperCAmelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(_UpperCAmelCase ,**_UpperCAmelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING: _a : Dict = IMAGE_PROCESSOR_MAPPING[type(_UpperCAmelCase )] return image_processor_class.from_dict(_UpperCAmelCase ,**_UpperCAmelCase ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowercase ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Dict ): IMAGE_PROCESSOR_MAPPING.register(_UpperCAmelCase ,_UpperCAmelCase )
89
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_5_0, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=a , ) assert hasattr(self , '''env''' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Tuple ): """simple docstring""" __lowerCamelCase = f"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings __lowerCamelCase = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=a , instance_count=a , instance_type=self.instance_type , debugger_hook_config=a , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=a , py_version='''py36''' , ) def SCREAMING_SNAKE_CASE__ ( self : Dict , a : Any ): """simple docstring""" TrainingJobAnalytics(a ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : Tuple ): """simple docstring""" __lowerCamelCase = self.create_estimator(a ) # run training estimator.fit() # result dataframe __lowerCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) __lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowerCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , a )
366
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase =logging.get_logger(__name__) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict =["pixel_values"] def __init__( self : List[str] , a : bool = True , a : Dict[str, int] = None , a : int = 0.9 , a : PILImageResampling = PILImageResampling.BICUBIC , a : bool = True , a : Dict[str, int] = None , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Dict , ): """simple docstring""" super().__init__(**a ) __lowerCamelCase = size if size is not None else {'''shortest_edge''': 2_24} __lowerCamelCase = get_size_dict(a , default_to_square=a ) __lowerCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCamelCase = get_size_dict(a , param_name='''crop_size''' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = crop_pct __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE__ ( self : Any , a : np.ndarray , a : Dict[str, int] , a : Optional[float] = None , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : List[str] , ): """simple docstring""" __lowerCamelCase = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: __lowerCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __lowerCamelCase = int(size['''height'''] / crop_pct ) else: __lowerCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(a ) ) __lowerCamelCase = get_resize_output_image_size(a , size=a , default_to_square=a ) else: if "shortest_edge" in size: __lowerCamelCase = get_resize_output_image_size(a , size=size['''shortest_edge'''] , default_to_square=a ) elif "height" in size and "width" in size: __lowerCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(a ) ) return resize(a , size=a , resample=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Dict , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict , ): """simple docstring""" __lowerCamelCase = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(a , size=(size['''height'''], size['''width''']) , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : np.ndarray , a : Union[int, float] , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , ): """simple docstring""" return rescale(a , scale=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Any , ): """simple docstring""" return normalize(a , mean=a , std=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : int = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : Tuple , ): """simple docstring""" __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = crop_pct if crop_pct is not None else self.crop_pct __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(a , default_to_square=a ) __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(a , param_name='''crop_size''' ) __lowerCamelCase = make_list_of_images(a ) if not valid_images(a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(a ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=a , size=a , crop_pct=a , resample=a ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=a , mean=a , std=a ) for image in images] __lowerCamelCase = [to_channel_dimension_format(a , a ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=a , tensor_type=a )
237
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __lowerCAmelCase = logging.getLogger(__name__) def snake_case_ ( snake_case , snake_case ) -> Any: lowercase__: Optional[Any] = np.argmax(snake_case , axis=1 ) return np.sum(outputs == labels ) def snake_case_ ( snake_case ) -> Optional[Any]: with open(snake_case , encoding='utf_8' ) as f: lowercase__: Any = csv.reader(snake_case ) lowercase__: Optional[int] = [] next(snake_case ) # skip the first line for line in tqdm(snake_case ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def snake_case_ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Optional[int]: lowercase__: Tuple = [] for dataset in encoded_datasets: lowercase__: Dict = len(snake_case ) lowercase__: Union[str, Any] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowercase__: str = np.zeros((n_batch, 2) , dtype=np.intaa ) lowercase__: Optional[Any] = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) lowercase__: Dict = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(snake_case ): lowercase__: Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase__: Optional[int] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase__: Optional[Any] = with_conta lowercase__: Union[str, Any] = with_conta lowercase__: Dict = len(snake_case ) - 1 lowercase__: Dict = len(snake_case ) - 1 lowercase__: Optional[Any] = with_conta lowercase__: Any = with_conta lowercase__: Any = mc_label lowercase__: str = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(snake_case ) for t in all_inputs ) ) return tensor_datasets def snake_case_ ( ) -> List[str]: lowercase__: Optional[int] = argparse.ArgumentParser() parser.add_argument('--model_name' , type=snake_case , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=snake_case , type=snake_case , required=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=snake_case , default='' ) parser.add_argument('--eval_dataset' , type=snake_case , default='' ) parser.add_argument('--seed' , type=snake_case , default=42 ) parser.add_argument('--num_train_epochs' , type=snake_case , default=3 ) parser.add_argument('--train_batch_size' , type=snake_case , default=8 ) parser.add_argument('--eval_batch_size' , type=snake_case , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=snake_case , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=snake_case , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=snake_case , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=snake_case , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=snake_case , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=snake_case , default=0.0_1 ) parser.add_argument('--lm_coef' , type=snake_case , default=0.9 ) parser.add_argument('--n_valid' , type=snake_case , default=3_74 ) parser.add_argument('--server_ip' , type=snake_case , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=snake_case , default='' , help='Can be used for distant debugging.' ) lowercase__: Optional[int] = parser.parse_args() print(snake_case ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=snake_case ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowercase__: List[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowercase__: Tuple = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(snake_case , snake_case ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowercase__: Optional[int] = ['_start_', '_delimiter_', '_classify_'] lowercase__: Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(snake_case ) lowercase__: int = tokenizer.convert_tokens_to_ids(snake_case ) lowercase__: Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(snake_case ) ) model.to(snake_case ) # Load and encode the datasets def tokenize_and_encode(snake_case ): if isinstance(snake_case , snake_case ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(snake_case ) ) elif isinstance(snake_case , snake_case ): return obj return [tokenize_and_encode(snake_case ) for o in obj] logger.info('Encoding dataset...' ) lowercase__: Optional[int] = load_rocstories_dataset(args.train_dataset ) lowercase__: Optional[Any] = load_rocstories_dataset(args.eval_dataset ) lowercase__: str = (train_dataset, eval_dataset) lowercase__: int = tokenize_and_encode(snake_case ) # Compute the max input length for the Transformer lowercase__: int = model.config.n_positions // 2 - 2 lowercase__: Tuple = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowercase__: Dict = min(snake_case , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowercase__: List[str] = pre_process_datasets(snake_case , snake_case , snake_case , *snake_case ) lowercase__ , lowercase__: Union[str, Any] = tensor_datasets[0], tensor_datasets[1] lowercase__: List[str] = TensorDataset(*snake_case ) lowercase__: List[Any] = RandomSampler(snake_case ) lowercase__: Tuple = DataLoader(snake_case , sampler=snake_case , batch_size=args.train_batch_size ) lowercase__: Union[str, Any] = TensorDataset(*snake_case ) lowercase__: List[str] = SequentialSampler(snake_case ) lowercase__: List[Any] = DataLoader(snake_case , sampler=snake_case , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowercase__: int = args.max_steps lowercase__: int = args.max_steps // (len(snake_case ) // args.gradient_accumulation_steps) + 1 else: lowercase__: Any = len(snake_case ) // args.gradient_accumulation_steps * args.num_train_epochs lowercase__: str = list(model.named_parameters() ) lowercase__: str = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowercase__: Optional[Any] = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowercase__: Union[str, Any] = AdamW(snake_case , lr=args.learning_rate , eps=args.adam_epsilon ) lowercase__: List[Any] = get_linear_schedule_with_warmup( snake_case , num_warmup_steps=args.warmup_steps , num_training_steps=snake_case ) if args.do_train: lowercase__ , lowercase__ , lowercase__: int = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowercase__: int = 0 lowercase__: Optional[int] = 0 lowercase__: int = tqdm(snake_case , desc='Training' ) for step, batch in enumerate(snake_case ): lowercase__: List[str] = tuple(t.to(snake_case ) for t in batch ) lowercase__ , lowercase__ , lowercase__ , lowercase__: int = batch lowercase__: Optional[Any] = model(snake_case , mc_token_ids=snake_case , lm_labels=snake_case , mc_labels=snake_case ) lowercase__: Tuple = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowercase__: Any = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowercase__: Tuple = 'Training loss: {:.2e} lr: {:.2e}'.format(snake_case , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowercase__: Dict = model.module if hasattr(snake_case , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowercase__: List[str] = os.path.join(args.output_dir , snake_case ) lowercase__: Union[str, Any] = os.path.join(args.output_dir , snake_case ) torch.save(model_to_save.state_dict() , snake_case ) model_to_save.config.to_json_file(snake_case ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowercase__: Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowercase__: Optional[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(snake_case ) if args.do_eval: model.eval() lowercase__ , lowercase__: Union[str, Any] = 0, 0 lowercase__ , lowercase__: Optional[int] = 0, 0 for batch in tqdm(snake_case , desc='Evaluating' ): lowercase__: int = tuple(t.to(snake_case ) for t in batch ) lowercase__ , lowercase__ , lowercase__ , lowercase__: int = batch with torch.no_grad(): lowercase__ , lowercase__ , lowercase__ , lowercase__: Any = model( snake_case , mc_token_ids=snake_case , lm_labels=snake_case , mc_labels=snake_case ) lowercase__: Union[str, Any] = mc_logits.detach().cpu().numpy() lowercase__: Optional[int] = mc_labels.to('cpu' ).numpy() lowercase__: int = accuracy(snake_case , snake_case ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowercase__: Optional[int] = eval_loss / nb_eval_steps lowercase__: List[str] = eval_accuracy / nb_eval_examples lowercase__: Optional[Any] = tr_loss / nb_tr_steps if args.do_train else None lowercase__: Any = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowercase__: Union[str, Any] = os.path.join(args.output_dir , 'eval_results.txt' ) with open(snake_case , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , snake_case , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
196
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __a ( __UpperCamelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Any = params lowercase__: List[Any] = np.array(lowerCAmelCase__ ) lowercase__: Optional[Any] = np.array([len(lowerCAmelCase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> List[Any]: '''simple docstring''' return len(self.lengths ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = self.params.max_model_input_size lowercase__: Dict = self.lengths > max_len logger.info(F'Splitting {sum(lowerCAmelCase__ )} too long sequences.' ) def divide_chunks(lowerCAmelCase__ , lowerCAmelCase__ ): return [l[i : i + n] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )] lowercase__: str = [] lowercase__: List[str] = [] if self.params.mlm: lowercase__ , lowercase__: str = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: lowercase__ , lowercase__: int = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowercase__: Optional[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: lowercase__: int = np.insert(lowerCAmelCase__ , 0 , lowerCAmelCase__ ) if sub_s[-1] != sep_id: lowercase__: Union[str, Any] = np.insert(lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowerCAmelCase__ ) new_tok_ids.extend(lowerCAmelCase__ ) new_lengths.extend([len(lowerCAmelCase__ ) for l in sub_seqs] ) lowercase__: Union[str, Any] = np.array(lowerCAmelCase__ ) lowercase__: Union[str, Any] = np.array(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Dict = len(self ) lowercase__: Union[str, Any] = self.lengths > 11 lowercase__: List[Any] = self.token_ids[indices] lowercase__: Optional[Any] = self.lengths[indices] lowercase__: List[str] = len(self ) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: lowercase__: List[str] = self.params.special_tok_ids['unk_token'] lowercase__: str = len(self ) lowercase__: Tuple = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowercase__: Any = (unk_occs / self.lengths) < 0.5 lowercase__: Tuple = self.token_ids[indices] lowercase__: str = self.lengths[indices] lowercase__: Dict = len(self ) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' if not self.params.is_master: return logger.info(F'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: Union[str, Any] = [t[0] for t in batch] lowercase__: Dict = [t[1] for t in batch] assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) # Max for paddings lowercase__: List[Any] = max(lowerCAmelCase__ ) # Pad token ids if self.params.mlm: lowercase__: Dict = self.params.special_tok_ids['pad_token'] else: lowercase__: Optional[Any] = self.params.special_tok_ids['unk_token'] lowercase__: int = [list(t.astype(lowerCAmelCase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowerCAmelCase__ )) for t in token_ids] assert len(tk_ ) == len(lowerCAmelCase__ ) assert all(len(lowerCAmelCase__ ) == max_seq_len_ for t in tk_ ) lowercase__: Tuple = torch.tensor(tk_ ) # (bs, max_seq_len_) lowercase__: Optional[Any] = torch.tensor(lowerCAmelCase__ ) # (bs) return tk_t, lg_t
196
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( lowerCamelCase__ ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> str: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowercase__ , speech_processor=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , unet=lowercase__ , scheduler=lowercase__ , feature_extractor=lowercase__ , ) def UpperCAmelCase__ ( self , snake_case__ = "auto" ) -> List[Any]: '''simple docstring''' if slice_size == "auto": UpperCAmelCase : Union[str, Any] =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase__ ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' self.enable_attention_slicing(lowercase__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ) -> Tuple: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.speech_processor.feature_extractor( lowercase__ , return_tensors='''pt''' , sampling_rate=lowercase__ ).input_features.to(self.device ) UpperCAmelCase : str =self.speech_model.generate(lowercase__ , max_length=48_0000 ) UpperCAmelCase : Any =self.speech_processor.tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__ , normalize=lowercase__ )[ 0 ] if isinstance(lowercase__ , lowercase__ ): UpperCAmelCase : Any =1 elif isinstance(lowercase__ , lowercase__ ): UpperCAmelCase : Dict =len(lowercase__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(lowercase__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase__ , lowercase__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(lowercase__ )}.''' ) # get prompt text embeddings UpperCAmelCase : Optional[Any] =self.tokenizer( lowercase__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase : Dict =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase : Optional[int] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase : Optional[int] =text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase : Dict =self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] =text_embeddings.shape UpperCAmelCase : Optional[Any] =text_embeddings.repeat(1 , lowercase__ , 1 ) UpperCAmelCase : Optional[Any] =text_embeddings.view(bs_embed * num_images_per_prompt , lowercase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase : Union[str, Any] =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase : Optional[int] =42 if negative_prompt is None: UpperCAmelCase : Any =[''''''] * batch_size elif type(lowercase__ ) is not type(lowercase__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(lowercase__ )} !=''' f''' {type(lowercase__ )}.''' ) elif isinstance(lowercase__ , lowercase__ ): UpperCAmelCase : str =[negative_prompt] elif batch_size != len(lowercase__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(lowercase__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ''' the batch size of `prompt`.''' ) else: UpperCAmelCase : Any =negative_prompt UpperCAmelCase : Optional[Any] =text_input_ids.shape[-1] UpperCAmelCase : Union[str, Any] =self.tokenizer( lowercase__ , padding='''max_length''' , max_length=lowercase__ , truncation=lowercase__ , return_tensors='''pt''' , ) UpperCAmelCase : int =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : int =uncond_embeddings.shape[1] UpperCAmelCase : Optional[int] =uncond_embeddings.repeat(1 , lowercase__ , 1 ) UpperCAmelCase : Union[str, Any] =uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : Union[str, Any] =torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase : int =(batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase : int =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase : List[str] =torch.randn(lowercase__ , generator=lowercase__ , device='''cpu''' , dtype=lowercase__ ).to( self.device ) else: UpperCAmelCase : int =torch.randn(lowercase__ , generator=lowercase__ , device=self.device , dtype=lowercase__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCAmelCase : Union[str, Any] =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowercase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase : List[Any] =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase : Union[str, Any] ='''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase : List[Any] ={} if accepts_eta: UpperCAmelCase : Optional[Any] =eta for i, t in enumerate(self.progress_bar(lowercase__ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : Optional[Any] =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : List[Any] =self.scheduler.scale_model_input(lowercase__ , lowercase__ ) # predict the noise residual UpperCAmelCase : str =self.unet(lowercase__ , lowercase__ , encoder_hidden_states=lowercase__ ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : int =noise_pred.chunk(2 ) UpperCAmelCase : str =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : List[Any] =self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase__ , lowercase__ , lowercase__ ) UpperCAmelCase : Optional[int] =1 / 0.1_8215 * latents UpperCAmelCase : Tuple =self.vae.decode(lowercase__ ).sample UpperCAmelCase : Dict =(image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase : Tuple =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase : Dict =self.numpy_to_pil(lowercase__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase__ , nsfw_content_detected=lowercase__ )
358
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = """efficientnet""" def __init__( self , snake_case__ = 3 , snake_case__ = 600 , snake_case__ = 2.0 , snake_case__ = 3.1 , snake_case__ = 8 , snake_case__ = [3, 3, 5, 3, 5, 5, 3] , snake_case__ = [32, 16, 24, 40, 80, 112, 192] , snake_case__ = [16, 24, 40, 80, 112, 192, 320] , snake_case__ = [] , snake_case__ = [1, 2, 2, 2, 1, 2, 1] , snake_case__ = [1, 2, 2, 3, 3, 4, 1] , snake_case__ = [1, 6, 6, 6, 6, 6, 6] , snake_case__ = 0.25 , snake_case__ = "swish" , snake_case__ = 2560 , snake_case__ = "mean" , snake_case__ = 0.02 , snake_case__ = 0.001 , snake_case__ = 0.99 , snake_case__ = 0.5 , snake_case__ = 0.2 , **snake_case__ , ) -> int: '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase : Tuple =num_channels UpperCAmelCase : Any =image_size UpperCAmelCase : Optional[int] =width_coefficient UpperCAmelCase : Union[str, Any] =depth_coefficient UpperCAmelCase : List[Any] =depth_divisor UpperCAmelCase : List[str] =kernel_sizes UpperCAmelCase : Any =in_channels UpperCAmelCase : str =out_channels UpperCAmelCase : Optional[int] =depthwise_padding UpperCAmelCase : str =strides UpperCAmelCase : Tuple =num_block_repeats UpperCAmelCase : Union[str, Any] =expand_ratios UpperCAmelCase : Dict =squeeze_expansion_ratio UpperCAmelCase : Union[str, Any] =hidden_act UpperCAmelCase : int =hidden_dim UpperCAmelCase : Optional[int] =pooling_type UpperCAmelCase : Union[str, Any] =initializer_range UpperCAmelCase : List[str] =batch_norm_eps UpperCAmelCase : List[str] =batch_norm_momentum UpperCAmelCase : Tuple =dropout_rate UpperCAmelCase : Tuple =drop_connect_rate UpperCAmelCase : int =sum(snake_case__ ) * 4 class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[Any] = version.parse("""1.11""" ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1e-5
78
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) UpperCamelCase = logging.getLogger(__name__) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.argmax(snake_case__ ,axis=1 ) return np.sum(outputs == labels ) def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" with open(snake_case__ ,encoding="""utf_8""" ) as f: _SCREAMING_SNAKE_CASE = csv.reader(snake_case__ ) _SCREAMING_SNAKE_CASE = [] next(snake_case__ ) # skip the first line for line in tqdm(snake_case__ ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [] for dataset in encoded_datasets: _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = np.zeros((n_batch, 2, input_len) ,dtype=np.intaa ) _SCREAMING_SNAKE_CASE = np.zeros((n_batch, 2) ,dtype=np.intaa ) _SCREAMING_SNAKE_CASE = np.full((n_batch, 2, input_len) ,fill_value=-1_00 ,dtype=np.intaa ) _SCREAMING_SNAKE_CASE = np.zeros((n_batch,) ,dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _SCREAMING_SNAKE_CASE = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _SCREAMING_SNAKE_CASE = with_conta _SCREAMING_SNAKE_CASE = with_conta _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 _SCREAMING_SNAKE_CASE = with_conta _SCREAMING_SNAKE_CASE = with_conta _SCREAMING_SNAKE_CASE = mc_label _SCREAMING_SNAKE_CASE = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(snake_case__ ) for t in all_inputs ) ) return tensor_datasets def __lowerCamelCase ( ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--model_name""" ,type=snake_case__ ,default="""openai-gpt""" ,help="""pretrained model name""" ) parser.add_argument("""--do_train""" ,action="""store_true""" ,help="""Whether to run training.""" ) parser.add_argument("""--do_eval""" ,action="""store_true""" ,help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""" ,default=snake_case__ ,type=snake_case__ ,required=snake_case__ ,help="""The output directory where the model predictions and checkpoints will be written.""" ,) parser.add_argument("""--train_dataset""" ,type=snake_case__ ,default="""""" ) parser.add_argument("""--eval_dataset""" ,type=snake_case__ ,default="""""" ) parser.add_argument("""--seed""" ,type=snake_case__ ,default=42 ) parser.add_argument("""--num_train_epochs""" ,type=snake_case__ ,default=3 ) parser.add_argument("""--train_batch_size""" ,type=snake_case__ ,default=8 ) parser.add_argument("""--eval_batch_size""" ,type=snake_case__ ,default=16 ) parser.add_argument("""--adam_epsilon""" ,default=1e-8 ,type=snake_case__ ,help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" ,type=snake_case__ ,default=1 ) parser.add_argument( """--max_steps""" ,default=-1 ,type=snake_case__ ,help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) ,) parser.add_argument( """--gradient_accumulation_steps""" ,type=snake_case__ ,default=1 ,help="""Number of updates steps to accumulate before performing a backward/update pass.""" ,) parser.add_argument("""--learning_rate""" ,type=snake_case__ ,default=6.2_5e-5 ) parser.add_argument("""--warmup_steps""" ,default=0 ,type=snake_case__ ,help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""" ,type=snake_case__ ,default="""warmup_linear""" ) parser.add_argument("""--weight_decay""" ,type=snake_case__ ,default=0.01 ) parser.add_argument("""--lm_coef""" ,type=snake_case__ ,default=0.9 ) parser.add_argument("""--n_valid""" ,type=snake_case__ ,default=3_74 ) parser.add_argument("""--server_ip""" ,type=snake_case__ ,default="""""" ,help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" ,type=snake_case__ ,default="""""" ,help="""Can be used for distant debugging.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() print(snake_case__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) ,redirect_output=snake_case__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) _SCREAMING_SNAKE_CASE = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) _SCREAMING_SNAKE_CASE = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(snake_case__ ,snake_case__ ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset _SCREAMING_SNAKE_CASE = ["""_start_""", """_delimiter_""", """_classify_"""] _SCREAMING_SNAKE_CASE = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(snake_case__ ) _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(snake_case__ ) _SCREAMING_SNAKE_CASE = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(snake_case__ ) ) model.to(snake_case__ ) # Load and encode the datasets def tokenize_and_encode(snake_case__ ): if isinstance(snake_case__ ,snake_case__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(snake_case__ ) ) elif isinstance(snake_case__ ,snake_case__ ): return obj return [tokenize_and_encode(snake_case__ ) for o in obj] logger.info("""Encoding dataset...""" ) _SCREAMING_SNAKE_CASE = load_rocstories_dataset(args.train_dataset ) _SCREAMING_SNAKE_CASE = load_rocstories_dataset(args.eval_dataset ) _SCREAMING_SNAKE_CASE = (train_dataset, eval_dataset) _SCREAMING_SNAKE_CASE = tokenize_and_encode(snake_case__ ) # Compute the max input length for the Transformer _SCREAMING_SNAKE_CASE = model.config.n_positions // 2 - 2 _SCREAMING_SNAKE_CASE = max( len(story[:max_length] ) + max(len(conta[:max_length] ) ,len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) _SCREAMING_SNAKE_CASE = min(snake_case__ ,model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders _SCREAMING_SNAKE_CASE = pre_process_datasets(snake_case__ ,snake_case__ ,snake_case__ ,*snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tensor_datasets[0], tensor_datasets[1] _SCREAMING_SNAKE_CASE = TensorDataset(*snake_case__ ) _SCREAMING_SNAKE_CASE = RandomSampler(snake_case__ ) _SCREAMING_SNAKE_CASE = DataLoader(snake_case__ ,sampler=snake_case__ ,batch_size=args.train_batch_size ) _SCREAMING_SNAKE_CASE = TensorDataset(*snake_case__ ) _SCREAMING_SNAKE_CASE = SequentialSampler(snake_case__ ) _SCREAMING_SNAKE_CASE = DataLoader(snake_case__ ,sampler=snake_case__ ,batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: _SCREAMING_SNAKE_CASE = args.max_steps _SCREAMING_SNAKE_CASE = args.max_steps // (len(snake_case__ ) // args.gradient_accumulation_steps) + 1 else: _SCREAMING_SNAKE_CASE = len(snake_case__ ) // args.gradient_accumulation_steps * args.num_train_epochs _SCREAMING_SNAKE_CASE = list(model.named_parameters() ) _SCREAMING_SNAKE_CASE = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] _SCREAMING_SNAKE_CASE = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] _SCREAMING_SNAKE_CASE = AdamW(snake_case__ ,lr=args.learning_rate ,eps=args.adam_epsilon ) _SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( snake_case__ ,num_warmup_steps=args.warmup_steps ,num_training_steps=snake_case__ ) if args.do_train: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) ,desc="""Epoch""" ): _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = tqdm(snake_case__ ,desc="""Training""" ) for step, batch in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = tuple(t.to(snake_case__ ) for t in batch ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = batch _SCREAMING_SNAKE_CASE = model(snake_case__ ,mc_token_ids=snake_case__ ,lm_labels=snake_case__ ,mc_labels=snake_case__ ) _SCREAMING_SNAKE_CASE = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() _SCREAMING_SNAKE_CASE = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 _SCREAMING_SNAKE_CASE = """Training loss: {:.2e} lr: {:.2e}""".format(snake_case__ ,scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer _SCREAMING_SNAKE_CASE = model.module if hasattr(snake_case__ ,"""module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` _SCREAMING_SNAKE_CASE = os.path.join(args.output_dir ,snake_case__ ) _SCREAMING_SNAKE_CASE = os.path.join(args.output_dir ,snake_case__ ) torch.save(model_to_save.state_dict() ,snake_case__ ) model_to_save.config.to_json_file(snake_case__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned _SCREAMING_SNAKE_CASE = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) _SCREAMING_SNAKE_CASE = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(snake_case__ ) if args.do_eval: model.eval() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0, 0 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0, 0 for batch in tqdm(snake_case__ ,desc="""Evaluating""" ): _SCREAMING_SNAKE_CASE = tuple(t.to(snake_case__ ) for t in batch ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = batch with torch.no_grad(): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model( snake_case__ ,mc_token_ids=snake_case__ ,lm_labels=snake_case__ ,mc_labels=snake_case__ ) _SCREAMING_SNAKE_CASE = mc_logits.detach().cpu().numpy() _SCREAMING_SNAKE_CASE = mc_labels.to("""cpu""" ).numpy() _SCREAMING_SNAKE_CASE = accuracy(snake_case__ ,snake_case__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 _SCREAMING_SNAKE_CASE = eval_loss / nb_eval_steps _SCREAMING_SNAKE_CASE = eval_accuracy / nb_eval_examples _SCREAMING_SNAKE_CASE = tr_loss / nb_tr_steps if args.do_train else None _SCREAMING_SNAKE_CASE = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} _SCREAMING_SNAKE_CASE = os.path.join(args.output_dir ,"""eval_results.txt""" ) with open(snake_case__ ,"""w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" ,snake_case__ ,str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
306
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowercase : Any = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = ['pixel_values'] def __init__( self : Any, lowerCamelCase : bool = True, lowerCamelCase : Dict[str, int] = None, lowerCamelCase : PILImageResampling = PIL.Image.BICUBIC, lowerCamelCase : bool = True, lowerCamelCase : Dict[str, int] = None, lowerCamelCase : Union[int, float] = 1 / 255, lowerCamelCase : bool = True, lowerCamelCase : bool = True, lowerCamelCase : Optional[Union[float, List[float]]] = None, lowerCamelCase : Optional[Union[float, List[float]]] = None, **lowerCamelCase : Any, )-> None: super().__init__(**lowerCamelCase ) lowerCamelCase__ : Any =size if size is not None else {'''height''': 256, '''width''': 256} lowerCamelCase__ : Optional[int] =get_size_dict(lowerCamelCase ) lowerCamelCase__ : List[str] =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCamelCase__ : Tuple =get_size_dict(lowerCamelCase, param_name='''crop_size''' ) lowerCamelCase__ : Any =do_resize lowerCamelCase__ : List[str] =size lowerCamelCase__ : int =resample lowerCamelCase__ : Union[str, Any] =do_center_crop lowerCamelCase__ : Optional[Any] =crop_size lowerCamelCase__ : Optional[int] =do_rescale lowerCamelCase__ : List[str] =rescale_factor lowerCamelCase__ : Any =do_normalize lowerCamelCase__ : Optional[Any] =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase__ : Dict =image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case ( self : Optional[int], lowerCamelCase : np.ndarray, lowerCamelCase : Dict[str, int], lowerCamelCase : PILImageResampling = PIL.Image.BICUBIC, lowerCamelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCamelCase : List[str], )-> np.ndarray: lowerCamelCase__ : Dict =get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( lowerCamelCase, size=(size['''height'''], size['''width''']), resample=lowerCamelCase, data_format=lowerCamelCase, **lowerCamelCase ) def snake_case ( self : List[str], lowerCamelCase : np.ndarray, lowerCamelCase : Dict[str, int], lowerCamelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCamelCase : Dict, )-> np.ndarray: lowerCamelCase__ : Optional[int] =get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(lowerCamelCase, size=(size['''height'''], size['''width''']), data_format=lowerCamelCase, **lowerCamelCase ) def snake_case ( self : List[Any], lowerCamelCase : np.ndarray, lowerCamelCase : Union[int, float], lowerCamelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCamelCase : Tuple, )-> Any: return rescale(lowerCamelCase, scale=lowerCamelCase, data_format=lowerCamelCase, **lowerCamelCase ) def snake_case ( self : Optional[int], lowerCamelCase : np.ndarray, lowerCamelCase : Union[float, List[float]], lowerCamelCase : Union[float, List[float]], lowerCamelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCamelCase : Dict, )-> np.ndarray: return normalize(lowerCamelCase, mean=lowerCamelCase, std=lowerCamelCase, data_format=lowerCamelCase, **lowerCamelCase ) def snake_case ( self : Tuple, lowerCamelCase : ImageInput, lowerCamelCase : bool = None, lowerCamelCase : Dict[str, int] = None, lowerCamelCase : Tuple=None, lowerCamelCase : bool = None, lowerCamelCase : Dict[str, int] = None, lowerCamelCase : bool = None, lowerCamelCase : float = None, lowerCamelCase : bool = None, lowerCamelCase : Optional[Union[float, List[float]]] = None, lowerCamelCase : Optional[Union[float, List[float]]] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, lowerCamelCase : ChannelDimension = ChannelDimension.FIRST, **lowerCamelCase : Optional[Any], )-> PIL.Image.Image: lowerCamelCase__ : List[Any] =do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : List[Any] =resample if resample is not None else self.resample lowerCamelCase__ : Union[str, Any] =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__ : Optional[Any] =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Union[str, Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Tuple =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : Dict =image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : List[Any] =image_std if image_std is not None else self.image_std lowerCamelCase__ : Tuple =size if size is not None else self.size lowerCamelCase__ : int =get_size_dict(lowerCamelCase ) lowerCamelCase__ : Any =crop_size if crop_size is not None else self.crop_size lowerCamelCase__ : List[Any] =get_size_dict(lowerCamelCase, param_name='''crop_size''' ) lowerCamelCase__ : Optional[int] =make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowerCamelCase__ : List[str] =[to_numpy_array(lowerCamelCase ) for image in images] if do_resize: lowerCamelCase__ : Any =[self.resize(image=lowerCamelCase, size=lowerCamelCase, resample=lowerCamelCase ) for image in images] if do_center_crop: lowerCamelCase__ : List[Any] =[self.center_crop(image=lowerCamelCase, size=lowerCamelCase ) for image in images] if do_rescale: lowerCamelCase__ : Tuple =[self.rescale(image=lowerCamelCase, scale=lowerCamelCase ) for image in images] if do_normalize: lowerCamelCase__ : int =[self.normalize(image=lowerCamelCase, mean=lowerCamelCase, std=lowerCamelCase ) for image in images] lowerCamelCase__ : List[Any] =[to_channel_dimension_format(lowerCamelCase, lowerCamelCase ) for image in images] lowerCamelCase__ : Optional[Any] ={'''pixel_values''': images} return BatchFeature(data=lowerCamelCase, tensor_type=lowerCamelCase )
363
"""simple docstring""" from ...processing_utils import ProcessorMixin class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'SpeechT5FeatureExtractor' _a = 'SpeechT5Tokenizer' def __init__( self : Dict, lowerCamelCase : Optional[int], lowerCamelCase : str )-> Any: super().__init__(lowerCamelCase, lowerCamelCase ) def __call__( self : Tuple, *lowerCamelCase : List[str], **lowerCamelCase : Optional[int] )-> List[str]: lowerCamelCase__ : List[Any] =kwargs.pop('''audio''', lowerCamelCase ) lowerCamelCase__ : List[str] =kwargs.pop('''text''', lowerCamelCase ) lowerCamelCase__ : int =kwargs.pop('''text_target''', lowerCamelCase ) lowerCamelCase__ : Dict =kwargs.pop('''audio_target''', lowerCamelCase ) lowerCamelCase__ : Any =kwargs.pop('''sampling_rate''', lowerCamelCase ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: lowerCamelCase__ : Union[str, Any] =self.feature_extractor(lowerCamelCase, *lowerCamelCase, sampling_rate=lowerCamelCase, **lowerCamelCase ) elif text is not None: lowerCamelCase__ : List[Any] =self.tokenizer(lowerCamelCase, **lowerCamelCase ) else: lowerCamelCase__ : Any =None if audio_target is not None: lowerCamelCase__ : List[str] =self.feature_extractor(audio_target=lowerCamelCase, *lowerCamelCase, sampling_rate=lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : Tuple =targets['''input_values'''] elif text_target is not None: lowerCamelCase__ : Dict =self.tokenizer(lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : int =targets['''input_ids'''] else: lowerCamelCase__ : List[str] =None if inputs is None: return targets if targets is not None: lowerCamelCase__ : Dict =labels lowerCamelCase__ : Any =targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowerCamelCase__ : Dict =decoder_attention_mask return inputs def snake_case ( self : int, *lowerCamelCase : Optional[Any], **lowerCamelCase : Optional[int] )-> Optional[Any]: lowerCamelCase__ : List[Any] =kwargs.pop('''input_values''', lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =kwargs.pop('''input_ids''', lowerCamelCase ) lowerCamelCase__ : Optional[Any] =kwargs.pop('''labels''', lowerCamelCase ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: lowerCamelCase__ : List[str] =self.feature_extractor.pad(lowerCamelCase, *lowerCamelCase, **lowerCamelCase ) elif input_ids is not None: lowerCamelCase__ : Tuple =self.tokenizer.pad(lowerCamelCase, **lowerCamelCase ) else: lowerCamelCase__ : Any =None if labels is not None: if "input_ids" in labels or (isinstance(lowerCamelCase, lowerCamelCase ) and "input_ids" in labels[0]): lowerCamelCase__ : str =self.tokenizer.pad(lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : List[Any] =targets['''input_ids'''] else: lowerCamelCase__ : Any =self.feature_extractor.feature_size lowerCamelCase__ : Optional[Any] =self.feature_extractor.num_mel_bins lowerCamelCase__ : Optional[int] =self.feature_extractor.pad(lowerCamelCase, *lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : List[Any] =feature_size_hack lowerCamelCase__ : Tuple =targets['''input_values'''] else: lowerCamelCase__ : Optional[Any] =None if inputs is None: return targets if targets is not None: lowerCamelCase__ : Tuple =labels lowerCamelCase__ : Optional[int] =targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowerCamelCase__ : Optional[Any] =decoder_attention_mask return inputs def snake_case ( self : List[str], *lowerCamelCase : Union[str, Any], **lowerCamelCase : List[Any] )-> List[Any]: return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase ) def snake_case ( self : List[str], *lowerCamelCase : List[Any], **lowerCamelCase : Tuple )-> int: return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase )
272
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device snake_case_ : Optional[Any] = False class __snake_case ( unittest.TestCase ): pass @nightly @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : int): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''') # remove text_unet pipe.remove_unused_weights() pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = '''A painting of a squirrel eating a burger ''' UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = pipe( prompt=_snake_case , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''').images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_snake_case) UpperCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained(_snake_case) pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = generator.manual_seed(0) UpperCAmelCase_ = pipe( prompt=_snake_case , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''').images assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa) pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = '''A painting of a squirrel eating a burger ''' UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = pipe( prompt=_snake_case , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''').images UpperCAmelCase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
51
snake_case_ : Dict = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
51
1
'''simple docstring''' def _UpperCamelCase ( ): UpperCAmelCase__ : int = [] UpperCAmelCase__ : Dict = 1 while len(UpperCamelCase__ ) < 1e6: constant.append(str(UpperCamelCase__ ) ) i += 1 UpperCAmelCase__ : Dict = """""".join(UpperCamelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
283
'''simple docstring''' import functools def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): # Validation if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(UpperCamelCase__ ) != 3 or not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(UpperCamelCase__ ) == 0: return 0 if min(UpperCamelCase__ ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(UpperCamelCase__ ) >= 3_6_6: raise ValueError("""All days elements should be less than 366""" ) UpperCAmelCase__ : Union[str, Any] = set(UpperCamelCase__ ) @functools.cache def dynamic_programming(UpperCamelCase__ ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
283
1
"""simple docstring""" from PIL import Image def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level)) def contrast(lowerCamelCase ) -> int: return int(1_2_8 + factor * (c - 1_2_8) ) return img.point(_a ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 lowerCAmelCase__ : Optional[int] = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
98
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Dict = logging.get_logger(__name__) def __lowercase ( _a , _a=False ): snake_case_ : List[str] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def __lowercase ( _a , _a , _a=False ): for i in range(config.num_hidden_layers ): if base_model: snake_case_ : List[str] = '''''' else: snake_case_ : Dict = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ : List[str] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case_ : Optional[int] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Any = in_proj_weight[ : config.hidden_size, : ] snake_case_ : Dict = in_proj_bias[: config.hidden_size] snake_case_ : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ : Dict = in_proj_weight[ -config.hidden_size :, : ] snake_case_ : str = in_proj_bias[-config.hidden_size :] def __lowercase ( _a ): snake_case_ : Dict = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_a , _a ) def __lowercase ( _a , _a , _a ): snake_case_ : Union[str, Any] = dct.pop(_a ) snake_case_ : Union[str, Any] = val def __lowercase ( ): snake_case_ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ : Tuple = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def __lowercase ( _a , _a , _a=False ): snake_case_ : str = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=_a , ) snake_case_ : Tuple = ViTHybridConfig(backbone_config=_a , image_size=384 , num_labels=1_000 ) snake_case_ : int = False # load original model from timm snake_case_ : str = timm.create_model(_a , pretrained=_a ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case_ : Any = timm_model.state_dict() if base_model: remove_classification_head_(_a ) snake_case_ : int = create_rename_keys(_a , _a ) for src, dest in rename_keys: rename_key(_a , _a , _a ) read_in_q_k_v(_a , _a , _a ) snake_case_ : Optional[Any] = '''huggingface/label-files''' snake_case_ : Any = '''imagenet-1k-id2label.json''' snake_case_ : Dict = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ : Dict = {int(_a ): v for k, v in idalabel.items()} snake_case_ : Optional[int] = idalabel snake_case_ : Optional[Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": snake_case_ : Optional[Any] = ViTHybridModel(_a ).eval() else: snake_case_ : Any = ViTHybridForImageClassification(_a ).eval() model.load_state_dict(_a ) # create image processor snake_case_ : Optional[Any] = create_transform(**resolve_data_config({} , model=_a ) ) snake_case_ : List[Any] = transform.transforms snake_case_ : Optional[Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } snake_case_ : List[Any] = ViTHybridImageProcessor( do_resize=_a , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_a , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=_a , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case_ : Optional[int] = prepare_img() snake_case_ : Optional[int] = transform(_a ).unsqueeze(0 ) snake_case_ : int = processor(_a , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(_a , _a ) # verify logits with torch.no_grad(): snake_case_ : List[str] = model(_a ) snake_case_ : Any = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: snake_case_ : Optional[Any] = timm_model.forward_features(_a ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_a , outputs.pooler_output , atol=1E-3 ) else: snake_case_ : int = timm_model(_a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_a , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_a ).mkdir(exist_ok=_a ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_a ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_r50_s16_384''', type=str, help='''Name of the hybrid ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) lowercase__ : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
264
0
"""simple docstring""" from statistics import mean, stdev def UpperCAmelCase__ (snake_case__ : list , snake_case__ : int = 3 ): """simple docstring""" _snake_case : List[str] = min(snake_case__ ) _snake_case : str = max(snake_case__ ) # normalize data return [round((x - x_min) / (x_max - x_min) , snake_case__ ) for x in data] def UpperCAmelCase__ (snake_case__ : list , snake_case__ : int = 3 ): """simple docstring""" _snake_case : List[str] = mean(snake_case__ ) _snake_case : int = stdev(snake_case__ ) # standardize data return [round((x - mu) / (sigma) , snake_case__ ) for x in data]
132
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" _snake_case : Optional[Any] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCAmelCase__ (snake_case__ : int = 50_00 ): """simple docstring""" _snake_case : List[str] = [(i * (3 * i - 1)) // 2 for i in range(1 , snake_case__ )] for i, pentagonal_i in enumerate(snake_case__ ): for j in range(snake_case__ , len(snake_case__ ) ): _snake_case : Dict = pentagonal_nums[j] _snake_case : Optional[Any] = pentagonal_i + pentagonal_j _snake_case : List[str] = pentagonal_j - pentagonal_i if is_pentagonal(snake_case__ ) and is_pentagonal(snake_case__ ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
132
1
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def lowerCAmelCase__ ( lowerCamelCase_ : Dict): '''simple docstring''' if "cls_token" in name: lowerCAmelCase__ : str = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''') if "mask_token" in name: lowerCAmelCase__ : str = name.replace('''mask_token''' ,'''decoder.mask_token''') if "decoder_pos_embed" in name: lowerCAmelCase__ : int = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''') if "pos_embed" in name and "decoder" not in name: lowerCAmelCase__ : List[str] = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''') if "patch_embed.proj" in name: lowerCAmelCase__ : str = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''') if "patch_embed.norm" in name: lowerCAmelCase__ : str = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''') if "decoder_blocks" in name: lowerCAmelCase__ : str = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''') if "blocks" in name: lowerCAmelCase__ : Dict = name.replace('''blocks''' ,'''vit.encoder.layer''') if "attn.proj" in name: lowerCAmelCase__ : List[str] = name.replace('''attn.proj''' ,'''attention.output.dense''') if "attn" in name: lowerCAmelCase__ : Optional[int] = name.replace('''attn''' ,'''attention.self''') if "norm1" in name: lowerCAmelCase__ : List[Any] = name.replace('''norm1''' ,'''layernorm_before''') if "norm2" in name: lowerCAmelCase__ : Optional[Any] = name.replace('''norm2''' ,'''layernorm_after''') if "mlp.fc1" in name: lowerCAmelCase__ : str = name.replace('''mlp.fc1''' ,'''intermediate.dense''') if "mlp.fc2" in name: lowerCAmelCase__ : Dict = name.replace('''mlp.fc2''' ,'''output.dense''') if "decoder_embed" in name: lowerCAmelCase__ : Optional[Any] = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''') if "decoder_norm" in name: lowerCAmelCase__ : int = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''') if "decoder_pred" in name: lowerCAmelCase__ : Tuple = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''') if "norm.weight" in name and "decoder" not in name: lowerCAmelCase__ : List[str] = name.replace('''norm.weight''' ,'''vit.layernorm.weight''') if "norm.bias" in name and "decoder" not in name: lowerCAmelCase__ : Any = name.replace('''norm.bias''' ,'''vit.layernorm.bias''') return name def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : Any): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase__ : Optional[int] = orig_state_dict.pop(lowerCamelCase_) if "qkv" in key: lowerCAmelCase__ : str = key.split('''.''') lowerCAmelCase__ : Tuple = int(key_split[1]) if "decoder_blocks" in key: lowerCAmelCase__ : Dict = config.decoder_hidden_size lowerCAmelCase__ : str = '''decoder.decoder_layers.''' if "weight" in key: lowerCAmelCase__ : List[Any] = val[:dim, :] lowerCAmelCase__ : List[str] = val[dim : dim * 2, :] lowerCAmelCase__ : Optional[Any] = val[-dim:, :] elif "bias" in key: lowerCAmelCase__ : Optional[int] = val[:dim] lowerCAmelCase__ : List[str] = val[dim : dim * 2] lowerCAmelCase__ : Union[str, Any] = val[-dim:] else: lowerCAmelCase__ : List[str] = config.hidden_size lowerCAmelCase__ : Dict = '''vit.encoder.layer.''' if "weight" in key: lowerCAmelCase__ : Union[str, Any] = val[:dim, :] lowerCAmelCase__ : Dict = val[dim : dim * 2, :] lowerCAmelCase__ : Union[str, Any] = val[-dim:, :] elif "bias" in key: lowerCAmelCase__ : Optional[Any] = val[:dim] lowerCAmelCase__ : str = val[dim : dim * 2] lowerCAmelCase__ : List[Any] = val[-dim:] else: lowerCAmelCase__ : Dict = val return orig_state_dict def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : List[Any]): '''simple docstring''' lowerCAmelCase__ : List[Any] = ViTMAEConfig() if "large" in checkpoint_url: lowerCAmelCase__ : List[str] = 1024 lowerCAmelCase__ : Dict = 4096 lowerCAmelCase__ : Dict = 24 lowerCAmelCase__ : int = 16 elif "huge" in checkpoint_url: lowerCAmelCase__ : List[Any] = 14 lowerCAmelCase__ : Optional[int] = 1280 lowerCAmelCase__ : Any = 5120 lowerCAmelCase__ : List[Any] = 32 lowerCAmelCase__ : Union[str, Any] = 16 lowerCAmelCase__ : Union[str, Any] = ViTMAEForPreTraining(lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = torch.hub.load_state_dict_from_url(lowerCamelCase_ ,map_location='''cpu''')['''model'''] lowerCAmelCase__ : Tuple = ViTMAEImageProcessor(size=config.image_size) lowerCAmelCase__ : Optional[int] = convert_state_dict(lowerCamelCase_ ,lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() lowerCAmelCase__ : Tuple = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' lowerCAmelCase__ : int = Image.open(requests.get(lowerCamelCase_ ,stream=lowerCamelCase_).raw) lowerCAmelCase__ : int = ViTMAEImageProcessor(size=config.image_size) lowerCAmelCase__ : Any = image_processor(images=lowerCamelCase_ ,return_tensors='''pt''') # forward pass torch.manual_seed(2) lowerCAmelCase__ : str = model(**lowerCamelCase_) lowerCAmelCase__ : Any = outputs.logits if "large" in checkpoint_url: lowerCAmelCase__ : Dict = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]]) elif "huge" in checkpoint_url: lowerCAmelCase__ : Optional[int] = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]]) else: lowerCAmelCase__ : Tuple = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]]) # verify logits assert torch.allclose(logits[0, :3, :3] ,lowerCamelCase_ ,atol=1E-4) print(f"""Saving model to {pytorch_dump_folder_path}""") model.save_pretrained(lowerCamelCase_) print(f"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(lowerCamelCase_) if __name__ == "__main__": __snake_case : int =argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __snake_case : str =parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
129
def lowerCAmelCase__ ( lowerCamelCase_ : str): '''simple docstring''' lowerCAmelCase__ : str = [int(lowerCamelCase_) for i in ip_va_address.split('''.''') if i.isdigit()] return len(lowerCamelCase_) == 4 and all(0 <= int(lowerCamelCase_) <= 254 for octet in octets) if __name__ == "__main__": __snake_case : List[Any] =input().strip() __snake_case : Optional[Any] ='valid' if is_ip_va_address_valid(ip) else 'invalid' print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
129
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __a ( lowerCAmelCase_ : Union[str, Any]=None ,lowerCAmelCase_ : str=None ) -> Any: '''simple docstring''' return field(default_factory=lambda: default ,metadata=lowerCAmelCase_ ) @dataclass class lowercase : """simple docstring""" a__ : str = field( metadata={"help": "The csv file to plot."} , ) a__ : bool = field( default=snake_case__ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) a__ : bool = field( default=snake_case__ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) a__ : bool = field( default=snake_case__ , metadata={"help": "Disable logarithmic scale when plotting"} , ) a__ : bool = field( default=snake_case__ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) a__ : Optional[str] = field( default=snake_case__ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) a__ : Optional[List[str]] = list_field( default=snake_case__ , metadata={"help": "List of model names that are used instead of the ones in the csv file."}) def __a ( lowerCAmelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' try: int(lowerCAmelCase_ ) return True except ValueError: return False def __a ( lowerCAmelCase_ : List[Any] ) -> List[str]: '''simple docstring''' try: float(lowerCAmelCase_ ) return True except ValueError: return False class lowercase : """simple docstring""" def __init__( self : Any , __UpperCAmelCase : List[str] ) -> Any: UpperCAmelCase_= args UpperCAmelCase_= defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: UpperCAmelCase_= csv.DictReader(__UpperCAmelCase ) for row in reader: UpperCAmelCase_= row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None UpperCAmelCase_= int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None UpperCAmelCase_= float(row["""result"""] ) def _SCREAMING_SNAKE_CASE ( self : str ) -> int: UpperCAmelCase_, UpperCAmelCase_= plt.subplots() UpperCAmelCase_= """Time usage""" if self.args.is_time else """Memory usage""" UpperCAmelCase_= title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCAmelCase_= sorted(set(self.result_dict[model_name]["""bsz"""] ) ) UpperCAmelCase_= sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) UpperCAmelCase_= self.result_dict[model_name]["""result"""] ((UpperCAmelCase_), (UpperCAmelCase_))= ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCAmelCase_= ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCAmelCase_= np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__UpperCAmelCase , ) else: UpperCAmelCase_= np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCAmelCase_), (UpperCAmelCase_))= ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) UpperCAmelCase_= np.asarray(__UpperCAmelCase , __UpperCAmelCase )[: len(__UpperCAmelCase )] plt.scatter( __UpperCAmelCase , __UpperCAmelCase , label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(__UpperCAmelCase , __UpperCAmelCase , """--""" ) title_str += F""" {label_model_name} vs.""" UpperCAmelCase_= title_str[:-4] UpperCAmelCase_= """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(__UpperCAmelCase ) plt.xlabel(__UpperCAmelCase ) plt.ylabel(__UpperCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __a ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_= HfArgumentParser(lowerCAmelCase_ ) UpperCAmelCase_= parser.parse_args_into_dataclasses()[0] UpperCAmelCase_= Plot(args=lowerCAmelCase_ ) plot.plot() if __name__ == "__main__": main()
277
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase ( snake_case__): """simple docstring""" def __init__( self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ) -> List[str]: super().__init__() # make sure scheduler can always be converted to DDIM UpperCAmelCase_= DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self : Union[str, Any] , __UpperCAmelCase : int = 1 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : int = 50 , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __UpperCAmelCase ): UpperCAmelCase_= ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCAmelCase_= (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__UpperCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCAmelCase_= randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase_= self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCAmelCase_= self.scheduler.step( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , eta=__UpperCAmelCase , use_clipped_model_output=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample UpperCAmelCase_= (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_= image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_= self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
277
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _a : Tuple= logging.get_logger(__name__) @dataclass class UpperCamelCase ( lowercase ): UpperCAmelCase : List[str] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__(self : Dict , **_A : Dict) -> int: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __snake_case : Optional[Any] = deprecated_arg[3:] __snake_case : List[Any] = not kwargs.pop(_A) logger.warning( f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}") __snake_case : List[Any] = kwargs.pop('tpu_name' , self.tpu_name) __snake_case : Optional[Any] = kwargs.pop('device_idx' , self.device_idx) __snake_case : Any = kwargs.pop('eager_mode' , self.eager_mode) __snake_case : Optional[Any] = kwargs.pop('use_xla' , self.use_xla) super().__init__(**_A) UpperCAmelCase : str = field( default=lowercase , metadata={"""help""": """Name of TPU"""} , ) UpperCAmelCase : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) UpperCAmelCase : bool = field(default=lowercase , metadata={"""help""": """Benchmark models in eager model."""} ) UpperCAmelCase : bool = field( default=lowercase , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def _lowercase (self : Union[str, Any]) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['tf']) __snake_case : Optional[int] = None if self.tpu: try: if self.tpu_name: __snake_case : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name) else: __snake_case : str = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __snake_case : Optional[int] = None return tpu @cached_property def _lowercase (self : Optional[Any]) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['tf']) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu) __snake_case : Tuple = tf.distribute.TPUStrategy(self._setup_tpu) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU') __snake_case : Tuple = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}") else: tf.config.set_visible_devices([] , 'GPU') # disable GPU __snake_case : Optional[int] = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}") return strategy @property def _lowercase (self : Tuple) -> bool: requires_backends(self , ['tf']) return self._setup_tpu is not None @property def _lowercase (self : Optional[Any]) -> "tf.distribute.Strategy": requires_backends(self , ['tf']) return self._setup_strategy @property def _lowercase (self : str) -> Any: requires_backends(self , ['tf']) return tf.config.list_physical_devices('GPU') @property def _lowercase (self : Union[str, Any]) -> int: requires_backends(self , ['tf']) if self.cuda: return len(self.gpu_list) return 0 @property def _lowercase (self : Union[str, Any]) -> bool: return self.n_gpu > 0
172
"""simple docstring""" from __future__ import annotations _a : List[Any]= [] def __UpperCAmelCase ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> bool: '''simple docstring''' for i in range(len(UpperCAmelCase_ ) ): if board[row][i] == 1: return False for i in range(len(UpperCAmelCase_ ) ): if board[i][column] == 1: return False for i, j in zip(range(UpperCAmelCase_ , -1 , -1 ) , range(UpperCAmelCase_ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(UpperCAmelCase_ , -1 , -1 ) , range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): if board[i][j] == 1: return False return True def __UpperCAmelCase ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : int ) -> bool: '''simple docstring''' if row >= len(UpperCAmelCase_ ): solution.append(UpperCAmelCase_ ) printboard(UpperCAmelCase_ ) print() return True for i in range(len(UpperCAmelCase_ ) ): if is_safe(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): __snake_case : Any = 1 solve(UpperCAmelCase_ , row + 1 ) __snake_case : List[str] = 0 return False def __UpperCAmelCase ( UpperCAmelCase_ : list[list[int]] ) -> None: '''simple docstring''' for i in range(len(UpperCAmelCase_ ) ): for j in range(len(UpperCAmelCase_ ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) _a : Optional[int]= 8 _a : List[str]= [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
172
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=a ) class __A( a ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) snake_case_ = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
33
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() A : str = logging.get_logger(__name__) A : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } A : Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> Dict: for attribute in key.split('''.''' ): __a = getattr(a__ , a__ ) if weight_type is not None: __a = getattr(a__ , a__ ).shape else: __a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value else: __a = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCAmelCase ( a__ , a__ ) -> List[str]: __a = [] __a = fairseq_model.state_dict() __a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __a = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == '''group''' , ) __a = True else: for key, mapped_key in MAPPING.items(): __a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __a = True if "*" in mapped_key: __a = name.split(a__ )[0].split('''.''' )[-2] __a = mapped_key.replace('''*''' , a__ ) if "weight_g" in name: __a = '''weight_g''' elif "weight_v" in name: __a = '''weight_v''' elif "bias" in name: __a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __a = '''weight''' else: __a = None set_recursively(a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> int: __a = full_name.split('''conv_layers.''' )[-1] __a = name.split('''.''' ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(a__ ) @torch.no_grad() def __lowerCAmelCase ( a__ , a__ , a__=None , a__=None , a__=True ) -> Tuple: if config_path is not None: __a = UniSpeechSatConfig.from_pretrained(a__ ) else: __a = UniSpeechSatConfig() __a = '''''' if is_finetuned: __a = UniSpeechSatForCTC(a__ ) else: __a = UniSpeechSatForPreTraining(a__ ) __a , __a , __a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __a = model[0].eval() recursively_load_weights(a__ , a__ ) hf_wavavec.save_pretrained(a__ ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) A : Dict = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
33
1
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCAmelCase__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() def _A ( ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''-f''' ) __lowercase = parser.parse_args() return args.f def _A ( A__ , A__="eval" ): """simple docstring""" __lowercase = os.path.join(A__ , F"{split}_results.json" ) if os.path.exists(A__ ): with open(A__ , '''r''' ) as f: return json.load(A__ ) raise ValueError(F"can't find {path}" ) lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowercase__ ,'''argv''' ,lowercase__ ): run_flax_glue.main() __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.7_5 ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase__ ,'''argv''' ,lowercase__ ): run_clm_flax.main() __lowercase = get_results(lowercase__ ) self.assertLess(result['''eval_perplexity'''] ,1_0_0 ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(lowercase__ ,'''argv''' ,lowercase__ ): run_summarization_flax.main() __lowercase = get_results(lowercase__ ,split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] ,1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] ,2 ) self.assertGreaterEqual(result['''test_rougeL'''] ,7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] ,7 ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(lowercase__ ,'''argv''' ,lowercase__ ): run_mlm_flax.main() __lowercase = get_results(lowercase__ ) self.assertLess(result['''eval_perplexity'''] ,4_2 ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase__ ,'''argv''' ,lowercase__ ): run_ta_mlm_flax.main() __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.4_2 ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __lowercase = 7 if get_gpu_count() > 1 else 2 __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(lowercase__ ,'''argv''' ,lowercase__ ): run_flax_ner.main() __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.7_5 ) self.assertGreaterEqual(result['''eval_f1'''] ,0.3 ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(lowercase__ ,'''argv''' ,lowercase__ ): run_qa.main() __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_f1'''] ,3_0 ) self.assertGreaterEqual(result['''eval_exact'''] ,3_0 )
104
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } lowerCAmelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def _A ( A__ , A__ , A__ , A__ , A__ ): """simple docstring""" for attribute in key.split('''.''' ): __lowercase = getattr(A__ , A__ ) if weight_type is not None: __lowercase = getattr(A__ , A__ ).shape else: __lowercase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value else: __lowercase = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == '''group''' , ) __lowercase = True else: for key, mapped_key in MAPPING.items(): __lowercase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowercase = True if "*" in mapped_key: __lowercase = name.split(A__ )[0].split('''.''' )[-2] __lowercase = mapped_key.replace('''*''' , A__ ) if "weight_g" in name: __lowercase = '''weight_g''' elif "weight_v" in name: __lowercase = '''weight_v''' elif "bias" in name: __lowercase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase = '''weight''' else: __lowercase = None set_recursively(A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(F"Unused weights: {unused_weights}" ) def _A ( A__ , A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = full_name.split('''conv_layers.''' )[-1] __lowercase = name.split('''.''' ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(A__ ) @torch.no_grad() def _A ( A__ , A__ , A__=None , A__=None , A__=True ): """simple docstring""" if config_path is not None: __lowercase = UniSpeechSatConfig.from_pretrained(A__ ) else: __lowercase = UniSpeechSatConfig() __lowercase = '''''' if is_finetuned: __lowercase = UniSpeechSatForCTC(A__ ) else: __lowercase = UniSpeechSatForPreTraining(A__ ) __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowercase = model[0].eval() recursively_load_weights(A__ , A__ ) hf_wavavec.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
104
1
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _lowerCAmelCase ( UpperCAmelCase : int ): '''simple docstring''' if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def _lowerCAmelCase ( UpperCAmelCase : str ): '''simple docstring''' for char in word: UpperCamelCase__ : Union[str, Any] =ord(UpperCAmelCase ) if not _is_chinese_char(UpperCAmelCase ): return 0 return 1 def _lowerCAmelCase ( UpperCAmelCase : List[str] ): '''simple docstring''' UpperCamelCase__ : List[str] =set() for token in tokens: UpperCamelCase__ : Union[str, Any] =len(UpperCAmelCase ) > 1 and is_chinese(UpperCAmelCase ) if chinese_word: word_set.add(UpperCAmelCase ) UpperCamelCase__ : List[str] =list(UpperCAmelCase ) return word_list def _lowerCAmelCase ( UpperCAmelCase : List[str] , UpperCAmelCase : set() ): '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCamelCase__ : List[Any] =max([len(UpperCAmelCase ) for w in chinese_word_set] ) UpperCamelCase__ : Any =bert_tokens UpperCamelCase__ , UpperCamelCase__ : Any =0, len(UpperCAmelCase ) while start < end: UpperCamelCase__ : List[str] =True if is_chinese(bert_word[start] ): UpperCamelCase__ : Any =min(end - start , UpperCAmelCase ) for i in range(UpperCAmelCase , 1 , -1 ): UpperCamelCase__ : Optional[int] =''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase__ : List[Any] ='''##''' + bert_word[j] UpperCamelCase__ : List[str] =start + i UpperCamelCase__ : List[str] =False break if single_word: start += 1 return bert_word def _lowerCAmelCase ( UpperCAmelCase : List[str] , UpperCAmelCase : LTP , UpperCAmelCase : BertTokenizer ): '''simple docstring''' UpperCamelCase__ : Tuple =[] for i in range(0 , len(UpperCAmelCase ) , 100 ): UpperCamelCase__ : str =ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase__ : str =[get_chinese_word(UpperCAmelCase ) for r in res] ltp_res.extend(UpperCAmelCase ) assert len(UpperCAmelCase ) == len(UpperCAmelCase ) UpperCamelCase__ : Any =[] for i in range(0 , len(UpperCAmelCase ) , 100 ): UpperCamelCase__ : Union[str, Any] =bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCAmelCase , truncation=UpperCAmelCase , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(UpperCAmelCase ) == len(UpperCAmelCase ) UpperCamelCase__ : int =[] for input_ids, chinese_word in zip(UpperCAmelCase , UpperCAmelCase ): UpperCamelCase__ : List[Any] =[] for id in input_ids: UpperCamelCase__ : Tuple =bert_tokenizer._convert_id_to_token(UpperCAmelCase ) input_tokens.append(UpperCAmelCase ) UpperCamelCase__ : int =add_sub_symbol(UpperCAmelCase , UpperCAmelCase ) UpperCamelCase__ : str =[] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase ): if token[:2] == "##": UpperCamelCase__ : Dict =token[2:] # save chinese tokens' pos if len(UpperCAmelCase ) == 1 and _is_chinese_char(ord(UpperCAmelCase ) ): ref_id.append(UpperCAmelCase ) ref_ids.append(UpperCAmelCase ) assert len(UpperCAmelCase ) == len(UpperCAmelCase ) return ref_ids def _lowerCAmelCase ( UpperCAmelCase : Tuple ): '''simple docstring''' with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: UpperCamelCase__ : Union[str, Any] =f.readlines() UpperCamelCase__ : int =[line.strip() for line in data if len(UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase__ : str =LTP(args.ltp ) # faster in GPU device UpperCamelCase__ : Any =BertTokenizer.from_pretrained(args.bert ) UpperCamelCase__ : int =prepare_ref(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: UpperCamelCase__ : Tuple =[json.dumps(UpperCAmelCase ) + '''\n''' for ref in ref_ids] f.writelines(UpperCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _SCREAMING_SNAKE_CASE : str = parser.parse_args() main(args)
157
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _SCREAMING_SNAKE_CASE : str = False class __a ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class __a ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : Any =VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCamelCase__ : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase__ : Dict =torch.manual_seed(0 ) UpperCamelCase__ : Optional[int] =pipe.dual_guided( prompt='''first prompt''' , image=lowercase_ , text_to_image_strength=0.7_5 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase_ ) UpperCamelCase__ : str =VersatileDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCamelCase__ : int =generator.manual_seed(0 ) UpperCamelCase__ : str =pipe.dual_guided( prompt='''first prompt''' , image=lowercase_ , text_to_image_strength=0.7_5 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : Dict =VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCamelCase__ : str ='''cyberpunk 2077''' UpperCamelCase__ : str =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase__ : int =torch.manual_seed(0 ) UpperCamelCase__ : int =pipe.dual_guided( prompt=lowercase_ , image=lowercase_ , text_to_image_strength=0.7_5 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCamelCase__ : List[str] =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : Dict =np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ : Dict ='''A painting of a squirrel eating a burger ''' UpperCamelCase__ : Optional[int] =torch.manual_seed(0 ) UpperCamelCase__ : str =pipe.text_to_image( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images UpperCamelCase__ : str =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : List[Any] =np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ : Optional[Any] =pipe.image_variation(lowercase_ , generator=lowercase_ , output_type='''numpy''' ).images UpperCamelCase__ : str =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : Tuple =np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
157
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): @slow @require_torch def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __lowerCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __lowerCamelCase = bertabert.config.encoder.vocab_size __lowerCamelCase = tokenizer.sep_token_id __lowerCamelCase = tokenizer.cls_token_id __lowerCamelCase = 128 __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __lowerCamelCase = train_dataset.select(range(32 ) ) __lowerCamelCase = val_dataset.select(range(16 ) ) __lowerCamelCase = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowerCamelCase = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=SCREAMING_SNAKE_CASE_ , max_length=512 ) __lowerCamelCase = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=SCREAMING_SNAKE_CASE_ , max_length=128 ) __lowerCamelCase = inputs.input_ids __lowerCamelCase = inputs.attention_mask __lowerCamelCase = outputs.input_ids __lowerCamelCase = outputs.input_ids.copy() __lowerCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __lowerCamelCase = outputs.attention_mask assert all(len(SCREAMING_SNAKE_CASE_ ) == 512 for x in inputs.input_ids ) assert all(len(SCREAMING_SNAKE_CASE_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase ): __lowerCamelCase = pred.label_ids __lowerCamelCase = pred.predictions # all unnecessary tokens are removed __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] ) / len(SCREAMING_SNAKE_CASE_ ) return {"accuracy": accuracy} # map train dataset __lowerCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __lowerCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = SeqaSeqTrainingArguments( output_dir=SCREAMING_SNAKE_CASE_ , per_device_train_batch_size=SCREAMING_SNAKE_CASE_ , per_device_eval_batch_size=SCREAMING_SNAKE_CASE_ , predict_with_generate=SCREAMING_SNAKE_CASE_ , evaluation_strategy='''steps''' , do_train=SCREAMING_SNAKE_CASE_ , do_eval=SCREAMING_SNAKE_CASE_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowerCamelCase = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , compute_metrics=_compute_metrics , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , ) # start training trainer.train()
330
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self )-> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = DistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def A__ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> List[str]: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase = True __UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) __UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
328
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCAmelCase_ = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex lowerCAmelCase_ = 10 lowerCAmelCase_ = 256 def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> Optional[MinHash]: if len(lowerCAmelCase ) < MIN_NUM_TOKENS: return None _snake_case : Dict = MinHash(num_perm=lowerCAmelCase ) for token in set(lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def lowerCamelCase_ ( lowerCAmelCase: str )-> Set[str]: return {t for t in NON_ALPHA.split(lowerCAmelCase ) if len(t.strip() ) > 0} class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , *, UpperCamelCase : float = 0.85 , ): '''simple docstring''' _snake_case : List[Any] = duplication_jaccard_threshold _snake_case : int = NUM_PERM _snake_case : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _snake_case : str = defaultdict(UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : MinHash ): '''simple docstring''' _snake_case : List[str] = self._index.query(UpperCamelCase ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(UpperCamelCase , UpperCamelCase ) if len(UpperCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(UpperCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = [] for base, duplicates in self._duplicate_clusters.items(): _snake_case : Optional[int] = [base] + list(UpperCamelCase ) # reformat the cluster to be a list of dict _snake_case : Optional[int] = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(UpperCamelCase ) return duplicate_clusters def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : Dict = self.get_duplicate_clusters() with open(UpperCamelCase , 'w' ) as f: json.dump(UpperCamelCase , UpperCamelCase ) def lowerCamelCase_ ( lowerCAmelCase: str )-> Union[str, Any]: _snake_case , _snake_case : Dict = element _snake_case : List[str] = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCamelCase_ ( lowerCAmelCase: Type[Dataset] )-> List[str]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def lowerCamelCase_ ( lowerCAmelCase: Type[Dataset] , lowerCAmelCase: float )-> List[Any]: _snake_case : int = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase ) ) , max_queue_size=1_00 ) ): di.add(lowerCAmelCase , lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str )-> float: _snake_case : Any = get_tokens(lowerCAmelCase ) _snake_case : Dict = get_tokens(lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCAmelCase_ = None def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> List[str]: _snake_case : Dict = [] for elementa in cluster: _snake_case : List[Any] = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: _snake_case : Union[str, Any] = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(lowerCAmelCase , lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: _snake_case : List[str] = 1 extremes.append(lowerCAmelCase ) return extremes def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Union[str, Any] )-> List[Any]: global _shared_dataset _snake_case : List[Any] = dataset _snake_case : List[str] = [] _snake_case : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase , lowerCAmelCase , ) , total=len(lowerCAmelCase ) , ): extremes_list.append(lowerCAmelCase ) return extremes_list def lowerCamelCase_ ( lowerCAmelCase: Type[Dataset] , lowerCAmelCase: float = 0.8_5 )-> Tuple[Type[Dataset], List[List[Dict]]]: _snake_case : Union[str, Any] = make_duplicate_clusters(lowerCAmelCase , lowerCAmelCase ) _snake_case : Union[str, Any] = {x['base_index'] for cluster in duplicate_clusters for x in cluster} _snake_case : Optional[Any] = {} _snake_case : int = find_extremes(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: _snake_case : Union[str, Any] = element _snake_case : Optional[Any] = duplicate_indices - set(extreme_dict.keys() ) _snake_case : Dict = dataset.filter(lambda lowerCAmelCase , lowerCAmelCase : idx not in remove_indices , with_indices=lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _snake_case : Tuple = element['base_index'] in extreme_dict if element["is_extreme"]: _snake_case : List[Any] = extreme_dict[element['base_index']]['copies'] print(F"""Original dataset size: {len(lowerCAmelCase )}""" ) print(F"""Number of duplicate clusters: {len(lowerCAmelCase )}""" ) print(F"""Files in duplicate cluster: {len(lowerCAmelCase )}""" ) print(F"""Unique files in duplicate cluster: {len(lowerCAmelCase )}""" ) print(F"""Filtered dataset size: {len(lowerCAmelCase )}""" ) return ds_filter, duplicate_clusters
260
from __future__ import annotations lowerCAmelCase_ = """#""" class _lowerCAmelCase : '''simple docstring''' def __init__( self : Any ): '''simple docstring''' _snake_case : dict = {} def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' _snake_case : List[Any] = self._trie for char in text: if char not in trie: _snake_case : int = {} _snake_case : int = trie[char] _snake_case : Optional[Any] = True def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' _snake_case : Optional[int] = self._trie for char in prefix: if char in trie: _snake_case : Optional[Any] = trie[char] else: return [] return self._elements(UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : dict ): '''simple docstring''' _snake_case : int = [] for c, v in d.items(): _snake_case : Dict = [' '] if c == END else [(c + s) for s in self._elements(UpperCamelCase )] result.extend(UpperCamelCase ) return tuple(UpperCamelCase ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def lowerCamelCase_ ( lowerCAmelCase: str )-> tuple: _snake_case : List[Any] = trie.find_word(lowerCAmelCase ) return tuple(string + word for word in suffixes ) def lowerCamelCase_ ( )-> None: print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
260
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Optional[Any] , __A : Optional[int] = False ) -> Tuple: """simple docstring""" if radian_mode: return [magnitude * cos(lowerCamelCase__ ), magnitude * sin(lowerCamelCase__ )] return [magnitude * cos(radians(lowerCamelCase__ ) ), magnitude * sin(radians(lowerCamelCase__ ) )] def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Dict , __A : Tuple = 10**-1 ) -> int: """simple docstring""" a_ : NDArray[floataa] = cross(lowerCamelCase__ , lowerCamelCase__ ) a_ : float = sum(lowerCamelCase__ ) return abs(lowerCamelCase__ ) < eps if __name__ == "__main__": # Test to check if it works UpperCAmelCase_ : List[str] = array( [ polar_force(7_1_8.4, 180 - 30), polar_force(8_7_9.5_4, 45), polar_force(100, -90), ] ) UpperCAmelCase_ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg UpperCAmelCase_ : Union[str, Any] = array( [ polar_force(30 * 9.8_1, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) UpperCAmelCase_ : List[str] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg UpperCAmelCase_ : Tuple = array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) UpperCAmelCase_ : Union[str, Any] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
32
'''simple docstring''' from math import pow def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count A_ : Optional[int] = int(pow(lowerCamelCase__ , lowerCamelCase__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n A_, A_ : int = backtrack( lowerCamelCase__ , lowerCamelCase__ , current_number + 1 , lowerCamelCase__ , lowerCamelCase__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. A_, A_ : int = backtrack( lowerCamelCase__ , lowerCamelCase__ , current_number + 1 , lowerCamelCase__ , lowerCamelCase__ ) return current_sum, solutions_count def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(lowerCamelCase__ , lowerCamelCase__ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
206
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> None: lowerCamelCase__ : Optional[Any] = len(_UpperCAmelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_UpperCAmelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _UpperCAmelCase , _UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: lowerCamelCase__ : list[list[str]] = [] depth_first_search([] , [] , [] , _UpperCAmelCase , _UpperCAmelCase ) # Print all the boards for board in boards: for column in board: print(_UpperCAmelCase ) print('' ) print(len(_UpperCAmelCase ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
366
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig _UpperCAmelCase : Tuple = [ """openmmlab/upernet-convnext-tiny""", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring _UpperCAmelCase : List[str] = """UperNetConfig""" class lowerCAmelCase ( nn.Module ): def __init__( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[int, Tuple[int, int]] , UpperCAmelCase : Union[int, Tuple[int, int], str] = 0 , UpperCAmelCase : bool = False , UpperCAmelCase : Union[int, Tuple[int, int]] = 1 , ) -> None: super().__init__() lowerCamelCase__ : Any = nn.Convad( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , kernel_size=UpperCAmelCase , padding=UpperCAmelCase , bias=UpperCAmelCase , dilation=UpperCAmelCase , ) lowerCamelCase__ : str = nn.BatchNormad(UpperCAmelCase ) lowerCamelCase__ : Tuple = nn.ReLU() def A_ ( self : Tuple , UpperCAmelCase : torch.Tensor ) -> torch.Tensor: lowerCamelCase__ : Tuple = self.conv(UpperCAmelCase ) lowerCamelCase__ : int = self.batch_norm(UpperCAmelCase ) lowerCamelCase__ : List[Any] = self.activation(UpperCAmelCase ) return output class lowerCAmelCase ( nn.Module ): def __init__( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ) -> None: super().__init__() lowerCamelCase__ : int = [ nn.AdaptiveAvgPoolad(UpperCAmelCase ), UperNetConvModule(UpperCAmelCase , UpperCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : Union[str, Any] , UpperCAmelCase : torch.Tensor ) -> torch.Tensor: lowerCamelCase__ : Dict = input for layer in self.layers: lowerCamelCase__ : Tuple = layer(UpperCAmelCase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self : Tuple , UpperCAmelCase : Tuple[int, ...] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : bool ) -> None: super().__init__() lowerCamelCase__ : int = pool_scales lowerCamelCase__ : Tuple = align_corners lowerCamelCase__ : Union[str, Any] = in_channels lowerCamelCase__ : List[Any] = channels lowerCamelCase__ : Tuple = [] for i, pool_scale in enumerate(UpperCAmelCase ): lowerCamelCase__ : Dict = UperNetPyramidPoolingBlock(pool_scale=UpperCAmelCase , in_channels=UpperCAmelCase , channels=UpperCAmelCase ) self.blocks.append(UpperCAmelCase ) self.add_module(str(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : Optional[int] , UpperCAmelCase : torch.Tensor ) -> List[torch.Tensor]: lowerCamelCase__ : Tuple = [] for ppm in self.blocks: lowerCamelCase__ : Union[str, Any] = ppm(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = nn.functional.interpolate( UpperCAmelCase , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(UpperCAmelCase ) return ppm_outs class lowerCAmelCase ( nn.Module ): def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : Any ) -> int: super().__init__() lowerCamelCase__ : Tuple = config lowerCamelCase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowerCamelCase__ : List[Any] = in_channels lowerCamelCase__ : Optional[int] = config.hidden_size lowerCamelCase__ : Dict = False lowerCamelCase__ : List[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowerCamelCase__ : Tuple = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowerCamelCase__ : int = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowerCamelCase__ : str = nn.ModuleList() lowerCamelCase__ : str = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowerCamelCase__ : str = UperNetConvModule(UpperCAmelCase , self.channels , kernel_size=1 ) lowerCamelCase__ : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(UpperCAmelCase ) self.fpn_convs.append(UpperCAmelCase ) lowerCamelCase__ : List[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def A_ ( self : Tuple ) -> List[Any]: self.apply(self._init_weights ) def A_ ( self : Tuple , UpperCAmelCase : Dict ) -> str: if isinstance(UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def A_ ( self : Optional[int] , UpperCAmelCase : Optional[int] ) -> Optional[int]: lowerCamelCase__ : str = inputs[-1] lowerCamelCase__ : List[str] = [x] psp_outs.extend(self.psp_modules(UpperCAmelCase ) ) lowerCamelCase__ : Tuple = torch.cat(UpperCAmelCase , dim=1 ) lowerCamelCase__ : Optional[Any] = self.bottleneck(UpperCAmelCase ) return output def A_ ( self : str , UpperCAmelCase : torch.Tensor ) -> torch.Tensor: # build laterals lowerCamelCase__ : Union[str, Any] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(UpperCAmelCase ) ) # build top-down path lowerCamelCase__ : Tuple = len(UpperCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCamelCase__ : Optional[Any] = laterals[i - 1].shape[2:] lowerCamelCase__ : Any = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=UpperCAmelCase , mode='bilinear' , align_corners=self.align_corners ) # build outputs lowerCamelCase__ : Any = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCamelCase__ : Optional[Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) lowerCamelCase__ : Dict = torch.cat(UpperCAmelCase , dim=1 ) lowerCamelCase__ : List[str] = self.fpn_bottleneck(UpperCAmelCase ) lowerCamelCase__ : int = self.classifier(UpperCAmelCase ) return output class lowerCAmelCase ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 3 , UpperCAmelCase : Union[int, Tuple[int, int]] = 1 ) -> None: super().__init__() lowerCamelCase__ : Any = config lowerCamelCase__ : Optional[Any] = config.auxiliary_in_channels lowerCamelCase__ : str = config.auxiliary_channels lowerCamelCase__ : Optional[Any] = config.auxiliary_num_convs lowerCamelCase__ : str = config.auxiliary_concat_input lowerCamelCase__ : List[Any] = in_index lowerCamelCase__ : List[str] = (kernel_size // 2) * dilation lowerCamelCase__ : Optional[int] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=UpperCAmelCase , padding=UpperCAmelCase , dilation=UpperCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=UpperCAmelCase , padding=UpperCAmelCase , dilation=UpperCAmelCase ) ) if self.num_convs == 0: lowerCamelCase__ : Optional[Any] = nn.Identity() else: lowerCamelCase__ : Optional[Any] = nn.Sequential(*UpperCAmelCase ) if self.concat_input: lowerCamelCase__ : Any = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=UpperCAmelCase , padding=kernel_size // 2 ) lowerCamelCase__ : Dict = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def A_ ( self : Tuple ) -> Tuple: self.apply(self._init_weights ) def A_ ( self : Union[str, Any] , UpperCAmelCase : List[Any] ) -> List[str]: if isinstance(UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def A_ ( self : Tuple , UpperCAmelCase : torch.Tensor ) -> torch.Tensor: # just take the relevant feature maps lowerCamelCase__ : str = encoder_hidden_states[self.in_index] lowerCamelCase__ : Union[str, Any] = self.convs(UpperCAmelCase ) if self.concat_input: lowerCamelCase__ : Optional[Any] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowerCamelCase__ : Optional[int] = self.classifier(UpperCAmelCase ) return output class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = UperNetConfig UpperCAmelCase__ = """pixel_values""" UpperCAmelCase__ = True def A_ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Optional[int]: if isinstance(UpperCAmelCase , UpperCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def A_ ( self : str ) -> Tuple: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def A_ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]=False ) -> str: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : Any = value _UpperCAmelCase : List[Any] = R""" Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _UpperCAmelCase : Union[str, Any] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""", __UpperCamelCase, ) class lowerCAmelCase ( __UpperCamelCase ): def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any] ) -> Dict: super().__init__(UpperCAmelCase ) lowerCamelCase__ : List[str] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowerCamelCase__ : List[Any] = UperNetHead(UpperCAmelCase , in_channels=self.backbone.channels ) lowerCamelCase__ : int = UperNetFCNHead(UpperCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def A_ ( self : Union[str, Any] , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]: lowerCamelCase__ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__ : str = output_attentions if output_attentions is not None else self.config.output_attentions lowerCamelCase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( UpperCAmelCase , output_hidden_states=UpperCAmelCase , output_attentions=UpperCAmelCase ) lowerCamelCase__ : List[str] = outputs.feature_maps lowerCamelCase__ : Optional[int] = self.decode_head(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = nn.functional.interpolate(UpperCAmelCase , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=UpperCAmelCase ) lowerCamelCase__ : List[str] = None if self.auxiliary_head is not None: lowerCamelCase__ : List[Any] = self.auxiliary_head(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = nn.functional.interpolate( UpperCAmelCase , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=UpperCAmelCase ) lowerCamelCase__ : List[str] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss lowerCamelCase__ : Optional[Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowerCamelCase__ : str = loss_fct(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = loss_fct(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowerCamelCase__ : List[str] = (logits,) + outputs[1:] else: lowerCamelCase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
45
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """spiece.model"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } _SCREAMING_SNAKE_CASE = { """albert-base-v1""": 5_12, """albert-large-v1""": 5_12, """albert-xlarge-v1""": 5_12, """albert-xxlarge-v1""": 5_12, """albert-base-v2""": 5_12, """albert-large-v2""": 5_12, """albert-xlarge-v2""": 5_12, """albert-xxlarge-v2""": 5_12, } _SCREAMING_SNAKE_CASE = """▁""" class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Union[str, Any] = VOCAB_FILES_NAMES __magic_name__: Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , _A : Optional[Any] , _A : Optional[int]=True , _A : Any=True , _A : Dict=False , _A : Tuple="[CLS]" , _A : Optional[Any]="[SEP]" , _A : Union[str, Any]="<unk>" , _A : Dict="[SEP]" , _A : List[str]="<pad>" , _A : List[Any]="[CLS]" , _A : Tuple="[MASK]" , _A : Optional[Dict[str, Any]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" snake_case_ : Optional[int] = ( AddedToken(_A , lstrip=_A , rstrip=_A , normalized=_A ) if isinstance(_A , _A ) else mask_token ) snake_case_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) snake_case_ : str = do_lower_case snake_case_ : Union[str, Any] = remove_space snake_case_ : List[str] = keep_accents snake_case_ : List[Any] = vocab_file snake_case_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return len(self.sp_model ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: """simple docstring""" snake_case_ : Union[str, Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> int: """simple docstring""" snake_case_ : str = self.__dict__.copy() snake_case_ : List[str] = None return state def __setstate__( self : List[Any] , _A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" snake_case_ : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case_ : Union[str, Any] = {} snake_case_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self : Optional[Any] , _A : Any ) -> Any: """simple docstring""" if self.remove_space: snake_case_ : int = ' '.join(inputs.strip().split() ) else: snake_case_ : Dict = inputs snake_case_ : List[str] = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: snake_case_ : int = unicodedata.normalize('NFKD' , _A ) snake_case_ : List[str] = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: snake_case_ : Union[str, Any] = outputs.lower() return outputs def UpperCAmelCase_ ( self : Union[str, Any] , _A : str ) -> List[str]: """simple docstring""" snake_case_ : Dict = self.preprocess_text(_A ) snake_case_ : int = self.sp_model.encode(_A , out_type=_A ) snake_case_ : Any = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): snake_case_ : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case_ : Union[str, Any] = cur_pieces[1:] else: snake_case_ : Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def UpperCAmelCase_ ( self : Tuple , _A : Tuple ) -> Any: """simple docstring""" return self.sp_model.PieceToId(_A ) def UpperCAmelCase_ ( self : List[Any] , _A : Optional[Any] ) -> int: """simple docstring""" return self.sp_model.IdToPiece(_A ) def UpperCAmelCase_ ( self : Optional[Any] , _A : str ) -> Dict: """simple docstring""" snake_case_ : str = [] snake_case_ : List[str] = '' snake_case_ : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token snake_case_ : Dict = True snake_case_ : Optional[int] = [] else: current_sub_tokens.append(_A ) snake_case_ : Dict = False out_string += self.sp_model.decode(_A ) return out_string.strip() def UpperCAmelCase_ ( self : str , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : str = [self.sep_token_id] snake_case_ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] def UpperCAmelCase_ ( self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : Any = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : List[str] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ : str = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , 'wb' ) as fi: snake_case_ : Dict = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
327
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
327
1
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowercase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : str ) -> List[str]: _snake_case = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) _snake_case = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(A__ ) from datasets import load_dataset _snake_case = load_dataset('''nielsr/rvlcdip-demo''' ) _snake_case = dataset['''train'''][0]['''image'''].convert('''RGB''' ) _snake_case = image_processor(A__ , return_tensors='''pt''' ).to(A__ ) # forward pass with torch.no_grad(): _snake_case = model(**A__ ) _snake_case = outputs.logits _snake_case = torch.Size((1, 16) ) self.assertEqual(logits.shape , A__ ) _snake_case = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=A__ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , A__ , atol=1e-4 ) )
278
import cmath import math def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> complex: """simple docstring""" _snake_case = math.radians(_UpperCamelCase ) _snake_case = math.radians(_UpperCamelCase ) # Convert voltage and current to rectangular form _snake_case = cmath.rect(_UpperCamelCase , _UpperCamelCase ) _snake_case = cmath.rect(_UpperCamelCase , _UpperCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
278
1
"""simple docstring""" from math import pi, sqrt def a__ ( __SCREAMING_SNAKE_CASE ) -> float: if num <= 0: raise ValueError("math domain error" ) if num > 171.5: raise OverflowError("math range error" ) elif num - int(_A ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(_A ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def a__ ( ) -> None: assert gamma(0.5 ) == sqrt(_A ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __A = 1.0 while num: __A = float(input("Gamma of: ")) print(F'''gamma({num}) = {gamma(num)}''') print("\nEnter 0 to exit...")
217
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __lowercase = logging.getLogger(__name__) class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Any = '''sequence-classification''' def __init__( self , __lowerCAmelCase): """simple docstring""" if type(__lowerCAmelCase) == dict: lowerCAmelCase = Namespace(**__lowerCAmelCase) lowerCAmelCase = glue_output_modes[hparams.task] lowerCAmelCase = glue_tasks_num_labels[hparams.task] super().__init__(__lowerCAmelCase , __lowerCAmelCase , self.mode) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return self.model(**__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCAmelCase = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowerCAmelCase = self(**__lowerCAmelCase) lowerCAmelCase = outputs[0] lowerCAmelCase = self.trainer.lr_schedulers[0]["""scheduler"""] lowerCAmelCase = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def a_ ( self): """simple docstring""" lowerCAmelCase = self.hparams lowerCAmelCase = processors[args.task]() lowerCAmelCase = processor.get_labels() for mode in ["train", "dev"]: lowerCAmelCase = self._feature_file(__lowerCAmelCase) if os.path.exists(__lowerCAmelCase) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , __lowerCAmelCase) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir) lowerCAmelCase = ( processor.get_dev_examples(args.data_dir) if mode == """dev""" else processor.get_train_examples(args.data_dir) ) lowerCAmelCase = convert_examples_to_features( __lowerCAmelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , __lowerCAmelCase) torch.save(__lowerCAmelCase , __lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False): """simple docstring""" lowerCAmelCase = """dev""" if mode == """test""" else mode lowerCAmelCase = self._feature_file(__lowerCAmelCase) logger.info("""Loading features from cached file %s""" , __lowerCAmelCase) lowerCAmelCase = torch.load(__lowerCAmelCase) lowerCAmelCase = torch.tensor([f.input_ids for f in features] , dtype=torch.long) lowerCAmelCase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) lowerCAmelCase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) if self.hparams.glue_output_mode == "classification": lowerCAmelCase = torch.tensor([f.label for f in features] , dtype=torch.long) elif self.hparams.glue_output_mode == "regression": lowerCAmelCase = torch.tensor([f.label for f in features] , dtype=torch.float) return DataLoader( TensorDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) , batch_size=__lowerCAmelCase , shuffle=__lowerCAmelCase , ) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCAmelCase = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowerCAmelCase = self(**__lowerCAmelCase) lowerCAmelCase , lowerCAmelCase = outputs[:2] lowerCAmelCase = logits.detach().cpu().numpy() lowerCAmelCase = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = torch.stack([x["""val_loss"""] for x in outputs]).mean().detach().cpu().item() lowerCAmelCase = np.concatenate([x["""pred"""] for x in outputs] , axis=0) if self.hparams.glue_output_mode == "classification": lowerCAmelCase = np.argmax(__lowerCAmelCase , axis=1) elif self.hparams.glue_output_mode == "regression": lowerCAmelCase = np.squeeze(__lowerCAmelCase) lowerCAmelCase = np.concatenate([x["""target"""] for x in outputs] , axis=0) lowerCAmelCase = [[] for _ in range(out_label_ids.shape[0])] lowerCAmelCase = [[] for _ in range(out_label_ids.shape[0])] lowerCAmelCase = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , __lowerCAmelCase , __lowerCAmelCase)} lowerCAmelCase = dict(results.items()) lowerCAmelCase = results return ret, preds_list, out_label_list def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self._eval_end(__lowerCAmelCase) lowerCAmelCase = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self._eval_end(__lowerCAmelCase) lowerCAmelCase = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def a_ ( __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" BaseTransformer.add_model_specific_args(__lowerCAmelCase , __lowerCAmelCase) parser.add_argument( """--max_seq_length""" , default=128 , type=__lowerCAmelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=__lowerCAmelCase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""") return parser def snake_case__ ( ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser() add_generic_args(_A , os.getcwd() ) lowerCAmelCase = GLUETransformer.add_model_specific_args(_A , os.getcwd() ) lowerCAmelCase = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowerCAmelCase = os.path.join( """./results""" , f"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , ) os.makedirs(args.output_dir ) lowerCAmelCase = GLUETransformer(_A ) lowerCAmelCase = generic_train(_A , _A ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowerCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=_A ) ) lowerCAmelCase = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_A ) if __name__ == "__main__": main()
272
0
from __future__ import annotations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[str] | None = None ): __UpperCamelCase =word_bank or [] # create a table __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) + 1 __UpperCamelCase =[] for _ in range(SCREAMING_SNAKE_CASE__ ): table.append([] ) # seed value __UpperCamelCase =[[]] # because empty string has empty combination # iterate through the indices for i in range(SCREAMING_SNAKE_CASE__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(SCREAMING_SNAKE_CASE__ )] == word: __UpperCamelCase =[ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(SCREAMING_SNAKE_CASE__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(SCREAMING_SNAKE_CASE__ )]: combination.reverse() return table[len(SCREAMING_SNAKE_CASE__ )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
117
from __future__ import annotations from typing import Any def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[Any] ): create_state_space_tree(SCREAMING_SNAKE_CASE__ , [] , 0 ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[Any] , SCREAMING_SNAKE_CASE__ : list[Any] , SCREAMING_SNAKE_CASE__ : int ): if index == len(SCREAMING_SNAKE_CASE__ ): print(SCREAMING_SNAKE_CASE__ ) return create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _A = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
117
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'biogpt' def __init__( self : str,lowercase_ : Union[str, Any]=4_2_3_8_4,lowercase_ : List[str]=1_0_2_4,lowercase_ : Dict=2_4,lowercase_ : str=1_6,lowercase_ : Dict=4_0_9_6,lowercase_ : Optional[Any]="gelu",lowercase_ : List[str]=0.1,lowercase_ : List[Any]=0.1,lowercase_ : List[str]=1_0_2_4,lowercase_ : Optional[Any]=0.02,lowercase_ : str=1E-12,lowercase_ : List[Any]=True,lowercase_ : Dict=True,lowercase_ : Union[str, Any]=0.0,lowercase_ : Optional[Any]=0.0,lowercase_ : Union[str, Any]=1,lowercase_ : List[Any]=0,lowercase_ : Dict=2,**lowercase_ : List[str],)-> Dict: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = scale_embedding A__ = use_cache A__ = layerdrop A__ = activation_dropout super().__init__(pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,**lowercase_ )
7
"""simple docstring""" import cva import numpy as np class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> Dict: if k in (0.0_4, 0.0_6): _a : List[str] = k _a : List[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Dict ) -> str: return str(self.k ) def _lowercase ( self : int , UpperCAmelCase__ : str ) -> tuple[cva.Mat, list[list[int]]]: _a : Dict = cva.imread(UpperCAmelCase__ , 0 ) _a , _a : List[Any] = img.shape _a : list[list[int]] = [] _a : List[Any] = img.copy() _a : int = cva.cvtColor(UpperCAmelCase__ , cva.COLOR_GRAY2RGB ) _a , _a : Any = np.gradient(UpperCAmelCase__ ) _a : Tuple = dx**2 _a : Union[str, Any] = dy**2 _a : Union[str, Any] = dx * dy _a : int = 0.0_4 _a : List[str] = self.window_size // 2 for y in range(UpperCAmelCase__ , h - offset ): for x in range(UpperCAmelCase__ , w - offset ): _a : str = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _a : List[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _a : Tuple = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _a : Any = (wxx * wyy) - (wxy**2) _a : Tuple = wxx + wyy _a : Any = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": _snake_case = HarrisCorner(0.04, 3) _snake_case , _snake_case = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
294
0
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase__ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowercase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowercase__ = re.compile(R"\[(.+?)\]\((https://huggingface\.co/.+?)\)") lowercase__ = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Any: '''simple docstring''' snake_case : Optional[int] = None # source code of `config_class` snake_case : Dict = inspect.getsource(lowerCAmelCase__ ) snake_case : Optional[Any] = _re_checkpoint.findall(lowerCAmelCase__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): snake_case : Any = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case : Optional[Any] = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: snake_case : Optional[int] = ckpt_name break return checkpoint def _UpperCamelCase ( ) -> Tuple: '''simple docstring''' snake_case : List[Any] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case : int = get_checkpoint_from_config_class(lowerCAmelCase__ ) snake_case : Tuple = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: snake_case : Union[str, Any] = """\n""".join(sorted(lowerCAmelCase__ ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
366
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 class snake_case__ ( nn.Module ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = (16, 32, 96, 256) lowerCamelCase = jnp.floataa def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" snake_case : Optional[int] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) snake_case : Union[str, Any] = [] for i in range(len(self.block_out_channels ) - 1 ): snake_case : Optional[Any] = self.block_out_channels[i] snake_case : Optional[int] = self.block_out_channels[i + 1] snake_case : Optional[int] = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) snake_case : Optional[int] = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) snake_case : Tuple = blocks snake_case : Tuple = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Optional[int] , UpperCamelCase__ : Any ) -> Tuple: """simple docstring""" snake_case : Dict = self.conv_in(UpperCamelCase__ ) snake_case : int = nn.silu(UpperCamelCase__ ) for block in self.blocks: snake_case : str = block(UpperCamelCase__ ) snake_case : Optional[Any] = nn.silu(UpperCamelCase__ ) snake_case : Optional[Any] = self.conv_out(UpperCamelCase__ ) return embedding @flax_register_to_config class snake_case__ ( nn.Module , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = 32 lowerCamelCase = 4 lowerCamelCase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCamelCase = False lowerCamelCase = (320, 640, 1280, 1280) lowerCamelCase = 2 lowerCamelCase = 8 lowerCamelCase = None lowerCamelCase = 1280 lowerCamelCase = 0.0 lowerCamelCase = False lowerCamelCase = jnp.floataa lowerCamelCase = True lowerCamelCase = 0 lowerCamelCase = "rgb" lowerCamelCase = (16, 32, 96, 256) def lowerCAmelCase ( self : Tuple , UpperCamelCase__ : jax.random.KeyArray ) -> FrozenDict: """simple docstring""" snake_case : Union[str, Any] = (1, self.in_channels, self.sample_size, self.sample_size) snake_case : Any = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) snake_case : Dict = jnp.ones((1,) , dtype=jnp.intaa ) snake_case : List[str] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) snake_case : Optional[int] = (1, 3, self.sample_size * 8, self.sample_size * 8) snake_case : int = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) snake_case ,snake_case : Optional[int] = jax.random.split(UpperCamelCase__ ) snake_case : Optional[int] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )["params"] def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" snake_case : Optional[int] = self.block_out_channels snake_case : Optional[int] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. snake_case : Union[str, Any] = self.num_attention_heads or self.attention_head_dim # input snake_case : List[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time snake_case : Any = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) snake_case : List[Any] = FlaxTimestepEmbedding(UpperCamelCase__ , dtype=self.dtype ) snake_case : int = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) snake_case : Any = self.only_cross_attention if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : str = (num_attention_heads,) * len(self.down_block_types ) # down snake_case : str = [] snake_case : List[str] = [] snake_case : Union[str, Any] = block_out_channels[0] snake_case : Tuple = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) for i, down_block_type in enumerate(self.down_block_types ): snake_case : Dict = output_channel snake_case : Union[str, Any] = block_out_channels[i] snake_case : Tuple = i == len(UpperCamelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": snake_case : List[Any] = FlaxCrossAttnDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: snake_case : str = FlaxDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCamelCase__ ) for _ in range(self.layers_per_block ): snake_case : Union[str, Any] = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) if not is_final_block: snake_case : str = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) snake_case : List[Any] = down_blocks snake_case : List[Any] = controlnet_down_blocks # mid snake_case : Optional[int] = block_out_channels[-1] snake_case : Optional[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=UpperCamelCase__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) snake_case : List[Any] = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = False , ) -> Union[FlaxControlNetOutput, Tuple]: """simple docstring""" snake_case : Optional[Any] = self.controlnet_conditioning_channel_order if channel_order == "bgr": snake_case : Dict = jnp.flip(UpperCamelCase__ , axis=1 ) # 1. time if not isinstance(UpperCamelCase__ , jnp.ndarray ): snake_case : str = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCamelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: snake_case : Any = timesteps.astype(dtype=jnp.floataa ) snake_case : Optional[Any] = jnp.expand_dims(UpperCamelCase__ , 0 ) snake_case : int = self.time_proj(UpperCamelCase__ ) snake_case : Tuple = self.time_embedding(UpperCamelCase__ ) # 2. pre-process snake_case : Dict = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) snake_case : Optional[int] = self.conv_in(UpperCamelCase__ ) snake_case : str = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) snake_case : Optional[int] = self.controlnet_cond_embedding(UpperCamelCase__ ) sample += controlnet_cond # 3. down snake_case : Optional[Any] = (sample,) for down_block in self.down_blocks: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case ,snake_case : Dict = down_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) else: snake_case ,snake_case : Dict = down_block(UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid snake_case : List[str] = self.mid_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) # 5. contronet blocks snake_case : Tuple = () for down_block_res_sample, controlnet_block in zip(UpperCamelCase__ , self.controlnet_down_blocks ): snake_case : Any = controlnet_block(UpperCamelCase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) snake_case : Optional[Any] = controlnet_down_block_res_samples snake_case : int = self.controlnet_mid_block(UpperCamelCase__ ) # 6. scaling snake_case : Optional[int] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=UpperCamelCase__ , mid_block_res_sample=UpperCamelCase__ )
83
0
import re def snake_case_ ( snake_case ) -> bool: lowercase__: List[str] = re.compile( R'^(?:0|94|\+94|0{2}94)' R'7(0|1|2|4|5|6|7|8)' R'(-| |)' R'\d{7}$' ) return bool(re.search(snake_case , snake_case ) ) if __name__ == "__main__": __lowerCAmelCase = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
196
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
196
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Dict = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator _UpperCAmelCase : Tuple = len(lowerCAmelCase__ ) if (len(lowerCAmelCase__ ) > 7) else 7 # Print table header for output print( """Symbol""".center(8 ) , """Stack""".center(lowerCAmelCase__ ) , """Postfix""".center(lowerCAmelCase__ ) , sep=""" | """ , ) print("""-""" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowerCAmelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowerCAmelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowerCAmelCase__ ) == 0: stack.append(lowerCAmelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowerCAmelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowerCAmelCase__ ) # push x to stack print( x.center(8 ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format while len(lowerCAmelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( """ """.center(8 ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format return "".join(lowerCAmelCase__ ) # return Postfix as str def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Dict = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowerCAmelCase__ ) ): if infix[i] == "(": _UpperCAmelCase : Union[str, Any] = ''')''' # change "(" to ")" elif infix[i] == ")": _UpperCAmelCase : List[Any] = '''(''' # change ")" to "(" return (infix_2_postfix("""""".join(lowerCAmelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : str = input("""\nEnter an Infix Equation = """) # Input an Infix equation A_ : Any = """""".join(Infix.split()) # Remove spaces from the input print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
352
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a_ = logging.get_logger(__name__) a_ = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """marian""" snake_case_ = ["""past_key_values"""] snake_case_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : int , __lowercase : Optional[Any]=5_81_01 , __lowercase : Tuple=None , __lowercase : Tuple=10_24 , __lowercase : Optional[int]=12 , __lowercase : List[Any]=40_96 , __lowercase : List[Any]=16 , __lowercase : List[str]=12 , __lowercase : int=40_96 , __lowercase : str=16 , __lowercase : List[str]=0.0 , __lowercase : Union[str, Any]=0.0 , __lowercase : Union[str, Any]=True , __lowercase : Optional[Any]=True , __lowercase : int="gelu" , __lowercase : Optional[Any]=10_24 , __lowercase : str=0.1 , __lowercase : int=0.0 , __lowercase : List[str]=0.0 , __lowercase : str=0.02 , __lowercase : Optional[int]=5_81_00 , __lowercase : Tuple=False , __lowercase : Tuple=5_81_00 , __lowercase : int=0 , __lowercase : Any=0 , __lowercase : Optional[int]=True , **__lowercase : Optional[Any] , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Any =vocab_size SCREAMING_SNAKE_CASE__ : List[Any] =decoder_vocab_size or vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] =max_position_embeddings SCREAMING_SNAKE_CASE__ : int =d_model SCREAMING_SNAKE_CASE__ : Optional[Any] =encoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[str] =encoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] =encoder_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] =decoder_ffn_dim SCREAMING_SNAKE_CASE__ : Dict =decoder_layers SCREAMING_SNAKE_CASE__ : int =decoder_attention_heads SCREAMING_SNAKE_CASE__ : str =dropout SCREAMING_SNAKE_CASE__ : Optional[Any] =attention_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] =activation_dropout SCREAMING_SNAKE_CASE__ : Optional[int] =activation_function SCREAMING_SNAKE_CASE__ : Tuple =init_std SCREAMING_SNAKE_CASE__ : Union[str, Any] =encoder_layerdrop SCREAMING_SNAKE_CASE__ : Tuple =decoder_layerdrop SCREAMING_SNAKE_CASE__ : List[Any] =use_cache SCREAMING_SNAKE_CASE__ : List[Any] =encoder_layers SCREAMING_SNAKE_CASE__ : Dict =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__ : Optional[Any] =share_encoder_decoder_embeddings super().__init__( pad_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __magic_name__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[int] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ : Dict ={0: '''batch'''} SCREAMING_SNAKE_CASE__ : Optional[int] ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: SCREAMING_SNAKE_CASE__ : Tuple ={0: '''batch''', 1: '''decoder_sequence'''} SCREAMING_SNAKE_CASE__ : Union[str, Any] ={0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE__ : List[Any] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =self.num_layers for i in range(__lowercase ): SCREAMING_SNAKE_CASE__ : int ={0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE__ : int ={0: '''batch''', 2: '''past_sequence + sequence'''} else: SCREAMING_SNAKE_CASE__ : Optional[Any] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __magic_name__ ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[Any] =super().outputs else: SCREAMING_SNAKE_CASE__ : Optional[int] =super(__lowercase , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =self.num_layers for i in range(__lowercase ): SCREAMING_SNAKE_CASE__ : str ={0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE__ : List[str] ={0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __magic_name__ ( self : Tuple , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Generate decoder inputs SCREAMING_SNAKE_CASE__ : List[str] =seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE__ : List[Any] =self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : List[str] ={F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE__ : Union[str, Any] =dict(**__lowercase , **__lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =common_inputs['''input_ids'''].shape SCREAMING_SNAKE_CASE__ : Dict =common_inputs['''decoder_input_ids'''].shape[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =self.num_attention_heads SCREAMING_SNAKE_CASE__ : str =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : Optional[int] =decoder_seq_length + 3 SCREAMING_SNAKE_CASE__ : List[str] =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : Dict =torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__lowercase , __lowercase )] , dim=1 ) SCREAMING_SNAKE_CASE__ : Tuple =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =self.num_layers SCREAMING_SNAKE_CASE__ : int =min(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Dict =max(__lowercase , __lowercase ) - min_num_layers SCREAMING_SNAKE_CASE__ : Dict ='''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE__ : List[str] =encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__lowercase , __lowercase ): common_inputs["past_key_values"].append((torch.zeros(__lowercase ), torch.zeros(__lowercase )) ) return common_inputs def __magic_name__ ( self : Tuple , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE__ : Dict =self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE__ : str =seqlen + 2 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =self.num_layers SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =self.num_attention_heads SCREAMING_SNAKE_CASE__ : int =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : Optional[int] =common_inputs['''attention_mask'''].dtype SCREAMING_SNAKE_CASE__ : Tuple =torch.cat( [common_inputs['''attention_mask'''], torch.ones(__lowercase , __lowercase , dtype=__lowercase )] , dim=1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =[ (torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(__lowercase ) ] return common_inputs def __magic_name__ ( self : Optional[int] , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : Optional[Any] =compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.num_special_tokens_to_add(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowercase ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ : Any =[''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE__ : Any =dict(tokenizer(__lowercase , return_tensors=__lowercase ) ) return common_inputs def __magic_name__ ( self : List[Any] , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Tuple =self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) else: SCREAMING_SNAKE_CASE__ : int =self._generate_dummy_inputs_for_causal_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) return common_inputs def __magic_name__ ( self : Optional[Any] , __lowercase : int , __lowercase : Dict , __lowercase : int , __lowercase : Tuple ) -> Tuple: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Any =super()._flatten_past_key_values_(__lowercase , __lowercase , __lowercase , __lowercase ) else: SCREAMING_SNAKE_CASE__ : Dict =super(__lowercase , self )._flatten_past_key_values_( __lowercase , __lowercase , __lowercase , __lowercase ) @property def __magic_name__ ( self : Optional[int] ) -> float: return 1e-4
152
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = CanineTokenizer snake_case_ = False def __magic_name__ ( self : Any ) -> List[Any]: super().setUp() SCREAMING_SNAKE_CASE__ : int =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __magic_name__ ( self : Optional[int] ) -> List[str]: return CanineTokenizer.from_pretrained('''google/canine-s''' ) def __magic_name__ ( self : Optional[int] , **__lowercase : int ) -> CanineTokenizer: SCREAMING_SNAKE_CASE__ : int =self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =10_24 return tokenizer @require_torch def __magic_name__ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[int] =self.canine_tokenizer SCREAMING_SNAKE_CASE__ : Union[str, Any] =['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off SCREAMING_SNAKE_CASE__ : List[Any] =[5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on SCREAMING_SNAKE_CASE__ : Union[str, Any] =tokenizer(__lowercase , padding=__lowercase , return_tensors='''pt''' ) self.assertIsInstance(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowercase , __lowercase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def __magic_name__ ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ : Dict =self.canine_tokenizer SCREAMING_SNAKE_CASE__ : str =['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer(__lowercase , padding=__lowercase , return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' , __lowercase ) self.assertIn('''attention_mask''' , __lowercase ) self.assertIn('''token_type_ids''' , __lowercase ) @require_torch def __magic_name__ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ : List[str] =self.canine_tokenizer SCREAMING_SNAKE_CASE__ : Dict =[ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] SCREAMING_SNAKE_CASE__ : int =tokenizer( text_target=__lowercase , max_length=32 , padding='''max_length''' , truncation=__lowercase , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def __magic_name__ ( self : List[str] ) -> Any: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE__ : str =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE__ : int =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE__ : List[str] =tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Dict =''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.__class__.from_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) shutil.rmtree(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE__ : Union[str, Any] =tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Union[str, Any] =''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: SCREAMING_SNAKE_CASE__ : str =chr(0xE007 ) additional_special_tokens.append(__lowercase ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.__class__.from_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) self.assertIn(__lowercase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.__class__.from_pretrained(__lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowercase ) def __magic_name__ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Tuple =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =self.get_clean_sequence(__lowercase ) # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE__ : Optional[int] =0xE005 SCREAMING_SNAKE_CASE__ : Any =chr(__lowercase ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertEqual(len(__lowercase ) , 1 ) SCREAMING_SNAKE_CASE__ : str =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertEqual(__lowercase , input_encoded + special_token_id ) SCREAMING_SNAKE_CASE__ : Any =tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Tuple =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ : Tuple =chr(0xE005 ) SCREAMING_SNAKE_CASE__ : List[Any] =chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowercase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.tokenize(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =tokenizer.tokenize(__lowercase ) self.assertEqual(len(__lowercase ) , 1 ) self.assertEqual(len(__lowercase ) , 1 ) self.assertEqual(token_a[0] , __lowercase ) self.assertEqual(token_a[0] , __lowercase ) @require_tokenizers def __magic_name__ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Tuple =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE__ : str =0xE006 SCREAMING_SNAKE_CASE__ : int =chr(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =AddedToken(__lowercase , lstrip=__lowercase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowercase ) tokenizer.from_pretrained(__lowercase ) def __magic_name__ ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ : int =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE__ : List[Any] =json.load(__lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE__ : Dict =json.load(__lowercase ) # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE__ : Optional[Any] =0xE006 SCREAMING_SNAKE_CASE__ : Dict =chr(__lowercase ) SCREAMING_SNAKE_CASE__ : str =[new_token_a] SCREAMING_SNAKE_CASE__ : Optional[Any] =[new_token_a] with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer_class.from_pretrained(__lowercase , extra_ids=0 ) self.assertIn(__lowercase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) SCREAMING_SNAKE_CASE__ : str =0xE007 SCREAMING_SNAKE_CASE__ : Optional[int] =chr(__lowercase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE__ : Tuple =[AddedToken(__lowercase , lstrip=__lowercase )] SCREAMING_SNAKE_CASE__ : Any =tokenizer_class.from_pretrained( __lowercase , additional_special_tokens=__lowercase , extra_ids=0 ) self.assertIn(__lowercase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def __magic_name__ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ : List[str] ='''hello world''' if self.space_between_special_tokens: SCREAMING_SNAKE_CASE__ : str ='''[CLS] hello world [SEP]''' else: SCREAMING_SNAKE_CASE__ : int =input SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : str =tokenizer.decode(__lowercase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowercase , [output, output.lower()] ) def __magic_name__ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ : str =[ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE__ : Tuple ='''a''' SCREAMING_SNAKE_CASE__ : Tuple =ord(__lowercase ) for attr in attributes_list: setattr(__lowercase , attr + '''_id''' , __lowercase ) self.assertEqual(getattr(__lowercase , __lowercase ) , __lowercase ) self.assertEqual(getattr(__lowercase , attr + '''_id''' ) , __lowercase ) setattr(__lowercase , attr + '''_id''' , __lowercase ) self.assertEqual(getattr(__lowercase , __lowercase ) , __lowercase ) self.assertEqual(getattr(__lowercase , attr + '''_id''' ) , __lowercase ) setattr(__lowercase , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens_ids''' ) , [] ) SCREAMING_SNAKE_CASE__ : str =0xE006 SCREAMING_SNAKE_CASE__ : List[str] =chr(__lowercase ) setattr(__lowercase , '''additional_special_tokens_ids''' , [additional_special_token_id] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens''' ) , [additional_special_token] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens_ids''' ) , [additional_special_token_id] ) def __magic_name__ ( self : str ) -> Dict: pass def __magic_name__ ( self : List[Any] ) -> List[Any]: pass def __magic_name__ ( self : Any ) -> int: pass def __magic_name__ ( self : Union[str, Any] ) -> Union[str, Any]: pass def __magic_name__ ( self : List[Any] ) -> Optional[int]: pass def __magic_name__ ( self : Tuple ) -> Optional[Any]: pass def __magic_name__ ( self : Dict ) -> Dict: pass def __magic_name__ ( self : List[str] ) -> Dict: pass
152
1
"""simple docstring""" import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __UpperCAmelCase = logging.getLogger(__name__) __UpperCAmelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __UpperCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _SCREAMING_SNAKE_CASE : UpperCAmelCase_ :Optional[str] = field( default=A__ , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) UpperCAmelCase_ :Optional[str] = field( default=A__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(A__ )} , ) UpperCAmelCase_ :Optional[str] = field( default=A__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) UpperCAmelCase_ :Optional[str] = field( default=A__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase_ :Optional[str] = field( default=A__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase_ :Optional[str] = field( default=A__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCAmelCase_ :bool = field( default=A__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) UpperCAmelCase_ :str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) UpperCAmelCase_ :bool = field( default=A__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def __lowerCAmelCase ( self ) -> Tuple: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class _SCREAMING_SNAKE_CASE : UpperCAmelCase_ :Optional[str] = field( default=A__ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) UpperCAmelCase_ :Optional[str] = field( default=A__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase_ :Optional[str] = field(default=A__ , metadata={"help": "The input training data file (a text file)."} ) UpperCAmelCase_ :Optional[str] = field( default=A__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) UpperCAmelCase_ :Optional[str] = field( default=A__ , metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} , ) UpperCAmelCase_ :Optional[str] = field( default=A__ , metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} , ) UpperCAmelCase_ :bool = field( default=A__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) UpperCAmelCase_ :Optional[int] = field( default=5 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) UpperCAmelCase_ :Optional[int] = field( default=A__ , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." ) } , ) UpperCAmelCase_ :Optional[int] = field( default=A__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) UpperCAmelCase_ :float = field( default=0.1_5 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) UpperCAmelCase_ :bool = field( default=A__ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) def __lowerCAmelCase ( self ) -> Dict: if self.train_file is not None: lowerCAmelCase_ :List[Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowerCAmelCase_ :List[Any] = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _snake_case ( lowercase__ : Tuple , lowercase__ : Any ) -> str: '''simple docstring''' with open(lowercase__ , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase_ :Optional[int] = [json.loads(lowercase__ ) for line in f.read().splitlines() if (len(lowercase__ ) > 0 and not line.isspace())] assert len(lowercase__ ) == len(lowercase__ ) lowerCAmelCase_ :Union[str, Any] = {c: dataset[c] for c in dataset.column_names} lowerCAmelCase_ :Any = refs return Dataset.from_dict(lowercase__ ) def _snake_case ( ) -> Dict: '''simple docstring''' lowerCAmelCase_ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :int = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCAmelCase_ :List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase_ :Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowercase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCAmelCase_ :Tuple = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowerCAmelCase_ :Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""train[:{data_args.validation_split_percentage}%]""" , ) lowerCAmelCase_ :str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""train[{data_args.validation_split_percentage}%:]""" , ) else: lowerCAmelCase_ :Dict = {} if data_args.train_file is not None: lowerCAmelCase_ :str = data_args.train_file if data_args.validation_file is not None: lowerCAmelCase_ :Union[str, Any] = data_args.validation_file lowerCAmelCase_ :Optional[Any] = data_args.train_file.split(""".""" )[-1] if extension == "txt": lowerCAmelCase_ :Any = """text""" lowerCAmelCase_ :str = load_dataset(lowercase__ , data_files=lowercase__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase_ :List[Any] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: lowerCAmelCase_ :Dict = AutoConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: lowerCAmelCase_ :Any = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: lowerCAmelCase_ :Optional[int] = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) lowerCAmelCase_ :List[Any] = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowerCAmelCase_ :int = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowercase__ ) elif model_args.model_name_or_path: lowerCAmelCase_ :List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: lowerCAmelCase_ :List[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowerCAmelCase_ :Dict = AutoModelForMaskedLM.from_config(lowercase__ ) model.resize_token_embeddings(len(lowercase__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowerCAmelCase_ :Optional[int] = datasets["""train"""].column_names else: lowerCAmelCase_ :List[str] = datasets["""validation"""].column_names lowerCAmelCase_ :int = """text""" if """text""" in column_names else column_names[0] lowerCAmelCase_ :Union[str, Any] = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(lowercase__ : Optional[Any] ): # Remove empty lines lowerCAmelCase_ :List[Any] = [line for line in examples["""text"""] if len(lowercase__ ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=lowercase__ , truncation=lowercase__ , max_length=data_args.max_seq_length ) lowerCAmelCase_ :Tuple = datasets.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowerCAmelCase_ :List[str] = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowerCAmelCase_ :str = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowerCAmelCase_ :List[str] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowerCAmelCase_ :Optional[Any] = False # Data collator # This one will take care of randomly masking the tokens. lowerCAmelCase_ :List[str] = DataCollatorForWholeWordMask(tokenizer=lowercase__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCAmelCase_ :str = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCAmelCase_ :str = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowerCAmelCase_ :List[Any] = model_args.model_name_or_path else: lowerCAmelCase_ :Dict = None lowerCAmelCase_ :int = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCAmelCase_ :List[Any] = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(lowercase__ , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation lowerCAmelCase_ :Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCAmelCase_ :Optional[Any] = trainer.evaluate() lowerCAmelCase_ :int = math.exp(eval_output["""eval_loss"""] ) lowerCAmelCase_ :str = perplexity lowerCAmelCase_ :Any = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(lowercase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) return results def _snake_case ( lowercase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Dict = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCAmelCase_ :List[str] = "CIDAS/clipseg-rd64-refined" UpperCAmelCase_ :List[Any] = "image_segmenter" UpperCAmelCase_ :Optional[int] = CLIPSegForImageSegmentation UpperCAmelCase_ :Tuple = ["image", "text"] UpperCAmelCase_ :Dict = ["image"] def __init__( self , *__A , **__A ) -> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__A , **__A ) def __lowerCAmelCase ( self , __A , __A ) -> Any: return self.pre_processor(text=[label] , images=[image] , padding=__A , return_tensors="""pt""" ) def __lowerCAmelCase ( self , __A ) -> Tuple: with torch.no_grad(): lowerCAmelCase_ :Dict = self.model(**__A ).logits return logits def __lowerCAmelCase ( self , __A ) -> Tuple: lowerCAmelCase_ :Optional[int] = outputs.cpu().detach().numpy() lowerCAmelCase_ :List[str] = 0 lowerCAmelCase_ :str = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
1
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : Any , A : Union[str, Any] , A : Union[str, Any]=7 , A : Dict=3 , A : Any=10 , A : Optional[int]=18 , A : List[str]=30 , A : str=4_00 , A : Any=True , A : Union[str, Any]=None , A : Optional[int]=True , A : List[str]=[0.5, 0.5, 0.5] , A : Union[str, Any]=[0.5, 0.5, 0.5] , A : Tuple=None , ) -> Tuple: lowercase_ : int = size if size is not None else {'''shortest_edge''': 18} lowercase_ : str = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase_ : List[Any] = parent lowercase_ : List[Any] = batch_size lowercase_ : Tuple = num_channels lowercase_ : Union[str, Any] = num_frames lowercase_ : Dict = image_size lowercase_ : List[Any] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : Optional[Any] = do_resize lowercase_ : Any = size lowercase_ : Dict = do_normalize lowercase_ : Optional[Any] = image_mean lowercase_ : Optional[Any] = image_std lowercase_ : List[Any] = crop_size def A ( self : List[str] ) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Any = VivitImageProcessor if is_vision_available() else None def A ( self : List[Any] ) -> List[Any]: lowercase_ : Optional[Any] = VivitImageProcessingTester(self ) @property def A ( self : Optional[Any] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Union[str, Any] ) -> Optional[Any]: lowercase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''do_center_crop''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def A ( self : List[Any] ) -> List[str]: lowercase_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) lowercase_ : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def A ( self : int ) -> Optional[Any]: # Initialize image_processing lowercase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos lowercase_ : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input lowercase_ : Optional[Any] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase_ : Dict = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : int ) -> Optional[int]: # Initialize image_processing lowercase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : Optional[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input lowercase_ : Any = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase_ : List[Any] = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Tuple ) -> Dict: # Initialize image_processing lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : Any = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input lowercase_ : Any = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase_ : Any = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
33
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class _UpperCAmelCase ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self : Any , A : int=None , **A : str ) -> Union[str, Any]: super().__init__(features=A ) lowercase_ : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def A ( self : Dict , A : int ) -> List[Any]: import torch if isinstance(A , A ) and column: if all( isinstance(A , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(A ) return column def A ( self : int , A : Any ) -> Optional[Any]: import torch if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase_ : Any = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowercase_ : Any = {'''dtype''': torch.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase_ : Dict = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): lowercase_ : Dict = np.asarray(A ) return torch.tensor(A , **{**default_dtype, **self.torch_tensor_kwargs} ) def A ( self : Union[str, Any] , A : Optional[int] ) -> str: import torch # support for torch, tf, jax etc. if hasattr(A , '''__array__''' ) and not isinstance(A , torch.Tensor ): lowercase_ : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def A ( self : Dict , A : dict ) -> Tuple: return map_nested(self._recursive_tensorize , A , map_list=A ) def A ( self : str , A : pa.Table ) -> Mapping: lowercase_ : Optional[Any] = self.numpy_arrow_extractor().extract_row(A ) lowercase_ : str = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def A ( self : List[Any] , A : pa.Table ) -> "torch.Tensor": lowercase_ : List[str] = self.numpy_arrow_extractor().extract_column(A ) lowercase_ : str = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) lowercase_ : Optional[int] = self.recursive_tensorize(A ) lowercase_ : Any = self._consolidate(A ) return column def A ( self : List[str] , A : pa.Table ) -> Mapping: lowercase_ : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) lowercase_ : int = self.python_features_decoder.decode_batch(A ) lowercase_ : Dict = self.recursive_tensorize(A ) for column_name in batch: lowercase_ : Optional[Any] = self._consolidate(batch[column_name] ) return batch
33
1
'''simple docstring''' import argparse from collections import defaultdict import yaml __UpperCAmelCase :Any = "docs/source/en/_toctree.yml" def _a ( _lowercase : Any ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = defaultdict(_lowercase ) for doc in model_doc: counts[doc["local"]] += 1 __UpperCAmelCase : str = [key for key, value in counts.items() if value > 1] __UpperCAmelCase : Dict = [] for duplicate_key in duplicates: __UpperCAmelCase : Optional[int] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(_lowercase ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(_lowercase , key=lambda _lowercase : s["title"].lower() ) def _a ( _lowercase : Optional[Any]=False ): '''simple docstring''' with open(_lowercase , encoding='''utf-8''' ) as f: __UpperCAmelCase : Dict = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase : Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase : Optional[Any] = content[api_idx]['''sections'''] # Then to the model doc __UpperCAmelCase : Optional[int] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __UpperCAmelCase : Optional[int] = api_doc[model_idx]['''sections'''] __UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(_lowercase ) if '''sections''' in section] __UpperCAmelCase : Any = False for idx, modality_doc in modalities_docs: __UpperCAmelCase : str = modality_doc['''sections'''] __UpperCAmelCase : str = clean_model_doc_toc(_lowercase ) if old_modality_doc != new_modality_doc: __UpperCAmelCase : Optional[int] = True if overwrite: __UpperCAmelCase : Any = new_modality_doc if diff: if overwrite: __UpperCAmelCase : Optional[Any] = model_doc __UpperCAmelCase : List[Any] = api_doc with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(_lowercase , allow_unicode=_lowercase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __UpperCAmelCase :Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __UpperCAmelCase :Optional[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
240
'''simple docstring''' def _a ( _lowercase : List[str] ): '''simple docstring''' __UpperCAmelCase : str = 1 __UpperCAmelCase : List[str] = 2 while i * i <= n: __UpperCAmelCase : Optional[Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _a ( ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : List[Any] = 1 while True: i += 1 t_num += i if count_divisors(_lowercase ) > 500: break return t_num if __name__ == "__main__": print(solution())
240
1
class _snake_case : '''simple docstring''' def __init__( self: int ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : Tuple = n UpperCAmelCase_ : Tuple = [None] * self.n UpperCAmelCase_ : Optional[int] = 0 # index of the first element UpperCAmelCase_ : str = 0 UpperCAmelCase_ : List[str] = 0 def __len__( self: Union[str, Any] ) -> int: return self.size def A__ ( self: Optional[int] ) -> bool: return self.size == 0 def A__ ( self: Union[str, Any] ) -> Tuple: return False if self.is_empty() else self.array[self.front] def A__ ( self: Dict ,lowerCamelCase_: Tuple ) -> str: if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) UpperCAmelCase_ : List[str] = data UpperCAmelCase_ : Tuple = (self.rear + 1) % self.n self.size += 1 return self def A__ ( self: Any ) -> Union[str, Any]: if self.size == 0: raise Exception("""UNDERFLOW""" ) UpperCAmelCase_ : int = self.array[self.front] UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[str] = (self.front + 1) % self.n self.size -= 1 return temp
345
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "layoutlmv3" def __init__( self: str ,lowerCamelCase_: Any=50265 ,lowerCamelCase_: int=768 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: List[Any]=3072 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Any=0.1 ,lowerCamelCase_: Tuple=512 ,lowerCamelCase_: Union[str, Any]=2 ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: List[str]=1e-5 ,lowerCamelCase_: int=1 ,lowerCamelCase_: int=0 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Dict=1024 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=32 ,lowerCamelCase_: Union[str, Any]=128 ,lowerCamelCase_: Tuple=64 ,lowerCamelCase_: Tuple=256 ,lowerCamelCase_: List[str]=True ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Any=True ,lowerCamelCase_: Dict=224 ,lowerCamelCase_: Optional[int]=3 ,lowerCamelCase_: Optional[int]=16 ,lowerCamelCase_: Dict=None ,**lowerCamelCase_: str ,) -> List[Any]: super().__init__( vocab_size=lowerCamelCase_ ,hidden_size=lowerCamelCase_ ,num_hidden_layers=lowerCamelCase_ ,num_attention_heads=lowerCamelCase_ ,intermediate_size=lowerCamelCase_ ,hidden_act=lowerCamelCase_ ,hidden_dropout_prob=lowerCamelCase_ ,attention_probs_dropout_prob=lowerCamelCase_ ,max_position_embeddings=lowerCamelCase_ ,type_vocab_size=lowerCamelCase_ ,initializer_range=lowerCamelCase_ ,layer_norm_eps=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) UpperCAmelCase_ : List[Any] = max_ad_position_embeddings UpperCAmelCase_ : Optional[int] = coordinate_size UpperCAmelCase_ : Optional[int] = shape_size UpperCAmelCase_ : Optional[Any] = has_relative_attention_bias UpperCAmelCase_ : Optional[int] = rel_pos_bins UpperCAmelCase_ : Union[str, Any] = max_rel_pos UpperCAmelCase_ : Dict = has_spatial_attention_bias UpperCAmelCase_ : Optional[int] = rel_ad_pos_bins UpperCAmelCase_ : Tuple = max_rel_ad_pos UpperCAmelCase_ : Union[str, Any] = text_embed UpperCAmelCase_ : Optional[Any] = visual_embed UpperCAmelCase_ : List[str] = input_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Optional[int] = patch_size UpperCAmelCase_ : Tuple = classifier_dropout class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = version.parse("1.12" ) @property def A__ ( self: Dict ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def A__ ( self: Any ) -> float: return 1e-5 @property def A__ ( self: int ) -> int: return 12 def A__ ( self: List[str] ,lowerCamelCase_: "ProcessorMixin" ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional["TensorType"] = None ,lowerCamelCase_: int = 3 ,lowerCamelCase_: int = 40 ,lowerCamelCase_: int = 40 ,) -> Mapping[str, Any]: setattr(processor.image_processor ,"""apply_ocr""" ,lowerCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : List[str] = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : int = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) UpperCAmelCase_ : int = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : Optional[int] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase_ : List[Any] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase_ : Any = self._generate_dummy_images(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = dict( processor( lowerCamelCase_ ,text=lowerCamelCase_ ,boxes=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,) ) return inputs
345
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: str = logging.get_logger(__name__) __lowercase: Optional[Any] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = 'gpt_neox_japanese' def __init__( self : List[str], a_ : Union[str, Any]=3_2000, a_ : str=2560, a_ : Dict=32, a_ : Tuple=32, a_ : Union[str, Any]=4, a_ : Union[str, Any]="gelu", a_ : int=1.00, a_ : Dict=1_0000, a_ : Any=2048, a_ : Optional[int]=0.02, a_ : int=1e-5, a_ : int=True, a_ : Optional[int]=3_1996, a_ : List[str]=3_1999, a_ : List[str]=0.1, a_ : Optional[int]=0.0, **a_ : Tuple, ): """simple docstring""" super().__init__(bos_token_id=a_, eos_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_multiple_size UpperCamelCase__ = hidden_act UpperCamelCase__ = rotary_pct UpperCamelCase__ = rotary_emb_base UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_cache UpperCamelCase__ = attention_dropout UpperCamelCase__ = hidden_dropout
369
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase: Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
lowercase_ : Optional[int] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowercase_ : list[bool | None] = [None] * 10_00_00_00 lowercase_ : Optional[int] = True lowercase_ : str = False def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _UpperCAmelCase = chain(next_number(snake_case_ ) ) _UpperCAmelCase = number_chain while number < 1000_0000: _UpperCAmelCase = number_chain number *= 10 return number_chain def __SCREAMING_SNAKE_CASE ( snake_case_ = 1000_0000 ): '''simple docstring''' for i in range(1 , snake_case_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
133
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: int=False ): """simple docstring""" UpperCAmelCase_: Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCAmelCase_: Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def lowerCAmelCase_ (lowerCAmelCase__: Dict , lowerCAmelCase__: Dict , lowerCAmelCase__: Tuple=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_: Tuple = """""" else: UpperCAmelCase_: Optional[Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_: Optional[int] = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) UpperCAmelCase_: Optional[int] = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_: Optional[Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_: str = in_proj_bias[: config.hidden_size] UpperCAmelCase_: Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_: List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_: List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_: Optional[int] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] ): """simple docstring""" UpperCAmelCase_: Optional[Any] = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: int , lowerCAmelCase__: List[str] ): """simple docstring""" UpperCAmelCase_: List[Any] = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_: Dict = val def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase_: List[str] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Union[str, Any]=True ): """simple docstring""" UpperCAmelCase_: Optional[Any] = ViTConfig() # patch_size if model_name[-1] == "8": UpperCAmelCase_: int = 8 # set labels if required if not base_model: UpperCAmelCase_: Optional[int] = 1_0_0_0 UpperCAmelCase_: str = """huggingface/label-files""" UpperCAmelCase_: int = """imagenet-1k-id2label.json""" UpperCAmelCase_: List[str] = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase_: Union[str, Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase_: Tuple = idalabel UpperCAmelCase_: Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: UpperCAmelCase_: Dict = 3_8_4 UpperCAmelCase_: Dict = 1_5_3_6 UpperCAmelCase_: List[Any] = 1_2 UpperCAmelCase_: Dict = 6 # load original model from torch hub UpperCAmelCase_: Optional[int] = torch.hub.load("""facebookresearch/dino:main""" , lowerCAmelCase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_: Dict = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase__ ) UpperCAmelCase_: Dict = create_rename_keys(lowerCAmelCase__ , base_model=lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # load HuggingFace model if base_model: UpperCAmelCase_: Optional[int] = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ).eval() else: UpperCAmelCase_: Union[str, Any] = ViTForImageClassification(lowerCAmelCase__ ).eval() model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image, prepared by ViTImageProcessor UpperCAmelCase_: str = ViTImageProcessor() UpperCAmelCase_: Optional[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) UpperCAmelCase_: Any = encoding["""pixel_values"""] UpperCAmelCase_: List[Any] = model(lowerCAmelCase__ ) if base_model: UpperCAmelCase_: int = original_model(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: UpperCAmelCase_: str = original_model(lowerCAmelCase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1e-3 ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) a : List[str] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
82
from collections import defaultdict class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: Optional[int] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCAmelCase_: List[Any] = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(SCREAMING_SNAKE_CASE_ ) ) ] UpperCAmelCase_: Union[str, Any] = defaultdict(SCREAMING_SNAKE_CASE_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCAmelCase_: List[Any] = (1 << len(SCREAMING_SNAKE_CASE_ )) - 1 def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCAmelCase_: List[Any] = self.count_ways_until(SCREAMING_SNAKE_CASE_, task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p), task_no + 1 ) # save the value. UpperCAmelCase_: List[Any] = total_ways_util return self.dp[mask][task_no] def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> str: # Store the list of persons for each task for i in range(len(SCREAMING_SNAKE_CASE_ ) ): for j in task_performed[i]: self.task[j].append(SCREAMING_SNAKE_CASE_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0, 1 ) if __name__ == "__main__": a : Optional[Any] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. a : Optional[Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
82
1
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[int] = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Optional[int] = BartphoTokenizer snake_case__ : Union[str, Any] = False snake_case__ : Optional[int] = True def UpperCAmelCase_ ( self : List[str] ) -> int: super().setUp() __SCREAMING_SNAKE_CASE = ["▁This", "▁is", "▁a", "▁t", "est"] __SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) __SCREAMING_SNAKE_CASE = BartphoTokenizer(UpperCAmelCase__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : str , **UpperCAmelCase__ : int ) -> int: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = "This is a là test" __SCREAMING_SNAKE_CASE = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase_ ( self : List[str] ) -> str: __SCREAMING_SNAKE_CASE = BartphoTokenizer(UpperCAmelCase__ , self.monolingual_vocab_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE = "This is a là test" __SCREAMING_SNAKE_CASE = "▁This ▁is ▁a ▁l à ▁t est".split() __SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ )
54
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __SCREAMING_SNAKE_CASE = [[1, 2, 4], [1, 2, 3, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ ) self.assertTrue(isinstance(dc.token_ids , UpperCAmelCase__ ) ) with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase_ ( self : Any ) -> int: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __SCREAMING_SNAKE_CASE = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint(UpperCAmelCase__ ) # fails here def UpperCAmelCase_ ( self : List[Any] ) -> Any: __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(3 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is True and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase_ ( self : str ) -> List[str]: __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
54
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : str = logging.get_logger(__name__) UpperCamelCase_ : Optional[Any] = { '''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''', # See all SEW models at https://huggingface.co/models?filter=sew } class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Dict = """sew""" def __init__( self ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.0_2 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE="group" ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,_SCREAMING_SNAKE_CASE=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,_SCREAMING_SNAKE_CASE=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=0.0_5 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE="mean" ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=2 ,**_SCREAMING_SNAKE_CASE ,) -> str: super().__init__(**_SCREAMING_SNAKE_CASE ,pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ) _snake_case = hidden_size _snake_case = feat_extract_norm _snake_case = feat_extract_activation _snake_case = list(_SCREAMING_SNAKE_CASE ) _snake_case = list(_SCREAMING_SNAKE_CASE ) _snake_case = list(_SCREAMING_SNAKE_CASE ) _snake_case = conv_bias _snake_case = num_conv_pos_embeddings _snake_case = num_conv_pos_embedding_groups _snake_case = len(self.conv_dim ) _snake_case = num_hidden_layers _snake_case = intermediate_size _snake_case = squeeze_factor _snake_case = hidden_act _snake_case = num_attention_heads _snake_case = hidden_dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = feat_proj_dropout _snake_case = final_dropout _snake_case = layerdrop _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _snake_case = apply_spec_augment _snake_case = mask_time_prob _snake_case = mask_time_length _snake_case = mask_time_min_masks _snake_case = mask_feature_prob _snake_case = mask_feature_length _snake_case = mask_feature_min_masks # ctc loss _snake_case = ctc_loss_reduction _snake_case = ctc_zero_infinity # sequence classification _snake_case = use_weighted_layer_sum _snake_case = classifier_proj_size @property def _lowercase ( self ) -> Optional[Any]: return functools.reduce(operator.mul ,self.conv_stride ,1 )
354
'''simple docstring''' # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) UpperCamelCase_ : int = '''pytorch_model.bin''' UpperCamelCase_ : str = '''pytorch_model.bin.index.json''' UpperCamelCase_ : int = '''adapter_config.json''' UpperCamelCase_ : str = '''adapter_model.bin''' UpperCamelCase_ : str = '''adapter_model.safetensors''' UpperCamelCase_ : List[Any] = '''tf_model.h5''' UpperCamelCase_ : Union[str, Any] = '''tf_model.h5.index.json''' UpperCamelCase_ : Tuple = '''model.ckpt''' UpperCamelCase_ : Union[str, Any] = '''flax_model.msgpack''' UpperCamelCase_ : Union[str, Any] = '''flax_model.msgpack.index.json''' UpperCamelCase_ : Dict = '''model.safetensors''' UpperCamelCase_ : List[Any] = '''model.safetensors.index.json''' UpperCamelCase_ : Tuple = '''config.json''' UpperCamelCase_ : List[str] = '''preprocessor_config.json''' UpperCamelCase_ : List[Any] = FEATURE_EXTRACTOR_NAME UpperCamelCase_ : Union[str, Any] = '''generation_config.json''' UpperCamelCase_ : str = '''modelcard.json''' UpperCamelCase_ : List[Any] = '''▁''' UpperCamelCase_ : Tuple = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility UpperCamelCase_ : Any = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. UpperCamelCase_ : Tuple = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] UpperCamelCase_ : str = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def __a ( _UpperCamelCase: Optional[Any] ) -> int: """simple docstring""" if version.parse(_UpperCamelCase ) < version.parse(_UpperCamelCase ): if "dev" in min_version: _snake_case = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: _snake_case = F"""This example requires a minimum version of {min_version},""" error_message += F""" but the version found is {__version__}.\n""" raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
142
0
import math import flax.linen as nn import jax.numpy as jnp def __lowerCamelCase ( lowerCamelCase__ : jnp.ndarray , lowerCamelCase__ : int , lowerCamelCase__ : float = 1 , lowerCamelCase__ : float = 1 , lowerCamelCase__ : float = 1.0E4 , lowerCamelCase__ : bool = False , lowerCamelCase__ : float = 1.0 , ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'Embedding dimension {embedding_dim} should be even' lowerCamelCase = float(embedding_dim // 2 ) lowerCamelCase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowerCamelCase = min_timescale * jnp.exp(jnp.arange(lowerCamelCase__ , dtype=jnp.floataa ) * -log_timescale_increment ) lowerCamelCase = jnp.expand_dims(lowerCamelCase__ , 1 ) * jnp.expand_dims(lowerCamelCase__ , 0 ) # scale embeddings lowerCamelCase = scale * emb if flip_sin_to_cos: lowerCamelCase = jnp.concatenate([jnp.cos(lowerCamelCase__ ), jnp.sin(lowerCamelCase__ )] , axis=1 ) else: lowerCamelCase = jnp.concatenate([jnp.sin(lowerCamelCase__ ), jnp.cos(lowerCamelCase__ )] , axis=1 ) lowerCamelCase = jnp.reshape(lowerCamelCase__ , [jnp.shape(lowerCamelCase__ )[0], embedding_dim] ) return signal class __lowercase ( nn.Module ): """simple docstring""" UpperCamelCase : int = 3_2 UpperCamelCase : jnp.dtype = jnp.floataa @nn.compact def __call__( self , A ) -> int: '''simple docstring''' lowerCamelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(A ) lowerCamelCase = nn.silu(A ) lowerCamelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(A ) return temb class __lowercase ( nn.Module ): """simple docstring""" UpperCamelCase : int = 3_2 UpperCamelCase : bool = False UpperCamelCase : float = 1 @nn.compact def __call__( self , A ) -> int: '''simple docstring''' return get_sinusoidal_embeddings( A , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
252
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase : Any = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
1
from __future__ import annotations lowercase_ = 10 def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = 1 lowercase__ = max(SCREAMING_SNAKE_CASE_ ) while placement <= max_digit: # declare and initialize empty buckets lowercase__ = [[] for _ in range(SCREAMING_SNAKE_CASE_ )] # split list_of_ints between the buckets for i in list_of_ints: lowercase__ = int((i / placement) % RADIX ) buckets[tmp].append(SCREAMING_SNAKE_CASE_ ) # put each buckets' contents into list_of_ints lowercase__ = 0 for b in range(SCREAMING_SNAKE_CASE_ ): for i in buckets[b]: lowercase__ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
224
import argparse import json import subprocess def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = [] lowercase__ = ( f'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) lowercase__ = subprocess.run(SCREAMING_SNAKE_CASE_ , shell=SCREAMING_SNAKE_CASE_ , stdout=subprocess.PIPE ) lowercase__ = output.stdout.decode("utf-8" ) lowercase__ = json.loads(SCREAMING_SNAKE_CASE_ ) lowercase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(SCREAMING_SNAKE_CASE_ ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) > 0: lowercase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(f'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return values.split("," ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowercase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
224
1
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = 0 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''') self.assertIsInstance(__a , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__a) / '''preprocessor_config.json''' _UpperCamelCase = Path(__a) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__a , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__a , '''w''')) _UpperCamelCase = AutoImageProcessor.from_pretrained(__a) self.assertIsInstance(__a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__a) / '''preprocessor_config.json''' _UpperCamelCase = Path(__a) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__a , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__a , '''w''')) _UpperCamelCase = AutoImageProcessor.from_pretrained(__a) self.assertIsInstance(__a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type _UpperCamelCase = Path(__a) / '''preprocessor_config.json''' _UpperCamelCase = Path(__a) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__a , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__a , '''w''')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _UpperCamelCase = AutoImageProcessor.from_pretrained(__a).to_dict() config_dict.pop('''image_processor_type''') _UpperCamelCase = CLIPImageProcessor(**__a) # save in new folder model_config.save_pretrained(__a) config.save_pretrained(__a) _UpperCamelCase = AutoImageProcessor.from_pretrained(__a) # make sure private variable is not incorrectly saved _UpperCamelCase = json.loads(config.to_json_string()) self.assertTrue('''_processor_class''' not in dict_as_saved) self.assertIsInstance(__a , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__a) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__a , '''w''') , ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__a) self.assertIsInstance(__a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( __a , '''clip-base is not a local folder and is not a valid model identifier'''): _UpperCamelCase = AutoImageProcessor.from_pretrained('''clip-base''') def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( __a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): _UpperCamelCase = AutoImageProcessor.from_pretrained(__a , revision='''aaaaaa''') def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( __a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''') def UpperCAmelCase ( self) -> str: '''simple docstring''' # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__a): _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''') # If remote code is disabled, we can't load this config. with self.assertRaises(__a): _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__a) _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__a) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__a) _UpperCamelCase = AutoImageProcessor.from_pretrained(__a , trust_remote_code=__a) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''') def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' try: AutoConfig.register('''custom''' , __a) AutoImageProcessor.register(__a , __a) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a): AutoImageProcessor.register(__a , __a) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__a) / '''preprocessor_config.json''' _UpperCamelCase = Path(__a) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__a , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__a , '''w''')) _UpperCamelCase = CustomImageProcessor.from_pretrained(__a) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__a) _UpperCamelCase = AutoImageProcessor.from_pretrained(__a) self.assertIsInstance(__a , __a) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' class _UpperCAmelCase( lowerCamelCase ): lowercase__ = True try: AutoConfig.register('''custom''' , __a) AutoImageProcessor.register(__a , __a) # If remote code is not set, the default is to use local _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''') self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__a) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__a) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(not hasattr(__a , '''is_local''')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
194
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return 1 / (1 + np.exp(-z )) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" return (-y * np.log(__snake_case ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = np.dot(__snake_case, __snake_case ) return np.sum(y * scores - np.log(1 + np.exp(__snake_case ) ) ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=7_00_00 ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = np.zeros(x.shape[1] ) for iterations in range(__snake_case ): _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = np.dot(x.T, h - y ) / y.size _UpperCamelCase = theta - alpha * gradient # updating the weights _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = cost_function(__snake_case, __snake_case ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _a = datasets.load_iris() _a = iris.data[:, :2] _a = (iris.target != 0) * 1 _a = 0.1 _a = logistic_reg(alpha, x, y, max_iterations=7_0000) print("""theta: """, theta) # printing the theta i.e our weights vector def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return sigmoid_function( np.dot(__snake_case, __snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((_a) , (_a)) = (x[:, 0].min(), x[:, 0].max()) ((_a) , (_a)) = (x[:, 1].min(), x[:, 1].max()) ((_a) , (_a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _a = np.c_[xxa.ravel(), xxa.ravel()] _a = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
194
1
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __lowerCamelCase : Optional[Any] = { """n_samples""": 64, """horizon""": 32, """num_inference_steps""": 20, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = """hopper-medium-v2""" __lowerCamelCase : Union[str, Any] = gym.make(env_name) __lowerCamelCase : Tuple = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) __lowerCamelCase : Union[str, Any] = env.reset() __lowerCamelCase : List[str] = 0 __lowerCamelCase : Dict = 0 __lowerCamelCase : Union[str, Any] = 1000 __lowerCamelCase : int = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __lowerCamelCase : List[Any] = pipeline(obs, planning_horizon=32) # execute action in environment __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = env.step(denorm_actions) __lowerCamelCase : str = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" f""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) __lowerCamelCase : str = next_observation except KeyboardInterrupt: pass print(f"""Total reward: {total_reward}""")
140
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __lowerCamelCase : Any = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __lowerCamelCase : str = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def A_ ( _lowerCAmelCase ) -> Optional[Any]: UpperCamelCase : Tuple = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_lowerCAmelCase )[0] @deprecated(_lowerCAmelCase , "Please use tf.data to implement this functionality." ) def A_ ( _lowerCAmelCase ) -> int: print("Extracting" , f.name ) with gzip.GzipFile(fileobj=_lowerCAmelCase ) as bytestream: UpperCamelCase : Dict = _readaa(_lowerCAmelCase ) if magic != 2051: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) UpperCamelCase : Optional[int] = _readaa(_lowerCAmelCase ) UpperCamelCase : int = _readaa(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = _readaa(_lowerCAmelCase ) UpperCamelCase : List[Any] = bytestream.read(rows * cols * num_images ) UpperCamelCase : List[str] = numpy.frombuffer(_lowerCAmelCase , dtype=numpy.uinta ) UpperCamelCase : Optional[Any] = data.reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) return data @deprecated(_lowerCAmelCase , "Please use tf.one_hot on tensors." ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: UpperCamelCase : List[str] = labels_dense.shape[0] UpperCamelCase : str = numpy.arange(_lowerCAmelCase ) * num_classes UpperCamelCase : Optional[Any] = numpy.zeros((num_labels, num_classes) ) UpperCamelCase : Dict = 1 return labels_one_hot @deprecated(_lowerCAmelCase , "Please use tf.data to implement this functionality." ) def A_ ( _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=10 ) -> str: print("Extracting" , f.name ) with gzip.GzipFile(fileobj=_lowerCAmelCase ) as bytestream: UpperCamelCase : int = _readaa(_lowerCAmelCase ) if magic != 2049: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) UpperCamelCase : List[str] = _readaa(_lowerCAmelCase ) UpperCamelCase : List[Any] = bytestream.read(_lowerCAmelCase ) UpperCamelCase : List[str] = numpy.frombuffer(_lowerCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_lowerCAmelCase , _lowerCAmelCase ) return labels class A__ : @deprecated( A_ , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self , A_ , A_ , A_=False , A_=False , A_=dtypes.floataa , A_=True , A_=None , ): '''simple docstring''' UpperCamelCase , UpperCamelCase : int = random_seed.get_seed(A_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) UpperCamelCase : Optional[Any] = dtypes.as_dtype(A_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: UpperCamelCase : List[str] = 1_0000 UpperCamelCase : int = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"""images.shape: {images.shape} labels.shape: {labels.shape}""" UpperCamelCase : Optional[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 UpperCamelCase : int = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. UpperCamelCase : str = images.astype(numpy.floataa ) UpperCamelCase : str = numpy.multiply(A_ , 1.0 / 2_55.0 ) UpperCamelCase : Optional[int] = images UpperCamelCase : str = labels UpperCamelCase : Optional[Any] = 0 UpperCamelCase : Optional[int] = 0 @property def __UpperCamelCase( self ): '''simple docstring''' return self._images @property def __UpperCamelCase( self ): '''simple docstring''' return self._labels @property def __UpperCamelCase( self ): '''simple docstring''' return self._num_examples @property def __UpperCamelCase( self ): '''simple docstring''' return self._epochs_completed def __UpperCamelCase( self , A_ , A_=False , A_=True ): '''simple docstring''' if fake_data: UpperCamelCase : Optional[int] = [1] * 784 UpperCamelCase : Optional[Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(A_ )], [fake_label for _ in range(A_ )], ) UpperCamelCase : Optional[Any] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: UpperCamelCase : Optional[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(A_ ) UpperCamelCase : int = self.images[perma] UpperCamelCase : Any = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch UpperCamelCase : List[Any] = self._num_examples - start UpperCamelCase : Union[str, Any] = self._images[start : self._num_examples] UpperCamelCase : str = self._labels[start : self._num_examples] # Shuffle the data if shuffle: UpperCamelCase : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(A_ ) UpperCamelCase : Union[str, Any] = self.images[perm] UpperCamelCase : Union[str, Any] = self.labels[perm] # Start next epoch UpperCamelCase : Tuple = 0 UpperCamelCase : Tuple = batch_size - rest_num_examples UpperCamelCase : List[str] = self._index_in_epoch UpperCamelCase : Dict = self._images[start:end] UpperCamelCase : int = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size UpperCamelCase : Union[str, Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_lowerCAmelCase , "Please write your own downloading logic." ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: if not gfile.Exists(_lowerCAmelCase ): gfile.MakeDirs(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if not gfile.Exists(_lowerCAmelCase ): urllib.request.urlretrieve(_lowerCAmelCase , _lowerCAmelCase ) # noqa: S310 with gfile.GFile(_lowerCAmelCase ) as f: UpperCamelCase : Optional[int] = f.size() print("Successfully downloaded" , _lowerCAmelCase , _lowerCAmelCase , "bytes." ) return filepath @deprecated( _lowerCAmelCase , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def A_ ( _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=dtypes.floataa , _lowerCAmelCase=True , _lowerCAmelCase=5000 , _lowerCAmelCase=None , _lowerCAmelCase=DEFAULT_SOURCE_URL , ) -> List[str]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_lowerCAmelCase , one_hot=_lowerCAmelCase , dtype=_lowerCAmelCase , seed=_lowerCAmelCase ) UpperCamelCase : Any = fake() UpperCamelCase : List[str] = fake() UpperCamelCase : Union[str, Any] = fake() return _Datasets(train=_lowerCAmelCase , validation=_lowerCAmelCase , test=_lowerCAmelCase ) if not source_url: # empty string check UpperCamelCase : str = DEFAULT_SOURCE_URL UpperCamelCase : List[str] = "train-images-idx3-ubyte.gz" UpperCamelCase : Optional[int] = "train-labels-idx1-ubyte.gz" UpperCamelCase : List[str] = "t10k-images-idx3-ubyte.gz" UpperCamelCase : Union[str, Any] = "t10k-labels-idx1-ubyte.gz" UpperCamelCase : Optional[int] = _maybe_download( _lowerCAmelCase , _lowerCAmelCase , source_url + train_images_file ) with gfile.Open(_lowerCAmelCase , "rb" ) as f: UpperCamelCase : List[str] = _extract_images(_lowerCAmelCase ) UpperCamelCase : Dict = _maybe_download( _lowerCAmelCase , _lowerCAmelCase , source_url + train_labels_file ) with gfile.Open(_lowerCAmelCase , "rb" ) as f: UpperCamelCase : List[Any] = _extract_labels(_lowerCAmelCase , one_hot=_lowerCAmelCase ) UpperCamelCase : Any = _maybe_download( _lowerCAmelCase , _lowerCAmelCase , source_url + test_images_file ) with gfile.Open(_lowerCAmelCase , "rb" ) as f: UpperCamelCase : Any = _extract_images(_lowerCAmelCase ) UpperCamelCase : List[str] = _maybe_download( _lowerCAmelCase , _lowerCAmelCase , source_url + test_labels_file ) with gfile.Open(_lowerCAmelCase , "rb" ) as f: UpperCamelCase : str = _extract_labels(_lowerCAmelCase , one_hot=_lowerCAmelCase ) if not 0 <= validation_size <= len(_lowerCAmelCase ): UpperCamelCase : Any = ( "Validation size should be between 0 and " F"""{len(_lowerCAmelCase )}. Received: {validation_size}.""" ) raise ValueError(_lowerCAmelCase ) UpperCamelCase : str = train_images[:validation_size] UpperCamelCase : int = train_labels[:validation_size] UpperCamelCase : List[str] = train_images[validation_size:] UpperCamelCase : Union[str, Any] = train_labels[validation_size:] UpperCamelCase : List[str] = {"dtype": dtype, "reshape": reshape, "seed": seed} UpperCamelCase : List[str] = _DataSet(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) UpperCamelCase : List[str] = _DataSet(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) UpperCamelCase : Any = _DataSet(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) return _Datasets(train=_lowerCAmelCase , validation=_lowerCAmelCase , test=_lowerCAmelCase )
140
1
"""simple docstring""" def A_ ( _lowercase = 50 ): '''simple docstring''' snake_case_ :Dict = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
66
from math import factorial def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(__UpperCAmelCase ) // (factorial(__UpperCAmelCase ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', F'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( 'If a class of 40 students must be arranged into groups of', F'''4 for group projects, there are {combinations(40, 4)} ways''', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', F'''are {combinations(10, 3)} ways that first, second and''', 'third place can be awarded.', )
201
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _snake_case( ) -> Dict: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _snake_case( ) -> List[Any]: '''simple docstring''' A__ = 'mock-s3-bucket' A__ = f's3://{mock_bucket}' A__ = extract_path_from_uri(SCREAMING_SNAKE_CASE__ ) assert dataset_path.startswith('s3://' ) is False A__ = './local/path' A__ = extract_path_from_uri(SCREAMING_SNAKE_CASE__ ) assert dataset_path == new_dataset_path def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: '''simple docstring''' A__ = is_remote_filesystem(SCREAMING_SNAKE_CASE__ ) assert is_remote is True A__ = fsspec.filesystem('file' ) A__ = is_remote_filesystem(SCREAMING_SNAKE_CASE__ ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: '''simple docstring''' A__ = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} A__ = input_paths[compression_fs_class.protocol] if input_path is None: A__ = f'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) A__ = fsspec.filesystem(compression_fs_class.protocol , fo=SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = os.path.basename(SCREAMING_SNAKE_CASE__ ) A__ = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f, open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> List[Any]: '''simple docstring''' A__ = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} A__ = compressed_file_paths[protocol] A__ = 'dataset.jsonl' A__ = f'{protocol}://{member_file_path}::{compressed_file_path}' A__ , *A__ = fsspec.get_fs_token_paths(SCREAMING_SNAKE_CASE__ ) assert fs.isfile(SCREAMING_SNAKE_CASE__ ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: '''simple docstring''' A__ = hf_api.dataset_info(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) A__ = HfFileSystem(repo_info=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(SCREAMING_SNAKE_CASE__ ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def _snake_case( ) -> str: '''simple docstring''' A__ = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , clobber=SCREAMING_SNAKE_CASE__ ) with pytest.warns(SCREAMING_SNAKE_CASE__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(SCREAMING_SNAKE_CASE__ ) == 1 assert ( str(warning_info[0].message ) == f'A filesystem protocol was already set for {protocol} and will be overwritten.' )
282
import numpy as np from transformers import Pipeline def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' A__ = np.max(SCREAMING_SNAKE_CASE__ , axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ ) A__ = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ ) class A ( _UpperCAmelCase ): """simple docstring""" def snake_case__ ( self : Dict,**lowercase_ : Tuple )-> Tuple: '''simple docstring''' A__ = {} if "second_text" in kwargs: A__ = kwargs['second_text'] return preprocess_kwargs, {}, {} def snake_case__ ( self : List[Any],lowercase_ : int,lowercase_ : Optional[int]=None )-> List[str]: '''simple docstring''' return self.tokenizer(lowercase_,text_pair=lowercase_,return_tensors=self.framework ) def snake_case__ ( self : str,lowercase_ : Dict )-> List[str]: '''simple docstring''' return self.model(**lowercase_ ) def snake_case__ ( self : Dict,lowercase_ : Optional[int] )-> Dict: '''simple docstring''' A__ = model_outputs.logits[0].numpy() A__ = softmax(lowercase_ ) A__ = np.argmax(lowercase_ ) A__ = self.model.config.idalabel[best_class] A__ = probabilities[best_class].item() A__ = logits.tolist() return {"label": label, "score": score, "logits": logits}
282
1
'''simple docstring''' import json import sys def _UpperCamelCase ( __A , __A ) -> List[Any]: '''simple docstring''' with open(__A , encoding="utf-8" ) as f: UpperCamelCase__ = json.load(__A ) UpperCamelCase__ = ["<details>", "<summary>Show updated benchmarks!</summary>", " "] for benchmark_name in sorted(__A ): UpperCamelCase__ = results[benchmark_name] UpperCamelCase__ = benchmark_name.split("/" )[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''' ) UpperCamelCase__ = "| metric |" UpperCamelCase__ = "|--------|" UpperCamelCase__ = "| new / old (diff) |" for metric_name in sorted(__A ): UpperCamelCase__ = benchmark_res[metric_name] UpperCamelCase__ = metric_vals["new"] UpperCamelCase__ = metric_vals.get("old" , __A ) UpperCamelCase__ = metric_vals.get("diff" , __A ) UpperCamelCase__ = F''' {new_val:f}''' if isinstance(__A , (int, float) ) else "None" if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(__A , (int, float) ) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(__A , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>" ) with open(__A , "w" , encoding="utf-8" ) as f: f.writelines("\n".join(__A ) ) if __name__ == "__main__": a__ : Tuple = sys.argv[1] a__ : Union[str, Any] = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
80
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __lowerCamelCase = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''SpeechEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''FlaxSpeechEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
'''simple docstring''' from __future__ import annotations from typing import Any def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if not postfix_notation: return 0 A_ = {"""+""", """-""", """*""", """/"""} A_ = [] for token in postfix_notation: if token in operations: A_ , A_ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
101
0
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process SCREAMING_SNAKE_CASE_: str =logging.getLogger(__name__) SCREAMING_SNAKE_CASE_: str =list(MODEL_FOR_MASKED_LM_MAPPING.keys()) SCREAMING_SNAKE_CASE_: Tuple =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCamelCase__ )} , ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a__ : bool = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a__ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a__ : bool = field( default=UpperCamelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _lowercase (self : str ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( "--config_overrides can't be used in combination with --config_name or --model_name_or_path" ) @dataclass class __A : a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a__ : Optional[str] = field(default=UpperCamelCase__ , metadata={"""help""": """The input training data file (a text file)."""} ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a__ : bool = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a__ : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a__ : Optional[int] = field( default=UpperCamelCase__ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a__ : Optional[int] = field( default=UpperCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a__ : float = field( default=0.1_5 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a__ : bool = field( default=UpperCamelCase__ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def _lowercase (self : List[str] ): if self.train_file is not None: UpperCAmelCase_ = self.train_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: UpperCAmelCase_ = self.validation_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = [json.loads(snake_case_ ) for line in f.read().splitlines() if (len(snake_case_ ) > 0 and not line.isspace())] assert len(snake_case_ ) == len(snake_case_ ) UpperCAmelCase_ = {c: dataset[c] for c in dataset.column_names} UpperCAmelCase_ = refs return Dataset.from_dict(snake_case_ ) def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' UpperCAmelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. UpperCAmelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , snake_case_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCAmelCase_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): UpperCAmelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""train[:{data_args.validation_split_percentage}%]""" , ) UpperCAmelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""train[{data_args.validation_split_percentage}%:]""" , ) else: UpperCAmelCase_ = {} if data_args.train_file is not None: UpperCAmelCase_ = data_args.train_file if data_args.validation_file is not None: UpperCAmelCase_ = data_args.validation_file UpperCAmelCase_ = data_args.train_file.split("." )[-1] if extension == "txt": UpperCAmelCase_ = "text" UpperCAmelCase_ = load_dataset(snake_case_ , data_files=snake_case_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCAmelCase_ = AutoConfig.from_pretrained(model_args.config_name , **snake_case_ ) elif model_args.model_name_or_path: UpperCAmelCase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: UpperCAmelCase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) UpperCAmelCase_ = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: UpperCAmelCase_ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **snake_case_ ) elif model_args.model_name_or_path: UpperCAmelCase_ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: UpperCAmelCase_ = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) UpperCAmelCase_ = AutoModelForMaskedLM.from_config(snake_case_ ) model.resize_token_embeddings(len(snake_case_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: UpperCAmelCase_ = datasets["train"].column_names else: UpperCAmelCase_ = datasets["validation"].column_names UpperCAmelCase_ = "text" if "text" in column_names else column_names[0] UpperCAmelCase_ = "max_length" if data_args.pad_to_max_length else False def tokenize_function(snake_case_ : int ): # Remove empty lines UpperCAmelCase_ = [line for line in examples["text"] if len(snake_case_ ) > 0 and not line.isspace()] return tokenizer(examples["text"] , padding=snake_case_ , truncation=snake_case_ , max_length=data_args.max_seq_length ) UpperCAmelCase_ = datasets.map( snake_case_ , batched=snake_case_ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: UpperCAmelCase_ = add_chinese_references(tokenized_datasets["train"] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: UpperCAmelCase_ = add_chinese_references( tokenized_datasets["validation"] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer UpperCAmelCase_ = data_args.train_ref_file or data_args.validation_ref_file if has_ref: UpperCAmelCase_ = False # Data collator # This one will take care of randomly masking the tokens. UpperCAmelCase_ = DataCollatorForWholeWordMask(tokenizer=snake_case_ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=tokenized_datasets["train"] if training_args.do_train else None , eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None , tokenizer=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: if last_checkpoint is not None: UpperCAmelCase_ = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): UpperCAmelCase_ = model_args.model_name_or_path else: UpperCAmelCase_ = None UpperCAmelCase_ = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCAmelCase_ = os.path.join(training_args.output_dir , "train_results.txt" ) if trainer.is_world_process_zero(): with open(snake_case_ , "w" ) as writer: logger.info("***** Train results *****" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # Evaluation UpperCAmelCase_ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase_ = trainer.evaluate() UpperCAmelCase_ = math.exp(eval_output["eval_loss"] ) UpperCAmelCase_ = perplexity UpperCAmelCase_ = os.path.join(training_args.output_dir , "eval_results_mlm_wwm.txt" ) if trainer.is_world_process_zero(): with open(snake_case_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in sorted(results.items() ): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) return results def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
1
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = checkpoint UpperCAmelCase_ = {} UpperCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(snake_case_ ) } for i in range(snake_case_ ): UpperCAmelCase_ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) for i in range(snake_case_ ): UpperCAmelCase_ = num_up_blocks - 1 - i UpperCAmelCase_ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) return new_checkpoint def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ = io.BytesIO(r.content ) UpperCAmelCase_ = OmegaConf.load(snake_case_ ) UpperCAmelCase_ = 5_12 UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ = {} with safe_open(snake_case_ , framework="pt" , device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ = f.get_tensor(snake_case_ ) else: UpperCAmelCase_ = torch.load(snake_case_ , map_location=snake_case_ )["state_dict"] # Convert the VAE model. UpperCAmelCase_ = create_vae_diffusers_config(snake_case_ , image_size=snake_case_ ) UpperCAmelCase_ = custom_convert_ldm_vae_checkpoint(snake_case_ , snake_case_ ) UpperCAmelCase_ = AutoencoderKL(**snake_case_ ) vae.load_state_dict(snake_case_ ) vae.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') SCREAMING_SNAKE_CASE_: str =parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
1
1
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowercase__ : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE (datasets.BuilderConfig ): lowerCAmelCase = None lowerCAmelCase = "utf-8" lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = True # deprecated lowerCAmelCase = None # deprecated lowerCAmelCase = 10 << 20 # 10MB lowerCAmelCase = None class SCREAMING_SNAKE_CASE (datasets.ArrowBasedBuilder ): lowerCAmelCase = JsonConfig def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead') __A : Union[str, Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.') if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported') return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}') __A : Optional[int] = dl_manager.download_and_extract(self.config.data_files) if isinstance(_UpperCAmelCase , (str, list, tuple)): __A : Optional[Any] = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Any = [files] __A : Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] __A : Optional[int] = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Optional[int] = [files] __A : Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files})) return splits def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): __A : Any = self.config.features.arrow_schema.field(_UpperCAmelCase).type __A : Tuple = pa_table.append_column(_UpperCAmelCase , pa.array([None] * len(_UpperCAmelCase) , type=_UpperCAmelCase)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __A : str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_UpperCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: __A : str = json.load(_UpperCAmelCase) # We keep only the field we are interested in __A : List[Any] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_UpperCAmelCase , (list, tuple)): __A : Tuple = set().union(*[row.keys() for row in dataset]) __A : str = {col: [row.get(_UpperCAmelCase) for row in dataset] for col in keys} else: __A : List[Any] = dataset __A : Optional[Any] = pa.Table.from_pydict(_UpperCAmelCase) yield file_idx, self._cast_table(_UpperCAmelCase) # If the file has one json object per line else: with open(_UpperCAmelCase , 'rb') as f: __A : Dict = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __A : List[str] = max(self.config.chunksize // 32 , 16 << 10) __A : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: __A : Optional[int] = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_UpperCAmelCase) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __A : Union[str, Any] = batch.decode(self.config.encoding , errors=_UpperCAmelCase).encode('utf-8') try: while True: try: __A : str = paj.read_json( io.BytesIO(_UpperCAmelCase) , read_options=paj.ReadOptions(block_size=_UpperCAmelCase)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_UpperCAmelCase , pa.ArrowInvalid) and "straddling" not in str(_UpperCAmelCase) or block_size > len(_UpperCAmelCase) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'Batch of {len(_UpperCAmelCase)} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.') block_size *= 2 except pa.ArrowInvalid as e: try: with open( _UpperCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: __A : List[str] = json.load(_UpperCAmelCase) except json.JSONDecodeError: logger.error(F'Failed to read file \'{file}\' with error {type(_UpperCAmelCase)}: {e}') raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_UpperCAmelCase , _UpperCAmelCase): # list is the only sequence type supported in JSON try: __A : Tuple = set().union(*[row.keys() for row in dataset]) __A : Any = {col: [row.get(_UpperCAmelCase) for row in dataset] for col in keys} __A : Tuple = pa.Table.from_pydict(_UpperCAmelCase) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'Failed to read file \'{file}\' with error {type(_UpperCAmelCase)}: {e}') raise ValueError(F'Not able to read records in the JSON file at {file}.') from None yield file_idx, self._cast_table(_UpperCAmelCase) break else: logger.error(F'Failed to read file \'{file}\' with error {type(_UpperCAmelCase)}: {e}') raise ValueError( F'Not able to read records in the JSON file at {file}. ' F'You should probably indicate the field of the JSON file containing your records. ' F'This JSON file contain the following fields: {str(list(dataset.keys()))}. ' F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ') from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_UpperCAmelCase) batch_idx += 1
190
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowercase__ : Dict = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowercase__ : Any = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def _lowerCAmelCase ( __snake_case : Any ) -> Optional[Any]: __A : Dict = (images / 2 + 0.5).clamp(0 , 1 ) __A : str = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __A : Dict = numpy_to_pil(__snake_case ) return images def _lowerCAmelCase ( __snake_case : List[Any] ) -> Optional[Any]: if images.ndim == 3: __A : List[Any] = images[None, ...] __A : List[str] = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __A : str = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: __A : str = [Image.fromarray(__snake_case ) for image in images] return pil_images
190
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup lowercase : Any = logging.get_logger(__name__) class A__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self , **lowercase) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['bs4']) super().__init__(**lowercase) def __lowercase ( self , lowercase) -> List[str]: '''simple docstring''' a__ : int = [] a__ : Dict = [] a__ : Optional[Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag a__ : str = parent.find_all(child.name , recursive=lowercase) xpath_tags.append(child.name) xpath_subscripts.append( 0 if 1 == len(lowercase) else next(i for i, s in enumerate(lowercase , 1) if s is child)) a__ : Optional[Any] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def __lowercase ( self , lowercase) -> str: '''simple docstring''' a__ : int = BeautifulSoup(lowercase , 'html.parser') a__ : List[str] = [] a__ : str = [] a__ : List[Any] = [] for element in html_code.descendants: if type(lowercase) == bsa.element.NavigableString: if type(element.parent) != bsa.element.Tag: continue a__ : Union[str, Any] = html.unescape(lowercase).strip() if not text_in_this_tag: continue all_doc_strings.append(lowercase) a__ , a__ : List[str] = self.xpath_soup(lowercase) stringaxtag_seq.append(lowercase) stringaxsubs_seq.append(lowercase) if len(lowercase) != len(lowercase): raise ValueError('Number of doc strings and xtags does not correspond') if len(lowercase) != len(lowercase): raise ValueError('Number of doc strings and xsubs does not correspond') return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def __lowercase ( self , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__ : int = '' for tagname, subs in zip(lowercase , lowercase): xpath += F'/{tagname}' if subs != 0: xpath += F'[{subs}]' return xpath def __call__( self , lowercase) -> BatchFeature: '''simple docstring''' a__ : List[str] = False # Check that strings has a valid type if isinstance(lowercase , lowercase): a__ : Optional[int] = True elif isinstance(lowercase , (list, tuple)): if len(lowercase) == 0 or isinstance(html_strings[0] , lowercase): a__ : Dict = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' F'but is of type {type(lowercase)}.') a__ : Dict = bool(isinstance(lowercase , (list, tuple)) and (isinstance(html_strings[0] , lowercase))) if not is_batched: a__ : Tuple = [html_strings] # Get nodes + xpaths a__ : Optional[int] = [] a__ : int = [] for html_string in html_strings: a__ , a__ , a__ : int = self.get_three_from_single(lowercase) nodes.append(lowercase) a__ : Optional[Any] = [] for node, tag_list, sub_list in zip(lowercase , lowercase , lowercase): a__ : List[Any] = self.construct_xpath(lowercase , lowercase) xpath_strings.append(lowercase) xpaths.append(lowercase) # return as Dict a__ : Dict = {'nodes': nodes, 'xpaths': xpaths} a__ : int = BatchFeature(data=lowercase , tensor_type=lowercase) return encoded_inputs
99
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : List[Any] = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
99
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __UpperCAmelCase : Optional[int] = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") __UpperCAmelCase : List[Any] = parser.parse_args() __UpperCAmelCase : Optional[int] = "cpu" __UpperCAmelCase : Tuple = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" __UpperCAmelCase : List[Any] = "path-to-your-trained-model" __UpperCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __UpperCAmelCase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __UpperCAmelCase : Union[str, Any] = pipe.to(device) # to channels last __UpperCAmelCase : Tuple = pipe.unet.to(memory_format=torch.channels_last) __UpperCAmelCase : Union[str, Any] = pipe.vae.to(memory_format=torch.channels_last) __UpperCAmelCase : int = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __UpperCAmelCase : Optional[Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __UpperCAmelCase : Optional[int] = torch.randn(2, 4, 64, 64) __UpperCAmelCase : Dict = torch.rand(1) * 999 __UpperCAmelCase : Dict = torch.randn(2, 77, 768) __UpperCAmelCase : Union[str, Any] = (sample, timestep, encoder_hidden_status) try: __UpperCAmelCase : Any = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __UpperCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __UpperCAmelCase : Optional[int] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __UpperCAmelCase : Optional[int] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __UpperCAmelCase : Optional[Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __UpperCAmelCase : Tuple = 666 __UpperCAmelCase : List[str] = torch.Generator(device).manual_seed(seed) __UpperCAmelCase : List[str] = {"generator": generator} if args.steps is not None: __UpperCAmelCase : List[Any] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __UpperCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
362
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : Union[str, Any] = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """sew-d""" def __init__( self : Dict , A : Any=32 , A : Dict=768 , A : Optional[Any]=12 , A : Union[str, Any]=12 , A : Union[str, Any]=3_072 , A : Optional[Any]=2 , A : Union[str, Any]=512 , A : List[Any]=256 , A : Dict=True , A : Union[str, Any]=True , A : Optional[int]=("p2c", "c2p") , A : str="layer_norm" , A : Dict="gelu_python" , A : Tuple=0.1 , A : Any=0.1 , A : Tuple=0.1 , A : Optional[int]=0.0 , A : Any=0.1 , A : Any=0.02 , A : Dict=1E-7 , A : str=1E-5 , A : int="group" , A : int="gelu" , A : str=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , A : Union[str, Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A : List[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A : Optional[int]=False , A : int=128 , A : int=16 , A : Optional[Any]=True , A : List[Any]=0.05 , A : Any=10 , A : Dict=2 , A : List[Any]=0.0 , A : Union[str, Any]=10 , A : int=0 , A : List[Any]="mean" , A : Union[str, Any]=False , A : Any=False , A : Optional[int]=256 , A : List[Any]=0 , A : Any=1 , A : List[Any]=2 , **A : List[Any] , ): super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A ) __snake_case: Optional[int] = hidden_size __snake_case: str = feat_extract_norm __snake_case: int = feat_extract_activation __snake_case: str = list(A ) __snake_case: Any = list(A ) __snake_case: str = list(A ) __snake_case: Union[str, Any] = conv_bias __snake_case: int = num_conv_pos_embeddings __snake_case: str = num_conv_pos_embedding_groups __snake_case: List[Any] = len(self.conv_dim ) __snake_case: List[str] = num_hidden_layers __snake_case: Union[str, Any] = intermediate_size __snake_case: Dict = squeeze_factor __snake_case: List[Any] = max_position_embeddings __snake_case: List[Any] = position_buckets __snake_case: List[str] = share_att_key __snake_case: int = relative_attention __snake_case: Union[str, Any] = norm_rel_ebd __snake_case: List[str] = list(A ) __snake_case: Tuple = hidden_act __snake_case: List[Any] = num_attention_heads __snake_case: str = hidden_dropout __snake_case: int = attention_dropout __snake_case: Dict = activation_dropout __snake_case: Any = feat_proj_dropout __snake_case: int = final_dropout __snake_case: List[Any] = layer_norm_eps __snake_case: List[str] = feature_layer_norm_eps __snake_case: List[Any] = initializer_range __snake_case: List[Any] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case: List[Any] = apply_spec_augment __snake_case: List[Any] = mask_time_prob __snake_case: str = mask_time_length __snake_case: List[str] = mask_time_min_masks __snake_case: str = mask_feature_prob __snake_case: Optional[int] = mask_feature_length __snake_case: Dict = mask_feature_min_masks # ctc loss __snake_case: Any = ctc_loss_reduction __snake_case: str = ctc_zero_infinity # sequence classification __snake_case: Optional[Any] = use_weighted_layer_sum __snake_case: List[Any] = classifier_proj_size @property def UpperCAmelCase__ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
293
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart __snake_case = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } __snake_case = { """facebook/bart-base""": 10_24, """facebook/bart-large""": 10_24, """facebook/bart-large-mnli""": 10_24, """facebook/bart-large-cnn""": 10_24, """facebook/bart-large-xsum""": 10_24, """yjernite/bart_eli5""": 10_24, } @lru_cache() def _A ( ): UpperCamelCase :str = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCamelCase :Union[str, Any] = bs[:] UpperCamelCase :int = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 UpperCamelCase :Dict = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def _A ( SCREAMING_SNAKE_CASE__ : List[str] ): UpperCamelCase :Optional[int] = set() UpperCamelCase :Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase :str = char return pairs class UpperCAmelCase_ ( snake_case__ ): """simple docstring""" UpperCamelCase_ : int =VOCAB_FILES_NAMES UpperCamelCase_ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[str] =["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]: UpperCamelCase :Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token UpperCamelCase :Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token UpperCamelCase :Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token UpperCamelCase :str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token UpperCamelCase :List[Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token UpperCamelCase :List[Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase :Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: UpperCamelCase :Any = json.load(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase :List[str] = errors # how to handle errors in decoding UpperCamelCase :List[str] = bytes_to_unicode() UpperCamelCase :Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: UpperCamelCase :Dict = merges_handle.read().split('''\n''' )[1:-1] UpperCamelCase :int = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase :Dict = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCamelCase :Tuple = {} UpperCamelCase :Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase :List[str] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def UpperCAmelCase ( self ) -> str: return len(self.encoder ) def UpperCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: if token in self.cache: return self.cache[token] UpperCamelCase :Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: UpperCamelCase :Tuple = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase :Optional[Any] = bigram UpperCamelCase :int = [] UpperCamelCase :Optional[int] = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: UpperCamelCase :List[Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase :List[Any] = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase :Optional[int] = tuple(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: UpperCamelCase :Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = " ".join(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = word return word def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase :List[str] = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): UpperCamelCase :Dict = "".join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) return bpe_tokens def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Any: return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase :Dict = "".join(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Optional[Any]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase :Tuple = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase :List[str] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) UpperCamelCase :Union[str, Any] = 0 with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) UpperCamelCase :Union[str, Any] = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Dict: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase :List[Any] = [self.cls_token_id] UpperCamelCase :List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> Dict: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Optional[Any]: UpperCamelCase :List[Any] = [self.sep_token_id] UpperCamelCase :str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase :Dict = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): UpperCamelCase :List[Any] = " " + text return (text, kwargs)
259
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = ["input_features", "is_longer"] def __init__( self : str , A : int=64 , A : Dict=48000 , A : str=480 , A : List[Any]=10 , A : Optional[Any]=1024 , A : Tuple=0.0 , A : List[Any]=False , A : float = 0 , A : float = 14000 , A : int = None , A : str = "fusion" , A : str = "repeatpad" , **A : Dict , ): super().__init__( feature_size=A , sampling_rate=A , padding_value=A , return_attention_mask=A , **A , ) _UpperCAmelCase : Optional[Any] = top_db _UpperCAmelCase : Dict = truncation _UpperCAmelCase : List[Any] = padding _UpperCAmelCase : Optional[Any] = fft_window_size _UpperCAmelCase : Dict = (fft_window_size >> 1) + 1 _UpperCAmelCase : Any = hop_length _UpperCAmelCase : Tuple = max_length_s _UpperCAmelCase : str = max_length_s * sampling_rate _UpperCAmelCase : Any = sampling_rate _UpperCAmelCase : Optional[int] = frequency_min _UpperCAmelCase : str = frequency_max _UpperCAmelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A , min_frequency=A , max_frequency=A , sampling_rate=A , norm=A , mel_scale="htk" , ) _UpperCAmelCase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A , min_frequency=A , max_frequency=A , sampling_rate=A , norm="slaney" , mel_scale="slaney" , ) def _A ( self : List[str] ): _UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _A ( self : Optional[Any] , A : np.array , A : Optional[np.array] = None ): _UpperCAmelCase : Dict = spectrogram( A , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=A , log_mel="dB" , ) return log_mel_spectrogram.T def _A ( self : str , A : str , A : List[str] , A : List[Any] ): _UpperCAmelCase : List[str] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _UpperCAmelCase : Optional[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _UpperCAmelCase : Tuple = [0] # randomly choose index for each part _UpperCAmelCase : Dict = np.random.choice(ranges[0] ) _UpperCAmelCase : str = np.random.choice(ranges[1] ) _UpperCAmelCase : Tuple = np.random.choice(ranges[2] ) _UpperCAmelCase : str = mel[idx_front : idx_front + chunk_frames, :] _UpperCAmelCase : str = mel[idx_middle : idx_middle + chunk_frames, :] _UpperCAmelCase : List[Any] = mel[idx_back : idx_back + chunk_frames, :] _UpperCAmelCase : Dict = torch.tensor(mel[None, None, :] ) _UpperCAmelCase : Optional[Any] = torch.nn.functional.interpolate( A , size=[chunk_frames, 64] , mode="bilinear" , align_corners=A ) _UpperCAmelCase : List[str] = mel_shrink[0][0].numpy() _UpperCAmelCase : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _A ( self : List[Any] , A : np.array , A : List[str] , A : Any , A : Optional[int] ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": _UpperCAmelCase : int = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _UpperCAmelCase : str = len(A ) - max_length _UpperCAmelCase : str = np.random.randint(0 , overflow + 1 ) _UpperCAmelCase : int = waveform[idx : idx + max_length] _UpperCAmelCase : Any = self._np_extract_fbank_features(A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _UpperCAmelCase : Tuple = self._np_extract_fbank_features(A , self.mel_filters ) _UpperCAmelCase : List[str] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _UpperCAmelCase : Optional[Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _UpperCAmelCase : Any = np.stack([mel, mel, mel, mel] , axis=0 ) _UpperCAmelCase : int = False else: _UpperCAmelCase : Tuple = self._random_mel_fusion(A , A , A ) _UpperCAmelCase : Any = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: _UpperCAmelCase : Optional[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _UpperCAmelCase : str = int(max_length / len(A ) ) _UpperCAmelCase : Dict = np.stack(np.tile(A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _UpperCAmelCase : Dict = int(max_length / len(A ) ) _UpperCAmelCase : List[str] = np.stack(np.tile(A , A ) ) _UpperCAmelCase : Optional[Any] = np.pad(A , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": _UpperCAmelCase : str = self._np_extract_fbank_features(A , self.mel_filters ) _UpperCAmelCase : Optional[int] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _UpperCAmelCase : List[str] = self._np_extract_fbank_features(A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , A : str = None , A : Optional[str] = None , A : Optional[int] = None , A : Optional[int] = None , A : Optional[Union[str, TensorType]] = None , **A : List[str] , ): _UpperCAmelCase : int = truncation if truncation is not None else self.truncation _UpperCAmelCase : Optional[int] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCAmelCase : Any = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _UpperCAmelCase : Optional[Any] = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : int = [np.asarray(A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): _UpperCAmelCase : List[str] = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : List[str] = [np.asarray(A )] # convert to mel spectrogram, truncate and pad if needed. _UpperCAmelCase : Dict = [ self._get_input_mel(A , max_length if max_length else self.nb_max_samples , A , A ) for waveform in raw_speech ] _UpperCAmelCase : int = [] _UpperCAmelCase : Optional[Any] = [] for mel, longer in padded_inputs: input_mel.append(A ) is_longer.append(A ) if truncation == "fusion" and sum(A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _UpperCAmelCase : Union[str, Any] = np.random.randint(0 , len(A ) ) _UpperCAmelCase : Optional[Any] = True if isinstance(input_mel[0] , A ): _UpperCAmelCase : List[str] = [np.asarray(A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _UpperCAmelCase : Tuple = [[longer] for longer in is_longer] _UpperCAmelCase : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} _UpperCAmelCase : Tuple = BatchFeature(A ) if return_tensors is not None: _UpperCAmelCase : List[Any] = input_features.convert_to_tensors(A ) return input_features
31
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__(self : Union[str, Any] , _A : Any , _A : Tuple=1_3 , _A : Optional[int]=7 , _A : Any=True , _A : str=True , _A : Union[str, Any]=True , _A : Optional[int]=True , _A : str=9_9 , _A : str=2_4 , _A : int=2 , _A : Optional[Any]=6 , _A : int=3_7 , _A : List[Any]="gelu" , _A : str=0.1 , _A : Dict=0.1 , _A : Dict=5_1_2 , _A : Tuple=1_6 , _A : List[str]=2 , _A : Dict=0.02 , _A : List[str]=3 , _A : Optional[Any]=None , _A : Dict=1_0_0_0 , ) -> Any: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = scope snake_case = range_bbox def UpperCAmelCase(self : List[str] ) -> List[str]: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case = bbox[i, j, 3] snake_case = bbox[i, j, 1] snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case = bbox[i, j, 2] snake_case = bbox[i, j, 0] snake_case = t snake_case = None if self.use_input_mask: snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase(self : Tuple ) -> Tuple: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase(self : List[str] , _A : Dict , _A : List[Any] , _A : Optional[Any] , _A : Dict , _A : str , _A : Optional[Any] , _A : Tuple , ) -> Dict: snake_case = LiltModel(config=_A ) model.to(_A ) model.eval() snake_case = model(_A , bbox=_A , attention_mask=_A , token_type_ids=_A ) snake_case = model(_A , bbox=_A , token_type_ids=_A ) snake_case = model(_A , bbox=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase(self : Optional[Any] , _A : Optional[int] , _A : Dict , _A : List[Any] , _A : Tuple , _A : Optional[int] , _A : Tuple , _A : Union[str, Any] , ) -> Optional[int]: snake_case = self.num_labels snake_case = LiltForTokenClassification(config=_A ) model.to(_A ) model.eval() snake_case = model( _A , bbox=_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase(self : str , _A : List[Any] , _A : Union[str, Any] , _A : Any , _A : List[str] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , ) -> Optional[int]: snake_case = LiltForQuestionAnswering(config=_A ) model.to(_A ) model.eval() snake_case = model( _A , bbox=_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase(self : str ) -> str: snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class lowerCamelCase ( A_ , A_ , A_ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase__ : List[Any] = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[int] = False def UpperCAmelCase(self : Dict , _A : Optional[Any] , _A : Dict , _A : Union[str, Any] , _A : int , _A : Union[str, Any] ) -> int: return True def UpperCAmelCase(self : str ) -> Tuple: snake_case = LiltModelTester(self ) snake_case = ConfigTester(self , config_class=_A , hidden_size=3_7 ) def UpperCAmelCase(self : Optional[int] ) -> List[str]: self.config_tester.run_common_tests() def UpperCAmelCase(self : Tuple ) -> Dict: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase(self : int ) -> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case = type self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase(self : Optional[Any] ) -> List[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def UpperCAmelCase(self : Optional[Any] ) -> Optional[int]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @slow def UpperCAmelCase(self : Optional[Any] ) -> Optional[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = LiltModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @slow class lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase(self : Tuple ) -> Optional[int]: snake_case = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(_A ) snake_case = torch.tensor([[1, 2]] , device=_A ) snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_A ) # forward pass with torch.no_grad(): snake_case = model(input_ids=_A , bbox=_A ) snake_case = torch.Size([1, 2, 7_6_8] ) snake_case = torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=_A , ) self.assertTrue(outputs.last_hidden_state.shape , _A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _A , atol=1E-3 ) )
366
class lowerCamelCase : def __init__(self : List[Any] , _A : str ) -> Any: # we need a list not a string, so do something to change the type snake_case = arr.split("," ) def UpperCAmelCase(self : str ) -> str: snake_case = [int(self.array[0] )] * len(self.array ) snake_case = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): snake_case = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) snake_case = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _A = input("please input some numbers:") _A = SubArray(whole_array) _A = array.solve_sub_array() print(("the results is:", re))
137
0
from __future__ import annotations from collections import Counter from random import random class __lowerCAmelCase : def __init__( self ) -> Optional[int]: '''simple docstring''' _lowercase ={} def A__ ( self , lowerCAmelCase ) -> Tuple: '''simple docstring''' _lowercase ={} def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> List[str]: '''simple docstring''' if nodea not in self.connections: self.add_node(snake_case_ ) if nodea not in self.connections: self.add_node(snake_case_ ) _lowercase =probability def A__ ( self ) -> str: '''simple docstring''' return list(self.connections ) def A__ ( self , lowerCAmelCase ) -> Any: '''simple docstring''' _lowercase =0 _lowercase =random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def a ( A__ : int , A__ : Dict , A__ : int ) -> dict[str, int]: """simple docstring""" _lowercase =MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase =Counter(graph.get_nodes() ) _lowercase =start for _ in range(_lowerCAmelCase ): _lowercase =graph.transition(_lowerCAmelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
205
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = GPTSanJapaneseTokenizer lowercase = False lowercase = {"do_clean_text": False, "add_prefix_space": False} def lowerCamelCase ( self : str ): super().setUp() # fmt: off snake_case__ : Optional[Any] = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on snake_case__ : int = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 snake_case__ : List[Any] = {"""unk_token""": """<unk>"""} snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(snake_case_ ) ) def lowerCamelCase ( self : Any , **snake_case_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : str ): snake_case__ : Union[str, Any] = """こんにちは、世界。 \nこんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def lowerCamelCase ( self : Any , snake_case_ : Dict ): snake_case__ , snake_case__ : int = self.get_input_output_texts(snake_case_ ) snake_case__ : int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : List[str] = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return text, ids def lowerCamelCase ( self : Optional[Any] ): pass # TODO add if relevant def lowerCamelCase ( self : Union[str, Any] ): pass # TODO add if relevant def lowerCamelCase ( self : List[str] ): pass # TODO add if relevant def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = self.get_tokenizer() # Testing tokenization snake_case__ : int = """こんにちは、世界。 こんばんは、㔺界。""" snake_case__ : Optional[int] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] snake_case__ : Dict = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens snake_case__ : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] snake_case__ : List[Any] = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens snake_case__ : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case__ : Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] snake_case__ : Any = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = self.get_tokenizer() # Testing tokenization snake_case__ : Union[str, Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" snake_case__ : Optional[int] = """こんにちは、、、、世界。こんばんは、、、、世界。""" snake_case__ : Any = tokenizer.encode(snake_case_ ) snake_case__ : int = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Tuple = """こんにちは、世界。""" snake_case__ : Optional[Any] = """こんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。こんばんは、世界。😀""" snake_case__ : Dict = tokenizer.encode(prefix_text + input_text ) snake_case__ : Dict = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) snake_case__ : int = tokenizer.encode(snake_case_ , prefix_text=snake_case_ ) snake_case__ : Optional[Any] = tokenizer.decode(snake_case_ ) snake_case__ : Union[str, Any] = tokenizer.decode(snake_case_ ) snake_case__ : str = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Dict = """こんにちは、世界。""" snake_case__ : Optional[int] = """こんばんは、㔺界。😀""" snake_case__ : Any = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : Optional[int] = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : List[str] = [1] + [0] * (len_prefix + len_text + 1) snake_case__ : Optional[int] = [1] * (len_prefix + len_text + 1) + [0] snake_case__ : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) snake_case__ : Any = tokenizer(prefix_text + input_text ).token_type_ids snake_case__ : str = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids snake_case__ : Optional[Any] = tokenizer(snake_case_ , prefix_text=snake_case_ ).token_type_ids self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : Union[str, Any] = tokenizer.encode("""あンいワ""" ) snake_case__ : int = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) snake_case__ : Dict = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase ( self : Any ): snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : int = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] snake_case__ : Optional[Any] = tokenizer(snake_case_ , padding=snake_case_ ) snake_case__ : Tuple = tokenizer.batch_encode_plus(snake_case_ , padding=snake_case_ ) # fmt: off snake_case__ : Optional[Any] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] snake_case__ : Optional[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] snake_case__ : Optional[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case_ ) self.assertListEqual(x_token.token_type_ids , snake_case_ ) self.assertListEqual(x_token.attention_mask , snake_case_ ) self.assertListEqual(x_token_a.input_ids , snake_case_ ) self.assertListEqual(x_token_a.token_type_ids , snake_case_ ) self.assertListEqual(x_token_a.attention_mask , snake_case_ ) def lowerCamelCase ( self : Any ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase ( self : List[str] ): # tokenizer has no padding token pass
35
0
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE : Tuple = logging.getLogger() def UpperCamelCase_( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser() parser.add_argument("-f" ) snake_case_ = parser.parse_args() return args.f class _snake_case ( lowercase_ ): def lowerCAmelCase__ ( self ) -> None: '''simple docstring''' snake_case_ = logging.StreamHandler(sys.stdout ) logger.addHandler(a__ ) def lowerCAmelCase__ ( self , a__ ) -> List[Any]: '''simple docstring''' snake_case_ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(a__ , "argv" , a__ ): snake_case_ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(a__ , 0.6_6_6 ) @slow @require_torch_non_multi_gpu def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(a__ ) snake_case_ = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(a__ ) snake_case_ = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(a__ )
92
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCamelCase_( snake_case : str , snake_case : complex , snake_case : str = "x" , snake_case : float = 1_0**-1_0 , snake_case : int = 1 , ): '''simple docstring''' snake_case_ = symbols(snake_case ) snake_case_ = lambdify(snake_case , snake_case ) snake_case_ = lambdify(snake_case , diff(snake_case , snake_case ) ) snake_case_ = starting_point while True: if diff_function(snake_case ) != 0: snake_case_ = prev_guess - multiplicity * func(snake_case ) / diff_function( snake_case ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess snake_case_ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial # Find fourth Root of 5 print(F"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}") # Find value of e print( "The root of log(y) - 1 = 0 is ", F"{newton_raphson('log(y) - 1', 2, variable='y')}", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F"{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}", ) # Find root of cos(x) print(F"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
92
1
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 1_0, """max_num_jobs""": 1}, [range(1_0 )]), ({"""num_shards""": 1_0, """max_num_jobs""": 1_0}, [range(__lowerCamelCase , i + 1 ) for i in range(1_0 )]), ({"""num_shards""": 1, """max_num_jobs""": 1_0}, [range(1 )]), ({"""num_shards""": 1_0, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 1_0 )]), ({"""num_shards""": 3, """max_num_jobs""": 1_0}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = _distribute_shards(**__lowerCamelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 1_0, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Dict ) -> List[str]: '''simple docstring''' __UpperCAmelCase : str = _split_gen_kwargs(__lowerCamelCase , __lowerCamelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> List[str]: '''simple docstring''' if expected is RuntimeError: with pytest.raises(__lowerCamelCase ): _number_of_shards_in_gen_kwargs(__lowerCamelCase ) else: __UpperCAmelCase : Optional[Any] = _number_of_shards_in_gen_kwargs(__lowerCamelCase ) assert out == expected
115
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase = { """configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""], """tokenization_biogpt""": ["""BioGptTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BioGptForCausalLM""", """BioGptForTokenClassification""", """BioGptForSequenceClassification""", """BioGptModel""", """BioGptPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
59
0
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): print(f"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(_lowerCamelCase ): print(f"""{i}\t\t{d}""" ) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for j in range(_lowerCamelCase ): A : Tuple = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : List[str] = [float("inf" )] * vertex_count A : Union[str, Any] = 0.0 for _ in range(vertex_count - 1 ): for j in range(_lowerCamelCase ): A : int = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: A : int = distance[u] + w A : Optional[Any] = check_negative_cycle(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE = int(input("""Enter number of vertices: """).strip()) __SCREAMING_SNAKE_CASE = int(input("""Enter number of edges: """).strip()) __SCREAMING_SNAKE_CASE = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) __SCREAMING_SNAKE_CASE = {"""src""": src, """dst""": dest, """weight""": weight} __SCREAMING_SNAKE_CASE = int(input("""\nEnter shortest path source:""").strip()) __SCREAMING_SNAKE_CASE = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
361
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __SCREAMING_SNAKE_CASE = 637_8137.0 __SCREAMING_SNAKE_CASE = 635_6752.31_4245 __SCREAMING_SNAKE_CASE = 6378137 def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude A : Tuple = atan((1 - flattening) * tan(radians(_lowerCamelCase ) ) ) A : Tuple = atan((1 - flattening) * tan(radians(_lowerCamelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius A : List[str] = haversine_distance(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values A : List[Any] = (b_lata + b_lata) / 2 A : Optional[Any] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) A : List[str] = (sin(_lowerCamelCase ) ** 2) * (cos(_lowerCamelCase ) ** 2) A : Optional[int] = cos(sigma / 2 ) ** 2 A : int = (sigma - sin(_lowerCamelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) A : List[str] = (cos(_lowerCamelCase ) ** 2) * (sin(_lowerCamelCase ) ** 2) A : Union[str, Any] = sin(sigma / 2 ) ** 2 A : int = (sigma + sin(_lowerCamelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
256
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: _a : int = 'huggingface/label-files' _a : Union[str, Any] = 'imagenet-1k-id2label.json' _a : Optional[int] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='dataset' ) , 'r' ) ) _a : List[Any] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _a : str = {v: k for k, v in idalabel.items()} _a : Dict = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" _a : List[Any] = BitConfig( conv_layer=lowerCAmelCase_ , num_labels=1000 , idalabel=lowerCAmelCase_ , labelaid=lowerCAmelCase_ , ) return config def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: if "stem.conv" in name: _a : int = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: _a : int = name.replace('blocks' , 'layers' ) if "head.fc" in name: _a : Tuple = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): _a : List[Any] = 'bit.' + name if "bit" not in name and "classifier" not in name: _a : Optional[int] = 'bit.encoder.' + name return name def __lowerCamelCase ( ) -> str: _a : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _a : List[str] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Optional[int]: _a : int = get_config(lowerCAmelCase_ ) # load original model from timm _a : List[Any] = create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ ) timm_model.eval() # load state_dict of original model _a : Optional[Any] = timm_model.state_dict() for key in state_dict.copy().keys(): _a : Optional[int] = state_dict.pop(lowerCAmelCase_ ) _a : Any = val.squeeze() if 'head' in key else val # load HuggingFace model _a : str = BitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # create image processor _a : Union[str, Any] = create_transform(**resolve_data_config({} , model=lowerCAmelCase_ ) ) _a : Union[str, Any] = transform.transforms _a : Any = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } _a : str = BitImageProcessor( do_resize=lowerCAmelCase_ , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase_ , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _a : Tuple = prepare_img() _a : int = transform(lowerCAmelCase_ ).unsqueeze(0 ) _a : List[str] = processor(lowerCAmelCase_ , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ ) # verify logits with torch.no_grad(): _a : int = model(lowerCAmelCase_ ) _a : Union[str, Any] = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) _a : List[Any] = timm_model(lowerCAmelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(f"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print(f"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(f"""ybelkada/{model_name}""" ) processor.push_to_hub(f"""ybelkada/{model_name}""" ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''resnetv2_50x1_bitm''', type=str, help='''Name of the BiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub.''', ) __lowerCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
89
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ : def __init__( self : List[str] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[str]=13 ,_UpperCAmelCase : Any=32 ,_UpperCAmelCase : Union[str, Any]=3 ,_UpperCAmelCase : Optional[int]=4 ,_UpperCAmelCase : Optional[Any]=[10, 20, 30, 40] ,_UpperCAmelCase : Tuple=[2, 2, 3, 2] ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : Union[str, Any]=37 ,_UpperCAmelCase : Optional[int]="gelu" ,_UpperCAmelCase : Optional[Any]=10 ,_UpperCAmelCase : Tuple=0.02 ,_UpperCAmelCase : Any=["stage2", "stage3", "stage4"] ,_UpperCAmelCase : Any=[2, 3, 4] ,_UpperCAmelCase : Tuple=None ,): _a : Optional[Any] = parent _a : List[Any] = batch_size _a : str = image_size _a : Union[str, Any] = num_channels _a : List[Any] = num_stages _a : Dict = hidden_sizes _a : int = depths _a : Tuple = is_training _a : List[str] = use_labels _a : Dict = intermediate_size _a : int = hidden_act _a : int = num_labels _a : Any = initializer_range _a : Tuple = out_features _a : int = out_indices _a : List[Any] = scope def __lowercase ( self : Dict ): _a : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Union[str, Any] = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.num_labels ) _a : str = self.get_config() return config, pixel_values, labels def __lowercase ( self : Any ): return ConvNextVaConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=_UpperCAmelCase ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def __lowercase ( self : Tuple ,_UpperCAmelCase : Any ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[Any] ): _a : Optional[Any] = ConvNextVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Any = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowercase ( self : Tuple ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ): _a : List[Any] = ConvNextVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : List[str] = model(_UpperCAmelCase ,labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : str ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ): _a : Optional[int] = ConvNextVaBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Dict = model(_UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None _a : Tuple = None _a : List[Any] = ConvNextVaBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : List[str] = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def __lowercase ( self : Optional[Any] ): _a : Any = self.prepare_config_and_inputs() _a , _a , _a : Union[str, Any] = config_and_inputs _a : Any = {'pixel_values': pixel_values} return config, inputs_dict def __lowercase ( self : str ): _a : Tuple = self.prepare_config_and_inputs() _a , _a , _a : Tuple = config_and_inputs _a : List[Any] = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : str = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCAmelCase : str = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : int = False lowerCAmelCase : str = False lowerCAmelCase : Optional[Any] = False lowerCAmelCase : List[str] = False lowerCAmelCase : Optional[int] = False def __lowercase ( self : List[Any] ): _a : str = ConvNextVaModelTester(self ) _a : Tuple = ConfigTester(self ,config_class=_UpperCAmelCase ,has_text_modality=_UpperCAmelCase ,hidden_size=37 ) def __lowercase ( self : Optional[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : str ): return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def __lowercase ( self : List[Any] ): pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def __lowercase ( self : Optional[int] ): pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def __lowercase ( self : Any ): pass def __lowercase ( self : List[str] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a , _a : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() _a : Any = True if model_class.__name__ in [ *get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase ), ]: continue _a : Optional[Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() _a : str = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase ) _a : Optional[int] = model(**_UpperCAmelCase ).loss loss.backward() def __lowercase ( self : str ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() _a : Optional[int] = False _a : Tuple = True if ( model_class.__name__ in [*get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase )] or not model_class.supports_gradient_checkpointing ): continue _a : Tuple = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() _a : Any = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase ) _a : List[Any] = model(**_UpperCAmelCase ).loss loss.backward() def __lowercase ( self : List[Any] ): _a , _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : int = model_class(_UpperCAmelCase ) _a : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Dict = [*signature.parameters.keys()] _a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_UpperCAmelCase ) def __lowercase ( self : int ): _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def __lowercase ( self : Any ): def check_hidden_states_output(_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Dict ): _a : Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _a : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ) ) _a : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a : str = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) ,expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : int = True check_hidden_states_output(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Optional[Any] = True check_hidden_states_output(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) def __lowercase ( self : List[Any] ): _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def __lowercase ( self : int ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = ConvNextVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowerCamelCase ( ) -> List[Any]: _a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def __lowercase ( self : Optional[Any] ): return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def __lowercase ( self : Any ): _a : List[str] = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(_UpperCAmelCase ) _a : Optional[int] = self.default_image_processor _a : str = prepare_img() _a : str = preprocessor(images=_UpperCAmelCase ,return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _a : Dict = model(**_UpperCAmelCase ) # verify the logits _a : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_UpperCAmelCase ) _a : Optional[Any] = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_UpperCAmelCase ,atol=1E-4 ) )
89
1
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __lowerCAmelCase = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=16 , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=14 , UpperCAmelCase=10 , UpperCAmelCase=19 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=True , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=[1, 2, 3, 4, 5] , UpperCAmelCase=25 , UpperCAmelCase=5 , ) -> int: _snake_case = d_model _snake_case = parent _snake_case = batch_size _snake_case = prediction_length _snake_case = context_length _snake_case = cardinality _snake_case = num_time_features _snake_case = lags_sequence _snake_case = embedding_dimension _snake_case = is_training _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = context_length _snake_case = prediction_length + label_length _snake_case = label_length _snake_case = moving_average _snake_case = autocorrelation_factor def lowercase (self ) -> str: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowercase (self , UpperCAmelCase ) -> Tuple: _snake_case = config.context_length + max(config.lags_sequence ) _snake_case = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _snake_case = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _snake_case = floats_tensor([self.batch_size, _past_length] ) _snake_case = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _snake_case = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _snake_case = floats_tensor([self.batch_size, config.prediction_length] ) _snake_case = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowercase (self ) -> int: _snake_case = self.get_config() _snake_case = self.prepare_autoformer_inputs_dict(UpperCAmelCase ) return config, inputs_dict def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.prepare_config_and_inputs() return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _snake_case = AutoformerModel(config=UpperCAmelCase ).to(UpperCAmelCase ).eval() _snake_case = model(**UpperCAmelCase ) _snake_case = outputs.encoder_last_hidden_state _snake_case = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = model.get_encoder() encoder.save_pretrained(UpperCAmelCase ) _snake_case = AutoformerEncoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = model.create_network_inputs(**UpperCAmelCase ) _snake_case, _snake_case = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _snake_case = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _snake_case = encoder(inputs_embeds=UpperCAmelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _snake_case = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _snake_case = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _snake_case = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _snake_case = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = model.get_decoder() decoder.save_pretrained(UpperCAmelCase ) _snake_case = AutoformerDecoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case = decoder( trend=UpperCAmelCase , inputs_embeds=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCAmelCase_ = (AutoformerForPrediction,) if is_torch_available() else () lowerCAmelCase_ = {"feature-extraction": AutoformerModel} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> List[Any]: _snake_case = AutoformerModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> List[Any]: self.config_tester.run_common_tests() def lowercase (self ) -> Any: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase ) _snake_case, _snake_case = model_class.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase ) self.assertEqual(info["""missing_keys"""] , [] ) def lowercase (self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCAmelCase ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowercase (self ) -> Tuple: pass def lowercase (self ) -> Any: _snake_case = inspect.signature(getattr(UpperCAmelCase , """forward""" ) ) # The main input is the name of the argument after `self` _snake_case = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , UpperCAmelCase ) def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True _snake_case = getattr(self.model_tester , """seq_length""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """decoder_seq_length""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """encoder_seq_length""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """d_model""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """num_attention_heads""" , UpperCAmelCase ) _snake_case = d_model // num_attention_heads for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _snake_case = len(UpperCAmelCase ) _snake_case = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # decoder attentions _snake_case = outputs.decoder_attentions self.assertIsInstance(UpperCAmelCase , (list, tuple) ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _snake_case = outputs.cross_attentions self.assertIsInstance(UpperCAmelCase , (list, tuple) ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + 2 , len(UpperCAmelCase ) ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowercase (self ) -> List[Any]: super().test_retain_grad_hidden_states_attentions() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE="train-batch.pt" ): _snake_case = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) _snake_case = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) return batch @require_torch @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Union[str, Any]: _snake_case = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase ) _snake_case = prepare_batch() with torch.no_grad(): _snake_case = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] _snake_case = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> str: _snake_case = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase ) _snake_case = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _snake_case = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state _snake_case = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> Optional[int]: _snake_case = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase ) _snake_case = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _snake_case = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) _snake_case = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , UpperCAmelCase ) _snake_case = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=UpperCAmelCase ) _snake_case = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCAmelCase , rtol=1e-1 ) )
270
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __lowerCAmelCase = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=16 , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=14 , UpperCAmelCase=10 , UpperCAmelCase=19 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=True , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=[1, 2, 3, 4, 5] , UpperCAmelCase=25 , UpperCAmelCase=5 , ) -> int: _snake_case = d_model _snake_case = parent _snake_case = batch_size _snake_case = prediction_length _snake_case = context_length _snake_case = cardinality _snake_case = num_time_features _snake_case = lags_sequence _snake_case = embedding_dimension _snake_case = is_training _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = context_length _snake_case = prediction_length + label_length _snake_case = label_length _snake_case = moving_average _snake_case = autocorrelation_factor def lowercase (self ) -> str: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowercase (self , UpperCAmelCase ) -> Tuple: _snake_case = config.context_length + max(config.lags_sequence ) _snake_case = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _snake_case = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _snake_case = floats_tensor([self.batch_size, _past_length] ) _snake_case = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _snake_case = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _snake_case = floats_tensor([self.batch_size, config.prediction_length] ) _snake_case = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowercase (self ) -> int: _snake_case = self.get_config() _snake_case = self.prepare_autoformer_inputs_dict(UpperCAmelCase ) return config, inputs_dict def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.prepare_config_and_inputs() return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _snake_case = AutoformerModel(config=UpperCAmelCase ).to(UpperCAmelCase ).eval() _snake_case = model(**UpperCAmelCase ) _snake_case = outputs.encoder_last_hidden_state _snake_case = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = model.get_encoder() encoder.save_pretrained(UpperCAmelCase ) _snake_case = AutoformerEncoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = model.create_network_inputs(**UpperCAmelCase ) _snake_case, _snake_case = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _snake_case = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _snake_case = encoder(inputs_embeds=UpperCAmelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _snake_case = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _snake_case = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _snake_case = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _snake_case = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = model.get_decoder() decoder.save_pretrained(UpperCAmelCase ) _snake_case = AutoformerDecoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case = decoder( trend=UpperCAmelCase , inputs_embeds=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCAmelCase_ = (AutoformerForPrediction,) if is_torch_available() else () lowerCAmelCase_ = {"feature-extraction": AutoformerModel} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> List[Any]: _snake_case = AutoformerModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> List[Any]: self.config_tester.run_common_tests() def lowercase (self ) -> Any: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase ) _snake_case, _snake_case = model_class.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase ) self.assertEqual(info["""missing_keys"""] , [] ) def lowercase (self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCAmelCase ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowercase (self ) -> Tuple: pass def lowercase (self ) -> Any: _snake_case = inspect.signature(getattr(UpperCAmelCase , """forward""" ) ) # The main input is the name of the argument after `self` _snake_case = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , UpperCAmelCase ) def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True _snake_case = getattr(self.model_tester , """seq_length""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """decoder_seq_length""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """encoder_seq_length""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """d_model""" , UpperCAmelCase ) _snake_case = getattr(self.model_tester , """num_attention_heads""" , UpperCAmelCase ) _snake_case = d_model // num_attention_heads for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _snake_case = len(UpperCAmelCase ) _snake_case = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # decoder attentions _snake_case = outputs.decoder_attentions self.assertIsInstance(UpperCAmelCase , (list, tuple) ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _snake_case = outputs.cross_attentions self.assertIsInstance(UpperCAmelCase , (list, tuple) ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + 2 , len(UpperCAmelCase ) ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowercase (self ) -> List[Any]: super().test_retain_grad_hidden_states_attentions() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE="train-batch.pt" ): _snake_case = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) _snake_case = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) return batch @require_torch @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Union[str, Any]: _snake_case = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase ) _snake_case = prepare_batch() with torch.no_grad(): _snake_case = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] _snake_case = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> str: _snake_case = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase ) _snake_case = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _snake_case = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state _snake_case = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> Optional[int]: _snake_case = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase ) _snake_case = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _snake_case = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) _snake_case = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , UpperCAmelCase ) _snake_case = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=UpperCAmelCase ) _snake_case = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCAmelCase , rtol=1e-1 ) )
270
1
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> int: __lowerCamelCase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __lowerCAmelCase ( UpperCamelCase__ = 1_00 ) -> int: __lowerCamelCase = 1 __lowerCamelCase = 2 for i in range(2 , max_n + 1 ): __lowerCamelCase = pre_numerator __lowerCamelCase = 2 * i // 3 if i % 3 == 0 else 1 __lowerCamelCase = cur_numerator __lowerCamelCase = e_cont * pre_numerator + temp return sum_digits(UpperCamelCase__ ) if __name__ == "__main__": print(f'{solution() = }')
67
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: PreTrainedTokenizer , _lowerCamelCase: int , _lowerCamelCase: Optional[int] = None , ) -> Tuple: '''simple docstring''' __lowerCamelCase : Optional[int] = {} if train_file is not None: __lowerCamelCase : List[Any] = [train_file] if eval_file is not None: __lowerCamelCase : List[Any] = [eval_file] if test_file is not None: __lowerCamelCase : Optional[int] = [test_file] __lowerCamelCase : Optional[int] = datasets.load_dataset("csv" , data_files=_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = list(ds[list(files.keys() )[0]].features.keys() ) __lowerCamelCase : Optional[Any] = features_name.pop(_lowerCamelCase ) __lowerCamelCase : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowerCamelCase : List[str] = {label: i for i, label in enumerate(_lowerCamelCase )} __lowerCamelCase : Dict = tokenizer.model_input_names __lowerCamelCase : int = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): __lowerCamelCase : Optional[int] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): __lowerCamelCase : Optional[Any] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowerCamelCase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowerCamelCase : str = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowerCamelCase : List[Any] = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase : Dict = labelaid[ex[label_name]] yield (d, label) __lowerCamelCase : Optional[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowerCamelCase : int = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowerCamelCase : Tuple = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowerCamelCase : List[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowerCamelCase : int = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowerCamelCase : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __A = logging.getLogger(__name__) @dataclass class _snake_case : snake_case__ = field(metadata={"help": "Which column contains the label"} ) snake_case__ = field(default=a__ , metadata={"help": "The path of the training file"} ) snake_case__ = field(default=a__ , metadata={"help": "The path of the development file"} ) snake_case__ = field(default=a__ , metadata={"help": "The path of the test file"} ) snake_case__ = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ = field( default=a__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class _snake_case : snake_case__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case__ = field( default=a__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case__ = field( default=a__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case__ = field(default=a__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case__ = field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def lowercase_ ( ) -> str: '''simple docstring''' __lowerCamelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowerCamelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowerCamelCase : List[str] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase: EvalPrediction ) -> Dict: __lowerCamelCase : List[str] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowerCamelCase : Dict = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowerCamelCase : int = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __lowerCamelCase : Any = trainer.evaluate() __lowerCamelCase : List[str] = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(_lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
135
0
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFImgaImgSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(_a ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(_a ) else: __UpperCamelCase = torch.Generator(device=_a ).manual_seed(_a ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
363
"""simple docstring""" import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : int = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } UpperCamelCase : Optional[Any] = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } UpperCamelCase : Any = { "jukebox": 5_1_2, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_LYRIC_TOKENS_SIZES lowercase = ["input_ids", "attention_mask"] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=["v3", "v2", "v2"] , __UpperCAmelCase=512 , __UpperCAmelCase=5 , __UpperCAmelCase="<|endoftext|>" , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token super().__init__( unk_token=__UpperCAmelCase , n_genres=__UpperCAmelCase , version=__UpperCAmelCase , max_n_lyric_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = version __UpperCamelCase = max_n_lyric_tokens __UpperCamelCase = n_genres with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __UpperCamelCase = json.load(__UpperCAmelCase ) with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __UpperCamelCase = json.load(__UpperCAmelCase ) with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __UpperCamelCase = json.load(__UpperCAmelCase ) __UpperCamelCase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __UpperCamelCase = oov.replace(R'\-\'' , R'\-+\'' ) __UpperCamelCase = regex.compile(__UpperCAmelCase ) __UpperCamelCase = {v: k for k, v in self.artists_encoder.items()} __UpperCamelCase = {v: k for k, v in self.genres_encoder.items()} __UpperCamelCase = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ): '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ): '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [self.artists_encoder.get(__UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(__UpperCAmelCase ) ): __UpperCamelCase = [self.genres_encoder.get(__UpperCAmelCase , 0 ) for genre in list_genres[genres]] __UpperCamelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __UpperCamelCase = [[self.lyrics_encoder.get(__UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return list(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.prepare_for_tokenization(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = self._tokenize(__UpperCAmelCase ) return artist, genre, lyrics def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": __UpperCamelCase = artists[idx].lower() __UpperCamelCase = [genres[idx].lower()] else: __UpperCamelCase = self._normalize(artists[idx] ) + '.v2' __UpperCamelCase = [ self._normalize(__UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __UpperCamelCase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __UpperCamelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __UpperCamelCase = {vocab[index]: index + 1 for index in range(len(__UpperCAmelCase ) )} __UpperCamelCase = 0 __UpperCamelCase = len(__UpperCAmelCase ) + 1 __UpperCamelCase = self.vocab __UpperCamelCase = {v: k for k, v in self.vocab.items()} __UpperCamelCase = '' else: __UpperCamelCase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __UpperCamelCase = self._run_strip_accents(__UpperCAmelCase ) __UpperCamelCase = lyrics.replace('\\' , '\n' ) __UpperCamelCase = self.out_of_vocab.sub('' , __UpperCAmelCase ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = unicodedata.normalize('NFD' , __UpperCAmelCase ) __UpperCamelCase = [] for char in text: __UpperCamelCase = unicodedata.category(__UpperCAmelCase ) if cat == "Mn": continue output.append(__UpperCAmelCase ) return "".join(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = ( [chr(__UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(__UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(__UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __UpperCamelCase = frozenset(__UpperCAmelCase ) __UpperCamelCase = re.compile(R'_+' ) __UpperCamelCase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __UpperCamelCase = pattern.sub('_' , __UpperCAmelCase ).strip('_' ) return text def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return " ".join(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = TensorType(__UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __UpperCamelCase = tf.constant __UpperCamelCase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __UpperCamelCase = torch.tensor __UpperCamelCase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __UpperCamelCase = jnp.array __UpperCamelCase = _is_jax else: __UpperCamelCase = np.asarray __UpperCamelCase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __UpperCamelCase = [inputs] if not is_tensor(__UpperCAmelCase ): __UpperCamelCase = as_tensor(__UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="" , __UpperCAmelCase="pt" ): '''simple docstring''' __UpperCamelCase = [0, 0, 0] __UpperCamelCase = [artist] * len(self.version ) __UpperCamelCase = [genres] * len(self.version ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.tokenize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self._convert_token_to_id(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = [-INFINITY] * len(full_tokens[-1] ) __UpperCamelCase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__UpperCAmelCase ) ) __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__UpperCAmelCase ) ) __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.artists_decoder.get(__UpperCAmelCase ) __UpperCamelCase = [self.genres_decoder.get(__UpperCAmelCase ) for genre in genres_index] __UpperCamelCase = [self.lyrics_decoder.get(__UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
263
0