code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : str, __A : int, __A : List[Any], __A : Tuple ):
UpperCAmelCase : Any = dataset
UpperCAmelCase : Any = process
UpperCAmelCase : Union[str, Any] = params
def __len__( self : int ):
return len(self.dataset )
def __getitem__( self : List[Any], __A : Tuple ):
UpperCAmelCase : Union[str, Any] = self.dataset[i]
UpperCAmelCase : Optional[Any] = self.process(__A, **self.params )
return processed
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Any, __A : int, __A : List[str], __A : Optional[int], __A : Union[str, Any]=None ):
UpperCAmelCase : Any = loader
UpperCAmelCase : str = infer
UpperCAmelCase : Dict = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
UpperCAmelCase : List[Any] = None
UpperCAmelCase : Dict = loader_batch_size
# Internal bookkeeping
UpperCAmelCase : List[str] = None
UpperCAmelCase : Optional[int] = None
def __len__( self : Optional[int] ):
return len(self.loader )
def __iter__( self : int ):
UpperCAmelCase : Dict = iter(self.loader )
return self
def __magic_name__ ( self : Dict ):
if isinstance(self._loader_batch_data, torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
UpperCAmelCase : Optional[int] = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
UpperCAmelCase : Union[str, Any] = {}
for k, element in self._loader_batch_data.items():
if isinstance(__A, __A ):
# Convert ModelOutput to tuple first
UpperCAmelCase : str = element.to_tuple()
if isinstance(element[0], torch.Tensor ):
UpperCAmelCase : Optional[int] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0], np.ndarray ):
UpperCAmelCase : str = tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__A, __A ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0], torch.Tensor ):
UpperCAmelCase : Optional[int] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0], np.ndarray ):
UpperCAmelCase : Tuple = tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
UpperCAmelCase : Tuple = None
elif isinstance(element[self._loader_batch_index], torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
UpperCAmelCase : Union[str, Any] = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index], np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
UpperCAmelCase : str = np.expand_dims(element[self._loader_batch_index], 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
UpperCAmelCase : int = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
UpperCAmelCase : Tuple = self._loader_batch_data.__class__(__A )
self._loader_batch_index += 1
return result
def __magic_name__ ( self : List[Any] ):
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
UpperCAmelCase : List[Any] = next(self.iterator )
UpperCAmelCase : List[Any] = self.infer(__A, **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(__A, torch.Tensor ):
UpperCAmelCase : Dict = processed
else:
UpperCAmelCase : Optional[Any] = list(processed.keys() )[0]
UpperCAmelCase : Union[str, Any] = processed[key]
if isinstance(__A, __A ):
UpperCAmelCase : int = len(__A )
else:
UpperCAmelCase : Tuple = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
UpperCAmelCase : Union[str, Any] = observed_batch_size
# Setting internal index to unwrap the batch
UpperCAmelCase : Dict = processed
UpperCAmelCase : str = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Optional[Any], __A : Optional[int], __A : str, __A : str, __A : Tuple=None ):
super().__init__(__A, __A, __A )
def __iter__( self : List[str] ):
UpperCAmelCase : List[str] = iter(self.loader )
UpperCAmelCase : int = None
return self
def __magic_name__ ( self : Tuple ):
if self.subiterator is None:
UpperCAmelCase : Dict = self.infer(next(self.iterator ), **self.params )
try:
# Try to return next item
UpperCAmelCase : Tuple = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
UpperCAmelCase : Dict = self.infer(next(self.iterator ), **self.params )
UpperCAmelCase : Tuple = next(self.subiterator )
return processed
class __UpperCAmelCase ( lowerCamelCase__ ):
def __iter__( self : Union[str, Any] ):
UpperCAmelCase : Union[str, Any] = iter(self.loader )
return self
def __magic_name__ ( self : int ):
# Extremely similar to PipelineIterator in its unpacking mechanism
# BUT, we have an extra required item which is the presence of `is_last`
# That is because everything is flattened by `PipelineChunkIterator` we
# need to keep track of how to regroup here in the original `process`
# boundaries so that `process` and `postprocess` see the same data.
# This iterator accumulates items (possibly while unbatching) until it
# its a `is_last` and then just passes it on to the caller.
UpperCAmelCase : Tuple = False
UpperCAmelCase : Union[str, Any] = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
UpperCAmelCase : Optional[Any] = self.loader_batch_item()
UpperCAmelCase : Dict = item.pop('''is_last''' )
accumulator.append(__A )
if is_last:
return accumulator
while not is_last:
UpperCAmelCase : List[Any] = self.infer(next(self.iterator ), **self.params )
if self.loader_batch_size is not None:
if isinstance(__A, torch.Tensor ):
UpperCAmelCase : int = processed
else:
UpperCAmelCase : List[str] = list(processed.keys() )[0]
UpperCAmelCase : Optional[int] = processed[key]
if isinstance(__A, __A ):
UpperCAmelCase : Optional[int] = len(__A )
else:
UpperCAmelCase : Optional[int] = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
UpperCAmelCase : Optional[Any] = observed_batch_size
UpperCAmelCase : Optional[Any] = processed
UpperCAmelCase : Any = 0
while self._loader_batch_index < self.loader_batch_size:
UpperCAmelCase : List[Any] = self.loader_batch_item()
UpperCAmelCase : Dict = item.pop('''is_last''' )
accumulator.append(__A )
if is_last:
return accumulator
else:
UpperCAmelCase : Dict = processed
UpperCAmelCase : Optional[Any] = item.pop('''is_last''' )
accumulator.append(__A )
return accumulator
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : List[Any], __A : Dataset, __A : str ):
UpperCAmelCase : Optional[Any] = dataset
UpperCAmelCase : List[Any] = key
def __len__( self : str ):
return len(self.dataset )
def __getitem__( self : Any, __A : List[str] ):
return self.dataset[i][self.key]
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Optional[Any], __A : Dataset, __A : str, __A : str ):
UpperCAmelCase : int = dataset
UpperCAmelCase : Optional[Any] = keya
UpperCAmelCase : Optional[Any] = keya
def __len__( self : List[Any] ):
return len(self.dataset )
def __getitem__( self : Optional[int], __A : int ):
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 336 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : Any = logging.get_logger(__name__)
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any:
UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else ''''''
UpperCAmelCase : Dict = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''),
(f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''),
(f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''),
(f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('''mask_token''', '''beit.embeddings.mask_token'''),
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''),
('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any:
for i in range(config.num_hidden_layers ):
UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else ''''''
# queries, keys and values
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' )
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' )
UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' )
UpperCAmelCase : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase : str = q_bias
UpperCAmelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[str] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : int = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' )
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' )
UpperCAmelCase : str = gamma_a
UpperCAmelCase : Dict = gamma_a
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase )
UpperCAmelCase : str = val
def a__ ( ) -> Optional[int]:
UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw )
return im
@torch.no_grad()
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]:
UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True
UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
UpperCAmelCase : List[Any] = 1_024
UpperCAmelCase : Optional[Any] = 4_096
UpperCAmelCase : Any = 24
UpperCAmelCase : Union[str, Any] = 16
# labels
if "rvlcdip" in checkpoint_url:
UpperCAmelCase : Optional[Any] = 16
UpperCAmelCase : List[Any] = '''huggingface/label-files'''
UpperCAmelCase : Any = '''rvlcdip-id2label.json'''
UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : Union[str, Any] = idalabel
UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model''']
UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase )
for src, dest in rename_keys:
rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase )
# load HuggingFace model
UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase )
model.eval()
model.load_state_dict(UpperCAmelCase )
# Check outputs on an image
UpperCAmelCase : Dict = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase )
UpperCAmelCase : List[str] = prepare_img()
UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' )
UpperCAmelCase : str = encoding['''pixel_values''']
UpperCAmelCase : Any = model(UpperCAmelCase )
UpperCAmelCase : Optional[Any] = outputs.logits
# verify logits
UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192]
assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected"
Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCAmelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(UpperCAmelCase )
if push_to_hub:
if has_lm_head:
UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large'''
else:
UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip'''
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , )
model.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , )
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
_lowerCamelCase : Optional[int] = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 336 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ = {
'''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LiltForQuestionAnswering''',
'''LiltForSequenceClassification''',
'''LiltForTokenClassification''',
'''LiltModel''',
'''LiltPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lilt import (
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
LiltPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 244 |
"""simple docstring"""
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
lowerCAmelCase__ = logging.get_logger(__name__)
@add_end_docstrings(_lowercase )
class _lowerCamelCase ( _lowercase ):
def __init__(self , **__a ) -> Optional[int]:
super().__init__(**__a )
requires_backends(self , "vision" )
requires_backends(self , "torch" )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
self.check_model_type(__a )
def snake_case_ (self , **__a ) -> List[Any]:
UpperCamelCase = {}
UpperCamelCase = {}
UpperCamelCase = {}
# preprocess args
if "points_per_batch" in kwargs:
UpperCamelCase = kwargs["points_per_batch"]
if "points_per_crop" in kwargs:
UpperCamelCase = kwargs["points_per_crop"]
if "crops_n_layers" in kwargs:
UpperCamelCase = kwargs["crops_n_layers"]
if "crop_overlap_ratio" in kwargs:
UpperCamelCase = kwargs["crop_overlap_ratio"]
if "crop_n_points_downscale_factor" in kwargs:
UpperCamelCase = kwargs["crop_n_points_downscale_factor"]
# postprocess args
if "pred_iou_thresh" in kwargs:
UpperCamelCase = kwargs["pred_iou_thresh"]
if "stability_score_offset" in kwargs:
UpperCamelCase = kwargs["stability_score_offset"]
if "mask_threshold" in kwargs:
UpperCamelCase = kwargs["mask_threshold"]
if "stability_score_thresh" in kwargs:
UpperCamelCase = kwargs["stability_score_thresh"]
if "crops_nms_thresh" in kwargs:
UpperCamelCase = kwargs["crops_nms_thresh"]
if "output_rle_mask" in kwargs:
UpperCamelCase = kwargs["output_rle_mask"]
if "output_bboxes_mask" in kwargs:
UpperCamelCase = kwargs["output_bboxes_mask"]
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> str:
return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a )
def snake_case_ (self , __a , __a=64 , __a = 0 , __a = 5_12 / 15_00 , __a = 32 , __a = 1 , ) -> List[str]:
UpperCamelCase = load_image(__a )
UpperCamelCase = self.image_processor.size["longest_edge"]
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.generate_crop_boxes(
__a , __a , __a , __a , __a , __a )
UpperCamelCase = self.image_processor(images=__a , return_tensors="pt" )
with self.device_placement():
if self.framework == "pt":
UpperCamelCase = self.get_inference_context()
with inference_context():
UpperCamelCase = self._ensure_tensor_on_device(__a , device=self.device )
UpperCamelCase = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) )
UpperCamelCase = image_embeddings
UpperCamelCase = grid_points.shape[1]
UpperCamelCase = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
"Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. "
"To return all points at once, set points_per_batch to None" )
for i in range(0 , __a , __a ):
UpperCamelCase = grid_points[:, i : i + points_per_batch, :, :]
UpperCamelCase = input_labels[:, i : i + points_per_batch]
UpperCamelCase = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def snake_case_ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> int:
UpperCamelCase = model_inputs.pop("input_boxes" )
UpperCamelCase = model_inputs.pop("is_last" )
UpperCamelCase = model_inputs.pop("original_sizes" ).tolist()
UpperCamelCase = model_inputs.pop("reshaped_input_sizes" ).tolist()
UpperCamelCase = self.model(**__a )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
UpperCamelCase = model_outputs["pred_masks"]
UpperCamelCase = self.image_processor.post_process_masks(
__a , __a , __a , __a , binarize=__a )
UpperCamelCase = model_outputs["iou_scores"]
UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def snake_case_ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Optional[int]:
UpperCamelCase = []
UpperCamelCase = []
UpperCamelCase = []
for model_output in model_outputs:
all_scores.append(model_output.pop("iou_scores" ) )
all_masks.extend(model_output.pop("masks" ) )
all_boxes.append(model_output.pop("boxes" ) )
UpperCamelCase = torch.cat(__a )
UpperCamelCase = torch.cat(__a )
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.post_process_for_mask_generation(
__a , __a , __a , __a )
UpperCamelCase = defaultdict(__a )
for output in model_outputs:
for k, v in output.items():
extra[k].append(__a )
UpperCamelCase = {}
if output_rle_mask:
UpperCamelCase = rle_mask
if output_bboxes_mask:
UpperCamelCase = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 244 | 1 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
lowercase : Optional[int] = 10
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str:
for i in range(_UpperCAmelCase , _UpperCAmelCase ):
if array[i] == target:
return i
return -1
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]:
lowercase : Optional[int] = 0
lowercase : str = len(_UpperCAmelCase )
while left <= right:
if right - left < precision:
return lin_search(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowercase : List[str] = (left + right) // 3 + 1
lowercase : Optional[Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
lowercase : Optional[Any] = one_third - 1
elif array[two_third] < target:
lowercase : Dict = two_third + 1
else:
lowercase : List[Any] = one_third + 1
lowercase : Any = two_third - 1
else:
return -1
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]:
if left < right:
if right - left < precision:
return lin_search(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowercase : str = (left + right) // 3 + 1
lowercase : int = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_UpperCAmelCase , one_third - 1 , _UpperCAmelCase , _UpperCAmelCase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _UpperCAmelCase , _UpperCAmelCase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase : int = input("""Enter numbers separated by comma:\n""").strip()
lowercase : Any = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
lowercase : Optional[int] = int(input("""Enter the number to be found in the list:\n""").strip())
lowercase : List[Any] = ite_ternary_search(collection, target)
lowercase : Dict = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 20 |
import math
import sys
def A_ ( _UpperCAmelCase ):
if number != int(_UpperCAmelCase ):
raise ValueError("the value of input must be a natural number" )
if number < 0:
raise ValueError("the value of input must not be a negative number" )
if number == 0:
return 1
SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1)
SCREAMING_SNAKE_CASE_: str = 0
for i in range(1 , number + 1 ):
SCREAMING_SNAKE_CASE_: str = sys.maxsize
SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) )
for j in range(1 , root + 1 ):
SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)]
SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Dict = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase : List[str] = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[Any] = [
"OPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OPTForCausalLM",
"OPTModel",
"OPTPreTrainedModel",
"OPTForSequenceClassification",
"OPTForQuestionAnswering",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Dict = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : int = [
"FlaxOPTForCausalLM",
"FlaxOPTModel",
"FlaxOPTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 263 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : str = logging.get_logger(__name__)
UpperCamelCase : Dict = {
"microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json",
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "wavlm"
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=320 , __UpperCAmelCase=800 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.0_5 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=(512, 512, 512, 512, 1500) , __UpperCAmelCase=(5, 3, 3, 1, 1) , __UpperCAmelCase=(1, 2, 3, 1, 1) , __UpperCAmelCase=512 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
__UpperCamelCase = hidden_size
__UpperCamelCase = feat_extract_norm
__UpperCamelCase = feat_extract_activation
__UpperCamelCase = list(__UpperCAmelCase )
__UpperCamelCase = list(__UpperCAmelCase )
__UpperCamelCase = list(__UpperCAmelCase )
__UpperCamelCase = conv_bias
__UpperCamelCase = num_buckets
__UpperCamelCase = max_bucket_distance
__UpperCamelCase = num_conv_pos_embeddings
__UpperCamelCase = num_conv_pos_embedding_groups
__UpperCamelCase = len(self.conv_dim )
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = activation_dropout
__UpperCamelCase = feat_proj_dropout
__UpperCamelCase = final_dropout
__UpperCamelCase = layerdrop
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = initializer_range
__UpperCamelCase = num_ctc_classes
__UpperCamelCase = vocab_size
__UpperCamelCase = do_stable_layer_norm
__UpperCamelCase = use_weighted_layer_sum
__UpperCamelCase = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCamelCase = apply_spec_augment
__UpperCamelCase = mask_time_prob
__UpperCamelCase = mask_time_length
__UpperCamelCase = mask_time_min_masks
__UpperCamelCase = mask_feature_prob
__UpperCamelCase = mask_feature_length
# parameters for pretraining with codevector quantized representations
__UpperCamelCase = num_codevectors_per_group
__UpperCamelCase = num_codevector_groups
__UpperCamelCase = contrastive_logits_temperature
__UpperCamelCase = num_negatives
__UpperCamelCase = codevector_dim
__UpperCamelCase = proj_codevector_dim
__UpperCamelCase = diversity_loss_weight
# ctc loss
__UpperCamelCase = ctc_loss_reduction
__UpperCamelCase = ctc_zero_infinity
# adapter
__UpperCamelCase = add_adapter
__UpperCamelCase = adapter_kernel_size
__UpperCamelCase = adapter_stride
__UpperCamelCase = num_adapter_layers
__UpperCamelCase = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__UpperCamelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__UpperCamelCase = list(__UpperCAmelCase )
__UpperCamelCase = list(__UpperCAmelCase )
__UpperCamelCase = list(__UpperCAmelCase )
__UpperCamelCase = xvector_output_dim
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 263 | 1 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if discount_rate < 0:
raise ValueError('''Discount rate cannot be negative''' )
if not cash_flows:
raise ValueError('''Cash flows list cannot be empty''' )
A : List[Any] = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(snake_case__ ) )
return round(snake_case__ , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
lowerCAmelCase__ = '''Input must be a string of 8 numbers plus letter'''
lowerCAmelCase__ = '''TRWAGMYFPDXBNJZSQVHLCKE'''
def _A ( A__ ):
"""simple docstring"""
if not isinstance(A__ , A__ ):
__lowercase = F"Expected string as input, found {type(A__ ).__name__}"
raise TypeError(A__ )
__lowercase = spanish_id.replace('''-''' , '''''' ).upper()
if len(A__ ) != 9:
raise ValueError(A__ )
try:
__lowercase = int(spanish_id_clean[0:8] )
__lowercase = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(A__ ) from ex
if letter.isdigit():
raise ValueError(A__ )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 104 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = "▁"
__A = {"vocab_file": "sentencepiece.bpe.model"}
__A = {
"vocab_file": {
"facebook/mbart-large-en-ro": (
"https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"
),
"facebook/mbart-large-cc25": (
"https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"
),
}
}
__A = {
"facebook/mbart-large-en-ro": 10_24,
"facebook/mbart-large-cc25": 10_24,
}
# fmt: off
__A = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"]
class __lowerCAmelCase ( snake_case_ ):
"""simple docstring"""
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = ["input_ids", "attention_mask"]
snake_case_ = []
snake_case_ = []
def __init__( self , lowerCamelCase__ , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__ = None , lowerCamelCase__=None , **lowerCamelCase__ , ) -> Any:
'''simple docstring'''
__lowerCamelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token
__lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , tokenizer_file=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , )
__lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_A ) )
__lowerCamelCase = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
__lowerCamelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__lowerCamelCase = 1
__lowerCamelCase = len(self.sp_model )
__lowerCamelCase = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A )
}
__lowerCamelCase = {v: k for k, v in self.lang_code_to_id.items()}
__lowerCamelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
__lowerCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
__lowerCamelCase = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
__lowerCamelCase = src_lang if src_lang is not None else 'en_XX'
__lowerCamelCase = self.lang_code_to_id[self._src_lang]
__lowerCamelCase = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = self.__dict__.copy()
__lowerCamelCase = None
__lowerCamelCase = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__lowerCamelCase = {}
__lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def lowercase_ ( self ) -> str:
'''simple docstring'''
return self._src_lang
@src_lang.setter
def lowercase_ ( self , lowerCamelCase__ ) -> None:
'''simple docstring'''
__lowerCamelCase = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A )
__lowerCamelCase = [1] * len(self.prefix_tokens )
__lowerCamelCase = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(_A )) + suffix_ones
return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]:
'''simple docstring'''
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
__lowerCamelCase = src_lang
__lowerCamelCase = self(_A , add_special_tokens=_A , return_tensors=_A , **_A )
__lowerCamelCase = self.convert_tokens_to_ids(_A )
__lowerCamelCase = tgt_lang_id
return inputs
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowercase_ ( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(_A , out_type=_A )
def lowercase_ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__lowerCamelCase = self.sp_model.PieceToId(_A )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = ''.join(_A ).replace(_A , ' ' ).strip()
return out_string
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowerCamelCase = os.path.join(
_A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _A )
elif not os.path.isfile(self.vocab_file ):
with open(_A , 'wb' ) as fi:
__lowerCamelCase = self.sp_model.serialized_model_proto()
fi.write(_A )
return (out_vocab_file,)
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = "en_XX" , lowerCamelCase__ = None , lowerCamelCase__ = "ro_RO" , **lowerCamelCase__ , ) -> BatchEncoding:
'''simple docstring'''
__lowerCamelCase = src_lang
__lowerCamelCase = tgt_lang
return super().prepare_seqaseq_batch(_A , _A , **_A )
def lowercase_ ( self ) -> str:
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def lowercase_ ( self , lowerCamelCase__ ) -> None:
'''simple docstring'''
__lowerCamelCase = self.lang_code_to_id[src_lang]
__lowerCamelCase = []
__lowerCamelCase = [self.eos_token_id, self.cur_lang_code]
def lowercase_ ( self , lowerCamelCase__ ) -> None:
'''simple docstring'''
__lowerCamelCase = self.lang_code_to_id[lang]
__lowerCamelCase = []
__lowerCamelCase = [self.eos_token_id, self.cur_lang_code]
| 350 |
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImgaImgPipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline'''
def lowercase_ ( self , lowerCamelCase__=0 ) -> int:
'''simple docstring'''
__lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) )
__lowerCamelCase = np.random.RandomState(lowerCamelCase__ )
__lowerCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'strength': 0.75,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] )
assert np.abs(image_slice - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
# warmup pass to apply optimizations
__lowerCamelCase = pipe(**self.get_dummy_inputs() )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = ort.SessionOptions()
__lowerCamelCase = False
return options
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
__lowerCamelCase = init_image.resize((768, 512) )
# using the PNDM scheduler by default
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'A fantasy landscape, trending on artstation'
__lowerCamelCase = np.random.RandomState(0 )
__lowerCamelCase = pipe(
prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , )
__lowerCamelCase = output.images
__lowerCamelCase = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
__lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
__lowerCamelCase = init_image.resize((768, 512) )
__lowerCamelCase = LMSDiscreteScheduler.from_pretrained(
'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' )
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'A fantasy landscape, trending on artstation'
__lowerCamelCase = np.random.RandomState(0 )
__lowerCamelCase = pipe(
prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , )
__lowerCamelCase = output.images
__lowerCamelCase = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
__lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
| 348 | 0 |
def lowerCAmelCase_ ( __a = 50 ) -> int:
"""simple docstring"""
lowerCamelCase__: List[str] =[1] * (length + 1)
for row_length in range(3 , length + 1 ):
for block_length in range(3 , row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'{solution() = }')
| 10 |
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"]
UpperCAmelCase_ : Tuple ="FlavaImageProcessor"
UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast")
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
__snake_case : List[Any] = kwargs.pop("feature_extractor" )
__snake_case : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = self.image_processor
def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__snake_case : Union[str, Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if images is not None:
__snake_case : Union[str, Any] = self.image_processor(
UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if text is not None and images is not None:
encoding.update(UpperCAmelCase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : List[Any] = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , )
return self.image_processor
| 326 | 0 |
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''Speech2TextFeatureExtractor'''
UpperCAmelCase__ = '''Speech2TextTokenizer'''
def __init__( self : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str) ->Optional[Any]:
'''simple docstring'''
super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
A__ = self.feature_extractor
A__ = False
def __call__( self : Tuple , *UpperCAmelCase__ : int , **UpperCAmelCase__ : Optional[Any]) ->int:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE)
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''')
A__ = kwargs.pop('''raw_speech''')
else:
A__ = kwargs.pop('''audio''' , _SCREAMING_SNAKE_CASE)
A__ = kwargs.pop('''sampling_rate''' , _SCREAMING_SNAKE_CASE)
A__ = kwargs.pop('''text''' , _SCREAMING_SNAKE_CASE)
if len(_SCREAMING_SNAKE_CASE) > 0:
A__ = args[0]
A__ = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''')
if audio is not None:
A__ = self.feature_extractor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE)
if text is not None:
A__ = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE)
if text is None:
return inputs
elif audio is None:
return encodings
else:
A__ = encodings['''input_ids''']
return inputs
def SCREAMING_SNAKE_CASE ( self : Tuple , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Union[str, Any]) ->List[str]:
'''simple docstring'''
return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE)
def SCREAMING_SNAKE_CASE ( self : List[str] , *UpperCAmelCase__ : int , **UpperCAmelCase__ : int) ->Tuple:
'''simple docstring'''
return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE)
@contextmanager
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple:
'''simple docstring'''
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''')
A__ = True
A__ = self.tokenizer
yield
A__ = self.feature_extractor
A__ = False
| 371 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
return " ".join(
''''''.join(word[::-1] ) if len(lowercase_ ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words("""Hey wollef sroirraw"""))
| 231 | 0 |
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class A :
'''simple docstring'''
def __init__( self : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=13 , __lowerCAmelCase : Optional[int]=7 , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Any=True , __lowerCAmelCase : str=99 , __lowerCAmelCase : Optional[Any]=32 , __lowerCAmelCase : Any=5 , __lowerCAmelCase : List[str]=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : List[Any]="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : List[str]=5_12 , __lowerCAmelCase : List[str]=16 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Any=0.0_2 , __lowerCAmelCase : int=3 , __lowerCAmelCase : Union[str, Any]=4 , __lowerCAmelCase : List[Any]=None , ) -> Optional[int]:
"""simple docstring"""
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_input_mask
A__ = use_token_type_ids
A__ = use_labels
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = type_sequence_label_size
A__ = initializer_range
A__ = num_labels
A__ = num_choices
A__ = scope
def a_ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ = None
if self.use_input_mask:
A__ = random_attention_mask([self.batch_size, self.seq_length] )
A__ = None
if self.use_token_type_ids:
A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A__ = None
A__ = None
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ = ids_tensor([self.batch_size] , self.num_choices )
A__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a_ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , use_stable_embedding=__lowerCAmelCase , )
def a_ ( self : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ) -> int:
"""simple docstring"""
A__ = OpenLlamaModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )
A__ = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int , ) -> List[Any]:
"""simple docstring"""
A__ = True
A__ = OpenLlamaModel(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
A__ = model(
__lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , )
A__ = model(
__lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , )
A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , ) -> List[str]:
"""simple docstring"""
A__ = OpenLlamaForCausalLM(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , ) -> List[Any]:
"""simple docstring"""
A__ = True
A__ = True
A__ = OpenLlamaForCausalLM(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
# first forward pass
A__ = model(
__lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase , )
A__ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
A__ = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
A__ = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ = torch.cat([input_mask, next_mask] , dim=-1 )
A__ = model(
__lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )["""hidden_states"""][0]
A__ = model(
__lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )["""hidden_states"""][0]
# select random slice
A__ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-3 ) )
def a_ ( self : Tuple ) -> str:
"""simple docstring"""
A__ = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) = config_and_inputs
A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class A (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__lowerCamelCase : Optional[Any] = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
__lowerCamelCase : int = (OpenLlamaForCausalLM,) if is_torch_available() else ()
__lowerCamelCase : int = (
{
'''feature-extraction''': OpenLlamaModel,
'''text-classification''': OpenLlamaForSequenceClassification,
'''text-generation''': OpenLlamaForCausalLM,
'''zero-shot''': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowerCamelCase : int = False
__lowerCamelCase : Union[str, Any] = False
def a_ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
A__ = OpenLlamaModelTester(self )
A__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 )
def a_ ( self : List[Any] ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def a_ ( self : List[Any] ) -> Dict:
"""simple docstring"""
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def a_ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
A__ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A__ = type
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def a_ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = 3
A__ = input_dict["""input_ids"""]
A__ = input_ids.ne(1 ).to(__lowerCAmelCase )
A__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
A__ = OpenLlamaForSequenceClassification(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def a_ ( self : Dict ) -> str:
"""simple docstring"""
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = 3
A__ = """single_label_classification"""
A__ = input_dict["""input_ids"""]
A__ = input_ids.ne(1 ).to(__lowerCAmelCase )
A__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
A__ = OpenLlamaForSequenceClassification(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def a_ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = 3
A__ = """multi_label_classification"""
A__ = input_dict["""input_ids"""]
A__ = input_ids.ne(1 ).to(__lowerCAmelCase )
A__ = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
A__ = OpenLlamaForSequenceClassification(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" )
def a_ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def a_ ( self : str , __lowerCAmelCase : Tuple ) -> Dict:
"""simple docstring"""
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = ids_tensor([1, 10] , config.vocab_size )
A__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
A__ = OpenLlamaModel(__lowerCAmelCase )
original_model.to(__lowerCAmelCase )
original_model.eval()
A__ = original_model(__lowerCAmelCase ).last_hidden_state
A__ = original_model(__lowerCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
A__ = {"""type""": scaling_type, """factor""": 1_0.0}
A__ = OpenLlamaModel(__lowerCAmelCase )
scaled_model.to(__lowerCAmelCase )
scaled_model.eval()
A__ = scaled_model(__lowerCAmelCase ).last_hidden_state
A__ = scaled_model(__lowerCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-5 ) )
| 274 |
def __lowerCamelCase ( __a :str ) -> list:
"""simple docstring"""
A__ = [0] * len(__a )
for i in range(1 , len(__a ) ):
# use last results for better performance - dynamic programming
A__ = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
A__ = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
A__ = j
return prefix_result
def __lowerCamelCase ( __a :str ) -> int:
"""simple docstring"""
return max(prefix_function(__a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 274 | 1 |
"""simple docstring"""
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class UpperCAmelCase (_UpperCAmelCase ):
"""simple docstring"""
_UpperCAmelCase :List[Any] = "Speech2TextFeatureExtractor"
_UpperCAmelCase :Dict = "Speech2TextTokenizer"
def __init__( self , _UpperCAmelCase , _UpperCAmelCase ):
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
lowercase__: List[Any] = self.feature_extractor
lowercase__: Optional[int] = False
def __call__( self , *_UpperCAmelCase , **_UpperCAmelCase ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_UpperCAmelCase , **_UpperCAmelCase )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
lowercase__: Optional[Any] = kwargs.pop('''raw_speech''' )
else:
lowercase__: Tuple = kwargs.pop('''audio''' , _UpperCAmelCase )
lowercase__: Dict = kwargs.pop('''sampling_rate''' , _UpperCAmelCase )
lowercase__: Optional[int] = kwargs.pop('''text''' , _UpperCAmelCase )
if len(_UpperCAmelCase ) > 0:
lowercase__: Tuple = args[0]
lowercase__: List[str] = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
lowercase__: Any = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase )
if text is not None:
lowercase__: Optional[int] = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
lowercase__: Optional[int] = encodings['''input_ids''']
return inputs
def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ):
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ):
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@contextmanager
def _snake_case ( self ):
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
lowercase__: List[str] = True
lowercase__: Dict = self.tokenizer
yield
lowercase__: str = self.feature_extractor
lowercase__: Optional[Any] = False
| 2 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"microsoft/unispeech-sat-base-100h-libri-ft": (
"https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json"
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class UpperCAmelCase (_UpperCAmelCase ):
"""simple docstring"""
_UpperCAmelCase :Any = "unispeech-sat"
def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ):
super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase )
lowercase__: Union[str, Any] = hidden_size
lowercase__: Union[str, Any] = feat_extract_norm
lowercase__: Any = feat_extract_activation
lowercase__: List[Any] = list(_UpperCAmelCase )
lowercase__: Optional[int] = list(_UpperCAmelCase )
lowercase__: int = list(_UpperCAmelCase )
lowercase__: Any = conv_bias
lowercase__: List[str] = num_conv_pos_embeddings
lowercase__: List[str] = num_conv_pos_embedding_groups
lowercase__: int = len(self.conv_dim )
lowercase__: Dict = num_hidden_layers
lowercase__: List[Any] = intermediate_size
lowercase__: Dict = hidden_act
lowercase__: Optional[Any] = num_attention_heads
lowercase__: Union[str, Any] = hidden_dropout
lowercase__: List[Any] = attention_dropout
lowercase__: str = activation_dropout
lowercase__: Optional[Any] = feat_proj_dropout
lowercase__: Optional[int] = final_dropout
lowercase__: Any = layerdrop
lowercase__: int = layer_norm_eps
lowercase__: Any = initializer_range
lowercase__: Union[str, Any] = vocab_size
lowercase__: Optional[Any] = num_clusters
lowercase__: Dict = do_stable_layer_norm
lowercase__: List[str] = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase__: Dict = apply_spec_augment
lowercase__: Union[str, Any] = mask_time_prob
lowercase__: List[str] = mask_time_length
lowercase__: Union[str, Any] = mask_time_min_masks
lowercase__: str = mask_feature_prob
lowercase__: Dict = mask_feature_length
lowercase__: List[Any] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowercase__: Tuple = num_codevectors_per_group
lowercase__: Optional[Any] = num_codevector_groups
lowercase__: int = contrastive_logits_temperature
lowercase__: Any = feat_quantizer_dropout
lowercase__: int = num_negatives
lowercase__: Optional[Any] = codevector_dim
lowercase__: int = proj_codevector_dim
lowercase__: str = diversity_loss_weight
# ctc loss
lowercase__: int = ctc_loss_reduction
lowercase__: Union[str, Any] = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
lowercase__: Optional[Any] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
lowercase__: Union[str, Any] = list(_UpperCAmelCase )
lowercase__: Tuple = list(_UpperCAmelCase )
lowercase__: Union[str, Any] = list(_UpperCAmelCase )
lowercase__: Tuple = xvector_output_dim
@property
def _snake_case ( self ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 2 | 1 |
'''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope='session' )
def __lowerCamelCase ( ) -> Any:
_a : Dict = 10
_a : Union[str, Any] = datasets.Features(
{
'tokens': datasets.Sequence(datasets.Value('string' ) ),
'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ),
'answers': datasets.Sequence(
{
'text': datasets.Value('string' ),
'answer_start': datasets.Value('int32' ),
} ),
'id': datasets.Value('int64' ),
} )
_a : Optional[int] = datasets.Dataset.from_dict(
{
'tokens': [['foo'] * 5] * n,
'labels': [[1] * 5] * n,
'answers': [{'answer_start': [97], 'text': ['1976']}] * 10,
'id': list(range(lowerCAmelCase_ ) ),
} , features=lowerCAmelCase_ , )
return dataset
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int:
_a : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' )
dataset.map(cache_file_name=lowerCAmelCase_ )
return filename
# FILE_CONTENT + files
__lowerCAmelCase = '''\
Text data.
Second line of data.'''
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]:
_a : str = tmp_path_factory.mktemp('data' ) / 'file.txt'
_a : Optional[Any] = FILE_CONTENT
with open(lowerCAmelCase_ , 'w' ) as f:
f.write(lowerCAmelCase_ )
return filename
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[str, Any]:
import bza
_a : Dict = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2'
_a : Any = bytes(lowerCAmelCase_ , 'utf-8' )
with bza.open(lowerCAmelCase_ , 'wb' ) as f:
f.write(lowerCAmelCase_ )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]:
import gzip
_a : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' )
_a : Union[str, Any] = bytes(lowerCAmelCase_ , 'utf-8' )
with gzip.open(lowerCAmelCase_ , 'wb' ) as f:
f.write(lowerCAmelCase_ )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> str:
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_a : List[str] = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4'
_a : Optional[int] = bytes(lowerCAmelCase_ , 'utf-8' )
with lza.frame.open(lowerCAmelCase_ , 'wb' ) as f:
f.write(lowerCAmelCase_ )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]:
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_a : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.7z'
with pyazr.SevenZipFile(lowerCAmelCase_ , 'w' ) as archive:
archive.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict:
import tarfile
_a : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.tar'
with tarfile.TarFile(lowerCAmelCase_ , 'w' ) as f:
f.add(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[str, Any]:
import lzma
_a : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz'
_a : int = bytes(lowerCAmelCase_ , 'utf-8' )
with lzma.open(lowerCAmelCase_ , 'wb' ) as f:
f.write(lowerCAmelCase_ )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]:
import zipfile
_a : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.zip'
with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f:
f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]:
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_a : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.zst'
_a : Optional[Any] = bytes(lowerCAmelCase_ , 'utf-8' )
with zstd.open(lowerCAmelCase_ , 'wb' ) as f:
f.write(lowerCAmelCase_ )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]:
_a : Any = tmp_path_factory.mktemp('data' ) / 'file.xml'
_a : int = textwrap.dedent(
'\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' )
with open(lowerCAmelCase_ , 'w' ) as f:
f.write(lowerCAmelCase_ )
return filename
__lowerCAmelCase = [
{'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0},
{'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0},
{'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0},
{'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0},
]
__lowerCAmelCase = [
{'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0},
{'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0},
]
__lowerCAmelCase = {
'''col_1''': ['''0''', '''1''', '''2''', '''3'''],
'''col_2''': [0, 1, 2, 3],
'''col_3''': [0.0, 1.0, 2.0, 3.0],
}
__lowerCAmelCase = [
{'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0},
{'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1},
]
__lowerCAmelCase = [
{'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0},
{'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0},
{'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0},
{'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0},
]
@pytest.fixture(scope='session' )
def __lowerCamelCase ( ) -> List[str]:
return DATA_DICT_OF_LISTS
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> int:
_a : Dict = datasets.Dataset.from_dict(lowerCAmelCase_ )
_a : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' )
dataset.map(cache_file_name=lowerCAmelCase_ )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> int:
_a : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' )
with contextlib.closing(sqlitea.connect(lowerCAmelCase_ ) ) as con:
_a : Tuple = con.cursor()
cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' )
for item in DATA:
cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]:
_a : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' )
with open(lowerCAmelCase_ , 'w' , newline='' ) as f:
_a : Dict = csv.DictWriter(lowerCAmelCase_ , fieldnames=['col_1', 'col_2', 'col_3'] )
writer.writeheader()
for item in DATA:
writer.writerow(lowerCAmelCase_ )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> Tuple:
_a : int = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' )
with open(lowerCAmelCase_ , 'w' , newline='' ) as f:
_a : int = csv.DictWriter(lowerCAmelCase_ , fieldnames=['col_1', 'col_2', 'col_3'] )
writer.writeheader()
for item in DATA:
writer.writerow(lowerCAmelCase_ )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict:
import bza
_a : str = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2'
with open(lowerCAmelCase_ , 'rb' ) as f:
_a : Optional[Any] = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(lowerCAmelCase_ , 'wb' ) as f:
f.write(lowerCAmelCase_ )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict:
_a : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip'
with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f:
f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) )
f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any:
_a : str = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip'
with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f:
f.write(lowerCAmelCase_ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) )
f.write(lowerCAmelCase_ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]:
_a : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip'
with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f:
f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) )
f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> str:
_a : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' )
_a : Optional[int] = pa.schema(
{
'col_1': pa.string(),
'col_2': pa.intaa(),
'col_3': pa.floataa(),
} )
with open(lowerCAmelCase_ , 'wb' ) as f:
_a : Optional[int] = pq.ParquetWriter(lowerCAmelCase_ , schema=lowerCAmelCase_ )
_a : List[str] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCAmelCase_ ) )] for k in DATA[0]} , schema=lowerCAmelCase_ )
writer.write_table(lowerCAmelCase_ )
writer.close()
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]:
_a : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' )
_a : Tuple = {'data': DATA}
with open(lowerCAmelCase_ , 'w' ) as f:
json.dump(lowerCAmelCase_ , lowerCAmelCase_ )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> str:
_a : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' )
_a : Optional[int] = {'data': DATA_DICT_OF_LISTS}
with open(lowerCAmelCase_ , 'w' ) as f:
json.dump(lowerCAmelCase_ , lowerCAmelCase_ )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> int:
_a : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' )
with open(lowerCAmelCase_ , 'w' ) as f:
for item in DATA:
f.write(json.dumps(lowerCAmelCase_ ) + '\n' )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[int]:
_a : int = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' )
with open(lowerCAmelCase_ , 'w' ) as f:
for item in DATA:
f.write(json.dumps(lowerCAmelCase_ ) + '\n' )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> Dict:
_a : int = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' )
with open(lowerCAmelCase_ , 'w' ) as f:
for item in DATA_312:
f.write(json.dumps(lowerCAmelCase_ ) + '\n' )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> Dict:
_a : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' )
with open(lowerCAmelCase_ , 'w' ) as f:
for item in DATA_STR:
f.write(json.dumps(lowerCAmelCase_ ) + '\n' )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict:
import gzip
_a : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' )
with open(lowerCAmelCase_ , 'rb' ) as orig_file:
with gzip.open(lowerCAmelCase_ , 'wb' ) as zipped_file:
zipped_file.writelines(lowerCAmelCase_ )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str:
import gzip
_a : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' )
with open(lowerCAmelCase_ , 'rb' ) as orig_file:
with gzip.open(lowerCAmelCase_ , 'wb' ) as zipped_file:
zipped_file.writelines(lowerCAmelCase_ )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]:
_a : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip'
with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f:
f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) )
f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]:
_a : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip'
with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f:
f.write(lowerCAmelCase_ , arcname=os.path.join('nested' , os.path.basename(lowerCAmelCase_ ) ) )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int:
_a : Tuple = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip'
with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f:
f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) )
f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]:
_a : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar'
with tarfile.TarFile(lowerCAmelCase_ , 'w' ) as f:
f.add(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) )
f.add(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]:
_a : Any = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar'
with tarfile.TarFile(lowerCAmelCase_ , 'w' ) as f:
f.add(lowerCAmelCase_ , arcname=os.path.join('nested' , os.path.basename(lowerCAmelCase_ ) ) )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]:
_a : Any = ['0', '1', '2', '3']
_a : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' )
with open(lowerCAmelCase_ , 'w' ) as f:
for item in data:
f.write(item + '\n' )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]:
_a : List[Any] = ['0', '1', '2', '3']
_a : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' )
with open(lowerCAmelCase_ , 'w' ) as f:
for item in data:
f.write(item + '\n' )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> Tuple:
_a : List[str] = ['0', '1', '2', '3']
_a : Any = tmp_path_factory.mktemp('data' ) / 'dataset.abc'
with open(lowerCAmelCase_ , 'w' ) as f:
for item in data:
f.write(item + '\n' )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]:
_a : Dict = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip'
with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f:
f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) )
f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]:
_a : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip'
with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f:
f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) )
f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict:
_a : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip'
with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f:
f.write(lowerCAmelCase_ , arcname=os.path.basename('unsupported.ext' ) )
f.write(lowerCAmelCase_ , arcname=os.path.basename('unsupported_2.ext' ) )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> int:
_a : int = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] )
_a : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' )
with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f:
f.write(lowerCAmelCase_ )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( ) -> List[str]:
return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' )
@pytest.fixture(scope='session' )
def __lowerCamelCase ( ) -> Union[str, Any]:
return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' )
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]:
_a : Dict = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip'
with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f:
f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) )
f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ).replace('.jpg' , '2.jpg' ) )
return path
@pytest.fixture(scope='session' )
def __lowerCamelCase ( lowerCAmelCase_ ) -> str:
_a : Tuple = tmp_path_factory.mktemp('data_dir' )
(data_dir / "subdir").mkdir()
with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f:
f.write('foo\n' * 10 )
with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f:
f.write('bar\n' * 10 )
# hidden file
with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f:
f.write('bar\n' * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f:
f.write('foo\n' * 10 )
with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f:
f.write('bar\n' * 10 )
return data_dir
| 89 |
from typing import Dict
import numpy as np
import torch
from . import residue_constants as rc
from .tensor_utils import tensor_tree_map, tree_map
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = []
lowercase__ = []
lowercase__ = []
for rt in rc.restypes:
lowercase__ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]]
restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] )
lowercase__ = {name: i for i, name in enumerate(lowerCamelCase_ )}
restype_atomaa_to_atomaa_list.append(
[(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] )
restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] )
# Add dummy mapping for restype 'UNK'
restype_atomaa_to_atomaa_list.append([0] * 14 )
restype_atomaa_to_atomaa_list.append([0] * 37 )
restype_atomaa_mask_list.append([0.0] * 14 )
lowercase__ = torch.tensor(
lowerCamelCase_ , dtype=torch.intaa , device=protein['''aatype'''].device , )
lowercase__ = torch.tensor(
lowerCamelCase_ , dtype=torch.intaa , device=protein['''aatype'''].device , )
lowercase__ = torch.tensor(
lowerCamelCase_ , dtype=torch.floataa , device=protein['''aatype'''].device , )
lowercase__ = protein['''aatype'''].to(torch.long )
# create the mapping for (residx, atom14) --> atom37, i.e. an array
# with shape (num_res, 14) containing the atom37 indices for this protein
lowercase__ = restype_atomaa_to_atomaa[protein_aatype]
lowercase__ = restype_atomaa_mask[protein_aatype]
lowercase__ = residx_atomaa_mask
lowercase__ = residx_atomaa_to_atomaa.long()
# create the gather indices for mapping back
lowercase__ = restype_atomaa_to_atomaa[protein_aatype]
lowercase__ = residx_atomaa_to_atomaa.long()
# create the corresponding mask
lowercase__ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device )
for restype, restype_letter in enumerate(rc.restypes ):
lowercase__ = rc.restype_atoa[restype_letter]
lowercase__ = rc.residue_atoms[restype_name]
for atom_name in atom_names:
lowercase__ = rc.atom_order[atom_name]
lowercase__ = 1
lowercase__ = restype_atomaa_mask[protein_aatype]
lowercase__ = residx_atomaa_mask
return protein
def a ( lowerCamelCase_ ):
'''simple docstring'''
lowercase__ = tree_map(lambda lowerCamelCase_ : torch.tensor(lowerCamelCase_ , device=batch['''aatype'''].device ) , lowerCamelCase_ , np.ndarray )
lowercase__ = tensor_tree_map(lambda lowerCamelCase_ : np.array(lowerCamelCase_ ) , make_atomaa_masks(lowerCamelCase_ ) )
return out
| 207 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ : List[Any] = {
"configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Tuple = [
"SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Swinv2ForImageClassification",
"Swinv2ForMaskedImageModeling",
"Swinv2Model",
"Swinv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 357 |
'''simple docstring'''
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
lowerCAmelCase_ : Any = logging.getLogger(__name__)
class __lowerCAmelCase ( __a ):
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ):
_UpperCAmelCase : str = self.layer[current_layer](lowerCAmelCase__ , lowerCAmelCase__ , head_mask[current_layer] )
_UpperCAmelCase : List[Any] = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"""The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , __a , )
class __lowerCAmelCase ( __a ):
def __init__(self , lowerCAmelCase__ ):
super().__init__(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = BertEncoderWithPabee(lowerCAmelCase__ )
self.init_weights()
_UpperCAmelCase : List[str] = 0
_UpperCAmelCase : Union[str, Any] = 0
_UpperCAmelCase : Tuple = 0
_UpperCAmelCase : int = 0
def snake_case_ (self , lowerCAmelCase__ ):
_UpperCAmelCase : Union[str, Any] = threshold
def snake_case_ (self , lowerCAmelCase__ ):
_UpperCAmelCase : Union[str, Any] = patience
def snake_case_ (self ):
_UpperCAmelCase : int = 0
_UpperCAmelCase : Optional[Any] = 0
def snake_case_ (self ):
_UpperCAmelCase : Union[str, Any] = self.inference_layers_num / self.inference_instances_num
_UpperCAmelCase : Optional[int] = (
F"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="
F" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"
)
print(lowerCAmelCase__ )
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
def snake_case_ (self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=False , ):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" )
elif input_ids is not None:
_UpperCAmelCase : Optional[Any] = input_ids.size()
elif inputs_embeds is not None:
_UpperCAmelCase : str = inputs_embeds.size()[:-1]
else:
raise ValueError("""You have to specify either input_ids or inputs_embeds""" )
_UpperCAmelCase : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
_UpperCAmelCase : Optional[Any] = torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ )
if token_type_ids is None:
_UpperCAmelCase : Optional[int] = torch.zeros(lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
_UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = encoder_hidden_states.size()
_UpperCAmelCase : List[str] = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
_UpperCAmelCase : Tuple = torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = self.invert_attention_mask(lowerCAmelCase__ )
else:
_UpperCAmelCase : List[str] = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
_UpperCAmelCase : Any = self.get_head_mask(lowerCAmelCase__ , self.config.num_hidden_layers )
_UpperCAmelCase : int = self.embeddings(
input_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = embedding_output
if self.training:
_UpperCAmelCase : Union[str, Any] = []
for i in range(self.config.num_hidden_layers ):
_UpperCAmelCase : Tuple = self.encoder.adaptive_forward(
lowerCAmelCase__ , current_layer=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ )
_UpperCAmelCase : Any = self.pooler(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = output_layers[i](output_dropout(lowerCAmelCase__ ) )
res.append(lowerCAmelCase__ )
elif self.patience == 0: # Use all layers for inference
_UpperCAmelCase : int = self.encoder(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , )
_UpperCAmelCase : List[str] = self.pooler(encoder_outputs[0] )
_UpperCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase__ )]
else:
_UpperCAmelCase : Union[str, Any] = 0
_UpperCAmelCase : Optional[Any] = None
_UpperCAmelCase : int = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
_UpperCAmelCase : int = self.encoder.adaptive_forward(
lowerCAmelCase__ , current_layer=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = self.pooler(lowerCAmelCase__ )
_UpperCAmelCase : int = output_layers[i](lowerCAmelCase__ )
if regression:
_UpperCAmelCase : List[Any] = logits.detach()
if patient_result is not None:
_UpperCAmelCase : Union[str, Any] = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
_UpperCAmelCase : List[str] = 0
else:
_UpperCAmelCase : Optional[int] = logits.detach().argmax(dim=1 )
if patient_result is not None:
_UpperCAmelCase : str = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase__ ) ):
patient_counter += 1
else:
_UpperCAmelCase : Tuple = 0
_UpperCAmelCase : List[str] = logits
if patient_counter == self.patience:
break
_UpperCAmelCase : List[str] = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"""Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks. """ , __a , )
class __lowerCAmelCase ( __a ):
def __init__(self , lowerCAmelCase__ ):
super().__init__(lowerCAmelCase__ )
_UpperCAmelCase : int = config.num_labels
_UpperCAmelCase : List[Any] = BertModelWithPabee(lowerCAmelCase__ )
_UpperCAmelCase : int = nn.Dropout(config.hidden_dropout_prob )
_UpperCAmelCase : str = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
def snake_case_ (self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ):
_UpperCAmelCase : Optional[int] = self.bert(
input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
_UpperCAmelCase : Any = (logits[-1],)
if labels is not None:
_UpperCAmelCase : Union[str, Any] = None
_UpperCAmelCase : int = 0
for ix, logits_item in enumerate(lowerCAmelCase__ ):
if self.num_labels == 1:
# We are doing regression
_UpperCAmelCase : Dict = MSELoss()
_UpperCAmelCase : List[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) )
else:
_UpperCAmelCase : Optional[Any] = CrossEntropyLoss()
_UpperCAmelCase : Union[str, Any] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) )
if total_loss is None:
_UpperCAmelCase : Any = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
_UpperCAmelCase : Tuple = (total_loss / total_weights,) + outputs
return outputs
| 170 | 0 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> str: # noqa: E741
'''simple docstring'''
while r - l > 1:
snake_case_ = (l + r) // 2
if v[m] >= key:
snake_case_ = m
else:
snake_case_ = m # noqa: E741
return r
def __magic_name__ ( __UpperCAmelCase ) -> int:
'''simple docstring'''
if len(__UpperCAmelCase ) == 0:
return 0
snake_case_ = [0] * len(__UpperCAmelCase )
snake_case_ = 1
snake_case_ = v[0]
for i in range(1, len(__UpperCAmelCase ) ):
if v[i] < tail[0]:
snake_case_ = v[i]
elif v[i] > tail[length - 1]:
snake_case_ = v[i]
length += 1
else:
snake_case_ = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 56 |
'''simple docstring'''
# Algorithm for the pigeonhole sorting
def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] ) -> List[Any]:
_lowerCAmelCase : List[Any] = min(_lowerCamelCase ) # min() finds the minimum value
_lowerCAmelCase : Tuple = max(_lowerCamelCase ) # max() finds the maximum value
_lowerCAmelCase : int = max_val - min_val + 1 # size is difference of max and min values plus one
# list of pigeonholes of size equal to the variable size
_lowerCAmelCase : Dict = [0] * size
# Populate the pigeonholes.
for x in a:
assert isinstance(_lowerCamelCase , _lowerCamelCase ), "integers only please"
holes[x - min_val] += 1
# Putting the elements back into the array in an order.
_lowerCAmelCase : Any = 0
for count in range(_lowerCamelCase ):
while holes[count] > 0:
holes[count] -= 1
_lowerCAmelCase : Optional[int] = count + min_val
i += 1
def _UpperCAmelCase ( ) -> Optional[int]:
_lowerCAmelCase : Optional[int] = [8, 3, 2, 7, 4, 6, 8]
pigeonhole_sort(_lowerCamelCase )
print("""Sorted order is:""" , """ """.join(_lowerCamelCase ) )
if __name__ == "__main__":
main()
| 309 | 0 |
import numpy as np
from scipy.spatial.distance import cdist
from sklearn.metrics import fa_score
import datasets
__snake_case : Tuple ='\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n'
__snake_case : str ='\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n'
__snake_case : Tuple ='\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n'
def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Any):
'''simple docstring'''
return float((preds == labels).mean())
def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : Optional[int]):
'''simple docstring'''
lowerCAmelCase__ : Optional[int] = simple_accuracy(lowerCamelCase_ ,lowerCamelCase_)
lowerCAmelCase__ : Any = float(fa_score(y_true=lowerCamelCase_ ,y_pred=lowerCamelCase_))
return {
"accuracy": acc,
"f1": fa,
}
def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : Tuple):
'''simple docstring'''
lowerCAmelCase__ : List[Any] = np.array(lowerCamelCase_)
lowerCAmelCase__ : List[Any] = np.array(lowerCamelCase_)
lowerCAmelCase__ : Any = en_sentvecs.shape[0]
# mean centering
lowerCAmelCase__ : Tuple = en_sentvecs - np.mean(lowerCamelCase_ ,axis=0)
lowerCAmelCase__ : Optional[int] = in_sentvecs - np.mean(lowerCamelCase_ ,axis=0)
lowerCAmelCase__ : Any = cdist(lowerCamelCase_ ,lowerCamelCase_ ,'''cosine''')
lowerCAmelCase__ : Tuple = np.array(range(lowerCamelCase_))
lowerCAmelCase__ : List[str] = sim.argsort(axis=1)[:, :10]
lowerCAmelCase__ : Optional[int] = np.any(preds == actual[:, None] ,axis=1)
return float(matches.mean())
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class lowerCamelCase__ ( datasets.Metric):
'''simple docstring'''
def lowerCAmelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
if self.config_name not in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"cvit-mkb-clsr",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
"wiki-ner",
]:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", '''
'''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", '''
'''"wiki-ner"]''' )
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'''predictions''': datasets.Value('''int64''' )
if self.config_name != '''cvit-mkb-clsr'''
else datasets.Sequence(datasets.Value('''float32''' ) ),
'''references''': datasets.Value('''int64''' )
if self.config_name != '''cvit-mkb-clsr'''
else datasets.Sequence(datasets.Value('''float32''' ) ),
} ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None ,)
def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
if self.config_name == "cvit-mkb-clsr":
return {"precision@10": precision_at_aa(__lowerCamelCase ,__lowerCamelCase )}
elif self.config_name in ["wiki-ner"]:
return acc_and_fa(__lowerCamelCase ,__lowerCamelCase )
elif self.config_name in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
]:
return {"accuracy": simple_accuracy(__lowerCamelCase ,__lowerCamelCase )}
else:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", '''
'''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", '''
'''"wiki-ner"]''' )
| 352 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case : Any =logging.get_logger(__name__)
__snake_case : Tuple ={
'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json',
# See all ViT MSN models at https://huggingface.co/models?filter=vit_msn
}
class lowerCamelCase__ ( lowerCamelCase__):
'''simple docstring'''
snake_case_ ="""vit_msn"""
def __init__(self ,__lowerCamelCase=7_68 ,__lowerCamelCase=12 ,__lowerCamelCase=12 ,__lowerCamelCase=30_72 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.02 ,__lowerCamelCase=1e-06 ,__lowerCamelCase=2_24 ,__lowerCamelCase=16 ,__lowerCamelCase=3 ,__lowerCamelCase=True ,**__lowerCamelCase ,) -> Any:
"""simple docstring"""
super().__init__(**__lowerCamelCase )
lowerCAmelCase__ : List[Any] = hidden_size
lowerCAmelCase__ : str = num_hidden_layers
lowerCAmelCase__ : List[str] = num_attention_heads
lowerCAmelCase__ : Optional[int] = intermediate_size
lowerCAmelCase__ : List[Any] = hidden_act
lowerCAmelCase__ : Tuple = hidden_dropout_prob
lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob
lowerCAmelCase__ : int = initializer_range
lowerCAmelCase__ : Union[str, Any] = layer_norm_eps
lowerCAmelCase__ : List[str] = image_size
lowerCAmelCase__ : str = patch_size
lowerCAmelCase__ : Optional[int] = num_channels
lowerCAmelCase__ : int = qkv_bias
| 94 | 0 |
from __future__ import annotations
import time
import numpy as np
UpperCAmelCase_ = [8, 5, 9, 7]
UpperCAmelCase_ = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
UpperCAmelCase_ = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class lowercase__ :
'''simple docstring'''
def __init__( self, __magic_name__, __magic_name__, __magic_name__, ) -> None:
"""simple docstring"""
UpperCamelCase__ : Optional[Any] = claim_vector
UpperCamelCase__ : List[str] = allocated_resources_table
UpperCamelCase__ : List[str] = maximum_claim_table
def UpperCamelCase__ ( self ) -> list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def UpperCamelCase__ ( self ) -> list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def UpperCamelCase__ ( self ) -> list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__SCREAMING_SNAKE_CASE ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def UpperCamelCase__ ( self ) -> dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(__SCREAMING_SNAKE_CASE ): i for i in self.__need()}
def UpperCamelCase__ ( self, **__magic_name__ ) -> None:
"""simple docstring"""
UpperCamelCase__ : Optional[Any] = self.__need()
UpperCamelCase__ : Optional[Any] = self.__allocated_resources_table
UpperCamelCase__ : Optional[Any] = self.__available_resources()
UpperCamelCase__ : Dict = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print('''_''' * 50 + '''\n''' )
while need_list:
UpperCamelCase__ : List[str] = False
for each_need in need_list:
UpperCamelCase__ : int = True
for index, need in enumerate(__SCREAMING_SNAKE_CASE ):
if need > available_resources[index]:
UpperCamelCase__ : List[Any] = False
break
if execution:
UpperCamelCase__ : Tuple = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
UpperCamelCase__ : Dict = original_need_index
print(f"Process {process_number + 1} is executing." )
# remove the process run from stack
need_list.remove(__SCREAMING_SNAKE_CASE )
# update available/freed resources stack
UpperCamelCase__ : List[str] = np.array(__SCREAMING_SNAKE_CASE ) + np.array(
alloc_resources_table[process_number] )
print(
'''Updated available resource stack for processes: '''
+ ''' '''.join([str(__SCREAMING_SNAKE_CASE ) for x in available_resources] ) )
break
if safe:
print('''The process is in a safe state.\n''' )
else:
print('''System in unsafe state. Aborting...\n''' )
break
def UpperCamelCase__ ( self ) -> Dict:
"""simple docstring"""
print(''' ''' * 9 + '''Allocated Resource Table''' )
for item in self.__allocated_resources_table:
print(
f"P{self.__allocated_resources_table.index(__SCREAMING_SNAKE_CASE ) + 1}"
+ ''' '''.join(f"{it:>8}" for it in item )
+ '''\n''' )
print(''' ''' * 9 + '''System Resource Table''' )
for item in self.__maximum_claim_table:
print(
f"P{self.__maximum_claim_table.index(__SCREAMING_SNAKE_CASE ) + 1}"
+ ''' '''.join(f"{it:>8}" for it in item )
+ '''\n''' )
print(
'''Current Usage by Active Processes: '''
+ ''' '''.join(str(__SCREAMING_SNAKE_CASE ) for x in self.__claim_vector ) )
print(
'''Initial Available Resources: '''
+ ''' '''.join(str(__SCREAMING_SNAKE_CASE ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 201 |
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
lowercase__ : Dict = logging.get_logger(__name__)
@add_end_docstrings(
UpperCamelCase_ , r"""
top_k (`int`, defaults to 5):
The number of predictions to return.
targets (`str` or `List[str]`, *optional*):
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting
token will be used (with a warning, and that might be slower).
""" , )
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray:
if self.framework == "tf":
lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE )
else:
raise ValueError('''Unsupported framework''' )
return masked_index
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray:
lowerCAmelCase = self.get_masked_index(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Dict[str, GenericTensor]:
if return_tensors is None:
lowerCAmelCase = self.framework
lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE )
self.ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = self.model(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model_inputs['''input_ids''']
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=None ) ->str:
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
lowerCAmelCase = target_ids.shape[0]
lowerCAmelCase = model_outputs['''input_ids'''][0]
lowerCAmelCase = model_outputs['''logits''']
if self.framework == "tf":
lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
lowerCAmelCase = outputs.numpy()
lowerCAmelCase = outputs[0, masked_index, :]
lowerCAmelCase = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 )
if target_ids is not None:
lowerCAmelCase = tf.gather_nd(tf.squeeze(__SCREAMING_SNAKE_CASE , 0 ) , target_ids.reshape(-1 , 1 ) )
lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE , 0 )
lowerCAmelCase = tf.math.top_k(__SCREAMING_SNAKE_CASE , k=__SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase = topk.values.numpy(), topk.indices.numpy()
else:
lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
lowerCAmelCase = outputs[0, masked_index, :]
lowerCAmelCase = logits.softmax(dim=-1 )
if target_ids is not None:
lowerCAmelCase = probs[..., target_ids]
lowerCAmelCase , lowerCAmelCase = probs.topk(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = []
lowerCAmelCase = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ):
lowerCAmelCase = []
for v, p in zip(_values , _predictions ):
# Copy is important since we're going to modify this array in place
lowerCAmelCase = input_ids.numpy().copy()
if target_ids is not None:
lowerCAmelCase = target_ids[p].tolist()
lowerCAmelCase = p
# Filter padding out:
lowerCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
lowerCAmelCase = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence}
row.append(__SCREAMING_SNAKE_CASE )
result.append(__SCREAMING_SNAKE_CASE )
if single_mask:
return result[0]
return result
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Optional[Any]:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = [targets]
try:
lowerCAmelCase = self.tokenizer.get_vocab()
except Exception:
lowerCAmelCase = {}
lowerCAmelCase = []
for target in targets:
lowerCAmelCase = vocab.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if id_ is None:
lowerCAmelCase = self.tokenizer(
__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , max_length=1 , truncation=__SCREAMING_SNAKE_CASE , )['''input_ids''']
if len(__SCREAMING_SNAKE_CASE ) == 0:
logger.warning(
F"The specified target token `{target}` does not exist in the model vocabulary. "
'''We cannot replace it with anything meaningful, ignoring it''' )
continue
lowerCAmelCase = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
F"The specified target token `{target}` does not exist in the model vocabulary. "
F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." )
target_ids.append(id_ )
lowerCAmelCase = list(set(__SCREAMING_SNAKE_CASE ) )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError('''At least one target must be provided when passed.''' )
lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
return target_ids
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) ->Dict:
lowerCAmelCase = {}
if targets is not None:
lowerCAmelCase = self.get_target_ids(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = target_ids
if top_k is not None:
lowerCAmelCase = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' )
return {}, {}, postprocess_params
def __call__( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
lowerCAmelCase = super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) == 1:
return outputs[0]
return outputs
| 338 | 0 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
lowercase__ :Tuple = logging.getLogger(__name__)
@dataclass
class lowercase :
lowercase_ : str =field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
lowercase_ : Optional[str] =field(
default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
lowercase_ : Optional[str] =field(
default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
lowercase_ : Optional[str] =field(
default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
lowercase_ : bool =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether tp freeze the encoder.'''} )
lowercase_ : bool =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to freeze the embeddings.'''} )
@dataclass
class lowercase :
lowercase_ : str =field(
metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} )
lowercase_ : Optional[str] =field(
default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , )
lowercase_ : Optional[int] =field(
default=1024 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
lowercase_ : Optional[int] =field(
default=128 , metadata={
'''help''': (
'''The maximum total sequence length for target text after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
lowercase_ : Optional[int] =field(
default=142 , metadata={
'''help''': (
'''The maximum total sequence length for validation target text after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded. '''
'''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used '''
'''during ``evaluate`` and ``predict``.'''
)
} , )
lowercase_ : Optional[int] =field(
default=142 , metadata={
'''help''': (
'''The maximum total sequence length for test target text after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
lowercase_ : Optional[int] =field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} )
lowercase_ : Optional[int] =field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} )
lowercase_ : Optional[int] =field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} )
lowercase_ : Optional[str] =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Source language id for translation.'''} )
lowercase_ : Optional[str] =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Target language id for translation.'''} )
lowercase_ : Optional[int] =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''# num_beams to use for evaluation.'''} )
lowercase_ : bool =field(
default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , )
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
logger.info(f'***** {split} metrics *****' )
for key in sorted(metrics.keys() ):
logger.info(f' {key} = {metrics[key]}' )
save_json(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , f'{split}_results.json' ) )
def UpperCamelCase ( ):
'''simple docstring'''
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses()
check_output_dir(lowerCAmelCase__ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase__ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowercase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
assert hasattr(lowerCAmelCase__ , lowerCAmelCase__ ), f'({config.__class__.__name__}) doesn\'t have a `{p}` attribute'
setattr(lowerCAmelCase__ , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
lowercase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowercase = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(lowerCAmelCase__ , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
lowercase = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(lowerCAmelCase__ , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(lowerCAmelCase__ )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
lowercase = SeqaSeqDataset
# Get datasets
lowercase = (
dataset_class(
lowerCAmelCase__ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_train
else None
)
lowercase = (
dataset_class(
lowerCAmelCase__ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
lowercase = (
dataset_class(
lowerCAmelCase__ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
lowercase = (
build_compute_metrics_fn(data_args.task , lowerCAmelCase__ ) if training_args.predict_with_generate else None
)
lowercase = SeqaSeqTrainer(
model=lowerCAmelCase__ , args=lowerCAmelCase__ , data_args=lowerCAmelCase__ , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , data_collator=SeqaSeqDataCollator(
lowerCAmelCase__ , lowerCAmelCase__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , )
lowercase = {}
# Training
if training_args.do_train:
logger.info('''*** Train ***''' )
lowercase = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
lowercase = train_result.metrics
lowercase = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('''train''' , lowerCAmelCase__ , training_args.output_dir )
all_metrics.update(lowerCAmelCase__ )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowercase = trainer.evaluate(metric_key_prefix='''val''' )
lowercase = data_args.n_val
lowercase = round(metrics['''val_loss'''] , 4 )
if trainer.is_world_process_zero():
handle_metrics('''val''' , lowerCAmelCase__ , training_args.output_dir )
all_metrics.update(lowerCAmelCase__ )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
lowercase = trainer.predict(test_dataset=lowerCAmelCase__ , metric_key_prefix='''test''' )
lowercase = test_output.metrics
lowercase = data_args.n_test
if trainer.is_world_process_zero():
lowercase = round(metrics['''test_loss'''] , 4 )
handle_metrics('''test''' , lowerCAmelCase__ , training_args.output_dir )
all_metrics.update(lowerCAmelCase__ )
if training_args.predict_with_generate:
lowercase = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ )
lowercase = lmap(str.strip , lowerCAmelCase__ )
write_txt_file(lowerCAmelCase__ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) )
if trainer.is_world_process_zero():
save_json(lowerCAmelCase__ , os.path.join(training_args.output_dir , '''all_results.json''' ) )
return all_metrics
def UpperCamelCase ( lowerCAmelCase__ ):
'''simple docstring'''
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 97 |
import numpy as np
import datasets
lowercase__ :Dict = "\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n"
lowercase__ :List[Any] = "\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n"
lowercase__ :Dict = "\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {'mahalanobis': array([0.5])}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase ( datasets.Metric ):
def A__ ( self):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'''X''': datasets.Sequence(datasets.Value('''float''' ,id='''sequence''') ,id='''X'''),
}) ,)
def A__ ( self ,A__ ,A__):
# convert to numpy arrays
lowercase = np.array(A__)
lowercase = np.array(A__)
# Assert that arrays are 2D
if len(X.shape) != 2:
raise ValueError('''Expected `X` to be a 2D vector''')
if len(reference_distribution.shape) != 2:
raise ValueError('''Expected `reference_distribution` to be a 2D vector''')
if reference_distribution.shape[0] < 2:
raise ValueError(
'''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''')
# Get mahalanobis distance for each prediction
lowercase = X - np.mean(A__)
lowercase = np.cov(reference_distribution.T)
try:
lowercase = np.linalg.inv(A__)
except np.linalg.LinAlgError:
lowercase = np.linalg.pinv(A__)
lowercase = np.dot(A__ ,A__)
lowercase = np.dot(A__ ,X_minus_mu.T).diagonal()
return {"mahalanobis": mahal_dist}
| 97 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _SCREAMING_SNAKE_CASE ( a__ , a__ , unittest.TestCase):
_UpperCamelCase:Union[str, Any] = StableDiffusionSAGPipeline
_UpperCamelCase:Optional[int] = TEXT_TO_IMAGE_PARAMS
_UpperCamelCase:int = TEXT_TO_IMAGE_BATCH_PARAMS
_UpperCamelCase:Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS
_UpperCamelCase:Any = TEXT_TO_IMAGE_IMAGE_PARAMS
_UpperCamelCase:Tuple = False
def _snake_case ( self )-> List[str]:
torch.manual_seed(0 )
lowerCamelCase_ =UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
lowerCamelCase_ =DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , )
torch.manual_seed(0 )
lowerCamelCase_ =AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
lowerCamelCase_ =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
lowerCamelCase_ =CLIPTextModel(lowerCAmelCase__ )
lowerCamelCase_ =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
lowerCamelCase_ ={
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )-> Optional[int]:
if str(lowerCAmelCase__ ).startswith("""mps""" ):
lowerCamelCase_ =torch.manual_seed(lowerCAmelCase__ )
else:
lowerCamelCase_ =torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
lowerCamelCase_ ={
"prompt": ".",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 1.0,
"sag_scale": 1.0,
"output_type": "numpy",
}
return inputs
def _snake_case ( self )-> List[str]:
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class _SCREAMING_SNAKE_CASE ( unittest.TestCase):
def _snake_case ( self )-> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self )-> Dict:
lowerCamelCase_ =StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" )
lowerCamelCase_ =sag_pipe.to(lowerCAmelCase__ )
sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
lowerCamelCase_ ="."
lowerCamelCase_ =torch.manual_seed(0 )
lowerCamelCase_ =sag_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" )
lowerCamelCase_ =output.images
lowerCamelCase_ =image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowerCamelCase_ =np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2
def _snake_case ( self )-> Optional[int]:
lowerCamelCase_ =StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
lowerCamelCase_ =sag_pipe.to(lowerCAmelCase__ )
sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
lowerCamelCase_ ="."
lowerCamelCase_ =torch.manual_seed(0 )
lowerCamelCase_ =sag_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" )
lowerCamelCase_ =output.images
lowerCamelCase_ =image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowerCamelCase_ =np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2
def _snake_case ( self )-> Dict:
lowerCamelCase_ =StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
lowerCamelCase_ =sag_pipe.to(lowerCAmelCase__ )
sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
lowerCamelCase_ ="."
lowerCamelCase_ =torch.manual_seed(0 )
lowerCamelCase_ =sag_pipe(
[prompt] , width=768 , height=512 , generator=lowerCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , )
lowerCamelCase_ =output.images
assert image.shape == (1, 512, 768, 3)
| 154 |
"""simple docstring"""
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
a : Union[str, Any] = logging.getLogger(__name__)
def _SCREAMING_SNAKE_CASE ( ) ->Tuple:
'''simple docstring'''
a : Dict = argparse.ArgumentParser(
description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." )
parser.add_argument("--file_path" , type=_lowercase , default="data/dump.txt" , help="The path to the data." )
parser.add_argument("--tokenizer_type" , type=_lowercase , default="bert" , choices=["bert", "roberta", "gpt2"] )
parser.add_argument("--tokenizer_name" , type=_lowercase , default="bert-base-uncased" , help="The tokenizer to use." )
parser.add_argument("--dump_file" , type=_lowercase , default="data/dump" , help="The dump file prefix." )
a : Dict = parser.parse_args()
logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" )
if args.tokenizer_type == "bert":
a : Optional[Any] = BertTokenizer.from_pretrained(args.tokenizer_name )
a : str = tokenizer.special_tokens_map["cls_token"] # `[CLS]`
a : List[str] = tokenizer.special_tokens_map["sep_token"] # `[SEP]`
elif args.tokenizer_type == "roberta":
a : Tuple = RobertaTokenizer.from_pretrained(args.tokenizer_name )
a : Union[str, Any] = tokenizer.special_tokens_map["cls_token"] # `<s>`
a : str = tokenizer.special_tokens_map["sep_token"] # `</s>`
elif args.tokenizer_type == "gpt2":
a : List[Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name )
a : Optional[int] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>`
a : List[Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>`
logger.info(F"""Loading text from {args.file_path}""" )
with open(args.file_path , "r" , encoding="utf8" ) as fp:
a : List[Any] = fp.readlines()
logger.info("Start encoding" )
logger.info(F"""{len(_lowercase )} examples to process.""" )
a : Optional[Any] = []
a : Optional[Any] = 0
a : int = 1_0000
a : Dict = time.time()
for text in data:
a : List[Any] = F"""{bos} {text.strip()} {sep}"""
a : Optional[int] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase )
rslt.append(_lowercase )
iter += 1
if iter % interval == 0:
a : Optional[Any] = time.time()
logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" )
a : Optional[Any] = time.time()
logger.info("Finished binarization" )
logger.info(F"""{len(_lowercase )} examples processed.""" )
a : Optional[int] = F"""{args.dump_file}.{args.tokenizer_name}.pickle"""
a : Tuple = tokenizer.vocab_size
if vocab_size < (1 << 16):
a : Optional[int] = [np.uintaa(_lowercase ) for d in rslt]
else:
a : Optional[Any] = [np.intaa(_lowercase ) for d in rslt]
random.shuffle(rslt_ )
logger.info(F"""Dump to {dp_file}""" )
with open(_lowercase , "wb" ) as handle:
pickle.dump(rslt_ , _lowercase , protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 105 | 0 |
'''simple docstring'''
snake_case__ : List[str] = {str(digit): digit**5 for digit in range(10)}
def _lowerCamelCase ( lowerCamelCase_ : int ):
"""simple docstring"""
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase_ ) )
def _lowerCamelCase ( ):
"""simple docstring"""
return sum(
number
for number in range(1000 , 1000000 )
if number == digits_fifth_powers_sum(lowerCamelCase_ ) )
if __name__ == "__main__":
print(solution())
| 274 |
'''simple docstring'''
import os
import time
import numpy as np
import onnxruntime as ort
snake_case__ : Optional[int] = '''1'''
snake_case__ : str = '''0'''
snake_case__ : List[str] = '''1'''
snake_case__ : List[str] = ort.SessionOptions()
snake_case__ : str = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
print('''Create inference session...''')
snake_case__ : Dict = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider''']
snake_case__ : Dict = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider)
snake_case__ : str = ort.RunOptions()
snake_case__ : List[Any] = 128
snake_case__ : Union[str, Any] = 1
snake_case__ : Tuple = np.ones((batch, sequence), dtype=np.intaa)
snake_case__ : Tuple = np.ones((batch, sequence), dtype=np.intaa)
snake_case__ : Union[str, Any] = np.ones((batch, sequence), dtype=np.intaa)
print('''Warm up phase...''')
sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print('''Start inference...''')
snake_case__ : Union[str, Any] = time.time()
snake_case__ : str = 2000
snake_case__ : Tuple = {}
for iter in range(max_iters):
snake_case__ : str = sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 1000 / max_iters))
| 274 | 1 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class __snake_case :
def __init__( self ,snake_case ,snake_case=2 ,snake_case=True ,snake_case=False ,snake_case=10 ,snake_case=3 ,snake_case=32 * 4 ,snake_case=32 * 6 ,snake_case=4 ,snake_case=32 ,):
'''simple docstring'''
lowercase : Optional[Any] = parent
lowercase : Tuple = batch_size
lowercase : Optional[int] = is_training
lowercase : Optional[Any] = use_auxiliary_loss
lowercase : str = num_queries
lowercase : Optional[int] = num_channels
lowercase : Tuple = min_size
lowercase : int = max_size
lowercase : int = num_labels
lowercase : Optional[Any] = mask_feature_size
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
lowerCamelCase_ )
lowercase : int = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=lowerCamelCase_ )
lowercase : List[str] = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=lowerCamelCase_ ) > 0.5
).float()
lowercase : Any = (torch.rand((self.batch_size, self.num_labels) ,device=lowerCamelCase_ ) > 0.5).long()
lowercase : List[str] = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] ,) ,decoder_config=DetrConfig(
decoder_ffn_dim=128 ,num_queries=self.num_queries ,decoder_attention_heads=2 ,d_model=self.mask_feature_size ,) ,mask_feature_size=self.mask_feature_size ,fpn_feature_size=self.mask_feature_size ,num_channels=self.num_channels ,num_labels=self.num_labels ,)
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : int = self.prepare_config_and_inputs()
lowercase : Any = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ):
'''simple docstring'''
lowercase : Dict = output.encoder_hidden_states
lowercase : Any = output.pixel_decoder_hidden_states
lowercase : Dict = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(lowerCamelCase_ ) ,len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase_ ) ,len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase_ ) ,config.decoder_config.decoder_layers )
def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=False ):
'''simple docstring'''
with torch.no_grad():
lowercase : str = MaskFormerModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
lowercase : Dict = model(pixel_values=lowerCamelCase_ ,pixel_mask=lowerCamelCase_ )
lowercase : Optional[int] = model(lowerCamelCase_ ,output_hidden_states=lowerCamelCase_ )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.mask_feature_size) ,)
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(lowerCamelCase_ ,lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ):
'''simple docstring'''
lowercase : Optional[int] = MaskFormerForInstanceSegmentation(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
def comm_check_on_output(snake_case ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,)
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
lowercase : Dict = model(pixel_values=lowerCamelCase_ ,pixel_mask=lowerCamelCase_ )
lowercase : Any = model(lowerCamelCase_ )
comm_check_on_output(lowerCamelCase_ )
lowercase : Union[str, Any] = model(
pixel_values=lowerCamelCase_ ,pixel_mask=lowerCamelCase_ ,mask_labels=lowerCamelCase_ ,class_labels=lowerCamelCase_ )
comm_check_on_output(lowerCamelCase_ )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) )
@require_torch
class __snake_case ( __snake_case , __snake_case , unittest.TestCase ):
_a : str= (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
_a : Any= (
{"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
_a : Dict= False
_a : List[Any]= False
_a : int= False
_a : int= False
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : List[Any] = MaskFormerModelTester(self )
lowercase : List[Any] = ConfigTester(self ,config_class=lowerCamelCase_ ,has_text_modality=lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : int = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(lowerCamelCase_ ,**lowerCamelCase_ ,output_hidden_states=lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowerCamelCase_ )
@unittest.skip(reason="""MaskFormer does not use inputs_embeds""" )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="""MaskFormer is not a generative model""" )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="""MaskFormer does not use token embeddings""" )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
pass
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase : str = model_class(lowerCamelCase_ )
lowercase : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase : Optional[int] = [*signature.parameters.keys()]
lowercase : int = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,lowerCamelCase_ )
@slow
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
for model_name in ["facebook/maskformer-swin-small-coco"]:
lowercase : str = MaskFormerModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Any = (self.model_tester.min_size,) * 2
lowercase : List[str] = {
"""pixel_values""": torch.randn((2, 3, *size) ,device=lowerCamelCase_ ),
"""mask_labels""": torch.randn((2, 10, *size) ,device=lowerCamelCase_ ),
"""class_labels""": torch.zeros(2 ,10 ,device=lowerCamelCase_ ).long(),
}
lowercase : Union[str, Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowerCamelCase_ )
lowercase : Dict = model(**lowerCamelCase_ )
self.assertTrue(outputs.loss is not None )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(lowerCamelCase_ ,**lowerCamelCase_ ,output_hidden_states=lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase : Any = model_class(lowerCamelCase_ ).to(lowerCamelCase_ )
lowercase : Optional[Any] = model(**lowerCamelCase_ ,output_attentions=lowerCamelCase_ )
self.assertTrue(outputs.attentions is not None )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
lowercase : str = self.all_model_classes[1]
lowercase : Dict = self.model_tester.prepare_config_and_inputs()
lowercase : Tuple = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.train()
lowercase : Optional[int] = model(lowerCamelCase_ ,mask_labels=lowerCamelCase_ ,class_labels=lowerCamelCase_ ).loss
loss.backward()
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[int] = self.all_model_classes[1]
lowercase : int = self.model_tester.prepare_config_and_inputs()
lowercase : Tuple = True
lowercase : Tuple = True
lowercase : int = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.train()
lowercase : Optional[int] = model(lowerCamelCase_ ,mask_labels=lowerCamelCase_ ,class_labels=lowerCamelCase_ )
lowercase : List[str] = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
lowercase : Optional[int] = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
lowercase : List[str] = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
lowercase : List[Any] = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=lowerCamelCase_ )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
lowercase : List[str] = 1e-4
def _snake_case( ) -> List[Any]:
lowercase : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class __snake_case ( unittest.TestCase ):
@cached_property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return (
MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" )
if is_vision_available()
else None
)
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Union[str, Any] = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(lowerCamelCase_ )
lowercase : Optional[int] = self.default_image_processor
lowercase : int = prepare_img()
lowercase : Union[str, Any] = image_processor(lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ )
lowercase : Union[str, Any] = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase_ ,(1, 3, 800, 1088) )
with torch.no_grad():
lowercase : Any = model(**lowerCamelCase_ )
lowercase : Tuple = torch.tensor(
[[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(lowerCamelCase_ )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) )
lowercase : Tuple = torch.tensor(
[[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(lowerCamelCase_ )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) )
lowercase : List[str] = torch.tensor(
[[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(lowerCamelCase_ )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : str = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(lowerCamelCase_ )
.eval()
)
lowercase : Union[str, Any] = self.default_image_processor
lowercase : Union[str, Any] = prepare_img()
lowercase : Any = image_processor(lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ )
lowercase : Optional[int] = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase_ ,(1, 3, 800, 1088) )
with torch.no_grad():
lowercase : Optional[Any] = model(**lowerCamelCase_ )
# masks_queries_logits
lowercase : Dict = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,)
lowercase : List[str] = [
[-1.3_737_124, -1.7_724_937, -1.9_364_233],
[-1.5_977_281, -1.9_867_939, -2.1_523_695],
[-1.5_795_398, -1.9_269_832, -2.093_942],
]
lowercase : str = torch.tensor(lowerCamelCase_ ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) )
# class_queries_logits
lowercase : int = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
lowercase : List[str] = torch.tensor(
[
[1.6512e00, -5.2572e00, -3.3519e00],
[3.6169e-02, -5.9025e00, -2.9313e00],
[1.0766e-04, -7.7630e00, -5.1263e00],
] ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Union[str, Any] = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" )
.to(lowerCamelCase_ )
.eval()
)
lowercase : List[Any] = self.default_image_processor
lowercase : Optional[int] = prepare_img()
lowercase : str = image_processor(lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ )
lowercase : Union[str, Any] = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase_ ,(1, 3, 800, 1088) )
with torch.no_grad():
lowercase : Tuple = model(**lowerCamelCase_ )
# masks_queries_logits
lowercase : Optional[int] = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,)
lowercase : List[Any] = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7711]]
lowercase : Optional[int] = torch.tensor(lowerCamelCase_ ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) )
# class_queries_logits
lowercase : List[str] = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
lowercase : Optional[int] = torch.tensor(
[[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,lowerCamelCase_ ,atol=lowerCamelCase_ ) )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[Any] = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(lowerCamelCase_ )
.eval()
)
lowercase : Union[str, Any] = self.default_image_processor
lowercase : int = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors="""pt""" ,)
lowercase : Any = inputs["""pixel_values"""].to(lowerCamelCase_ )
lowercase : Tuple = [el.to(lowerCamelCase_ ) for el in inputs["""mask_labels"""]]
lowercase : str = [el.to(lowerCamelCase_ ) for el in inputs["""class_labels"""]]
with torch.no_grad():
lowercase : str = model(**lowerCamelCase_ )
self.assertTrue(outputs.loss is not None )
| 20 |
from __future__ import annotations
from typing import Dict
from ...configuration_utils import PretrainedConfig
UpperCamelCase_ = {
'''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''',
'''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''',
}
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : Union[str, Any] = "ernie_m"
A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]:
super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = vocab_size
UpperCAmelCase_ : Any = hidden_size
UpperCAmelCase_ : Optional[Any] = num_hidden_layers
UpperCAmelCase_ : Union[str, Any] = num_attention_heads
UpperCAmelCase_ : List[Any] = intermediate_size
UpperCAmelCase_ : List[Any] = hidden_act
UpperCAmelCase_ : Any = hidden_dropout_prob
UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : str = max_position_embeddings
UpperCAmelCase_ : Union[str, Any] = initializer_range
UpperCAmelCase_ : Union[str, Any] = layer_norm_eps
UpperCAmelCase_ : List[Any] = classifier_dropout
UpperCAmelCase_ : str = is_decoder
UpperCAmelCase_ : List[str] = act_dropout
| 345 | 0 |
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def A (__A : Namespace ) -> Dict:
"""simple docstring"""
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
snake_case_ : int = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n"
class __snake_case ( a ):
@staticmethod
def lowerCamelCase ( _snake_case : ArgumentParser):
"""simple docstring"""
UpperCAmelCase_ = parser.add_parser(
'''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , )
train_parser.add_argument('''--model_type''' , type=_snake_case , required=_snake_case , help='''Model\'s type.''')
train_parser.add_argument(
'''--tf_checkpoint''' , type=_snake_case , required=_snake_case , help='''TensorFlow checkpoint path or folder.''')
train_parser.add_argument(
'''--pytorch_dump_output''' , type=_snake_case , required=_snake_case , help='''Path to the PyTorch saved model output.''')
train_parser.add_argument('''--config''' , type=_snake_case , default='''''' , help='''Configuration file path or folder.''')
train_parser.add_argument(
'''--finetuning_task_name''' , type=_snake_case , default=_snake_case , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , )
train_parser.set_defaults(func=_snake_case)
def __init__( self : Optional[int] , _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : str , *_snake_case : List[Any] , ):
"""simple docstring"""
UpperCAmelCase_ = logging.get_logger('''transformers-cli/converting''')
self._logger.info(F"""Loading model {model_type}""")
UpperCAmelCase_ = model_type
UpperCAmelCase_ = tf_checkpoint
UpperCAmelCase_ = pytorch_dump_output
UpperCAmelCase_ = config
UpperCAmelCase_ = finetuning_task_name
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_snake_case)
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output)
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_snake_case)
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output)
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_snake_case)
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output)
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(_snake_case)
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output)
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output)
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_snake_case)
if "ckpt" in self._tf_checkpoint.lower():
UpperCAmelCase_ = self._tf_checkpoint
UpperCAmelCase_ = ''''''
else:
UpperCAmelCase_ = self._tf_checkpoint
UpperCAmelCase_ = ''''''
convert_transfo_xl_checkpoint_to_pytorch(
_snake_case , self._config , self._pytorch_dump_output , _snake_case)
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_snake_case)
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output)
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_snake_case)
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name)
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output)
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output)
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output)
else:
raise ValueError(
'''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''')
| 7 |
import sys
def A (__A : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ = len(__A )
UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )]
UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )]
for chain_length in range(2 , __A ):
for a in range(1 , n - chain_length + 1 ):
UpperCAmelCase_ = a + chain_length - 1
UpperCAmelCase_ = sys.maxsize
for c in range(__A , __A ):
UpperCAmelCase_ = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
UpperCAmelCase_ = cost
UpperCAmelCase_ = c
return matrix, sol
def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]:
"""simple docstring"""
if i == j:
print('''A''' + str(__A ) , end=''' ''' )
else:
print('''(''' , end=''' ''' )
print_optiomal_solution(__A , __A , optimal_solution[i][j] )
print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A )
print(''')''' , end=''' ''' )
def A () -> List[str]:
"""simple docstring"""
UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25]
UpperCAmelCase_ = len(__A )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A )
print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) )
print_optiomal_solution(__A , 1 , n - 1 )
if __name__ == "__main__":
main()
| 7 | 1 |
'''simple docstring'''
def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any ):
__a , __a : Tuple = [], []
while len(_SCREAMING_SNAKE_CASE ) > 1:
__a , __a : Tuple = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE )
start.append(_SCREAMING_SNAKE_CASE )
end.append(_SCREAMING_SNAKE_CASE )
collection.remove(_SCREAMING_SNAKE_CASE )
collection.remove(_SCREAMING_SNAKE_CASE )
end.reverse()
return start + collection + end
if __name__ == "__main__":
__lowercase : List[str] = input('Enter numbers separated by a comma:\n').strip()
__lowercase : Tuple = [int(item) for item in user_input.split(',')]
print(*merge_sort(unsorted), sep=',')
| 27 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {}
class _SCREAMING_SNAKE_CASE( A ):
SCREAMING_SNAKE_CASE_ : List[Any] = '''llama'''
SCREAMING_SNAKE_CASE_ : Optional[int] = ['''past_key_values''']
def __init__( self ,SCREAMING_SNAKE_CASE__=3_20_00 ,SCREAMING_SNAKE_CASE__=40_96 ,SCREAMING_SNAKE_CASE__=1_10_08 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__="silu" ,SCREAMING_SNAKE_CASE__=20_48 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-6 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ,) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE :Optional[Any] = vocab_size
__SCREAMING_SNAKE_CASE :int = max_position_embeddings
__SCREAMING_SNAKE_CASE :List[str] = hidden_size
__SCREAMING_SNAKE_CASE :Tuple = intermediate_size
__SCREAMING_SNAKE_CASE :List[str] = num_hidden_layers
__SCREAMING_SNAKE_CASE :List[Any] = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
__SCREAMING_SNAKE_CASE :Optional[int] = num_attention_heads
__SCREAMING_SNAKE_CASE :str = num_key_value_heads
__SCREAMING_SNAKE_CASE :Union[str, Any] = hidden_act
__SCREAMING_SNAKE_CASE :List[str] = initializer_range
__SCREAMING_SNAKE_CASE :Union[str, Any] = rms_norm_eps
__SCREAMING_SNAKE_CASE :Dict = pretraining_tp
__SCREAMING_SNAKE_CASE :Optional[Any] = use_cache
__SCREAMING_SNAKE_CASE :Optional[Any] = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,tie_word_embeddings=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,)
def _UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling ,SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
f'''got {self.rope_scaling}''' )
__SCREAMING_SNAKE_CASE :Optional[Any] = self.rope_scaling.get('''type''' ,SCREAMING_SNAKE_CASE__ )
__SCREAMING_SNAKE_CASE :Optional[int] = self.rope_scaling.get('''factor''' ,SCREAMING_SNAKE_CASE__ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 191 | 0 |
from functools import reduce
__snake_case :Optional[Any] = (
'''73167176531330624919225119674426574742355349194934'''
'''96983520312774506326239578318016984801869478851843'''
'''85861560789112949495459501737958331952853208805511'''
'''12540698747158523863050715693290963295227443043557'''
'''66896648950445244523161731856403098711121722383113'''
'''62229893423380308135336276614282806444486645238749'''
'''30358907296290491560440772390713810515859307960866'''
'''70172427121883998797908792274921901699720888093776'''
'''65727333001053367881220235421809751254540594752243'''
'''52584907711670556013604839586446706324415722155397'''
'''53697817977846174064955149290862569321978468622482'''
'''83972241375657056057490261407972968652414535100474'''
'''82166370484403199890008895243450658541227588666881'''
'''16427171479924442928230863465674813919123162824586'''
'''17866458359124566529476545682848912883142607690042'''
'''24219022671055626321111109370544217506941658960408'''
'''07198403850962455444362981230987879927244284909188'''
'''84580156166097919133875499200524063689912560717606'''
'''05886116467109405077541002256983155200055935729725'''
'''71636269561882670428252483600823257530420752963450'''
)
def __snake_case ( _UpperCAmelCase = N ):
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _UpperCAmelCase , _UpperCAmelCase : str(int(_UpperCAmelCase ) * int(_UpperCAmelCase ) ) , n[i : i + 13] ) )
for i in range(len(_UpperCAmelCase ) - 12 ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 131 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__snake_case :Dict = logging.get_logger(__name__)
__snake_case :List[str] = {'''vocab_file''': '''spiece.model'''}
__snake_case :Dict = {
'''vocab_file''': {
'''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''',
}
}
class _A ( __UpperCAmelCase ):
def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]="<s>" , __SCREAMING_SNAKE_CASE : Optional[Any]="</s>" , __SCREAMING_SNAKE_CASE : Union[str, Any]="<unk>" , __SCREAMING_SNAKE_CASE : Optional[int]="<sep>" , __SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , __SCREAMING_SNAKE_CASE : List[Any]="<cls>" , __SCREAMING_SNAKE_CASE : Optional[int]="<mask>" , __SCREAMING_SNAKE_CASE : Any=["<eop>", "<eod>"] , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ):
'''simple docstring'''
__a = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else mask_token
__a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
__a = 3
__a = do_lower_case
__a = remove_space
__a = keep_accents
__a = vocab_file
__a = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(__SCREAMING_SNAKE_CASE)
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
'''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. '''
'''See https://pypi.org/project/jieba/ for installation.''')
__a = jieba
__a = str.maketrans(''' \n''' , '''\u2582\u2583''')
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def _lowerCamelCase ( self : int):
'''simple docstring'''
return len(self.sp_model)
def _lowerCamelCase ( self : str):
'''simple docstring'''
__a = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__( self : Any):
'''simple docstring'''
__a = self.__dict__.copy()
__a = None
return state
def __setstate__( self : Tuple , __SCREAMING_SNAKE_CASE : List[str]):
'''simple docstring'''
__a = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs'''):
__a = {}
__a = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Any):
'''simple docstring'''
if self.remove_space:
__a = ''' '''.join(inputs.strip().split())
else:
__a = inputs
__a = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''')
if not self.keep_accents:
__a = unicodedata.normalize('''NFKD''' , __SCREAMING_SNAKE_CASE)
__a = ''''''.join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE)])
if self.do_lower_case:
__a = outputs.lower()
return outputs
def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : str):
'''simple docstring'''
__a = self.preprocess_text(__SCREAMING_SNAKE_CASE)
__a = self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE)
__a = []
for piece in pieces:
if len(__SCREAMING_SNAKE_CASE) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit():
__a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , ''''''))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
__a = cur_pieces[1:]
else:
__a = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(__SCREAMING_SNAKE_CASE)
else:
new_pieces.append(__SCREAMING_SNAKE_CASE)
return new_pieces
def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : List[Any]):
'''simple docstring'''
return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE)
def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]):
'''simple docstring'''
return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE)
def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple):
'''simple docstring'''
__a = ''''''.join(__SCREAMING_SNAKE_CASE).replace(__SCREAMING_SNAKE_CASE , ''' ''').strip()
return out_string
def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None):
'''simple docstring'''
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE)
if token_ids_a is not None:
return ([0] * len(__SCREAMING_SNAKE_CASE)) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE)) + [1, 1]
return ([0] * len(__SCREAMING_SNAKE_CASE)) + [1, 1]
def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None):
'''simple docstring'''
__a = [self.sep_token_id]
__a = [2]
if token_ids_a is None:
return len(token_ids_a + sep) * [0] + cls_segment_id
return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id
def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None):
'''simple docstring'''
if not os.path.isdir(__SCREAMING_SNAKE_CASE):
logger.error(F'Vocabulary path ({save_directory}) should be a directory')
return
__a = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
if os.path.abspath(self.vocab_file) != os.path.abspath(__SCREAMING_SNAKE_CASE) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE)
elif not os.path.isfile(self.vocab_file):
with open(__SCREAMING_SNAKE_CASE , '''wb''') as fi:
__a = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE)
return (out_vocab_file,)
def _lowerCamelCase ( self : Any , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Any):
'''simple docstring'''
__a = super()._decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE)
__a = text.replace(''' ''' , '''''').replace('''\u2582''' , ''' ''').replace('''\u2583''' , '''\n''')
return text
| 131 | 1 |
"""simple docstring"""
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Dict=None ):
# set parameter of one layer
assert torch_layer.weight.shape == weight.shape, F"{torch_layer} layer.weight does not match"
UpperCAmelCase : List[str] = nn.Parameter(UpperCamelCase )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, F"{torch_layer} layer.bias does not match"
UpperCAmelCase : Optional[Any] = nn.Parameter(UpperCamelCase )
def _snake_case ( UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] ):
# set torch weights for 1-to-1 comparison
UpperCAmelCase : List[str] = np.asarray(weights[0] )
UpperCAmelCase : Any = np.asarray(weights[1] )
UpperCAmelCase : str = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(UpperCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(UpperCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase ) , )
set_param(
torch_layer.output.dense , torch.tensor(UpperCamelCase ).view(-1 , UpperCamelCase ).contiguous().transpose(0 , 1 ) , )
def _snake_case ( UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : Any ):
# set torch weights for 1-to-1 comparison
UpperCAmelCase : Any = np.asarray(weights[0] )
UpperCAmelCase : List[str] = np.asarray(weights[1] )
UpperCAmelCase : Tuple = np.asarray(weights[2] )
UpperCAmelCase : Optional[int] = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(UpperCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(UpperCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(UpperCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase ) , )
set_param(
torch_layer.output.dense , torch.tensor(UpperCamelCase ).view(-1 , UpperCamelCase ).contiguous().transpose(0 , 1 ) , )
def _snake_case ( UpperCamelCase : List[str] , UpperCamelCase : List[str] , UpperCamelCase : str ):
# layernorm 1
UpperCAmelCase : Union[str, Any] = weights[0][0][0]
UpperCAmelCase : Tuple = np.asarray(layer_norm_a[0] )
UpperCAmelCase : str = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(UpperCamelCase ) , torch.tensor(UpperCamelCase ) , )
# lsh weights + output
UpperCAmelCase : List[Any] = weights[0][1]
if len(UpperCamelCase ) < 4:
set_layer_weights_in_torch_lsh(UpperCamelCase , torch_block.attention , UpperCamelCase )
else:
set_layer_weights_in_torch_local(UpperCamelCase , torch_block.attention , UpperCamelCase )
# intermediate weighs
UpperCAmelCase : List[Any] = weights[2][0][1][2]
# Chunked Feed Forward
if len(UpperCamelCase ) == 4:
UpperCAmelCase : List[Any] = intermediate_weights[2]
# layernorm 2
UpperCAmelCase : int = np.asarray(intermediate_weights[0][0] )
UpperCAmelCase : Tuple = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(UpperCamelCase ) , torch.tensor(UpperCamelCase ) , )
# intermediate dense
UpperCAmelCase : Optional[Any] = np.asarray(intermediate_weights[1][0] )
UpperCAmelCase : str = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(UpperCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase ) , )
# intermediate out
UpperCAmelCase : List[Any] = np.asarray(intermediate_weights[4][0] )
UpperCAmelCase : Optional[Any] = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(UpperCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase ) , )
def _snake_case ( UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Any ):
# reformer model
UpperCAmelCase : str = torch_model.reformer
# word embeds
UpperCAmelCase : Optional[Any] = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCamelCase ) , )
if isinstance(weights[3] , UpperCamelCase ):
UpperCAmelCase : Any = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
UpperCAmelCase : Any = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), F"{position_embeddings[emb_idx]} emb does not match"
UpperCAmelCase : Any = nn.Parameter(torch.tensor(UpperCamelCase ) )
UpperCAmelCase : List[str] = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
UpperCamelCase ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
UpperCAmelCase : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(UpperCamelCase , UpperCamelCase , UpperCamelCase )
# output layer norm
UpperCAmelCase : Any = np.asarray(weights[7][0] )
UpperCAmelCase : str = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCamelCase ) , torch.tensor(UpperCamelCase ) , )
# output embeddings
UpperCAmelCase : List[str] = np.asarray(weights[9][0] )
UpperCAmelCase : Dict = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(UpperCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase ) , )
def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str ):
# Initialise PyTorch model
UpperCAmelCase : int = ReformerConfig.from_json_file(UpperCamelCase )
print(F"Building PyTorch model from configuration: {config}" )
UpperCAmelCase : List[Any] = ReformerModelWithLMHead(UpperCamelCase )
with open(UpperCamelCase , """rb""" ) as f:
UpperCAmelCase : List[str] = pickle.load(UpperCamelCase )["""weights"""]
set_model_weights_in_torch(UpperCamelCase , UpperCamelCase , config.hidden_size )
# Save pytorch-model
print(F"Save PyTorch model to {pytorch_dump_path}" )
torch.save(model.state_dict() , UpperCamelCase )
if __name__ == "__main__":
A: List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained Reformer model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
A: Any = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
| 109 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCamelCase_ = {'configuration_encoder_decoder': ['EncoderDecoderConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ['EncoderDecoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ['TFEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ['FlaxEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_encoder_decoder import EncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encoder_decoder import EncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 243 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
"""facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class SCREAMING_SNAKE_CASE ( a_ ):
"""simple docstring"""
lowerCamelCase : Optional[int] ="levit"
def __init__( self : Optional[Any] , lowerCAmelCase : Dict=2_24 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : str=3 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : int=16 , lowerCAmelCase : Any=[1_28, 2_56, 3_84] , lowerCAmelCase : int=[4, 8, 12] , lowerCAmelCase : Optional[int]=[4, 4, 4] , lowerCAmelCase : Optional[int]=[16, 16, 16] , lowerCAmelCase : Dict=0 , lowerCAmelCase : Optional[int]=[2, 2, 2] , lowerCAmelCase : Any=[2, 2, 2] , lowerCAmelCase : str=0.02 , **lowerCAmelCase : List[Any] , ) -> Dict:
"""simple docstring"""
super().__init__(**lowerCAmelCase )
__lowerCAmelCase : Optional[int] = image_size
__lowerCAmelCase : Tuple = num_channels
__lowerCAmelCase : Any = kernel_size
__lowerCAmelCase : str = stride
__lowerCAmelCase : List[Any] = padding
__lowerCAmelCase : Any = hidden_sizes
__lowerCAmelCase : Any = num_attention_heads
__lowerCAmelCase : Optional[Any] = depths
__lowerCAmelCase : List[str] = key_dim
__lowerCAmelCase : Optional[Any] = drop_path_rate
__lowerCAmelCase : int = patch_size
__lowerCAmelCase : int = attention_ratio
__lowerCAmelCase : Any = mlp_ratio
__lowerCAmelCase : int = initializer_range
__lowerCAmelCase : Optional[int] = [
["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class SCREAMING_SNAKE_CASE ( a_ ):
"""simple docstring"""
lowerCamelCase : Optional[Any] =version.parse("1.11" )
@property
def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> float:
"""simple docstring"""
return 1e-4
| 355 |
import unittest
from transformers import MobileBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertModel,
)
class SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict=13 , lowerCAmelCase : int=7 , lowerCAmelCase : Any=True , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : int=64 , lowerCAmelCase : Any=32 , lowerCAmelCase : str=5 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : str=37 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=5_12 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : str=2 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : Dict=3 , lowerCAmelCase : int=4 , lowerCAmelCase : Union[str, Any]=None , ) -> Optional[int]:
"""simple docstring"""
__lowerCAmelCase : List[Any] = parent
__lowerCAmelCase : Tuple = batch_size
__lowerCAmelCase : Dict = seq_length
__lowerCAmelCase : List[str] = is_training
__lowerCAmelCase : Dict = use_input_mask
__lowerCAmelCase : Optional[int] = use_token_type_ids
__lowerCAmelCase : List[str] = use_labels
__lowerCAmelCase : Dict = vocab_size
__lowerCAmelCase : List[str] = hidden_size
__lowerCAmelCase : Optional[int] = embedding_size
__lowerCAmelCase : Optional[int] = num_hidden_layers
__lowerCAmelCase : Optional[Any] = num_attention_heads
__lowerCAmelCase : Optional[Any] = intermediate_size
__lowerCAmelCase : Optional[int] = hidden_act
__lowerCAmelCase : Any = hidden_dropout_prob
__lowerCAmelCase : Optional[int] = attention_probs_dropout_prob
__lowerCAmelCase : List[str] = max_position_embeddings
__lowerCAmelCase : Optional[Any] = type_vocab_size
__lowerCAmelCase : Optional[Any] = type_sequence_label_size
__lowerCAmelCase : Optional[Any] = initializer_range
__lowerCAmelCase : Optional[Any] = num_labels
__lowerCAmelCase : Union[str, Any] = num_choices
__lowerCAmelCase : Union[str, Any] = scope
def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]:
"""simple docstring"""
__lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase : Dict = None
if self.use_input_mask:
__lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCAmelCase : List[str] = None
if self.use_token_type_ids:
__lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCAmelCase : List[Any] = None
__lowerCAmelCase : Tuple = None
__lowerCAmelCase : int = None
if self.use_labels:
__lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices )
__lowerCAmelCase : Optional[int] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
__lowerCAmelCase : Any = MobileBertModel(config=lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
__lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase )
__lowerCAmelCase : List[Any] = model(lowerCAmelCase , token_type_ids=lowerCAmelCase )
__lowerCAmelCase : Tuple = model(lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowerCAmelCase : Any = MobileBertForMaskedLM(config=lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
__lowerCAmelCase : List[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] ) -> List[str]:
"""simple docstring"""
__lowerCAmelCase : Tuple = MobileBertForNextSentencePrediction(config=lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
__lowerCAmelCase : List[Any] = model(
lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] ) -> Optional[Any]:
"""simple docstring"""
__lowerCAmelCase : Any = MobileBertForPreTraining(config=lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
__lowerCAmelCase : Optional[int] = model(
lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , next_sentence_label=lowerCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any ) -> Any:
"""simple docstring"""
__lowerCAmelCase : Optional[int] = MobileBertForQuestionAnswering(config=lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
__lowerCAmelCase : int = model(
lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowerCAmelCase : List[str] = self.num_labels
__lowerCAmelCase : int = MobileBertForSequenceClassification(lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
__lowerCAmelCase : Optional[int] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowerCAmelCase : List[Any] = self.num_labels
__lowerCAmelCase : Dict = MobileBertForTokenClassification(config=lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
__lowerCAmelCase : Tuple = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ) -> Optional[Any]:
"""simple docstring"""
__lowerCAmelCase : Any = self.num_choices
__lowerCAmelCase : List[Any] = MobileBertForMultipleChoice(config=lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
__lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCAmelCase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCAmelCase : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCAmelCase : Optional[int] = model(
lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]:
"""simple docstring"""
__lowerCAmelCase : Tuple = self.prepare_config_and_inputs()
(
(
__lowerCAmelCase
) ,(
__lowerCAmelCase
) ,(
__lowerCAmelCase
) ,(
__lowerCAmelCase
) ,(
__lowerCAmelCase
) ,(
__lowerCAmelCase
) ,(
__lowerCAmelCase
) ,
) : List[Any] = config_and_inputs
__lowerCAmelCase : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : str =(
(
MobileBertModel,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase : Optional[int] =(
{
"feature-extraction": MobileBertModel,
"fill-mask": MobileBertForMaskedLM,
"question-answering": MobileBertForQuestionAnswering,
"text-classification": MobileBertForSequenceClassification,
"token-classification": MobileBertForTokenClassification,
"zero-shot": MobileBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase : Union[str, Any] =True
def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=False ) -> List[str]:
"""simple docstring"""
__lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase )
if return_labels:
if model_class in get_values(lowerCAmelCase ):
__lowerCAmelCase : Tuple = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase )
__lowerCAmelCase : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase )
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]:
"""simple docstring"""
__lowerCAmelCase : int = MobileBertModelTester(self )
__lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 )
def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]:
"""simple docstring"""
__lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple:
"""simple docstring"""
__lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]:
"""simple docstring"""
__lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple:
"""simple docstring"""
__lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase )
def snake_case_ (__A : Any ) -> Optional[Any]:
return torch.tensor(
__A , dtype=torch.long , device=__A , )
__UpperCAmelCase = 1e-3
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
@slow
def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowerCAmelCase : Optional[Any] = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCAmelCase )
__lowerCAmelCase : int = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] )
with torch.no_grad():
__lowerCAmelCase : List[str] = model(lowerCAmelCase )[0]
__lowerCAmelCase : List[Any] = torch.Size((1, 9, 5_12) )
self.assertEqual(output.shape , lowerCAmelCase )
__lowerCAmelCase : int = torch.tensor(
[
[
[-2.473_6526e07, 8.269_1656e04, 1.652_1838e05],
[-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00],
[2.604_7359e00, 1.567_7652e00, -1.732_4188e-01],
]
] , device=lowerCAmelCase , )
# MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a
# ~1 difference, it's therefore not a good idea to measure using addition.
# Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the
# result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE
__lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE )
__lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE )
self.assertTrue(lower_bound and upper_bound )
| 139 | 0 |
"""simple docstring"""
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize('''dataset_size''' , [None, 4_0_0 * 2**2_0, 6_0_0 * 2**2_0] )
@pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 1_0_0 * 2**2_0, 9_0_0 * 2**2_0] )
def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , __UpperCAmelCase )
lowercase__: str = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
lowercase__: List[Any] = dataset_size < in_memory_max_size
else:
lowercase__: Dict = False
lowercase__: Optional[Any] = is_small_dataset(__UpperCAmelCase )
assert result == expected
| 177 |
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase=2_8_1_2_3 ) -> Any:
lowercase__: Optional[Any] = [1] * (limit + 1)
for i in range(2 , int(limit**0.5 ) + 1 ):
sum_divs[i * i] += i
for k in range(i + 1 , limit // i + 1 ):
sum_divs[k * i] += k + i
lowercase__: Union[str, Any] = set()
lowercase__: Optional[Any] = 0
for n in range(1 , limit + 1 ):
if sum_divs[n] > n:
abundants.add(__UpperCAmelCase )
if not any((n - a in abundants) for a in abundants ):
res += n
return res
if __name__ == "__main__":
print(solution())
| 177 | 1 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
SCREAMING_SNAKE_CASE__ = namedtuple("covid_data", "cases deaths recovered")
def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()'''
return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__ = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 350 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
__lowerCamelCase , __lowerCamelCase = y, x % y
return abs(__lowerCAmelCase )
def __magic_name__ ( ) -> Tuple:
try:
__lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
__lowerCamelCase = int(nums[0] )
__lowerCamelCase = int(nums[1] )
print(
f'''greatest_common_divisor({num_a}, {num_a}) = '''
f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 339 | 0 |
'''simple docstring'''
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : List[Any] = """Speech2TextFeatureExtractor"""
lowerCAmelCase__ : Tuple = """Speech2TextTokenizer"""
def __init__(self : Dict , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(UpperCamelCase , UpperCamelCase )
lowercase__ = self.feature_extractor
lowercase__ = False
def __call__(self : Dict , *UpperCamelCase : Optional[Any] , **UpperCamelCase : List[Any] ):
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*UpperCamelCase , **UpperCamelCase )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
lowercase__ = kwargs.pop('''raw_speech''' )
else:
lowercase__ = kwargs.pop('''audio''' , UpperCamelCase )
lowercase__ = kwargs.pop('''sampling_rate''' , UpperCamelCase )
lowercase__ = kwargs.pop('''text''' , UpperCamelCase )
if len(UpperCamelCase ) > 0:
lowercase__ = args[0]
lowercase__ = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
lowercase__ = self.feature_extractor(UpperCamelCase , *UpperCamelCase , sampling_rate=UpperCamelCase , **UpperCamelCase )
if text is not None:
lowercase__ = self.tokenizer(UpperCamelCase , **UpperCamelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
lowercase__ = encodings['''input_ids''']
return inputs
def UpperCamelCase__ (self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase )
def UpperCamelCase__ (self : Union[str, Any] , *UpperCamelCase : Dict , **UpperCamelCase : List[Any] ):
'''simple docstring'''
return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase )
@contextmanager
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
lowercase__ = True
lowercase__ = self.tokenizer
yield
lowercase__ = self.feature_extractor
lowercase__ = False
| 2 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __lowerCAmelCase (lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : Dict = ShapEImgaImgPipeline
lowerCAmelCase__ : List[str] = ["""image"""]
lowerCAmelCase__ : Any = ["""image"""]
lowerCAmelCase__ : Any = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
lowerCAmelCase__ : Tuple = False
@property
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
return 32
@property
def UpperCamelCase__ (self : str ):
'''simple docstring'''
return 32
@property
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def UpperCamelCase__ (self : int ):
'''simple docstring'''
return 8
@property
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
lowercase__ = CLIPVisionModel(UpperCamelCase )
return model
@property
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
lowercase__ = CLIPImageProcessor(
crop_size=224 , do_center_crop=UpperCamelCase , do_normalize=UpperCamelCase , do_resize=UpperCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , )
return image_processor
@property
def UpperCamelCase__ (self : str ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
lowercase__ = PriorTransformer(**UpperCamelCase )
return model
@property
def UpperCamelCase__ (self : int ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
lowercase__ = ShapERenderer(**UpperCamelCase )
return model
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.dummy_prior
lowercase__ = self.dummy_image_encoder
lowercase__ = self.dummy_image_processor
lowercase__ = self.dummy_renderer
lowercase__ = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase , clip_sample=UpperCamelCase , clip_sample_range=1.0 , )
lowercase__ = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=0 ):
'''simple docstring'''
lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase )
if str(UpperCamelCase ).startswith('''mps''' ):
lowercase__ = torch.manual_seed(UpperCamelCase )
else:
lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase )
lowercase__ = {
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
lowercase__ = '''cpu'''
lowercase__ = self.get_dummy_components()
lowercase__ = self.pipeline_class(**UpperCamelCase )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) )
lowercase__ = output.images[0]
lowercase__ = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
lowercase__ = np.array(
[
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = torch_device == '''cpu'''
lowercase__ = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=UpperCamelCase , relax_max_difference=UpperCamelCase , )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = self.get_dummy_components()
lowercase__ = self.pipeline_class(**UpperCamelCase )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = 1
lowercase__ = 2
lowercase__ = self.get_dummy_inputs(UpperCamelCase )
for key in inputs.keys():
if key in self.batch_params:
lowercase__ = batch_size * [inputs[key]]
lowercase__ = pipe(**UpperCamelCase , num_images_per_prompt=UpperCamelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __lowerCAmelCase (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
lowercase__ = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
lowercase__ = torch.Generator(device=UpperCamelCase ).manual_seed(0 )
lowercase__ = pipe(
UpperCamelCase , generator=UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
| 2 | 1 |
'''simple docstring'''
snake_case__ : str = [0, 2, 4, 6, 8]
snake_case__ : Optional[int] = [1, 3, 5, 7, 9]
def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[int] , lowerCamelCase_ : int ):
"""simple docstring"""
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
UpperCAmelCase_ : List[Any] = 0
for digit in range(10 ):
UpperCAmelCase_ : Optional[Any] = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 10 , lowerCamelCase_ , lowerCamelCase_ )
return result
UpperCAmelCase_ : Optional[int] = 0
for digita in range(10 ):
UpperCAmelCase_ : Optional[int] = digita
if (remainder + digita) % 2 == 0:
UpperCAmelCase_ : int = ODD_DIGITS
else:
UpperCAmelCase_ : str = EVEN_DIGITS
for digita in other_parity_digits:
UpperCAmelCase_ : int = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 10 , lowerCamelCase_ , lowerCamelCase_ , )
return result
def _lowerCamelCase ( lowerCamelCase_ : int = 9 ):
"""simple docstring"""
UpperCAmelCase_ : Dict = 0
for length in range(1 , max_power + 1 ):
result += reversible_numbers(lowerCamelCase_ , 0 , [0] * length , lowerCamelCase_ )
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 360 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=9_9 , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ):
'''simple docstring'''
UpperCAmelCase_ : Union[str, Any] = parent
UpperCAmelCase_ : List[str] = batch_size
UpperCAmelCase_ : Dict = seq_length
UpperCAmelCase_ : Any = is_training
UpperCAmelCase_ : List[Any] = use_input_mask
UpperCAmelCase_ : Tuple = use_token_type_ids
UpperCAmelCase_ : Tuple = use_labels
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : Union[str, Any] = hidden_size
UpperCAmelCase_ : Optional[Any] = num_hidden_layers
UpperCAmelCase_ : Union[str, Any] = num_attention_heads
UpperCAmelCase_ : Optional[int] = intermediate_size
UpperCAmelCase_ : Dict = hidden_act
UpperCAmelCase_ : Any = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Optional[int] = max_position_embeddings
UpperCAmelCase_ : List[Any] = type_vocab_size
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : List[Any] = num_labels
UpperCAmelCase_ : Any = num_choices
UpperCAmelCase_ : List[str] = scope
def _UpperCamelCase ( self ):
'''simple docstring'''
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : int = None
if self.use_token_type_ids:
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : Any = None
UpperCAmelCase_ : str = None
if self.use_labels:
UpperCAmelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self ):
'''simple docstring'''
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , use_stable_embedding=snake_case_ , )
def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
'''simple docstring'''
UpperCAmelCase_ : str = OpenLlamaModel(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCAmelCase_ : str = model(snake_case_ , attention_mask=snake_case_ )
UpperCAmelCase_ : Dict = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ):
'''simple docstring'''
UpperCAmelCase_ : List[Any] = True
UpperCAmelCase_ : Dict = OpenLlamaModel(snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(
snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , )
UpperCAmelCase_ : Any = model(
snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , )
UpperCAmelCase_ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ):
'''simple docstring'''
UpperCAmelCase_ : Optional[Any] = OpenLlamaForCausalLM(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCAmelCase_ : Union[str, Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ):
'''simple docstring'''
UpperCAmelCase_ : Optional[Any] = True
UpperCAmelCase_ : List[Any] = True
UpperCAmelCase_ : Tuple = OpenLlamaForCausalLM(config=snake_case_ )
model.to(snake_case_ )
model.eval()
# first forward pass
UpperCAmelCase_ : Tuple = model(
snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , use_cache=snake_case_ , )
UpperCAmelCase_ : int = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase_ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : Tuple = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase_ : List[Any] = model(
snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , output_hidden_states=snake_case_ , )['hidden_states'][0]
UpperCAmelCase_ : List[str] = model(
snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , past_key_values=snake_case_ , output_hidden_states=snake_case_ , )['hidden_states'][0]
# select random slice
UpperCAmelCase_ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) )
def _UpperCamelCase ( self ):
'''simple docstring'''
UpperCAmelCase_ : int = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Tuple = config_and_inputs
UpperCAmelCase_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase_ :Tuple = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
lowerCamelCase_ :Tuple = (OpenLlamaForCausalLM,) if is_torch_available() else ()
lowerCamelCase_ :Union[str, Any] = (
{
'''feature-extraction''': OpenLlamaModel,
'''text-classification''': OpenLlamaForSequenceClassification,
'''text-generation''': OpenLlamaForCausalLM,
'''zero-shot''': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase_ :str = False
lowerCamelCase_ :Optional[int] = False
def _UpperCamelCase ( self ):
'''simple docstring'''
UpperCAmelCase_ : List[str] = OpenLlamaModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 )
def _UpperCamelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self ):
'''simple docstring'''
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def _UpperCamelCase ( self ):
'''simple docstring'''
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : int = type
self.model_tester.create_and_check_model(*snake_case_ )
def _UpperCamelCase ( self ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Optional[Any] = 3
UpperCAmelCase_ : Union[str, Any] = input_dict['input_ids']
UpperCAmelCase_ : int = input_ids.ne(1 ).to(snake_case_ )
UpperCAmelCase_ : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Any = OpenLlamaForSequenceClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _UpperCamelCase ( self ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = 3
UpperCAmelCase_ : str = 'single_label_classification'
UpperCAmelCase_ : List[str] = input_dict['input_ids']
UpperCAmelCase_ : Optional[Any] = input_ids.ne(1 ).to(snake_case_ )
UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Optional[int] = OpenLlamaForSequenceClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCAmelCase_ : List[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _UpperCamelCase ( self ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = 3
UpperCAmelCase_ : int = 'multi_label_classification'
UpperCAmelCase_ : Dict = input_dict['input_ids']
UpperCAmelCase_ : int = input_ids.ne(1 ).to(snake_case_ )
UpperCAmelCase_ : str = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_ : Union[str, Any] = OpenLlamaForSequenceClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' )
def _UpperCamelCase ( self ):
'''simple docstring'''
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def _UpperCamelCase ( self , snake_case_ ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : int = ids_tensor([1, 1_0] , config.vocab_size )
UpperCAmelCase_ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase_ : Tuple = OpenLlamaModel(snake_case_ )
original_model.to(snake_case_ )
original_model.eval()
UpperCAmelCase_ : List[str] = original_model(snake_case_ ).last_hidden_state
UpperCAmelCase_ : Any = original_model(snake_case_ ).last_hidden_state
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase_ : Tuple = {'type': scaling_type, 'factor': 10.0}
UpperCAmelCase_ : List[str] = OpenLlamaModel(snake_case_ )
scaled_model.to(snake_case_ )
scaled_model.eval()
UpperCAmelCase_ : Tuple = scaled_model(snake_case_ ).last_hidden_state
UpperCAmelCase_ : Optional[int] = scaled_model(snake_case_ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) )
| 274 | 0 |
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
snake_case_ = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ (enum.Enum ):
__lowerCamelCase : Tuple = 0
__lowerCamelCase : Any = 1
@add_end_docstrings(__snake_case )
class SCREAMING_SNAKE_CASE__ (__snake_case ):
__lowerCamelCase : List[str] = """generated"""
def __init__( self , *a , **a):
super().__init__(*a , **a)
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == 'tf'
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING)
def snake_case_ ( self , a=None , a=None , a=None , a=None , a=None , a=None , **a , ):
lowercase__ : Optional[Any] = {}
if truncation is not None:
lowercase__ : List[Any] = truncation
lowercase__ : Optional[Any] = generate_kwargs
lowercase__ : str = {}
if return_tensors is not None and return_type is None:
lowercase__ : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
lowercase__ : Any = return_type
if clean_up_tokenization_spaces is not None:
lowercase__ : Union[str, Any] = clean_up_tokenization_spaces
if stop_sequence is not None:
lowercase__ : Union[str, Any] = self.tokenizer.encode(a , add_special_tokens=a)
if len(a) > 1:
warnings.warn(
'Stopping on a multiple token sequence is not yet supported on transformers. The first token of'
' the stop sequence will be used as the stop sequence string in the interim.')
lowercase__ : int = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def snake_case_ ( self , a , a , a):
return True
def snake_case_ ( self , *a , a):
lowercase__ : Any = self.model.config.prefix if self.model.config.prefix is not None else ''
if isinstance(args[0] , a):
if self.tokenizer.pad_token_id is None:
raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input')
lowercase__ : List[str] = ([prefix + arg for arg in args[0]],)
lowercase__ : Union[str, Any] = True
elif isinstance(args[0] , a):
lowercase__ : Tuple = (prefix + args[0],)
lowercase__ : Optional[Any] = False
else:
raise ValueError(
f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""")
lowercase__ : Optional[Any] = self.tokenizer(*a , padding=a , truncation=a , return_tensors=self.framework)
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self , *a , **a):
lowercase__ : int = super().__call__(*a , **a)
if (
isinstance(args[0] , a)
and all(isinstance(a , a) for el in args[0])
and all(len(a) == 1 for res in result)
):
return [res[0] for res in result]
return result
def snake_case_ ( self , a , a=TruncationStrategy.DO_NOT_TRUNCATE , **a):
lowercase__ : int = self._parse_and_tokenize(a , truncation=a , **a)
return inputs
def snake_case_ ( self , a , **a):
if self.framework == "pt":
lowercase__ , lowercase__ : Any = model_inputs['input_ids'].shape
elif self.framework == "tf":
lowercase__ , lowercase__ : Any = tf.shape(model_inputs['input_ids']).numpy()
lowercase__ : Any = generate_kwargs.get('min_length' , self.model.config.min_length)
lowercase__ : Union[str, Any] = generate_kwargs.get('max_length' , self.model.config.max_length)
self.check_inputs(a , generate_kwargs['min_length'] , generate_kwargs['max_length'])
lowercase__ : Optional[Any] = self.model.generate(**a , **a)
lowercase__ : Any = output_ids.shape[0]
if self.framework == "pt":
lowercase__ : Dict = output_ids.reshape(a , out_b // in_b , *output_ids.shape[1:])
elif self.framework == "tf":
lowercase__ : Dict = tf.reshape(a , (in_b, out_b // in_b, *output_ids.shape[1:]))
return {"output_ids": output_ids}
def snake_case_ ( self , a , a=ReturnType.TEXT , a=False):
lowercase__ : Optional[Any] = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
lowercase__ : int = {f"""{self.return_name}_token_ids""": output_ids}
elif return_type == ReturnType.TEXT:
lowercase__ : Tuple = {
f"""{self.return_name}_text""": self.tokenizer.decode(
a , skip_special_tokens=a , clean_up_tokenization_spaces=a , )
}
records.append(a)
return records
@add_end_docstrings(__snake_case )
class SCREAMING_SNAKE_CASE__ (__snake_case ):
__lowerCamelCase : Union[str, Any] = """summary"""
def __call__( self , *a , **a):
return super().__call__(*a , **a)
def snake_case_ ( self , a , a , a):
if max_length < min_length:
logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""")
if input_length < max_length:
logger.warning(
f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """
'a summarization task, where outputs shorter than the input are typically wanted, you might '
f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""")
@add_end_docstrings(__snake_case )
class SCREAMING_SNAKE_CASE__ (__snake_case ):
__lowerCamelCase : Any = """translation"""
def snake_case_ ( self , a , a , a):
if input_length > 0.9 * max_length:
logger.warning(
f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """
'increasing your max_length manually, e.g. translator(\'...\', max_length=400)')
return True
def snake_case_ ( self , *a , a=TruncationStrategy.DO_NOT_TRUNCATE , a=None , a=None):
if getattr(self.tokenizer , '_build_translation_inputs' , a):
return self.tokenizer._build_translation_inputs(
*a , return_tensors=self.framework , truncation=a , src_lang=a , tgt_lang=a)
else:
return super()._parse_and_tokenize(*a , truncation=a)
def snake_case_ ( self , a=None , a=None , **a):
lowercase__ , lowercase__ , lowercase__ : str = super()._sanitize_parameters(**a)
if src_lang is not None:
lowercase__ : Tuple = src_lang
if tgt_lang is not None:
lowercase__ : Dict = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
lowercase__ : int = kwargs.get('task' , self.task)
lowercase__ : List[str] = task.split('_')
if task and len(a) == 4:
# translation, XX, to YY
lowercase__ : List[Any] = items[1]
lowercase__ : List[str] = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self , *a , **a):
return super().__call__(*a , **a)
| 214 |
def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
if not all(x.isalpha() for x in string ):
raise ValueError('String must only contain alphabetic characters.' )
lowercase__ : Optional[int] = sorted(string.lower() )
return len(SCREAMING_SNAKE_CASE_ ) == len(set(SCREAMING_SNAKE_CASE_ ) )
if __name__ == "__main__":
snake_case_ = input('''Enter a string ''').strip()
snake_case_ = is_isogram(input_str)
print(F'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
| 214 | 1 |
import hashlib
import unittest
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class __magic_name__ :
@staticmethod
def UpperCAmelCase__ ( *lowerCamelCase__ : Dict , **lowerCamelCase__ : int ) -> Optional[Any]:
'''simple docstring'''
pass
def _a ( SCREAMING_SNAKE_CASE : Image ):
"""simple docstring"""
UpperCamelCase__ : List[Any] = hashlib.mda(image.tobytes() )
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __magic_name__ ( unittest.TestCase):
A: Tuple = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ) -> Dict:
'''simple docstring'''
UpperCamelCase__ : List[str] = DepthEstimationPipeline(model=lowerCamelCase__ , image_processor=lowerCamelCase__ )
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def UpperCAmelCase__ ( self : int , lowerCamelCase__ : str , lowerCamelCase__ : int ) -> int:
'''simple docstring'''
UpperCamelCase__ : Optional[int] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , lowerCamelCase__ )
import datasets
UpperCamelCase__ : str = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' )
UpperCamelCase__ : Union[str, Any] = depth_estimator(
[
Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ),
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
# RGBA
dataset[0]['''file'''],
# LA
dataset[1]['''file'''],
# L
dataset[2]['''file'''],
] )
self.assertEqual(
[
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
] , lowerCamelCase__ , )
@require_tf
@unittest.skip('''Depth estimation is not implemented in TF''' )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
pass
@slow
@require_torch
def UpperCAmelCase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
UpperCamelCase__ : Optional[int] = '''Intel/dpt-large'''
UpperCamelCase__ : Tuple = pipeline('''depth-estimation''' , model=lowerCamelCase__ )
UpperCamelCase__ : int = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' )
UpperCamelCase__ : Any = hashimage(outputs['''depth'''] )
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 )
self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 )
@require_torch
def UpperCAmelCase__ ( self : int ) -> int:
'''simple docstring'''
self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
| 51 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class __magic_name__ ( unittest.TestCase):
def __init__( self : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple=7 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Optional[int]=18 , lowerCamelCase__ : Any=30 , lowerCamelCase__ : int=400 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=False , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=True , lowerCamelCase__ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase__ : str=[0.5, 0.5, 0.5] , ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ : Optional[Any] = parent
UpperCamelCase__ : Dict = batch_size
UpperCamelCase__ : List[Any] = num_channels
UpperCamelCase__ : int = image_size
UpperCamelCase__ : str = min_resolution
UpperCamelCase__ : str = max_resolution
UpperCamelCase__ : Tuple = do_resize
UpperCamelCase__ : str = size if size is not None else {'''height''': 18, '''width''': 20}
UpperCamelCase__ : Optional[Any] = do_thumbnail
UpperCamelCase__ : int = do_align_axis
UpperCamelCase__ : List[Any] = do_pad
UpperCamelCase__ : List[Any] = do_normalize
UpperCamelCase__ : Dict = image_mean
UpperCamelCase__ : List[Any] = image_std
def UpperCAmelCase__ ( self : List[Any] ) -> Any:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __magic_name__ ( __lowerCAmelCase , unittest.TestCase):
A: Tuple = DonutImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self : str ) -> int:
'''simple docstring'''
UpperCamelCase__ : int = DonutImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''size''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''do_thumbnail''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''do_align_long_axis''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''do_pad''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''image_std''' ) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
UpperCamelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} )
UpperCamelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
# Previous config had dimensions in (width, height) order
UpperCamelCase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} )
def UpperCAmelCase__ ( self : Any ) -> str:
'''simple docstring'''
pass
@is_flaky()
def UpperCAmelCase__ ( self : Optional[int] ) -> Any:
'''simple docstring'''
UpperCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__ , Image.Image )
# Test not batched input
UpperCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
@is_flaky()
def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
UpperCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__ , np.ndarray )
# Test not batched input
UpperCamelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
UpperCamelCase__ : List[Any] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
@is_flaky()
def UpperCAmelCase__ ( self : str ) -> Tuple:
'''simple docstring'''
UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__ , torch.Tensor )
# Test not batched input
UpperCamelCase__ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
| 51 | 1 |
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ) -> list:
if len(_lowerCamelCase ) <= 1:
return [tuple(_lowerCamelCase )]
_lowerCAmelCase : Dict = []
def generate(_lowerCamelCase : int ,_lowerCamelCase : list ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 ,_lowerCamelCase )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
_lowerCAmelCase , _lowerCAmelCase : List[Any] = arr[k - 1], arr[i]
else: # k is odd
_lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = arr[k - 1], arr[0]
generate(k - 1 ,_lowerCamelCase )
generate(len(_lowerCamelCase ) ,_lowerCamelCase )
return res
if __name__ == "__main__":
_a : Tuple = input('Enter numbers separated by a comma:\n').strip()
_a : Optional[Any] = [int(item) for item in user_input.split(',')]
print(heaps(arr))
| 44 |
"""simple docstring"""
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_a : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
_UpperCamelCase : List[Any] = XGLMTokenizer
_UpperCamelCase : List[Any] = XGLMTokenizerFast
_UpperCamelCase : Dict = True
_UpperCamelCase : Tuple = True
def __A ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCAmelCase : List[Any] = XGLMTokenizer(a__ , keep_accents=a__ )
tokenizer.save_pretrained(self.tmpdirname )
def __A ( self ):
_lowerCAmelCase : List[str] = """<pad>"""
_lowerCAmelCase : List[Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ )
def __A ( self ):
_lowerCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(len(a__ ) , 1008 )
def __A ( self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1008 )
def __A ( self ):
_lowerCAmelCase : List[Any] = XGLMTokenizer(a__ , keep_accents=a__ )
_lowerCAmelCase : Dict = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(a__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_lowerCAmelCase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
_lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(a__ )
self.assertListEqual(
a__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(a__ )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
@cached_property
def __A ( self ):
return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
def __A ( self ):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(a__ , f.name )
_lowerCAmelCase : Union[str, Any] = XGLMTokenizer(f.name , keep_accents=a__ )
_lowerCAmelCase : List[str] = pickle.dumps(a__ )
pickle.loads(a__ )
def __A ( self ):
if not self.test_rust_tokenizer:
return
_lowerCAmelCase : List[str] = self.get_tokenizer()
_lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer()
_lowerCAmelCase : Tuple = """I was born in 92000, and this is falsé."""
_lowerCAmelCase : List[Any] = tokenizer.tokenize(a__ )
_lowerCAmelCase : Tuple = rust_tokenizer.tokenize(a__ )
self.assertListEqual(a__ , a__ )
_lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ )
_lowerCAmelCase : str = rust_tokenizer.encode(a__ , add_special_tokens=a__ )
self.assertListEqual(a__ , a__ )
_lowerCAmelCase : int = self.get_rust_tokenizer()
_lowerCAmelCase : Dict = tokenizer.encode(a__ )
_lowerCAmelCase : List[Any] = rust_tokenizer.encode(a__ )
self.assertListEqual(a__ , a__ )
@slow
def __A ( self ):
_lowerCAmelCase : int = """Hello World!"""
_lowerCAmelCase : Optional[int] = [2, 31227, 4447, 35]
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __A ( self ):
_lowerCAmelCase : Any = (
"""This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"""
""" add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth"""
)
# fmt: off
_lowerCAmelCase : List[str] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735]
# fmt: on
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __A ( self ):
# fmt: off
_lowerCAmelCase : List[str] = {
"""input_ids""": [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]],
"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a__ , model_name="""facebook/xglm-564M""" , padding=a__ , )
| 44 | 1 |
"""simple docstring"""
import mpmath # for roots of unity
import numpy as np
class lowercase:
'''simple docstring'''
def __init__( self: str, a_: List[Any]=None, a_: Tuple=None ):
'''simple docstring'''
_snake_case : Dict = list(poly_a or [0] )[:]
_snake_case : List[str] = list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
_snake_case : Dict = len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
_snake_case : str = len(self.polyB )
# Add 0 to make lengths equal a power of 2
_snake_case : str = int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
_snake_case : str = complex(mpmath.root(x=1, n=self.c_max_length, k=1 ) )
# The product
_snake_case : int = self.__multiply()
def UpperCamelCase_ ( self: Dict, a_: Optional[int] ):
'''simple docstring'''
_snake_case : Tuple = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB]
# Corner case
if len(lowercase_ ) <= 1:
return dft[0]
#
_snake_case : Union[str, Any] = self.c_max_length // 2
while next_ncol > 0:
_snake_case : Tuple = [[] for i in range(lowercase_ )]
_snake_case : Optional[int] = self.root**next_ncol
# First half of next step
_snake_case : Tuple = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(lowercase_ ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
_snake_case : Optional[Any] = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(lowercase_ ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
_snake_case : Any = new_dft
_snake_case : Union[str, Any] = next_ncol // 2
return dft[0]
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : List[Any] = self.__dft("""A""" )
_snake_case : str = self.__dft("""B""" )
_snake_case : Tuple = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
_snake_case : List[str] = 2
while next_ncol <= self.c_max_length:
_snake_case : Dict = [[] for i in range(lowercase_ )]
_snake_case : List[Any] = self.root ** (next_ncol // 2)
_snake_case : Tuple = 1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
_snake_case : List[str] = new_inverse_c
next_ncol *= 2
# Unpack
_snake_case : str = [round(x[0].real, 8 ) + round(x[0].imag, 8 ) * 1j for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Tuple = """A = """ + """ + """.join(
f"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A] ) )
_snake_case : Tuple = """B = """ + """ + """.join(
f"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B] ) )
_snake_case : Optional[Any] = """A*B = """ + """ + """.join(
f"{coef}*x^{i}" for coef, i in enumerate(self.product ) )
return f"{a}\n{b}\n{c}"
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 371 |
"""simple docstring"""
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class lowercase( __a ):
'''simple docstring'''
lowercase__ = 42
lowercase__ = 42
class lowercase( nn.Module ):
'''simple docstring'''
lowercase__ = 42
lowercase__ = (16, 32, 96, 2_56)
lowercase__ = jnp.floataa
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : List[str] = nn.Conv(
self.block_out_channels[0], kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, )
_snake_case : int = []
for i in range(len(self.block_out_channels ) - 1 ):
_snake_case : int = self.block_out_channels[i]
_snake_case : Tuple = self.block_out_channels[i + 1]
_snake_case : Dict = nn.Conv(
a_, kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, )
blocks.append(a_ )
_snake_case : List[Any] = nn.Conv(
a_, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, )
blocks.append(a_ )
_snake_case : Any = blocks
_snake_case : Optional[Any] = nn.Conv(
self.conditioning_embedding_channels, kernel_size=(3, 3), padding=((1, 1), (1, 1)), kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, )
def __call__( self: Optional[Any], a_: Optional[Any] ):
'''simple docstring'''
_snake_case : int = self.conv_in(a_ )
_snake_case : Optional[int] = nn.silu(a_ )
for block in self.blocks:
_snake_case : Tuple = block(a_ )
_snake_case : int = nn.silu(a_ )
_snake_case : Optional[int] = self.conv_out(a_ )
return embedding
@flax_register_to_config
class lowercase( nn.Module , __a , __a ):
'''simple docstring'''
lowercase__ = 32
lowercase__ = 4
lowercase__ = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
lowercase__ = False
lowercase__ = (3_20, 6_40, 12_80, 12_80)
lowercase__ = 2
lowercase__ = 8
lowercase__ = None
lowercase__ = 12_80
lowercase__ = 0.0
lowercase__ = False
lowercase__ = jnp.floataa
lowercase__ = True
lowercase__ = 0
lowercase__ = "rgb"
lowercase__ = (16, 32, 96, 2_56)
def UpperCamelCase_ ( self: int, a_: jax.random.KeyArray ):
'''simple docstring'''
_snake_case : str = (1, self.in_channels, self.sample_size, self.sample_size)
_snake_case : Optional[Any] = jnp.zeros(a_, dtype=jnp.floataa )
_snake_case : List[str] = jnp.ones((1,), dtype=jnp.intaa )
_snake_case : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.floataa )
_snake_case : Any = (1, 3, self.sample_size * 8, self.sample_size * 8)
_snake_case : Optional[int] = jnp.zeros(a_, dtype=jnp.floataa )
_snake_case , _snake_case : Tuple = jax.random.split(a_ )
_snake_case : str = {"""params""": params_rng, """dropout""": dropout_rng}
return self.init(a_, a_, a_, a_, a_ )["params"]
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : Optional[int] = self.block_out_channels
_snake_case : Optional[int] = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
_snake_case : int = self.num_attention_heads or self.attention_head_dim
# input
_snake_case : Union[str, Any] = nn.Conv(
block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, )
# time
_snake_case : int = FlaxTimesteps(
block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift )
_snake_case : Any = FlaxTimestepEmbedding(a_, dtype=self.dtype )
_snake_case : Optional[Any] = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0], block_out_channels=self.conditioning_embedding_out_channels, )
_snake_case : List[str] = self.only_cross_attention
if isinstance(a_, a_ ):
_snake_case : List[Any] = (only_cross_attention,) * len(self.down_block_types )
if isinstance(a_, a_ ):
_snake_case : Optional[Any] = (num_attention_heads,) * len(self.down_block_types )
# down
_snake_case : List[str] = []
_snake_case : Tuple = []
_snake_case : int = block_out_channels[0]
_snake_case : Optional[Any] = nn.Conv(
a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, )
controlnet_down_blocks.append(a_ )
for i, down_block_type in enumerate(self.down_block_types ):
_snake_case : List[Any] = output_channel
_snake_case : Any = block_out_channels[i]
_snake_case : List[str] = i == len(a_ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
_snake_case : Optional[int] = FlaxCrossAttnDownBlockaD(
in_channels=a_, out_channels=a_, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], dtype=self.dtype, )
else:
_snake_case : List[Any] = FlaxDownBlockaD(
in_channels=a_, out_channels=a_, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, )
down_blocks.append(a_ )
for _ in range(self.layers_per_block ):
_snake_case : List[Any] = nn.Conv(
a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, )
controlnet_down_blocks.append(a_ )
if not is_final_block:
_snake_case : List[Any] = nn.Conv(
a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, )
controlnet_down_blocks.append(a_ )
_snake_case : str = down_blocks
_snake_case : Union[str, Any] = controlnet_down_blocks
# mid
_snake_case : Tuple = block_out_channels[-1]
_snake_case : Optional[int] = FlaxUNetMidBlockaDCrossAttn(
in_channels=a_, dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, dtype=self.dtype, )
_snake_case : Tuple = nn.Conv(
a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, )
def __call__( self: str, a_: Any, a_: Tuple, a_: Any, a_: int, a_: float = 1.0, a_: bool = True, a_: bool = False, ):
'''simple docstring'''
_snake_case : Dict = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
_snake_case : List[Any] = jnp.flip(a_, axis=1 )
# 1. time
if not isinstance(a_, jnp.ndarray ):
_snake_case : Any = jnp.array([timesteps], dtype=jnp.intaa )
elif isinstance(a_, jnp.ndarray ) and len(timesteps.shape ) == 0:
_snake_case : Union[str, Any] = timesteps.astype(dtype=jnp.floataa )
_snake_case : List[str] = jnp.expand_dims(a_, 0 )
_snake_case : List[str] = self.time_proj(a_ )
_snake_case : str = self.time_embedding(a_ )
# 2. pre-process
_snake_case : List[str] = jnp.transpose(a_, (0, 2, 3, 1) )
_snake_case : List[Any] = self.conv_in(a_ )
_snake_case : Union[str, Any] = jnp.transpose(a_, (0, 2, 3, 1) )
_snake_case : Any = self.controlnet_cond_embedding(a_ )
sample += controlnet_cond
# 3. down
_snake_case : List[str] = (sample,)
for down_block in self.down_blocks:
if isinstance(a_, a_ ):
_snake_case , _snake_case : Optional[Any] = down_block(a_, a_, a_, deterministic=not train )
else:
_snake_case , _snake_case : Dict = down_block(a_, a_, deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
_snake_case : Dict = self.mid_block(a_, a_, a_, deterministic=not train )
# 5. contronet blocks
_snake_case : Tuple = ()
for down_block_res_sample, controlnet_block in zip(a_, self.controlnet_down_blocks ):
_snake_case : Any = controlnet_block(a_ )
controlnet_down_block_res_samples += (down_block_res_sample,)
_snake_case : List[Any] = controlnet_down_block_res_samples
_snake_case : int = self.controlnet_mid_block(a_ )
# 6. scaling
_snake_case : int = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=a_, mid_block_res_sample=a_ )
| 132 | 0 |
'''simple docstring'''
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
__snake_case = input('''Enter image url: ''').strip()
print(F"""Downloading image from {url} ...""")
__snake_case = BeautifulSoup(requests.get(url).content, '''html.parser''')
# The image URL is in the content field of the first meta tag with property og:image
__snake_case = soup.find('''meta''', {'''property''': '''og:image'''})['''content''']
__snake_case = requests.get(image_url).content
__snake_case = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"""
with open(file_name, '''wb''') as fp:
fp.write(image_data)
print(F"""Done. Image saved to disk as {file_name}.""")
| 97 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class a__ ( unittest.TestCase ):
@property
def _lowerCamelCase ( self ):
"""simple docstring"""
torch.manual_seed(0 )
_lowercase : List[str] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , )
return model
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowercase : Union[str, Any] = self.dummy_uncond_unet
_lowercase : Dict = KarrasVeScheduler()
_lowercase : Any = KarrasVePipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase )
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_lowercase : Any = torch.manual_seed(0 )
_lowercase : List[Any] = pipe(num_inference_steps=2 , generator=_UpperCamelCase , output_type="numpy" ).images
_lowercase : Optional[Any] = torch.manual_seed(0 )
_lowercase : List[str] = pipe(num_inference_steps=2 , generator=_UpperCamelCase , output_type="numpy" , return_dict=_UpperCamelCase )[0]
_lowercase : Any = image[0, -3:, -3:, -1]
_lowercase : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_lowercase : int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class a__ ( unittest.TestCase ):
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowercase : List[str] = "google/ncsnpp-celebahq-256"
_lowercase : Any = UNetaDModel.from_pretrained(_UpperCamelCase )
_lowercase : List[Any] = KarrasVeScheduler()
_lowercase : int = KarrasVePipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase )
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_lowercase : Optional[Any] = torch.manual_seed(0 )
_lowercase : Tuple = pipe(num_inference_steps=20 , generator=_UpperCamelCase , output_type="numpy" ).images
_lowercase : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
_lowercase : Tuple = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 250 | 0 |
'''simple docstring'''
def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ) -> bool:
"""simple docstring"""
lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) + 1
lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
lowerCAmelCase = [[0 for i in range(_SCREAMING_SNAKE_CASE )] for j in range(_SCREAMING_SNAKE_CASE )]
# since string of zero length match pattern of zero length
lowerCAmelCase = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , _SCREAMING_SNAKE_CASE ):
lowerCAmelCase = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , _SCREAMING_SNAKE_CASE ):
lowerCAmelCase = dp[0][j - 2] if pattern[j - 1] == """*""" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , _SCREAMING_SNAKE_CASE ):
for j in range(1 , _SCREAMING_SNAKE_CASE ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
lowerCAmelCase = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
lowerCAmelCase = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
lowerCAmelCase = dp[i - 1][j]
else:
lowerCAmelCase = 0
else:
lowerCAmelCase = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
UpperCAmelCase = 'aab'
UpperCAmelCase = 'c*a*b'
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(F'''{input_string} matches the given pattern {pattern}''')
else:
print(F'''{input_string} does not match with the given pattern {pattern}''')
| 187 |
'''simple docstring'''
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training')
# TF training parameters
UpperCAmelCase = False
UpperCAmelCase = False
def _snake_case ( _SCREAMING_SNAKE_CASE : Namespace ) -> Tuple:
"""simple docstring"""
return TrainCommand(_SCREAMING_SNAKE_CASE )
class __snake_case( _lowerCAmelCase ):
'''simple docstring'''
@staticmethod
def __snake_case ( A_ ) -> Optional[int]:
lowerCAmelCase = parser.add_parser("""train""" , help="""CLI tool to train a model on a task.""" )
train_parser.add_argument(
"""--train_data""" , type=A_ , required=A_ , help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""" , )
train_parser.add_argument(
"""--column_label""" , type=A_ , default=0 , help="""Column of the dataset csv file with example labels.""" )
train_parser.add_argument(
"""--column_text""" , type=A_ , default=1 , help="""Column of the dataset csv file with example texts.""" )
train_parser.add_argument(
"""--column_id""" , type=A_ , default=2 , help="""Column of the dataset csv file with example ids.""" )
train_parser.add_argument(
"""--skip_first_row""" , action="""store_true""" , help="""Skip the first row of the csv file (headers).""" )
train_parser.add_argument("""--validation_data""" , type=A_ , default="""""" , help="""path to validation dataset.""" )
train_parser.add_argument(
"""--validation_split""" , type=A_ , default=0.1 , help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""" , )
train_parser.add_argument("""--output""" , type=A_ , default="""./""" , help="""path to saved the trained model.""" )
train_parser.add_argument(
"""--task""" , type=A_ , default="""text_classification""" , help="""Task to train the model on.""" )
train_parser.add_argument(
"""--model""" , type=A_ , default="""bert-base-uncased""" , help="""Model's name or path to stored model.""" )
train_parser.add_argument("""--train_batch_size""" , type=A_ , default=32 , help="""Batch size for training.""" )
train_parser.add_argument("""--valid_batch_size""" , type=A_ , default=64 , help="""Batch size for validation.""" )
train_parser.add_argument("""--learning_rate""" , type=A_ , default=3e-5 , help="""Learning rate.""" )
train_parser.add_argument("""--adam_epsilon""" , type=A_ , default=1e-08 , help="""Epsilon for Adam optimizer.""" )
train_parser.set_defaults(func=A_ )
def __init__( self , A_ ) -> Tuple:
lowerCAmelCase = logging.get_logger("""transformers-cli/training""" )
lowerCAmelCase = """tf""" if is_tf_available() else """torch"""
os.makedirs(args.output , exist_ok=A_ )
lowerCAmelCase = args.output
lowerCAmelCase = args.column_label
lowerCAmelCase = args.column_text
lowerCAmelCase = args.column_id
self.logger.info(f'Loading {args.task} pipeline for {args.model}' )
if args.task == "text_classification":
lowerCAmelCase = TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f'Loading dataset from {args.train_data}' )
lowerCAmelCase = Processor.create_from_csv(
args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
lowerCAmelCase = None
if args.validation_data:
self.logger.info(f'Loading validation dataset from {args.validation_data}' )
lowerCAmelCase = Processor.create_from_csv(
args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
lowerCAmelCase = args.validation_split
lowerCAmelCase = args.train_batch_size
lowerCAmelCase = args.valid_batch_size
lowerCAmelCase = args.learning_rate
lowerCAmelCase = args.adam_epsilon
def __snake_case ( self ) -> Optional[int]:
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def __snake_case ( self ) -> Tuple:
raise NotImplementedError
def __snake_case ( self ) -> Tuple:
self.pipeline.fit(
self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , )
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 187 | 1 |
import os
# Precomputes a list of the 100 first triangular numbers
lowerCamelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def lowerCAmelCase__ ( ) -> Optional[Any]:
lowerCAmelCase__ : Dict = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE_ ) )
lowerCAmelCase__ : List[Any] = os.path.join(SCREAMING_SNAKE_CASE_ , 'words.txt' )
lowerCAmelCase__ : Dict = ""
with open(SCREAMING_SNAKE_CASE_ ) as f:
lowerCAmelCase__ : Tuple = f.readline()
lowerCAmelCase__ : Union[str, Any] = [word.strip('\"' ) for word in words.strip('\r\n' ).split(',' )]
lowerCAmelCase__ : List[str] = [
word
for word in [sum(ord(SCREAMING_SNAKE_CASE_ ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
print(solution())
| 212 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {}
class SCREAMING_SNAKE_CASE__ ( lowercase ):
"""simple docstring"""
a : str ="llama"
a : List[str] =["past_key_values"]
def __init__( self , snake_case__=32_000 , snake_case__=4_096 , snake_case__=11_008 , snake_case__=32 , snake_case__=32 , snake_case__=None , snake_case__="silu" , snake_case__=2_048 , snake_case__=0.02 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=1 , snake_case__=False , snake_case__=None , **snake_case__ , ):
"""simple docstring"""
lowerCAmelCase : Optional[Any] = vocab_size
lowerCAmelCase : str = max_position_embeddings
lowerCAmelCase : str = hidden_size
lowerCAmelCase : Optional[int] = intermediate_size
lowerCAmelCase : Any = num_hidden_layers
lowerCAmelCase : List[str] = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
lowerCAmelCase : Tuple = num_attention_heads
lowerCAmelCase : Dict = num_key_value_heads
lowerCAmelCase : Optional[Any] = hidden_act
lowerCAmelCase : Optional[Any] = initializer_range
lowerCAmelCase : Any = rms_norm_eps
lowerCAmelCase : List[Any] = pretraining_tp
lowerCAmelCase : int = use_cache
lowerCAmelCase : List[str] = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , )
def lowercase__ ( self ):
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
f"""got {self.rope_scaling}""" )
lowerCAmelCase : Optional[Any] = self.rope_scaling.get("type" , snake_case__ )
lowerCAmelCase : int = self.rope_scaling.get("factor" , snake_case__ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0:
raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 108 | 0 |
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]:
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(lowerCamelCase__ ):
requests.request('GET' , 'https://huggingface.co' )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request('GET' , 'https://huggingface.co' , timeout=1.0 )
@pytest.mark.integration
def SCREAMING_SNAKE_CASE__ ( ) -> Tuple:
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request('GET' , 'https://huggingface.co' )
def SCREAMING_SNAKE_CASE__ ( ) -> Tuple:
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(lowerCamelCase__ ):
http_head('https://huggingface.co' )
| 113 |
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
a ="""true"""
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=8_2 , lowerCamelCase__=1_6 ) -> List[Any]:
set_seed(4_2 )
__lowerCamelCase : Tuple = RegressionModel()
__lowerCamelCase : str = deepcopy(lowerCamelCase__ )
__lowerCamelCase : Optional[int] = RegressionDataset(length=lowerCamelCase__ )
__lowerCamelCase : Union[str, Any] = DataLoader(lowerCamelCase__ , batch_size=lowerCamelCase__ )
model.to(accelerator.device )
__lowerCamelCase , __lowerCamelCase : Tuple = accelerator.prepare(lowerCamelCase__ , lowerCamelCase__ )
return model, ddp_model, dataloader
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=False ) -> List[Any]:
__lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' )
__lowerCamelCase : Any = load_dataset('glue' , 'mrpc' , split='validation' )
def tokenize_function(lowerCamelCase__ ):
__lowerCamelCase : Union[str, Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ )
return outputs
with accelerator.main_process_first():
__lowerCamelCase : Union[str, Any] = dataset.map(
lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , )
__lowerCamelCase : Tuple = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(lowerCamelCase__ ):
if use_longest:
return tokenizer.pad(lowerCamelCase__ , padding='longest' , return_tensors='pt' )
return tokenizer.pad(lowerCamelCase__ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' )
return DataLoader(lowerCamelCase__ , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1_6 )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]:
__lowerCamelCase : Optional[int] = Accelerator(dispatch_batches=lowerCamelCase__ , split_batches=lowerCamelCase__ )
__lowerCamelCase : Union[str, Any] = get_dataloader(lowerCamelCase__ , not dispatch_batches )
__lowerCamelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(
'hf-internal-testing/mrpc-bert-base-cased' , return_dict=lowerCamelCase__ )
__lowerCamelCase , __lowerCamelCase : Tuple = accelerator.prepare(lowerCamelCase__ , lowerCamelCase__ )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]:
__lowerCamelCase : str = []
for batch in dataloader:
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = batch.values()
with torch.no_grad():
__lowerCamelCase : Tuple = model(lowerCamelCase__ )
__lowerCamelCase , __lowerCamelCase : Optional[Any] = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
__lowerCamelCase , __lowerCamelCase : Dict = [], []
for logit, targ in logits_and_targets:
logits.append(lowerCamelCase__ )
targs.append(lowerCamelCase__ )
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = torch.cat(lowerCamelCase__ ), torch.cat(lowerCamelCase__ )
return logits, targs
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=8_2 , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=1_6 ) -> Dict:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = get_basic_setup(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase , __lowerCamelCase : Dict = generate_predictions(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
assert (
len(lowerCamelCase__ ) == num_samples
), F"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase__ )}"
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = False , lowerCamelCase__ = False ) -> Dict:
__lowerCamelCase : Dict = evaluate.load('glue' , 'mrpc' )
__lowerCamelCase , __lowerCamelCase : Optional[int] = get_mrpc_setup(lowerCamelCase__ , lowerCamelCase__ )
# First do baseline
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = setup['no']
model.to(lowerCamelCase__ )
model.eval()
for batch in dataloader:
batch.to(lowerCamelCase__ )
with torch.inference_mode():
__lowerCamelCase : Dict = model(**lowerCamelCase__ )
__lowerCamelCase : Any = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=lowerCamelCase__ , references=batch['labels'] )
__lowerCamelCase : str = metric.compute()
# Then do distributed
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = setup['ddp']
model.eval()
for batch in dataloader:
with torch.inference_mode():
__lowerCamelCase : List[str] = model(**lowerCamelCase__ )
__lowerCamelCase : List[Any] = outputs.logits.argmax(dim=-1 )
__lowerCamelCase : List[str] = batch['labels']
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=lowerCamelCase__ , references=lowerCamelCase__ )
__lowerCamelCase : Dict = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), F"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n"
def SCREAMING_SNAKE_CASE__ ( ) -> List[str]:
__lowerCamelCase : int = Accelerator(split_batches=lowerCamelCase__ , dispatch_batches=lowerCamelCase__ )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('**Testing gather_for_metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" )
test_mrpc(lowerCamelCase__ , lowerCamelCase__ )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test torch metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
__lowerCamelCase : Optional[Any] = Accelerator(split_batches=lowerCamelCase__ , dispatch_batches=lowerCamelCase__ )
if accelerator.is_local_main_process:
print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" )
test_torch_metrics(lowerCamelCase__ , 9_9 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test last batch is not dropped when perfectly divisible**' )
__lowerCamelCase : Dict = Accelerator()
test_torch_metrics(lowerCamelCase__ , 5_1_2 )
accelerator.state._reset_state()
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 113 | 1 |
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def _snake_case( SCREAMING_SNAKE_CASE__ : Namespace ) -> str:
'''simple docstring'''
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
lowercase_ = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n"
class A ( _UpperCAmelCase ):
"""simple docstring"""
@staticmethod
def snake_case__ ( lowercase_ : ArgumentParser )-> List[Any]:
'''simple docstring'''
A__ = parser.add_parser(
'convert',help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.',)
train_parser.add_argument('--model_type',type=lowercase_,required=lowercase_,help='Model\'s type.' )
train_parser.add_argument(
'--tf_checkpoint',type=lowercase_,required=lowercase_,help='TensorFlow checkpoint path or folder.' )
train_parser.add_argument(
'--pytorch_dump_output',type=lowercase_,required=lowercase_,help='Path to the PyTorch saved model output.' )
train_parser.add_argument('--config',type=lowercase_,default='',help='Configuration file path or folder.' )
train_parser.add_argument(
'--finetuning_task_name',type=lowercase_,default=lowercase_,help='Optional fine-tuning task name if the TF model was a finetuned model.',)
train_parser.set_defaults(func=lowercase_ )
def __init__( self : Tuple,lowercase_ : str,lowercase_ : str,lowercase_ : str,lowercase_ : str,lowercase_ : str,*lowercase_ : Dict,)-> Dict:
'''simple docstring'''
A__ = logging.get_logger('transformers-cli/converting' )
self._logger.info(F'Loading model {model_type}' )
A__ = model_type
A__ = tf_checkpoint
A__ = pytorch_dump_output
A__ = config
A__ = finetuning_task_name
def snake_case__ ( self : List[str] )-> Optional[Any]:
'''simple docstring'''
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowercase_ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint,self._config,self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowercase_ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint,self._config,self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowercase_ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint,self._config,self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(lowercase_ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint,self._config,self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint,self._config,self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowercase_ )
if "ckpt" in self._tf_checkpoint.lower():
A__ = self._tf_checkpoint
A__ = ''
else:
A__ = self._tf_checkpoint
A__ = ''
convert_transfo_xl_checkpoint_to_pytorch(
lowercase_,self._config,self._pytorch_dump_output,lowercase_ )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowercase_ )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint,self._config,self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowercase_ )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint,self._config,self._pytorch_dump_output,self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint,self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint,self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint,self._config,self._pytorch_dump_output )
else:
raise ValueError(
'--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
| 7 |
class A :
"""simple docstring"""
def __init__( self : Any,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : List[str] )-> List[Any]:
'''simple docstring'''
A__ = name
A__ = value
A__ = weight
def __repr__( self : int )-> Tuple:
'''simple docstring'''
return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
return self.value
def snake_case__ ( self : Any )-> Tuple:
'''simple docstring'''
return self.name
def snake_case__ ( self : Any )-> Dict:
'''simple docstring'''
return self.weight
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
return self.value / self.weight
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
'''simple docstring'''
A__ = []
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
'''simple docstring'''
A__ = sorted(SCREAMING_SNAKE_CASE__ , key=SCREAMING_SNAKE_CASE__ , reverse=SCREAMING_SNAKE_CASE__ )
A__ = []
A__ , A__ = 0.0, 0.0
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def _snake_case( ) -> Any:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 1 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , )
@pytest.mark.usefixtures('''sm_env''' )
@parameterized_class(
[
{
'''framework''': '''pytorch''',
'''script''': '''run_glue_model_parallelism.py''',
'''model_name_or_path''': '''roberta-large''',
'''instance_type''': '''ml.p3dn.24xlarge''',
'''results''': {'''train_runtime''': 1600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2},
},
{
'''framework''': '''pytorch''',
'''script''': '''run_glue.py''',
'''model_name_or_path''': '''roberta-large''',
'''instance_type''': '''ml.p3dn.24xlarge''',
'''results''': {'''train_runtime''': 1600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2},
},
] )
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : str ):
if self.framework == "pytorch":
subprocess.run(
F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=_UpperCAmelCase , )
assert hasattr(self , 'env' )
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[int] ):
# configuration for running training on smdistributed Model Parallel
_A = {
'enabled': True,
'processes_per_host': 8,
}
_A = {
'enabled': True,
'parameters': {
'microbatches': 4,
'placement_strategy': 'spread',
'pipeline': 'interleaved',
'optimize': 'speed',
'partitions': 4,
'ddp': True,
},
}
_A = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options}
_A = 'trainer' if self.script == 'run_glue.py' else 'smtrainer'
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=_UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCAmelCase , hyperparameters={
**self.env.hyperparameters,
'model_name_or_path': self.model_name_or_path,
'max_steps': 500,
} , metric_definitions=self.env.metric_definitions , distribution=_UpperCAmelCase , py_version='py36' , )
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Tuple ):
TrainingJobAnalytics(_UpperCAmelCase ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' )
@parameterized.expand([(1,)] )
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Dict ):
# create estimator
_A = self.create_estimator(_UpperCAmelCase )
# run training
estimator.fit()
# result dataframe
_A = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
_A = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] )
_A = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
_A = (
Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999_999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy )
assert all(t <= self.results['eval_loss'] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile:
json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _UpperCAmelCase )
| 271 |
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = (IPNDMScheduler,)
UpperCAmelCase : Optional[Any] = (('''num_inference_steps''', 50),)
def lowerCAmelCase_ ( self : Union[str, Any] , **_UpperCAmelCase : List[Any] ):
_A = {'num_train_timesteps': 1_000}
config.update(**_UpperCAmelCase )
return config
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] ):
_A = dict(self.forward_default_kwargs )
_A = kwargs.pop('num_inference_steps' , _UpperCAmelCase )
_A = self.dummy_sample
_A = 0.1 * sample
_A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_A = self.get_scheduler_config(**_UpperCAmelCase )
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
_A = dummy_past_residuals[:]
if time_step is None:
_A = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
_A = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
_A = dummy_past_residuals[:]
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ ( self : str ):
pass
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Any=0 , **_UpperCAmelCase : Any ):
_A = dict(self.forward_default_kwargs )
_A = kwargs.pop('num_inference_steps' , _UpperCAmelCase )
_A = self.dummy_sample
_A = 0.1 * sample
_A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
_A = dummy_past_residuals[:]
if time_step is None:
_A = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
_A = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
_A = dummy_past_residuals[:]
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ ( self : List[str] , **_UpperCAmelCase : Optional[int] ):
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(**_UpperCAmelCase )
_A = scheduler_class(**_UpperCAmelCase )
_A = 10
_A = self.dummy_model()
_A = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
return sample
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = dict(self.forward_default_kwargs )
_A = kwargs.pop('num_inference_steps' , _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
_A = self.dummy_sample
_A = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase , 'set_timesteps' ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , 'set_timesteps' ):
_A = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
_A = dummy_past_residuals[:]
_A = scheduler.timesteps[5]
_A = scheduler.timesteps[6]
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCAmelCase_ ( self : Tuple ):
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase , time_step=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase , time_step=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.full_loop()
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 2_540_529 ) < 10
| 271 | 1 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=__lowerCamelCase )
class __snake_case ( __lowerCamelCase ):
'''simple docstring'''
lowerCAmelCase__ = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
lowerCAmelCase__ = Features({"""audio""": Audio()} )
lowerCAmelCase__ = Features({"""labels""": ClassLabel} )
lowerCAmelCase__ = "audio"
lowerCAmelCase__ = "labels"
def UpperCAmelCase__ ( self : Optional[int] , A : List[str] ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
__snake_case: Tuple = copy.deepcopy(self )
__snake_case: Optional[int] = self.label_schema.copy()
__snake_case: Dict = features[self.label_column]
__snake_case: Dict = label_schema
return task_template
@property
def UpperCAmelCase__ ( self : Tuple ):
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 111 |
import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
__UpperCAmelCase : Tuple = logging.get_logger(__name__)
class __snake_case ( __lowerCamelCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *A : Union[str, Any] , **A : Optional[int] ):
warnings.warn(
"""The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use PerceiverImageProcessor instead.""" , A , )
super().__init__(*A , **A )
| 111 | 1 |
"""simple docstring"""
import os
import sys
import unittest
lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
lowerCAmelCase__ = os.path.join(git_repo_path, '''src''', '''diffusers''')
class _lowerCamelCase ( unittest.TestCase ):
def snake_case_ (self ) -> Any:
UpperCamelCase = find_backend(" if not is_torch_available():" )
self.assertEqual(lowercase_ , "torch" )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
UpperCamelCase = find_backend(" if not (is_torch_available() and is_transformers_available()):" )
self.assertEqual(lowercase_ , "torch_and_transformers" )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
UpperCamelCase = find_backend(
" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" )
self.assertEqual(lowercase_ , "torch_and_transformers_and_onnx" )
def snake_case_ (self ) -> List[str]:
UpperCamelCase = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("torch" , lowercase_ )
self.assertIn("torch_and_transformers" , lowercase_ )
self.assertIn("flax_and_transformers" , lowercase_ )
self.assertIn("torch_and_transformers_and_onnx" , lowercase_ )
# Likewise, we can't assert on the exact content of a key
self.assertIn("UNet2DModel" , objects["torch"] )
self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] )
self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] )
self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] )
self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] )
self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] )
def snake_case_ (self ) -> Dict:
UpperCamelCase = create_dummy_object("CONSTANT" , "'torch'" )
self.assertEqual(lowercase_ , "\nCONSTANT = None\n" )
UpperCamelCase = create_dummy_object("function" , "'torch'" )
self.assertEqual(
lowercase_ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" )
UpperCamelCase = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n"
UpperCamelCase = create_dummy_object("FakeClass" , "'torch'" )
self.assertEqual(lowercase_ , lowercase_ )
def snake_case_ (self ) -> Dict:
UpperCamelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n"
UpperCamelCase = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} )
self.assertEqual(dummy_files["torch"] , lowercase_ )
| 351 |
"""simple docstring"""
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = math.inf , _SCREAMING_SNAKE_CASE = -math.inf , _SCREAMING_SNAKE_CASE = math.inf , _SCREAMING_SNAKE_CASE = -math.inf , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 0.01 , _SCREAMING_SNAKE_CASE = 1 , ):
"""simple docstring"""
UpperCamelCase = False
UpperCamelCase = search_prob
UpperCamelCase = start_temperate
UpperCamelCase = []
UpperCamelCase = 0
UpperCamelCase = None
while not search_end:
UpperCamelCase = current_state.score()
if best_state is None or current_score > best_state.score():
UpperCamelCase = current_state
scores.append(_SCREAMING_SNAKE_CASE )
iterations += 1
UpperCamelCase = None
UpperCamelCase = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
UpperCamelCase = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) # picking a random neighbor
UpperCamelCase = neighbors.pop(_SCREAMING_SNAKE_CASE )
UpperCamelCase = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
UpperCamelCase = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
UpperCamelCase = picked_neighbor
else:
UpperCamelCase = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
UpperCamelCase = picked_neighbor
UpperCamelCase = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
UpperCamelCase = True
else:
UpperCamelCase = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
plt.xlabel("Iterations" )
plt.ylabel("Function values" )
plt.show()
return best_state
if __name__ == "__main__":
def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
lowerCAmelCase__ = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
lowerCAmelCase__ = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return (3 * x**2) - (6 * y)
lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
lowerCAmelCase__ = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
f'''{local_min.score()}'''
)
lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
lowerCAmelCase__ = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
f'''{local_min.score()}'''
)
| 244 | 0 |
'''simple docstring'''
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase=1024 , UpperCamelCase=1024 , UpperCamelCase=False , **UpperCamelCase ):
"""simple docstring"""
lowerCAmelCase__ : str = AutoTokenizer.from_pretrained(UpperCamelCase )
lowerCAmelCase__ : Optional[int] = SeqaSeqDataset(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , type_path="""train""" , **UpperCamelCase )
lowerCAmelCase__ : Optional[Any] = tok.pad_token_id
def get_lens(UpperCamelCase ):
lowerCAmelCase__ : Optional[int] = tqdm(
DataLoader(UpperCamelCase , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
lowerCAmelCase__ : List[str] = []
for batch in dl:
lowerCAmelCase__ : Dict = batch["""input_ids"""].ne(UpperCamelCase ).sum(1 ).tolist()
lowerCAmelCase__ : str = batch["""labels"""].ne(UpperCamelCase ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(UpperCamelCase , UpperCamelCase ):
max_lens.append(max(UpperCamelCase , UpperCamelCase ) )
else:
max_lens.extend(UpperCamelCase )
return max_lens
lowerCAmelCase__ : int = get_lens(UpperCamelCase )
lowerCAmelCase__ : int = SeqaSeqDataset(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , type_path="""val""" , **UpperCamelCase )
lowerCAmelCase__ : str = get_lens(UpperCamelCase )
pickle_save(UpperCamelCase , train_ds.len_file )
pickle_save(UpperCamelCase , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 37 |
'''simple docstring'''
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = OrderedDict(
[
('''align''', '''EfficientNetImageProcessor'''),
('''beit''', '''BeitImageProcessor'''),
('''bit''', '''BitImageProcessor'''),
('''blip''', '''BlipImageProcessor'''),
('''blip-2''', '''BlipImageProcessor'''),
('''bridgetower''', '''BridgeTowerImageProcessor'''),
('''chinese_clip''', '''ChineseCLIPImageProcessor'''),
('''clip''', '''CLIPImageProcessor'''),
('''clipseg''', '''ViTImageProcessor'''),
('''conditional_detr''', '''ConditionalDetrImageProcessor'''),
('''convnext''', '''ConvNextImageProcessor'''),
('''convnextv2''', '''ConvNextImageProcessor'''),
('''cvt''', '''ConvNextImageProcessor'''),
('''data2vec-vision''', '''BeitImageProcessor'''),
('''deformable_detr''', '''DeformableDetrImageProcessor'''),
('''deit''', '''DeiTImageProcessor'''),
('''deta''', '''DetaImageProcessor'''),
('''detr''', '''DetrImageProcessor'''),
('''dinat''', '''ViTImageProcessor'''),
('''donut-swin''', '''DonutImageProcessor'''),
('''dpt''', '''DPTImageProcessor'''),
('''efficientformer''', '''EfficientFormerImageProcessor'''),
('''efficientnet''', '''EfficientNetImageProcessor'''),
('''flava''', '''FlavaImageProcessor'''),
('''focalnet''', '''BitImageProcessor'''),
('''git''', '''CLIPImageProcessor'''),
('''glpn''', '''GLPNImageProcessor'''),
('''groupvit''', '''CLIPImageProcessor'''),
('''imagegpt''', '''ImageGPTImageProcessor'''),
('''instructblip''', '''BlipImageProcessor'''),
('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''),
('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''),
('''levit''', '''LevitImageProcessor'''),
('''mask2former''', '''Mask2FormerImageProcessor'''),
('''maskformer''', '''MaskFormerImageProcessor'''),
('''mgp-str''', '''ViTImageProcessor'''),
('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''),
('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevitv2''', '''MobileViTImageProcessor'''),
('''nat''', '''ViTImageProcessor'''),
('''oneformer''', '''OneFormerImageProcessor'''),
('''owlvit''', '''OwlViTImageProcessor'''),
('''perceiver''', '''PerceiverImageProcessor'''),
('''pix2struct''', '''Pix2StructImageProcessor'''),
('''poolformer''', '''PoolFormerImageProcessor'''),
('''regnet''', '''ConvNextImageProcessor'''),
('''resnet''', '''ConvNextImageProcessor'''),
('''sam''', '''SamImageProcessor'''),
('''segformer''', '''SegformerImageProcessor'''),
('''swiftformer''', '''ViTImageProcessor'''),
('''swin''', '''ViTImageProcessor'''),
('''swin2sr''', '''Swin2SRImageProcessor'''),
('''swinv2''', '''ViTImageProcessor'''),
('''table-transformer''', '''DetrImageProcessor'''),
('''timesformer''', '''VideoMAEImageProcessor'''),
('''tvlt''', '''TvltImageProcessor'''),
('''upernet''', '''SegformerImageProcessor'''),
('''van''', '''ConvNextImageProcessor'''),
('''videomae''', '''VideoMAEImageProcessor'''),
('''vilt''', '''ViltImageProcessor'''),
('''vit''', '''ViTImageProcessor'''),
('''vit_hybrid''', '''ViTHybridImageProcessor'''),
('''vit_mae''', '''ViTImageProcessor'''),
('''vit_msn''', '''ViTImageProcessor'''),
('''xclip''', '''CLIPImageProcessor'''),
('''yolos''', '''YolosImageProcessor'''),
]
)
__lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]:
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
_a : List[Any] = model_type_to_module_name(lowerCAmelCase_ )
_a : Optional[Any] = importlib.import_module(f""".{module_name}""" , 'transformers.models' )
try:
return getattr(lowerCAmelCase_ , lowerCAmelCase_ )
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(lowerCAmelCase_ , '__name__' , lowerCAmelCase_ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
_a : Dict = importlib.import_module('transformers' )
if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ):
return getattr(lowerCAmelCase_ , lowerCAmelCase_ )
return None
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , **lowerCAmelCase_ , ) -> Tuple:
_a : List[str] = get_file_from_repo(
lowerCAmelCase_ , lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , )
if resolved_config_file is None:
logger.info(
'Could not locate the image processor configuration file, will try to use the model config instead.' )
return {}
with open(lowerCAmelCase_ , encoding='utf-8' ) as reader:
return json.load(lowerCAmelCase_ )
class __magic_name__ :
def __init__( self : List[str] ):
raise EnvironmentError(
'AutoImageProcessor is designed to be instantiated '
'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' )
@classmethod
@replace_list_option_in_docstrings(_UpperCAmelCase )
def __lowercase ( cls : Dict ,_UpperCAmelCase : Union[str, Any] ,**_UpperCAmelCase : Optional[Any] ):
_a : Any = kwargs.pop('config' ,_UpperCAmelCase )
_a : Dict = kwargs.pop('trust_remote_code' ,_UpperCAmelCase )
_a : Any = True
_a , _a : Tuple = ImageProcessingMixin.get_image_processor_dict(_UpperCAmelCase ,**_UpperCAmelCase )
_a : List[Any] = config_dict.get('image_processor_type' ,_UpperCAmelCase )
_a : int = None
if "AutoImageProcessor" in config_dict.get('auto_map' ,{} ):
_a : Any = config_dict['auto_map']['AutoImageProcessor']
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
_a : List[Any] = config_dict.pop('feature_extractor_type' ,_UpperCAmelCase )
if feature_extractor_class is not None:
logger.warning(
'Could not find image processor class in the image processor config or the model config. Loading'
' based on pattern matching with the model\'s feature extractor configuration.' )
_a : Optional[int] = feature_extractor_class.replace('FeatureExtractor' ,'ImageProcessor' )
if "AutoFeatureExtractor" in config_dict.get('auto_map' ,{} ):
_a : List[Any] = config_dict['auto_map']['AutoFeatureExtractor']
_a : List[str] = feature_extractor_auto_map.replace('FeatureExtractor' ,'ImageProcessor' )
logger.warning(
'Could not find image processor auto map in the image processor config or the model config.'
' Loading based on pattern matching with the model\'s feature extractor configuration.' )
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
_a : Dict = AutoConfig.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase )
# It could be in `config.image_processor_type``
_a : Optional[int] = getattr(_UpperCAmelCase ,'image_processor_type' ,_UpperCAmelCase )
if hasattr(_UpperCAmelCase ,'auto_map' ) and "AutoImageProcessor" in config.auto_map:
_a : Union[str, Any] = config.auto_map['AutoImageProcessor']
if image_processor_class is not None:
_a : Optional[int] = image_processor_class_from_name(_UpperCAmelCase )
_a : List[str] = image_processor_auto_map is not None
_a : Optional[int] = image_processor_class is not None or type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING
_a : Optional[int] = resolve_trust_remote_code(
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
if has_remote_code and trust_remote_code:
_a : Dict = get_class_from_dynamic_module(
_UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase )
_a : int = kwargs.pop('code_revision' ,_UpperCAmelCase )
if os.path.isdir(_UpperCAmelCase ):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(_UpperCAmelCase ,**_UpperCAmelCase )
elif image_processor_class is not None:
return image_processor_class.from_dict(_UpperCAmelCase ,**_UpperCAmelCase )
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING:
_a : Dict = IMAGE_PROCESSOR_MAPPING[type(_UpperCAmelCase )]
return image_processor_class.from_dict(_UpperCAmelCase ,**_UpperCAmelCase )
raise ValueError(
F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """
F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """
F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" )
@staticmethod
def __lowercase ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Dict ):
IMAGE_PROCESSOR_MAPPING.register(_UpperCAmelCase ,_UpperCAmelCase )
| 89 | 0 |
'''simple docstring'''
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 6_5_0, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "pytorch",
"script": "run_ddp.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 6_0_0, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "tensorflow",
"script": "run_tf_dist.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 6_0_0, "eval_accuracy": 0.6, "eval_loss": 0.7},
},
] )
class a__ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=a , )
assert hasattr(self , '''env''' )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Tuple ):
"""simple docstring"""
__lowerCamelCase = f"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}"""
# distributed data settings
__lowerCamelCase = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=a , instance_count=a , instance_type=self.instance_type , debugger_hook_config=a , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=a , py_version='''py36''' , )
def SCREAMING_SNAKE_CASE__ ( self : Dict , a : Any ):
"""simple docstring"""
TrainingJobAnalytics(a ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(2,)] )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : Tuple ):
"""simple docstring"""
__lowerCamelCase = self.create_estimator(a )
# run training
estimator.fit()
# result dataframe
__lowerCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
__lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__lowerCamelCase = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , a )
| 366 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__UpperCAmelCase =logging.get_logger(__name__)
class a__ ( UpperCAmelCase__ ):
lowerCamelCase : Dict =["pixel_values"]
def __init__( self : List[str] , a : bool = True , a : Dict[str, int] = None , a : int = 0.9 , a : PILImageResampling = PILImageResampling.BICUBIC , a : bool = True , a : Dict[str, int] = None , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Dict , ):
"""simple docstring"""
super().__init__(**a )
__lowerCamelCase = size if size is not None else {'''shortest_edge''': 2_24}
__lowerCamelCase = get_size_dict(a , default_to_square=a )
__lowerCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
__lowerCamelCase = get_size_dict(a , param_name='''crop_size''' )
__lowerCamelCase = do_resize
__lowerCamelCase = size
__lowerCamelCase = crop_pct
__lowerCamelCase = resample
__lowerCamelCase = do_center_crop
__lowerCamelCase = crop_size
__lowerCamelCase = do_rescale
__lowerCamelCase = rescale_factor
__lowerCamelCase = do_normalize
__lowerCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__lowerCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def SCREAMING_SNAKE_CASE__ ( self : Any , a : np.ndarray , a : Dict[str, int] , a : Optional[float] = None , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : List[str] , ):
"""simple docstring"""
__lowerCamelCase = get_size_dict(a , default_to_square=a )
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
if crop_pct is not None:
if "shortest_edge" in size:
__lowerCamelCase = int(size['''shortest_edge'''] / crop_pct )
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
__lowerCamelCase = int(size['''height'''] / crop_pct )
else:
__lowerCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct ))
else:
raise ValueError('''Invalid size for resize: {}'''.format(a ) )
__lowerCamelCase = get_resize_output_image_size(a , size=a , default_to_square=a )
else:
if "shortest_edge" in size:
__lowerCamelCase = get_resize_output_image_size(a , size=size['''shortest_edge'''] , default_to_square=a )
elif "height" in size and "width" in size:
__lowerCamelCase = (size['''height'''], size['''width'''])
else:
raise ValueError('''Invalid size for resize: {}'''.format(a ) )
return resize(a , size=a , resample=a , data_format=a , **a )
def SCREAMING_SNAKE_CASE__ ( self : Dict , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict , ):
"""simple docstring"""
__lowerCamelCase = get_size_dict(a )
if "height" not in size or "width" not in size:
raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(a , size=(size['''height'''], size['''width''']) , data_format=a , **a )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : np.ndarray , a : Union[int, float] , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , ):
"""simple docstring"""
return rescale(a , scale=a , data_format=a , **a )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Any , ):
"""simple docstring"""
return normalize(a , mean=a , std=a , data_format=a , **a )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : int = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : Tuple , ):
"""simple docstring"""
__lowerCamelCase = do_resize if do_resize is not None else self.do_resize
__lowerCamelCase = crop_pct if crop_pct is not None else self.crop_pct
__lowerCamelCase = resample if resample is not None else self.resample
__lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__lowerCamelCase = image_mean if image_mean is not None else self.image_mean
__lowerCamelCase = image_std if image_std is not None else self.image_std
__lowerCamelCase = size if size is not None else self.size
__lowerCamelCase = get_size_dict(a , default_to_square=a )
__lowerCamelCase = crop_size if crop_size is not None else self.crop_size
__lowerCamelCase = get_size_dict(a , param_name='''crop_size''' )
__lowerCamelCase = make_list_of_images(a )
if not valid_images(a ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_pct is None:
raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
__lowerCamelCase = [to_numpy_array(a ) for image in images]
if do_resize:
__lowerCamelCase = [self.resize(image=a , size=a , crop_pct=a , resample=a ) for image in images]
if do_center_crop:
__lowerCamelCase = [self.center_crop(image=a , size=a ) for image in images]
if do_rescale:
__lowerCamelCase = [self.rescale(image=a , scale=a ) for image in images]
if do_normalize:
__lowerCamelCase = [self.normalize(image=a , mean=a , std=a ) for image in images]
__lowerCamelCase = [to_channel_dimension_format(a , a ) for image in images]
__lowerCamelCase = {'''pixel_values''': images}
return BatchFeature(data=a , tensor_type=a )
| 237 | 0 |
import argparse
import csv
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
get_linear_schedule_with_warmup,
)
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
__lowerCAmelCase = logging.getLogger(__name__)
def snake_case_ ( snake_case , snake_case ) -> Any:
lowercase__: Optional[Any] = np.argmax(snake_case , axis=1 )
return np.sum(outputs == labels )
def snake_case_ ( snake_case ) -> Optional[Any]:
with open(snake_case , encoding='utf_8' ) as f:
lowercase__: Any = csv.reader(snake_case )
lowercase__: Optional[int] = []
next(snake_case ) # skip the first line
for line in tqdm(snake_case ):
output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) )
return output
def snake_case_ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Optional[int]:
lowercase__: Tuple = []
for dataset in encoded_datasets:
lowercase__: Dict = len(snake_case )
lowercase__: Union[str, Any] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa )
lowercase__: str = np.zeros((n_batch, 2) , dtype=np.intaa )
lowercase__: Optional[Any] = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa )
lowercase__: Dict = np.zeros((n_batch,) , dtype=np.intaa )
for (
i,
(story, conta, conta, mc_label),
) in enumerate(snake_case ):
lowercase__: Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
lowercase__: Optional[int] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
lowercase__: Optional[Any] = with_conta
lowercase__: Union[str, Any] = with_conta
lowercase__: Dict = len(snake_case ) - 1
lowercase__: Dict = len(snake_case ) - 1
lowercase__: Optional[Any] = with_conta
lowercase__: Any = with_conta
lowercase__: Any = mc_label
lowercase__: str = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(snake_case ) for t in all_inputs ) )
return tensor_datasets
def snake_case_ ( ) -> List[str]:
lowercase__: Optional[int] = argparse.ArgumentParser()
parser.add_argument('--model_name' , type=snake_case , default='openai-gpt' , help='pretrained model name' )
parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' )
parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' )
parser.add_argument(
'--output_dir' , default=snake_case , type=snake_case , required=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , )
parser.add_argument('--train_dataset' , type=snake_case , default='' )
parser.add_argument('--eval_dataset' , type=snake_case , default='' )
parser.add_argument('--seed' , type=snake_case , default=42 )
parser.add_argument('--num_train_epochs' , type=snake_case , default=3 )
parser.add_argument('--train_batch_size' , type=snake_case , default=8 )
parser.add_argument('--eval_batch_size' , type=snake_case , default=16 )
parser.add_argument('--adam_epsilon' , default=1e-8 , type=snake_case , help='Epsilon for Adam optimizer.' )
parser.add_argument('--max_grad_norm' , type=snake_case , default=1 )
parser.add_argument(
'--max_steps' , default=-1 , type=snake_case , help=(
'If > 0: set total number of training steps to perform. Override num_train_epochs.'
) , )
parser.add_argument(
'--gradient_accumulation_steps' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , )
parser.add_argument('--learning_rate' , type=snake_case , default=6.25e-5 )
parser.add_argument('--warmup_steps' , default=0 , type=snake_case , help='Linear warmup over warmup_steps.' )
parser.add_argument('--lr_schedule' , type=snake_case , default='warmup_linear' )
parser.add_argument('--weight_decay' , type=snake_case , default=0.0_1 )
parser.add_argument('--lm_coef' , type=snake_case , default=0.9 )
parser.add_argument('--n_valid' , type=snake_case , default=3_74 )
parser.add_argument('--server_ip' , type=snake_case , default='' , help='Can be used for distant debugging.' )
parser.add_argument('--server_port' , type=snake_case , default='' , help='Can be used for distant debugging.' )
lowercase__: Optional[int] = parser.parse_args()
print(snake_case )
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('Waiting for debugger attach' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=snake_case )
ptvsd.wait_for_attach()
random.seed(args.seed )
np.random.seed(args.seed )
torch.manual_seed(args.seed )
torch.cuda.manual_seed_all(args.seed )
lowercase__: List[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
lowercase__: Tuple = torch.cuda.device_count()
logger.info('device: {}, n_gpu {}'.format(snake_case , snake_case ) )
if not args.do_train and not args.do_eval:
raise ValueError('At least one of `do_train` or `do_eval` must be True.' )
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
lowercase__: Optional[int] = ['_start_', '_delimiter_', '_classify_']
lowercase__: Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name )
tokenizer.add_tokens(snake_case )
lowercase__: int = tokenizer.convert_tokens_to_ids(snake_case )
lowercase__: Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name )
model.resize_token_embeddings(len(snake_case ) )
model.to(snake_case )
# Load and encode the datasets
def tokenize_and_encode(snake_case ):
if isinstance(snake_case , snake_case ):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(snake_case ) )
elif isinstance(snake_case , snake_case ):
return obj
return [tokenize_and_encode(snake_case ) for o in obj]
logger.info('Encoding dataset...' )
lowercase__: Optional[int] = load_rocstories_dataset(args.train_dataset )
lowercase__: Optional[Any] = load_rocstories_dataset(args.eval_dataset )
lowercase__: str = (train_dataset, eval_dataset)
lowercase__: int = tokenize_and_encode(snake_case )
# Compute the max input length for the Transformer
lowercase__: int = model.config.n_positions // 2 - 2
lowercase__: Tuple = max(
len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3
for dataset in encoded_datasets
for story, conta, conta, _ in dataset )
lowercase__: Dict = min(snake_case , model.config.n_positions ) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
lowercase__: List[str] = pre_process_datasets(snake_case , snake_case , snake_case , *snake_case )
lowercase__ , lowercase__: Union[str, Any] = tensor_datasets[0], tensor_datasets[1]
lowercase__: List[str] = TensorDataset(*snake_case )
lowercase__: List[Any] = RandomSampler(snake_case )
lowercase__: Tuple = DataLoader(snake_case , sampler=snake_case , batch_size=args.train_batch_size )
lowercase__: Union[str, Any] = TensorDataset(*snake_case )
lowercase__: List[str] = SequentialSampler(snake_case )
lowercase__: List[Any] = DataLoader(snake_case , sampler=snake_case , batch_size=args.eval_batch_size )
# Prepare optimizer
if args.do_train:
if args.max_steps > 0:
lowercase__: int = args.max_steps
lowercase__: int = args.max_steps // (len(snake_case ) // args.gradient_accumulation_steps) + 1
else:
lowercase__: Any = len(snake_case ) // args.gradient_accumulation_steps * args.num_train_epochs
lowercase__: str = list(model.named_parameters() )
lowercase__: str = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
lowercase__: Optional[Any] = [
{
'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )],
'weight_decay': args.weight_decay,
},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0},
]
lowercase__: Union[str, Any] = AdamW(snake_case , lr=args.learning_rate , eps=args.adam_epsilon )
lowercase__: List[Any] = get_linear_schedule_with_warmup(
snake_case , num_warmup_steps=args.warmup_steps , num_training_steps=snake_case )
if args.do_train:
lowercase__ , lowercase__ , lowercase__: int = 0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ):
lowercase__: int = 0
lowercase__: Optional[int] = 0
lowercase__: int = tqdm(snake_case , desc='Training' )
for step, batch in enumerate(snake_case ):
lowercase__: List[str] = tuple(t.to(snake_case ) for t in batch )
lowercase__ , lowercase__ , lowercase__ , lowercase__: int = batch
lowercase__: Optional[Any] = model(snake_case , mc_token_ids=snake_case , lm_labels=snake_case , mc_labels=snake_case )
lowercase__: Tuple = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
tr_loss += loss.item()
lowercase__: Any = (
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
lowercase__: Tuple = 'Training loss: {:.2e} lr: {:.2e}'.format(snake_case , scheduler.get_lr()[0] )
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
lowercase__: Dict = model.module if hasattr(snake_case , 'module' ) else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
lowercase__: List[str] = os.path.join(args.output_dir , snake_case )
lowercase__: Union[str, Any] = os.path.join(args.output_dir , snake_case )
torch.save(model_to_save.state_dict() , snake_case )
model_to_save.config.to_json_file(snake_case )
tokenizer.save_vocabulary(args.output_dir )
# Load a trained model and vocabulary that you have fine-tuned
lowercase__: Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir )
lowercase__: Optional[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir )
model.to(snake_case )
if args.do_eval:
model.eval()
lowercase__ , lowercase__: Union[str, Any] = 0, 0
lowercase__ , lowercase__: Optional[int] = 0, 0
for batch in tqdm(snake_case , desc='Evaluating' ):
lowercase__: int = tuple(t.to(snake_case ) for t in batch )
lowercase__ , lowercase__ , lowercase__ , lowercase__: int = batch
with torch.no_grad():
lowercase__ , lowercase__ , lowercase__ , lowercase__: Any = model(
snake_case , mc_token_ids=snake_case , lm_labels=snake_case , mc_labels=snake_case )
lowercase__: Union[str, Any] = mc_logits.detach().cpu().numpy()
lowercase__: Optional[int] = mc_labels.to('cpu' ).numpy()
lowercase__: int = accuracy(snake_case , snake_case )
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0 )
nb_eval_steps += 1
lowercase__: Optional[int] = eval_loss / nb_eval_steps
lowercase__: List[str] = eval_accuracy / nb_eval_examples
lowercase__: Optional[Any] = tr_loss / nb_tr_steps if args.do_train else None
lowercase__: Any = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss}
lowercase__: Union[str, Any] = os.path.join(args.output_dir , 'eval_results.txt' )
with open(snake_case , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key in sorted(result.keys() ):
logger.info(' %s = %s' , snake_case , str(result[key] ) )
writer.write('%s = %s\n' % (key, str(result[key] )) )
if __name__ == "__main__":
main()
| 196 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class __a ( __UpperCamelCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any:
'''simple docstring'''
lowercase__: Any = params
lowercase__: List[Any] = np.array(lowerCAmelCase__ )
lowercase__: Optional[Any] = np.array([len(lowerCAmelCase__ ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self , lowerCAmelCase__ ) -> List[Any]:
'''simple docstring'''
return (self.token_ids[index], self.lengths[index])
def __len__( self ) -> List[Any]:
'''simple docstring'''
return len(self.lengths )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
'''simple docstring'''
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase__: Any = self.params.max_model_input_size
lowercase__: Dict = self.lengths > max_len
logger.info(F'Splitting {sum(lowerCAmelCase__ )} too long sequences.' )
def divide_chunks(lowerCAmelCase__ , lowerCAmelCase__ ):
return [l[i : i + n] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )]
lowercase__: str = []
lowercase__: List[str] = []
if self.params.mlm:
lowercase__ , lowercase__: str = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
else:
lowercase__ , lowercase__: int = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token']
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
lowercase__: Optional[Any] = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
lowercase__: int = np.insert(lowerCAmelCase__ , 0 , lowerCAmelCase__ )
if sub_s[-1] != sep_id:
lowercase__: Union[str, Any] = np.insert(lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ )
assert len(lowerCAmelCase__ ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(lowerCAmelCase__ )
new_tok_ids.extend(lowerCAmelCase__ )
new_lengths.extend([len(lowerCAmelCase__ ) for l in sub_seqs] )
lowercase__: Union[str, Any] = np.array(lowerCAmelCase__ )
lowercase__: Union[str, Any] = np.array(lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
'''simple docstring'''
lowercase__: Dict = len(self )
lowercase__: Union[str, Any] = self.lengths > 11
lowercase__: List[Any] = self.token_ids[indices]
lowercase__: Optional[Any] = self.lengths[indices]
lowercase__: List[str] = len(self )
logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
'''simple docstring'''
if "unk_token" not in self.params.special_tok_ids:
return
else:
lowercase__: List[str] = self.params.special_tok_ids['unk_token']
lowercase__: str = len(self )
lowercase__: Tuple = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
lowercase__: Any = (unk_occs / self.lengths) < 0.5
lowercase__: Tuple = self.token_ids[indices]
lowercase__: str = self.lengths[indices]
lowercase__: Dict = len(self )
logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
'''simple docstring'''
if not self.params.is_master:
return
logger.info(F'{len(self )} sequences' )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int:
'''simple docstring'''
lowercase__: Union[str, Any] = [t[0] for t in batch]
lowercase__: Dict = [t[1] for t in batch]
assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ )
# Max for paddings
lowercase__: List[Any] = max(lowerCAmelCase__ )
# Pad token ids
if self.params.mlm:
lowercase__: Dict = self.params.special_tok_ids['pad_token']
else:
lowercase__: Optional[Any] = self.params.special_tok_ids['unk_token']
lowercase__: int = [list(t.astype(lowerCAmelCase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowerCAmelCase__ )) for t in token_ids]
assert len(tk_ ) == len(lowerCAmelCase__ )
assert all(len(lowerCAmelCase__ ) == max_seq_len_ for t in tk_ )
lowercase__: Tuple = torch.tensor(tk_ ) # (bs, max_seq_len_)
lowercase__: Optional[Any] = torch.tensor(lowerCAmelCase__ ) # (bs)
return tk_t, lg_t
| 196 | 1 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
__snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
class __snake_case ( lowerCamelCase__ ):
def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> str:
'''simple docstring'''
super().__init__()
if safety_checker is None:
logger.warning(
f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'''
''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'''
''' results in services or applications open to the public. Both the diffusers team and Hugging Face'''
''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'''
''' it only for use-cases that involve analyzing network behavior or auditing its results. For more'''
''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' )
self.register_modules(
speech_model=lowercase__ , speech_processor=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , unet=lowercase__ , scheduler=lowercase__ , feature_extractor=lowercase__ , )
def UpperCAmelCase__ ( self , snake_case__ = "auto" ) -> List[Any]:
'''simple docstring'''
if slice_size == "auto":
UpperCAmelCase : Union[str, Any] =self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowercase__ )
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
self.enable_attention_slicing(lowercase__ )
@torch.no_grad()
def __call__( self , snake_case__ , snake_case__=1_6000 , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , **snake_case__ , ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =self.speech_processor.feature_extractor(
lowercase__ , return_tensors='''pt''' , sampling_rate=lowercase__ ).input_features.to(self.device )
UpperCAmelCase : str =self.speech_model.generate(lowercase__ , max_length=48_0000 )
UpperCAmelCase : Any =self.speech_processor.tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__ , normalize=lowercase__ )[
0
]
if isinstance(lowercase__ , lowercase__ ):
UpperCAmelCase : Any =1
elif isinstance(lowercase__ , lowercase__ ):
UpperCAmelCase : Dict =len(lowercase__ )
else:
raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(lowercase__ )}''' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(lowercase__ , lowercase__ ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(lowercase__ )}.''' )
# get prompt text embeddings
UpperCAmelCase : Optional[Any] =self.tokenizer(
lowercase__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , )
UpperCAmelCase : Dict =text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCAmelCase : Optional[int] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'''The following part of your input was truncated because CLIP can only handle sequences up to'''
f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
UpperCAmelCase : Optional[int] =text_input_ids[:, : self.tokenizer.model_max_length]
UpperCAmelCase : Dict =self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] =text_embeddings.shape
UpperCAmelCase : Optional[Any] =text_embeddings.repeat(1 , lowercase__ , 1 )
UpperCAmelCase : Optional[Any] =text_embeddings.view(bs_embed * num_images_per_prompt , lowercase__ , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
UpperCAmelCase : Union[str, Any] =guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
UpperCAmelCase : Optional[int] =42
if negative_prompt is None:
UpperCAmelCase : Any =[''''''] * batch_size
elif type(lowercase__ ) is not type(lowercase__ ):
raise TypeError(
f'''`negative_prompt` should be the same type to `prompt`, but got {type(lowercase__ )} !='''
f''' {type(lowercase__ )}.''' )
elif isinstance(lowercase__ , lowercase__ ):
UpperCAmelCase : str =[negative_prompt]
elif batch_size != len(lowercase__ ):
raise ValueError(
f'''`negative_prompt`: {negative_prompt} has batch size {len(lowercase__ )}, but `prompt`:'''
f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'''
''' the batch size of `prompt`.''' )
else:
UpperCAmelCase : Any =negative_prompt
UpperCAmelCase : Optional[Any] =text_input_ids.shape[-1]
UpperCAmelCase : Union[str, Any] =self.tokenizer(
lowercase__ , padding='''max_length''' , max_length=lowercase__ , truncation=lowercase__ , return_tensors='''pt''' , )
UpperCAmelCase : int =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCAmelCase : int =uncond_embeddings.shape[1]
UpperCAmelCase : Optional[int] =uncond_embeddings.repeat(1 , lowercase__ , 1 )
UpperCAmelCase : Union[str, Any] =uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase__ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCAmelCase : Union[str, Any] =torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
UpperCAmelCase : int =(batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
UpperCAmelCase : int =text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
UpperCAmelCase : List[str] =torch.randn(lowercase__ , generator=lowercase__ , device='''cpu''' , dtype=lowercase__ ).to(
self.device )
else:
UpperCAmelCase : int =torch.randn(lowercase__ , generator=lowercase__ , device=self.device , dtype=lowercase__ )
else:
if latents.shape != latents_shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
UpperCAmelCase : Union[str, Any] =latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(lowercase__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
UpperCAmelCase : List[Any] =latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
UpperCAmelCase : Union[str, Any] ='''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
UpperCAmelCase : List[Any] ={}
if accepts_eta:
UpperCAmelCase : Optional[Any] =eta
for i, t in enumerate(self.progress_bar(lowercase__ ) ):
# expand the latents if we are doing classifier free guidance
UpperCAmelCase : Optional[Any] =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCAmelCase : List[Any] =self.scheduler.scale_model_input(lowercase__ , lowercase__ )
# predict the noise residual
UpperCAmelCase : str =self.unet(lowercase__ , lowercase__ , encoder_hidden_states=lowercase__ ).sample
# perform guidance
if do_classifier_free_guidance:
UpperCAmelCase , UpperCAmelCase : int =noise_pred.chunk(2 )
UpperCAmelCase : str =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase : List[Any] =self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(lowercase__ , lowercase__ , lowercase__ )
UpperCAmelCase : Optional[int] =1 / 0.1_8215 * latents
UpperCAmelCase : Tuple =self.vae.decode(lowercase__ ).sample
UpperCAmelCase : Dict =(image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
UpperCAmelCase : Tuple =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
UpperCAmelCase : Dict =self.numpy_to_pil(lowercase__ )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=lowercase__ , nsfw_content_detected=lowercase__ )
| 358 |
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''',
}
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Optional[Any] = """efficientnet"""
def __init__( self , snake_case__ = 3 , snake_case__ = 600 , snake_case__ = 2.0 , snake_case__ = 3.1 , snake_case__ = 8 , snake_case__ = [3, 3, 5, 3, 5, 5, 3] , snake_case__ = [32, 16, 24, 40, 80, 112, 192] , snake_case__ = [16, 24, 40, 80, 112, 192, 320] , snake_case__ = [] , snake_case__ = [1, 2, 2, 2, 1, 2, 1] , snake_case__ = [1, 2, 2, 3, 3, 4, 1] , snake_case__ = [1, 6, 6, 6, 6, 6, 6] , snake_case__ = 0.25 , snake_case__ = "swish" , snake_case__ = 2560 , snake_case__ = "mean" , snake_case__ = 0.02 , snake_case__ = 0.001 , snake_case__ = 0.99 , snake_case__ = 0.5 , snake_case__ = 0.2 , **snake_case__ , ) -> int:
'''simple docstring'''
super().__init__(**snake_case__ )
UpperCAmelCase : Tuple =num_channels
UpperCAmelCase : Any =image_size
UpperCAmelCase : Optional[int] =width_coefficient
UpperCAmelCase : Union[str, Any] =depth_coefficient
UpperCAmelCase : List[Any] =depth_divisor
UpperCAmelCase : List[str] =kernel_sizes
UpperCAmelCase : Any =in_channels
UpperCAmelCase : str =out_channels
UpperCAmelCase : Optional[int] =depthwise_padding
UpperCAmelCase : str =strides
UpperCAmelCase : Tuple =num_block_repeats
UpperCAmelCase : Union[str, Any] =expand_ratios
UpperCAmelCase : Dict =squeeze_expansion_ratio
UpperCAmelCase : Union[str, Any] =hidden_act
UpperCAmelCase : int =hidden_dim
UpperCAmelCase : Optional[int] =pooling_type
UpperCAmelCase : Union[str, Any] =initializer_range
UpperCAmelCase : List[str] =batch_norm_eps
UpperCAmelCase : List[str] =batch_norm_momentum
UpperCAmelCase : Tuple =dropout_rate
UpperCAmelCase : Tuple =drop_connect_rate
UpperCAmelCase : int =sum(snake_case__ ) * 4
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : List[Any] = version.parse("""1.11""" )
@property
def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def UpperCAmelCase__ ( self ) -> float:
'''simple docstring'''
return 1e-5
| 78 | 0 |
import argparse
import csv
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
get_linear_schedule_with_warmup,
)
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
UpperCamelCase = logging.getLogger(__name__)
def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> List[Any]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE = np.argmax(snake_case__ ,axis=1 )
return np.sum(outputs == labels )
def __lowerCamelCase ( snake_case__ ) -> str:
"""simple docstring"""
with open(snake_case__ ,encoding="""utf_8""" ) as f:
_SCREAMING_SNAKE_CASE = csv.reader(snake_case__ )
_SCREAMING_SNAKE_CASE = []
next(snake_case__ ) # skip the first line
for line in tqdm(snake_case__ ):
output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) )
return output
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> Union[str, Any]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE = []
for dataset in encoded_datasets:
_SCREAMING_SNAKE_CASE = len(snake_case__ )
_SCREAMING_SNAKE_CASE = np.zeros((n_batch, 2, input_len) ,dtype=np.intaa )
_SCREAMING_SNAKE_CASE = np.zeros((n_batch, 2) ,dtype=np.intaa )
_SCREAMING_SNAKE_CASE = np.full((n_batch, 2, input_len) ,fill_value=-1_00 ,dtype=np.intaa )
_SCREAMING_SNAKE_CASE = np.zeros((n_batch,) ,dtype=np.intaa )
for (
i,
(story, conta, conta, mc_label),
) in enumerate(snake_case__ ):
_SCREAMING_SNAKE_CASE = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
_SCREAMING_SNAKE_CASE = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
_SCREAMING_SNAKE_CASE = with_conta
_SCREAMING_SNAKE_CASE = with_conta
_SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1
_SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1
_SCREAMING_SNAKE_CASE = with_conta
_SCREAMING_SNAKE_CASE = with_conta
_SCREAMING_SNAKE_CASE = mc_label
_SCREAMING_SNAKE_CASE = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(snake_case__ ) for t in all_inputs ) )
return tensor_datasets
def __lowerCamelCase ( ) -> Tuple:
"""simple docstring"""
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("""--model_name""" ,type=snake_case__ ,default="""openai-gpt""" ,help="""pretrained model name""" )
parser.add_argument("""--do_train""" ,action="""store_true""" ,help="""Whether to run training.""" )
parser.add_argument("""--do_eval""" ,action="""store_true""" ,help="""Whether to run eval on the dev set.""" )
parser.add_argument(
"""--output_dir""" ,default=snake_case__ ,type=snake_case__ ,required=snake_case__ ,help="""The output directory where the model predictions and checkpoints will be written.""" ,)
parser.add_argument("""--train_dataset""" ,type=snake_case__ ,default="""""" )
parser.add_argument("""--eval_dataset""" ,type=snake_case__ ,default="""""" )
parser.add_argument("""--seed""" ,type=snake_case__ ,default=42 )
parser.add_argument("""--num_train_epochs""" ,type=snake_case__ ,default=3 )
parser.add_argument("""--train_batch_size""" ,type=snake_case__ ,default=8 )
parser.add_argument("""--eval_batch_size""" ,type=snake_case__ ,default=16 )
parser.add_argument("""--adam_epsilon""" ,default=1e-8 ,type=snake_case__ ,help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--max_grad_norm""" ,type=snake_case__ ,default=1 )
parser.add_argument(
"""--max_steps""" ,default=-1 ,type=snake_case__ ,help=(
"""If > 0: set total number of training steps to perform. Override num_train_epochs."""
) ,)
parser.add_argument(
"""--gradient_accumulation_steps""" ,type=snake_case__ ,default=1 ,help="""Number of updates steps to accumulate before performing a backward/update pass.""" ,)
parser.add_argument("""--learning_rate""" ,type=snake_case__ ,default=6.2_5e-5 )
parser.add_argument("""--warmup_steps""" ,default=0 ,type=snake_case__ ,help="""Linear warmup over warmup_steps.""" )
parser.add_argument("""--lr_schedule""" ,type=snake_case__ ,default="""warmup_linear""" )
parser.add_argument("""--weight_decay""" ,type=snake_case__ ,default=0.01 )
parser.add_argument("""--lm_coef""" ,type=snake_case__ ,default=0.9 )
parser.add_argument("""--n_valid""" ,type=snake_case__ ,default=3_74 )
parser.add_argument("""--server_ip""" ,type=snake_case__ ,default="""""" ,help="""Can be used for distant debugging.""" )
parser.add_argument("""--server_port""" ,type=snake_case__ ,default="""""" ,help="""Can be used for distant debugging.""" )
_SCREAMING_SNAKE_CASE = parser.parse_args()
print(snake_case__ )
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("""Waiting for debugger attach""" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) ,redirect_output=snake_case__ )
ptvsd.wait_for_attach()
random.seed(args.seed )
np.random.seed(args.seed )
torch.manual_seed(args.seed )
torch.cuda.manual_seed_all(args.seed )
_SCREAMING_SNAKE_CASE = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
_SCREAMING_SNAKE_CASE = torch.cuda.device_count()
logger.info("""device: {}, n_gpu {}""".format(snake_case__ ,snake_case__ ) )
if not args.do_train and not args.do_eval:
raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" )
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
_SCREAMING_SNAKE_CASE = ["""_start_""", """_delimiter_""", """_classify_"""]
_SCREAMING_SNAKE_CASE = OpenAIGPTTokenizer.from_pretrained(args.model_name )
tokenizer.add_tokens(snake_case__ )
_SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(snake_case__ )
_SCREAMING_SNAKE_CASE = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name )
model.resize_token_embeddings(len(snake_case__ ) )
model.to(snake_case__ )
# Load and encode the datasets
def tokenize_and_encode(snake_case__ ):
if isinstance(snake_case__ ,snake_case__ ):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(snake_case__ ) )
elif isinstance(snake_case__ ,snake_case__ ):
return obj
return [tokenize_and_encode(snake_case__ ) for o in obj]
logger.info("""Encoding dataset...""" )
_SCREAMING_SNAKE_CASE = load_rocstories_dataset(args.train_dataset )
_SCREAMING_SNAKE_CASE = load_rocstories_dataset(args.eval_dataset )
_SCREAMING_SNAKE_CASE = (train_dataset, eval_dataset)
_SCREAMING_SNAKE_CASE = tokenize_and_encode(snake_case__ )
# Compute the max input length for the Transformer
_SCREAMING_SNAKE_CASE = model.config.n_positions // 2 - 2
_SCREAMING_SNAKE_CASE = max(
len(story[:max_length] ) + max(len(conta[:max_length] ) ,len(conta[:max_length] ) ) + 3
for dataset in encoded_datasets
for story, conta, conta, _ in dataset )
_SCREAMING_SNAKE_CASE = min(snake_case__ ,model.config.n_positions ) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
_SCREAMING_SNAKE_CASE = pre_process_datasets(snake_case__ ,snake_case__ ,snake_case__ ,*snake_case__ )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tensor_datasets[0], tensor_datasets[1]
_SCREAMING_SNAKE_CASE = TensorDataset(*snake_case__ )
_SCREAMING_SNAKE_CASE = RandomSampler(snake_case__ )
_SCREAMING_SNAKE_CASE = DataLoader(snake_case__ ,sampler=snake_case__ ,batch_size=args.train_batch_size )
_SCREAMING_SNAKE_CASE = TensorDataset(*snake_case__ )
_SCREAMING_SNAKE_CASE = SequentialSampler(snake_case__ )
_SCREAMING_SNAKE_CASE = DataLoader(snake_case__ ,sampler=snake_case__ ,batch_size=args.eval_batch_size )
# Prepare optimizer
if args.do_train:
if args.max_steps > 0:
_SCREAMING_SNAKE_CASE = args.max_steps
_SCREAMING_SNAKE_CASE = args.max_steps // (len(snake_case__ ) // args.gradient_accumulation_steps) + 1
else:
_SCREAMING_SNAKE_CASE = len(snake_case__ ) // args.gradient_accumulation_steps * args.num_train_epochs
_SCREAMING_SNAKE_CASE = list(model.named_parameters() )
_SCREAMING_SNAKE_CASE = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""]
_SCREAMING_SNAKE_CASE = [
{
"""params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )],
"""weight_decay""": args.weight_decay,
},
{"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0},
]
_SCREAMING_SNAKE_CASE = AdamW(snake_case__ ,lr=args.learning_rate ,eps=args.adam_epsilon )
_SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup(
snake_case__ ,num_warmup_steps=args.warmup_steps ,num_training_steps=snake_case__ )
if args.do_train:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs ) ,desc="""Epoch""" ):
_SCREAMING_SNAKE_CASE = 0
_SCREAMING_SNAKE_CASE = 0
_SCREAMING_SNAKE_CASE = tqdm(snake_case__ ,desc="""Training""" )
for step, batch in enumerate(snake_case__ ):
_SCREAMING_SNAKE_CASE = tuple(t.to(snake_case__ ) for t in batch )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = batch
_SCREAMING_SNAKE_CASE = model(snake_case__ ,mc_token_ids=snake_case__ ,lm_labels=snake_case__ ,mc_labels=snake_case__ )
_SCREAMING_SNAKE_CASE = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
tr_loss += loss.item()
_SCREAMING_SNAKE_CASE = (
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
_SCREAMING_SNAKE_CASE = """Training loss: {:.2e} lr: {:.2e}""".format(snake_case__ ,scheduler.get_lr()[0] )
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
_SCREAMING_SNAKE_CASE = model.module if hasattr(snake_case__ ,"""module""" ) else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
_SCREAMING_SNAKE_CASE = os.path.join(args.output_dir ,snake_case__ )
_SCREAMING_SNAKE_CASE = os.path.join(args.output_dir ,snake_case__ )
torch.save(model_to_save.state_dict() ,snake_case__ )
model_to_save.config.to_json_file(snake_case__ )
tokenizer.save_vocabulary(args.output_dir )
# Load a trained model and vocabulary that you have fine-tuned
_SCREAMING_SNAKE_CASE = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir )
_SCREAMING_SNAKE_CASE = OpenAIGPTTokenizer.from_pretrained(args.output_dir )
model.to(snake_case__ )
if args.do_eval:
model.eval()
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0, 0
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0, 0
for batch in tqdm(snake_case__ ,desc="""Evaluating""" ):
_SCREAMING_SNAKE_CASE = tuple(t.to(snake_case__ ) for t in batch )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = batch
with torch.no_grad():
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model(
snake_case__ ,mc_token_ids=snake_case__ ,lm_labels=snake_case__ ,mc_labels=snake_case__ )
_SCREAMING_SNAKE_CASE = mc_logits.detach().cpu().numpy()
_SCREAMING_SNAKE_CASE = mc_labels.to("""cpu""" ).numpy()
_SCREAMING_SNAKE_CASE = accuracy(snake_case__ ,snake_case__ )
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0 )
nb_eval_steps += 1
_SCREAMING_SNAKE_CASE = eval_loss / nb_eval_steps
_SCREAMING_SNAKE_CASE = eval_accuracy / nb_eval_examples
_SCREAMING_SNAKE_CASE = tr_loss / nb_tr_steps if args.do_train else None
_SCREAMING_SNAKE_CASE = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss}
_SCREAMING_SNAKE_CASE = os.path.join(args.output_dir ,"""eval_results.txt""" )
with open(snake_case__ ,"""w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key in sorted(result.keys() ):
logger.info(""" %s = %s""" ,snake_case__ ,str(result[key] ) )
writer.write("""%s = %s\n""" % (key, str(result[key] )) )
if __name__ == "__main__":
main()
| 306 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''}
UpperCamelCase = {
'''tokenizer_file''': {
'''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''',
'''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''',
'''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''',
'''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''',
'''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''',
'''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''',
'''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''',
},
}
class __UpperCAmelCase (_UpperCAmelCase ):
__snake_case : Tuple = VOCAB_FILES_NAMES
__snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__snake_case : Optional[Any] = ["input_ids", "attention_mask"]
__snake_case : Optional[int] = None
def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ):
'''simple docstring'''
super().__init__(
UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , )
_SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space:
_SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) )
_SCREAMING_SNAKE_CASE = add_prefix_space
_SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ )
_SCREAMING_SNAKE_CASE = add_prefix_space
def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'
""" pretokenized inputs.""" )
return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ )
def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'
""" pretokenized inputs.""" )
return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ )
def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ )
return tuple(UpperCAmelCase_ )
def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] )
if len(UpperCAmelCase_ ) > self.model_max_length:
_SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :]
return input_ids
| 306 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_lowercase : Any = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ):
'''simple docstring'''
_a = ['pixel_values']
def __init__( self : Any, lowerCamelCase : bool = True, lowerCamelCase : Dict[str, int] = None, lowerCamelCase : PILImageResampling = PIL.Image.BICUBIC, lowerCamelCase : bool = True, lowerCamelCase : Dict[str, int] = None, lowerCamelCase : Union[int, float] = 1 / 255, lowerCamelCase : bool = True, lowerCamelCase : bool = True, lowerCamelCase : Optional[Union[float, List[float]]] = None, lowerCamelCase : Optional[Union[float, List[float]]] = None, **lowerCamelCase : Any, )-> None:
super().__init__(**lowerCamelCase )
lowerCamelCase__ : Any =size if size is not None else {'''height''': 256, '''width''': 256}
lowerCamelCase__ : Optional[int] =get_size_dict(lowerCamelCase )
lowerCamelCase__ : List[str] =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
lowerCamelCase__ : Tuple =get_size_dict(lowerCamelCase, param_name='''crop_size''' )
lowerCamelCase__ : Any =do_resize
lowerCamelCase__ : List[str] =size
lowerCamelCase__ : int =resample
lowerCamelCase__ : Union[str, Any] =do_center_crop
lowerCamelCase__ : Optional[Any] =crop_size
lowerCamelCase__ : Optional[int] =do_rescale
lowerCamelCase__ : List[str] =rescale_factor
lowerCamelCase__ : Any =do_normalize
lowerCamelCase__ : Optional[Any] =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCamelCase__ : Dict =image_std if image_std is not None else IMAGENET_STANDARD_STD
def snake_case ( self : Optional[int], lowerCamelCase : np.ndarray, lowerCamelCase : Dict[str, int], lowerCamelCase : PILImageResampling = PIL.Image.BICUBIC, lowerCamelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCamelCase : List[str], )-> np.ndarray:
lowerCamelCase__ : Dict =get_size_dict(lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return resize(
lowerCamelCase, size=(size['''height'''], size['''width''']), resample=lowerCamelCase, data_format=lowerCamelCase, **lowerCamelCase )
def snake_case ( self : List[str], lowerCamelCase : np.ndarray, lowerCamelCase : Dict[str, int], lowerCamelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCamelCase : Dict, )-> np.ndarray:
lowerCamelCase__ : Optional[int] =get_size_dict(lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(lowerCamelCase, size=(size['''height'''], size['''width''']), data_format=lowerCamelCase, **lowerCamelCase )
def snake_case ( self : List[Any], lowerCamelCase : np.ndarray, lowerCamelCase : Union[int, float], lowerCamelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCamelCase : Tuple, )-> Any:
return rescale(lowerCamelCase, scale=lowerCamelCase, data_format=lowerCamelCase, **lowerCamelCase )
def snake_case ( self : Optional[int], lowerCamelCase : np.ndarray, lowerCamelCase : Union[float, List[float]], lowerCamelCase : Union[float, List[float]], lowerCamelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCamelCase : Dict, )-> np.ndarray:
return normalize(lowerCamelCase, mean=lowerCamelCase, std=lowerCamelCase, data_format=lowerCamelCase, **lowerCamelCase )
def snake_case ( self : Tuple, lowerCamelCase : ImageInput, lowerCamelCase : bool = None, lowerCamelCase : Dict[str, int] = None, lowerCamelCase : Tuple=None, lowerCamelCase : bool = None, lowerCamelCase : Dict[str, int] = None, lowerCamelCase : bool = None, lowerCamelCase : float = None, lowerCamelCase : bool = None, lowerCamelCase : Optional[Union[float, List[float]]] = None, lowerCamelCase : Optional[Union[float, List[float]]] = None, lowerCamelCase : Optional[Union[str, TensorType]] = None, lowerCamelCase : ChannelDimension = ChannelDimension.FIRST, **lowerCamelCase : Optional[Any], )-> PIL.Image.Image:
lowerCamelCase__ : List[Any] =do_resize if do_resize is not None else self.do_resize
lowerCamelCase__ : List[Any] =resample if resample is not None else self.resample
lowerCamelCase__ : Union[str, Any] =do_center_crop if do_center_crop is not None else self.do_center_crop
lowerCamelCase__ : Optional[Any] =do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase__ : Union[str, Any] =rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCamelCase__ : Tuple =do_normalize if do_normalize is not None else self.do_normalize
lowerCamelCase__ : Dict =image_mean if image_mean is not None else self.image_mean
lowerCamelCase__ : List[Any] =image_std if image_std is not None else self.image_std
lowerCamelCase__ : Tuple =size if size is not None else self.size
lowerCamelCase__ : int =get_size_dict(lowerCamelCase )
lowerCamelCase__ : Any =crop_size if crop_size is not None else self.crop_size
lowerCamelCase__ : List[Any] =get_size_dict(lowerCamelCase, param_name='''crop_size''' )
lowerCamelCase__ : Optional[int] =make_list_of_images(lowerCamelCase )
if not valid_images(lowerCamelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
lowerCamelCase__ : List[str] =[to_numpy_array(lowerCamelCase ) for image in images]
if do_resize:
lowerCamelCase__ : Any =[self.resize(image=lowerCamelCase, size=lowerCamelCase, resample=lowerCamelCase ) for image in images]
if do_center_crop:
lowerCamelCase__ : List[Any] =[self.center_crop(image=lowerCamelCase, size=lowerCamelCase ) for image in images]
if do_rescale:
lowerCamelCase__ : Tuple =[self.rescale(image=lowerCamelCase, scale=lowerCamelCase ) for image in images]
if do_normalize:
lowerCamelCase__ : int =[self.normalize(image=lowerCamelCase, mean=lowerCamelCase, std=lowerCamelCase ) for image in images]
lowerCamelCase__ : List[Any] =[to_channel_dimension_format(lowerCamelCase, lowerCamelCase ) for image in images]
lowerCamelCase__ : Optional[Any] ={'''pixel_values''': images}
return BatchFeature(data=lowerCamelCase, tensor_type=lowerCamelCase )
| 363 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ):
'''simple docstring'''
_a = 'SpeechT5FeatureExtractor'
_a = 'SpeechT5Tokenizer'
def __init__( self : Dict, lowerCamelCase : Optional[int], lowerCamelCase : str )-> Any:
super().__init__(lowerCamelCase, lowerCamelCase )
def __call__( self : Tuple, *lowerCamelCase : List[str], **lowerCamelCase : Optional[int] )-> List[str]:
lowerCamelCase__ : List[Any] =kwargs.pop('''audio''', lowerCamelCase )
lowerCamelCase__ : List[str] =kwargs.pop('''text''', lowerCamelCase )
lowerCamelCase__ : int =kwargs.pop('''text_target''', lowerCamelCase )
lowerCamelCase__ : Dict =kwargs.pop('''audio_target''', lowerCamelCase )
lowerCamelCase__ : Any =kwargs.pop('''sampling_rate''', lowerCamelCase )
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' )
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' )
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' )
if audio is not None:
lowerCamelCase__ : Union[str, Any] =self.feature_extractor(lowerCamelCase, *lowerCamelCase, sampling_rate=lowerCamelCase, **lowerCamelCase )
elif text is not None:
lowerCamelCase__ : List[Any] =self.tokenizer(lowerCamelCase, **lowerCamelCase )
else:
lowerCamelCase__ : Any =None
if audio_target is not None:
lowerCamelCase__ : List[str] =self.feature_extractor(audio_target=lowerCamelCase, *lowerCamelCase, sampling_rate=lowerCamelCase, **lowerCamelCase )
lowerCamelCase__ : Tuple =targets['''input_values''']
elif text_target is not None:
lowerCamelCase__ : Dict =self.tokenizer(lowerCamelCase, **lowerCamelCase )
lowerCamelCase__ : int =targets['''input_ids''']
else:
lowerCamelCase__ : List[str] =None
if inputs is None:
return targets
if targets is not None:
lowerCamelCase__ : Dict =labels
lowerCamelCase__ : Any =targets.get('''attention_mask''' )
if decoder_attention_mask is not None:
lowerCamelCase__ : Dict =decoder_attention_mask
return inputs
def snake_case ( self : int, *lowerCamelCase : Optional[Any], **lowerCamelCase : Optional[int] )-> Optional[Any]:
lowerCamelCase__ : List[Any] =kwargs.pop('''input_values''', lowerCamelCase )
lowerCamelCase__ : Union[str, Any] =kwargs.pop('''input_ids''', lowerCamelCase )
lowerCamelCase__ : Optional[Any] =kwargs.pop('''labels''', lowerCamelCase )
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' )
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' )
if input_values is not None:
lowerCamelCase__ : List[str] =self.feature_extractor.pad(lowerCamelCase, *lowerCamelCase, **lowerCamelCase )
elif input_ids is not None:
lowerCamelCase__ : Tuple =self.tokenizer.pad(lowerCamelCase, **lowerCamelCase )
else:
lowerCamelCase__ : Any =None
if labels is not None:
if "input_ids" in labels or (isinstance(lowerCamelCase, lowerCamelCase ) and "input_ids" in labels[0]):
lowerCamelCase__ : str =self.tokenizer.pad(lowerCamelCase, **lowerCamelCase )
lowerCamelCase__ : List[Any] =targets['''input_ids''']
else:
lowerCamelCase__ : Any =self.feature_extractor.feature_size
lowerCamelCase__ : Optional[Any] =self.feature_extractor.num_mel_bins
lowerCamelCase__ : Optional[int] =self.feature_extractor.pad(lowerCamelCase, *lowerCamelCase, **lowerCamelCase )
lowerCamelCase__ : List[Any] =feature_size_hack
lowerCamelCase__ : Tuple =targets['''input_values''']
else:
lowerCamelCase__ : Optional[Any] =None
if inputs is None:
return targets
if targets is not None:
lowerCamelCase__ : Tuple =labels
lowerCamelCase__ : Optional[int] =targets.get('''attention_mask''' )
if decoder_attention_mask is not None:
lowerCamelCase__ : Optional[Any] =decoder_attention_mask
return inputs
def snake_case ( self : List[str], *lowerCamelCase : Union[str, Any], **lowerCamelCase : List[Any] )-> List[Any]:
return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase )
def snake_case ( self : List[str], *lowerCamelCase : List[Any], **lowerCamelCase : Tuple )-> int:
return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase )
| 272 | 0 |
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
snake_case_ : Optional[Any] = False
class __snake_case ( unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
def lowerCamelCase ( self : int):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase ( self : str):
"""simple docstring"""
UpperCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''')
# remove text_unet
pipe.remove_unused_weights()
pipe.to(_snake_case)
pipe.set_progress_bar_config(disable=_snake_case)
UpperCAmelCase_ = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ = torch.manual_seed(0)
UpperCAmelCase_ = pipe(
prompt=_snake_case , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''').images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_snake_case)
UpperCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained(_snake_case)
pipe.to(_snake_case)
pipe.set_progress_bar_config(disable=_snake_case)
UpperCAmelCase_ = generator.manual_seed(0)
UpperCAmelCase_ = pipe(
prompt=_snake_case , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''').images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"
def lowerCamelCase ( self : List[str]):
"""simple docstring"""
UpperCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained(
'''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa)
pipe.to(_snake_case)
pipe.set_progress_bar_config(disable=_snake_case)
UpperCAmelCase_ = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ = torch.manual_seed(0)
UpperCAmelCase_ = pipe(
prompt=_snake_case , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''').images
UpperCAmelCase_ = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase_ = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| 51 |
snake_case_ : Dict = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 51 | 1 |
'''simple docstring'''
def _UpperCamelCase ( ):
UpperCAmelCase__ : int = []
UpperCAmelCase__ : Dict = 1
while len(UpperCamelCase__ ) < 1e6:
constant.append(str(UpperCamelCase__ ) )
i += 1
UpperCAmelCase__ : Dict = """""".join(UpperCamelCase__ )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[9_9] )
* int(constant[9_9_9] )
* int(constant[9_9_9_9] )
* int(constant[9_9_9_9_9] )
* int(constant[9_9_9_9_9_9] )
)
if __name__ == "__main__":
print(solution())
| 283 |
'''simple docstring'''
import functools
def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ):
# Validation
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for day in days ):
raise ValueError("""The parameter days should be a list of integers""" )
if len(UpperCamelCase__ ) != 3 or not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for cost in costs ):
raise ValueError("""The parameter costs should be a list of three integers""" )
if len(UpperCamelCase__ ) == 0:
return 0
if min(UpperCamelCase__ ) <= 0:
raise ValueError("""All days elements should be greater than 0""" )
if max(UpperCamelCase__ ) >= 3_6_6:
raise ValueError("""All days elements should be less than 366""" )
UpperCAmelCase__ : Union[str, Any] = set(UpperCamelCase__ )
@functools.cache
def dynamic_programming(UpperCamelCase__ ) -> int:
if index > 3_6_5:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 283 | 1 |
"""simple docstring"""
from PIL import Image
def a_ ( lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level))
def contrast(lowerCamelCase ) -> int:
return int(1_2_8 + factor * (c - 1_2_8) )
return img.point(_a )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change contrast to 170
lowerCAmelCase__ : Optional[int] = change_contrast(img, 170)
cont_img.save('image_data/lena_high_contrast.png', format='png')
| 98 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import (
BitConfig,
ViTHybridConfig,
ViTHybridForImageClassification,
ViTHybridImageProcessor,
ViTHybridModel,
)
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Dict = logging.get_logger(__name__)
def __lowercase ( _a , _a=False ):
snake_case_ : List[str] = []
# fmt: off
# stem:
rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') )
rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') )
rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') )
rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') )
# backbone
rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') )
rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') )
rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') )
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") )
# transformer encoder
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
('''pre_logits.fc.weight''', '''pooler.dense.weight'''),
('''pre_logits.fc.bias''', '''pooler.dense.bias'''),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
snake_case_ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('''norm.weight''', '''vit.layernorm.weight'''),
('''norm.bias''', '''vit.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
# fmt: on
return rename_keys
def __lowercase ( _a , _a , _a=False ):
for i in range(config.num_hidden_layers ):
if base_model:
snake_case_ : List[str] = ''''''
else:
snake_case_ : Dict = '''vit.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case_ : List[str] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
snake_case_ : Optional[int] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
snake_case_ : Any = in_proj_weight[
: config.hidden_size, :
]
snake_case_ : Dict = in_proj_bias[: config.hidden_size]
snake_case_ : str = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case_ : Optional[int] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case_ : Dict = in_proj_weight[
-config.hidden_size :, :
]
snake_case_ : str = in_proj_bias[-config.hidden_size :]
def __lowercase ( _a ):
snake_case_ : Dict = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(_a , _a )
def __lowercase ( _a , _a , _a ):
snake_case_ : Union[str, Any] = dct.pop(_a )
snake_case_ : Union[str, Any] = val
def __lowercase ( ):
snake_case_ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
snake_case_ : Tuple = Image.open(requests.get(_a , stream=_a ).raw )
return im
@torch.no_grad()
def __lowercase ( _a , _a , _a=False ):
snake_case_ : str = BitConfig(
global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=_a , )
snake_case_ : Tuple = ViTHybridConfig(backbone_config=_a , image_size=384 , num_labels=1_000 )
snake_case_ : int = False
# load original model from timm
snake_case_ : str = timm.create_model(_a , pretrained=_a )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
snake_case_ : Any = timm_model.state_dict()
if base_model:
remove_classification_head_(_a )
snake_case_ : int = create_rename_keys(_a , _a )
for src, dest in rename_keys:
rename_key(_a , _a , _a )
read_in_q_k_v(_a , _a , _a )
snake_case_ : Optional[Any] = '''huggingface/label-files'''
snake_case_ : Any = '''imagenet-1k-id2label.json'''
snake_case_ : Dict = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) )
snake_case_ : Dict = {int(_a ): v for k, v in idalabel.items()}
snake_case_ : Optional[int] = idalabel
snake_case_ : Optional[Any] = {v: k for k, v in idalabel.items()}
# load HuggingFace model
if vit_name[-5:] == "in21k":
snake_case_ : Optional[Any] = ViTHybridModel(_a ).eval()
else:
snake_case_ : Any = ViTHybridForImageClassification(_a ).eval()
model.load_state_dict(_a )
# create image processor
snake_case_ : Optional[Any] = create_transform(**resolve_data_config({} , model=_a ) )
snake_case_ : List[Any] = transform.transforms
snake_case_ : Optional[Any] = {
'''bilinear''': PILImageResampling.BILINEAR,
'''bicubic''': PILImageResampling.BICUBIC,
'''nearest''': PILImageResampling.NEAREST,
}
snake_case_ : List[Any] = ViTHybridImageProcessor(
do_resize=_a , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_a , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=_a , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
snake_case_ : Optional[int] = prepare_img()
snake_case_ : Optional[int] = transform(_a ).unsqueeze(0 )
snake_case_ : int = processor(_a , return_tensors='''pt''' ).pixel_values
# verify pixel values
assert torch.allclose(_a , _a )
# verify logits
with torch.no_grad():
snake_case_ : List[str] = model(_a )
snake_case_ : Any = outputs.logits
print('''Predicted class:''' , logits.argmax(-1 ).item() )
if base_model:
snake_case_ : Optional[Any] = timm_model.forward_features(_a )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(_a , outputs.pooler_output , atol=1E-3 )
else:
snake_case_ : int = timm_model(_a )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(_a , outputs.logits , atol=1E-3 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
Path(_a ).mkdir(exist_ok=_a )
print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_a )
print(f"Saving processor to {pytorch_dump_folder_path}" )
processor.save_pretrained(_a )
if push_to_hub:
print(f"Pushing model and processor to the hub {vit_name}" )
model.push_to_hub(f"ybelkada/{vit_name}" )
processor.push_to_hub(f"ybelkada/{vit_name}" )
if __name__ == "__main__":
lowercase__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--vit_name''',
default='''vit_base_r50_s16_384''',
type=str,
help='''Name of the hybrid ViT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.'''
)
lowercase__ : Any = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 264 | 0 |
"""simple docstring"""
from statistics import mean, stdev
def UpperCAmelCase__ (snake_case__ : list , snake_case__ : int = 3 ):
"""simple docstring"""
_snake_case : List[str] = min(snake_case__ )
_snake_case : str = max(snake_case__ )
# normalize data
return [round((x - x_min) / (x_max - x_min) , snake_case__ ) for x in data]
def UpperCAmelCase__ (snake_case__ : list , snake_case__ : int = 3 ):
"""simple docstring"""
_snake_case : List[str] = mean(snake_case__ )
_snake_case : int = stdev(snake_case__ )
# standardize data
return [round((x - mu) / (sigma) , snake_case__ ) for x in data]
| 132 |
"""simple docstring"""
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
_snake_case : Optional[Any] = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def UpperCAmelCase__ (snake_case__ : int = 50_00 ):
"""simple docstring"""
_snake_case : List[str] = [(i * (3 * i - 1)) // 2 for i in range(1 , snake_case__ )]
for i, pentagonal_i in enumerate(snake_case__ ):
for j in range(snake_case__ , len(snake_case__ ) ):
_snake_case : Dict = pentagonal_nums[j]
_snake_case : Optional[Any] = pentagonal_i + pentagonal_j
_snake_case : List[str] = pentagonal_j - pentagonal_i
if is_pentagonal(snake_case__ ) and is_pentagonal(snake_case__ ):
return b
return -1
if __name__ == "__main__":
print(F'''{solution() = }''')
| 132 | 1 |
import argparse
import requests
import torch
from PIL import Image
from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor
def lowerCAmelCase__ ( lowerCamelCase_ : Dict):
'''simple docstring'''
if "cls_token" in name:
lowerCAmelCase__ : str = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''')
if "mask_token" in name:
lowerCAmelCase__ : str = name.replace('''mask_token''' ,'''decoder.mask_token''')
if "decoder_pos_embed" in name:
lowerCAmelCase__ : int = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''')
if "pos_embed" in name and "decoder" not in name:
lowerCAmelCase__ : List[str] = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''')
if "patch_embed.proj" in name:
lowerCAmelCase__ : str = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''')
if "patch_embed.norm" in name:
lowerCAmelCase__ : str = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''')
if "decoder_blocks" in name:
lowerCAmelCase__ : str = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''')
if "blocks" in name:
lowerCAmelCase__ : Dict = name.replace('''blocks''' ,'''vit.encoder.layer''')
if "attn.proj" in name:
lowerCAmelCase__ : List[str] = name.replace('''attn.proj''' ,'''attention.output.dense''')
if "attn" in name:
lowerCAmelCase__ : Optional[int] = name.replace('''attn''' ,'''attention.self''')
if "norm1" in name:
lowerCAmelCase__ : List[Any] = name.replace('''norm1''' ,'''layernorm_before''')
if "norm2" in name:
lowerCAmelCase__ : Optional[Any] = name.replace('''norm2''' ,'''layernorm_after''')
if "mlp.fc1" in name:
lowerCAmelCase__ : str = name.replace('''mlp.fc1''' ,'''intermediate.dense''')
if "mlp.fc2" in name:
lowerCAmelCase__ : Dict = name.replace('''mlp.fc2''' ,'''output.dense''')
if "decoder_embed" in name:
lowerCAmelCase__ : Optional[Any] = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''')
if "decoder_norm" in name:
lowerCAmelCase__ : int = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''')
if "decoder_pred" in name:
lowerCAmelCase__ : Tuple = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''')
if "norm.weight" in name and "decoder" not in name:
lowerCAmelCase__ : List[str] = name.replace('''norm.weight''' ,'''vit.layernorm.weight''')
if "norm.bias" in name and "decoder" not in name:
lowerCAmelCase__ : Any = name.replace('''norm.bias''' ,'''vit.layernorm.bias''')
return name
def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : Any):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowerCAmelCase__ : Optional[int] = orig_state_dict.pop(lowerCamelCase_)
if "qkv" in key:
lowerCAmelCase__ : str = key.split('''.''')
lowerCAmelCase__ : Tuple = int(key_split[1])
if "decoder_blocks" in key:
lowerCAmelCase__ : Dict = config.decoder_hidden_size
lowerCAmelCase__ : str = '''decoder.decoder_layers.'''
if "weight" in key:
lowerCAmelCase__ : List[Any] = val[:dim, :]
lowerCAmelCase__ : List[str] = val[dim : dim * 2, :]
lowerCAmelCase__ : Optional[Any] = val[-dim:, :]
elif "bias" in key:
lowerCAmelCase__ : Optional[int] = val[:dim]
lowerCAmelCase__ : List[str] = val[dim : dim * 2]
lowerCAmelCase__ : Union[str, Any] = val[-dim:]
else:
lowerCAmelCase__ : List[str] = config.hidden_size
lowerCAmelCase__ : Dict = '''vit.encoder.layer.'''
if "weight" in key:
lowerCAmelCase__ : Union[str, Any] = val[:dim, :]
lowerCAmelCase__ : Dict = val[dim : dim * 2, :]
lowerCAmelCase__ : Union[str, Any] = val[-dim:, :]
elif "bias" in key:
lowerCAmelCase__ : Optional[Any] = val[:dim]
lowerCAmelCase__ : str = val[dim : dim * 2]
lowerCAmelCase__ : List[Any] = val[-dim:]
else:
lowerCAmelCase__ : Dict = val
return orig_state_dict
def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : List[Any]):
'''simple docstring'''
lowerCAmelCase__ : List[Any] = ViTMAEConfig()
if "large" in checkpoint_url:
lowerCAmelCase__ : List[str] = 1024
lowerCAmelCase__ : Dict = 4096
lowerCAmelCase__ : Dict = 24
lowerCAmelCase__ : int = 16
elif "huge" in checkpoint_url:
lowerCAmelCase__ : List[Any] = 14
lowerCAmelCase__ : Optional[int] = 1280
lowerCAmelCase__ : Any = 5120
lowerCAmelCase__ : List[Any] = 32
lowerCAmelCase__ : Union[str, Any] = 16
lowerCAmelCase__ : Union[str, Any] = ViTMAEForPreTraining(lowerCamelCase_)
lowerCAmelCase__ : Union[str, Any] = torch.hub.load_state_dict_from_url(lowerCamelCase_ ,map_location='''cpu''')['''model''']
lowerCAmelCase__ : Tuple = ViTMAEImageProcessor(size=config.image_size)
lowerCAmelCase__ : Optional[int] = convert_state_dict(lowerCamelCase_ ,lowerCamelCase_)
model.load_state_dict(lowerCamelCase_)
model.eval()
lowerCAmelCase__ : Tuple = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg'''
lowerCAmelCase__ : int = Image.open(requests.get(lowerCamelCase_ ,stream=lowerCamelCase_).raw)
lowerCAmelCase__ : int = ViTMAEImageProcessor(size=config.image_size)
lowerCAmelCase__ : Any = image_processor(images=lowerCamelCase_ ,return_tensors='''pt''')
# forward pass
torch.manual_seed(2)
lowerCAmelCase__ : str = model(**lowerCamelCase_)
lowerCAmelCase__ : Any = outputs.logits
if "large" in checkpoint_url:
lowerCAmelCase__ : Dict = torch.tensor(
[[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]])
elif "huge" in checkpoint_url:
lowerCAmelCase__ : Optional[int] = torch.tensor(
[[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]])
else:
lowerCAmelCase__ : Tuple = torch.tensor(
[[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]])
# verify logits
assert torch.allclose(logits[0, :3, :3] ,lowerCamelCase_ ,atol=1E-4)
print(f"""Saving model to {pytorch_dump_folder_path}""")
model.save_pretrained(lowerCamelCase_)
print(f"""Saving image processor to {pytorch_dump_folder_path}""")
image_processor.save_pretrained(lowerCamelCase_)
if __name__ == "__main__":
__snake_case : int =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth',
type=str,
help='URL of the checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
__snake_case : str =parser.parse_args()
convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 129 |
def lowerCAmelCase__ ( lowerCamelCase_ : str):
'''simple docstring'''
lowerCAmelCase__ : str = [int(lowerCamelCase_) for i in ip_va_address.split('''.''') if i.isdigit()]
return len(lowerCamelCase_) == 4 and all(0 <= int(lowerCamelCase_) <= 254 for octet in octets)
if __name__ == "__main__":
__snake_case : List[Any] =input().strip()
__snake_case : Optional[Any] ='valid' if is_ip_va_address_valid(ip) else 'invalid'
print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
| 129 | 1 |
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
from transformers import HfArgumentParser
def __a ( lowerCAmelCase_ : Union[str, Any]=None ,lowerCAmelCase_ : str=None ) -> Any:
'''simple docstring'''
return field(default_factory=lambda: default ,metadata=lowerCAmelCase_ )
@dataclass
class lowercase :
"""simple docstring"""
a__ : str = field(
metadata={"help": "The csv file to plot."} , )
a__ : bool = field(
default=snake_case__ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , )
a__ : bool = field(
default=snake_case__ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , )
a__ : bool = field(
default=snake_case__ , metadata={"help": "Disable logarithmic scale when plotting"} , )
a__ : bool = field(
default=snake_case__ , metadata={
"help": "Whether the csv file has training results or inference results. Defaults to inference results."
} , )
a__ : Optional[str] = field(
default=snake_case__ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , )
a__ : Optional[List[str]] = list_field(
default=snake_case__ , metadata={"help": "List of model names that are used instead of the ones in the csv file."})
def __a ( lowerCAmelCase_ : Tuple ) -> Union[str, Any]:
'''simple docstring'''
try:
int(lowerCAmelCase_ )
return True
except ValueError:
return False
def __a ( lowerCAmelCase_ : List[Any] ) -> List[str]:
'''simple docstring'''
try:
float(lowerCAmelCase_ )
return True
except ValueError:
return False
class lowercase :
"""simple docstring"""
def __init__( self : Any , __UpperCAmelCase : List[str] ) -> Any:
UpperCAmelCase_= args
UpperCAmelCase_= defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} )
with open(self.args.csv_file , newline="""""" ) as csv_file:
UpperCAmelCase_= csv.DictReader(__UpperCAmelCase )
for row in reader:
UpperCAmelCase_= row["""model"""]
self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) )
self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) )
if can_convert_to_int(row["""result"""] ):
# value is not None
UpperCAmelCase_= int(row["""result"""] )
elif can_convert_to_float(row["""result"""] ):
# value is not None
UpperCAmelCase_= float(row["""result"""] )
def _SCREAMING_SNAKE_CASE ( self : str ) -> int:
UpperCAmelCase_, UpperCAmelCase_= plt.subplots()
UpperCAmelCase_= """Time usage""" if self.args.is_time else """Memory usage"""
UpperCAmelCase_= title_str + """ for training""" if self.args.is_train else title_str + """ for inference"""
if not self.args.no_log_scale:
# set logarithm scales
ax.set_xscale("""log""" )
ax.set_yscale("""log""" )
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_formatter(ScalarFormatter() )
for model_name_idx, model_name in enumerate(self.result_dict.keys() ):
UpperCAmelCase_= sorted(set(self.result_dict[model_name]["""bsz"""] ) )
UpperCAmelCase_= sorted(set(self.result_dict[model_name]["""seq_len"""] ) )
UpperCAmelCase_= self.result_dict[model_name]["""result"""]
((UpperCAmelCase_), (UpperCAmelCase_))= (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
UpperCAmelCase_= (
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
)
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
UpperCAmelCase_= np.asarray(
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__UpperCAmelCase , )
else:
UpperCAmelCase_= np.asarray(
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , )
((UpperCAmelCase_), (UpperCAmelCase_))= (
("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""")
)
UpperCAmelCase_= np.asarray(__UpperCAmelCase , __UpperCAmelCase )[: len(__UpperCAmelCase )]
plt.scatter(
__UpperCAmelCase , __UpperCAmelCase , label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" )
plt.plot(__UpperCAmelCase , __UpperCAmelCase , """--""" )
title_str += F""" {label_model_name} vs."""
UpperCAmelCase_= title_str[:-4]
UpperCAmelCase_= """Time in s""" if self.args.is_time else """Memory in MB"""
# plot
plt.title(__UpperCAmelCase )
plt.xlabel(__UpperCAmelCase )
plt.ylabel(__UpperCAmelCase )
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file )
else:
plt.show()
def __a ( ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_= HfArgumentParser(lowerCAmelCase_ )
UpperCAmelCase_= parser.parse_args_into_dataclasses()[0]
UpperCAmelCase_= Plot(args=lowerCAmelCase_ )
plot.plot()
if __name__ == "__main__":
main()
| 277 |
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase ( snake_case__):
"""simple docstring"""
def __init__( self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ) -> List[str]:
super().__init__()
# make sure scheduler can always be converted to DDIM
UpperCAmelCase_= DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
@torch.no_grad()
def __call__( self : Union[str, Any] , __UpperCAmelCase : int = 1 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : int = 50 , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]:
# Sample gaussian noise to begin loop
if isinstance(self.unet.config.sample_size , __UpperCAmelCase ):
UpperCAmelCase_= (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
UpperCAmelCase_= (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(__UpperCAmelCase )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
UpperCAmelCase_= randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(__UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
UpperCAmelCase_= self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
UpperCAmelCase_= self.scheduler.step(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , eta=__UpperCAmelCase , use_clipped_model_output=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample
UpperCAmelCase_= (image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase_= image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase_= self.numpy_to_pil(__UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__UpperCAmelCase )
| 277 | 1 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_tf_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_tf_available():
import tensorflow as tf
_a : Tuple= logging.get_logger(__name__)
@dataclass
class UpperCamelCase ( lowercase ):
UpperCAmelCase : List[str] = [
"""no_inference""",
"""no_cuda""",
"""no_tpu""",
"""no_speed""",
"""no_memory""",
"""no_env_print""",
"""no_multi_process""",
]
def __init__(self : Dict , **_A : Dict) -> int:
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
__snake_case : Optional[Any] = deprecated_arg[3:]
__snake_case : List[Any] = not kwargs.pop(_A)
logger.warning(
f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or"
f" {positive_arg}={kwargs[positive_arg]}")
__snake_case : List[Any] = kwargs.pop('tpu_name' , self.tpu_name)
__snake_case : Optional[Any] = kwargs.pop('device_idx' , self.device_idx)
__snake_case : Any = kwargs.pop('eager_mode' , self.eager_mode)
__snake_case : Optional[Any] = kwargs.pop('use_xla' , self.use_xla)
super().__init__(**_A)
UpperCAmelCase : str = field(
default=lowercase , metadata={"""help""": """Name of TPU"""} , )
UpperCAmelCase : int = field(
default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , )
UpperCAmelCase : bool = field(default=lowercase , metadata={"""help""": """Benchmark models in eager model."""} )
UpperCAmelCase : bool = field(
default=lowercase , metadata={
"""help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`."""
} , )
@cached_property
def _lowercase (self : Union[str, Any]) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self , ['tf'])
__snake_case : Optional[int] = None
if self.tpu:
try:
if self.tpu_name:
__snake_case : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name)
else:
__snake_case : str = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
__snake_case : Optional[int] = None
return tpu
@cached_property
def _lowercase (self : Optional[Any]) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self , ['tf'])
if self.is_tpu:
tf.config.experimental_connect_to_cluster(self._setup_tpu)
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu)
__snake_case : Tuple = tf.distribute.TPUStrategy(self._setup_tpu)
else:
# currently no multi gpu is allowed
if self.is_gpu:
# TODO: Currently only single GPU is supported
tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU')
__snake_case : Tuple = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}")
else:
tf.config.set_visible_devices([] , 'GPU') # disable GPU
__snake_case : Optional[int] = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}")
return strategy
@property
def _lowercase (self : Tuple) -> bool:
requires_backends(self , ['tf'])
return self._setup_tpu is not None
@property
def _lowercase (self : Optional[Any]) -> "tf.distribute.Strategy":
requires_backends(self , ['tf'])
return self._setup_strategy
@property
def _lowercase (self : str) -> Any:
requires_backends(self , ['tf'])
return tf.config.list_physical_devices('GPU')
@property
def _lowercase (self : Union[str, Any]) -> int:
requires_backends(self , ['tf'])
if self.cuda:
return len(self.gpu_list)
return 0
@property
def _lowercase (self : Union[str, Any]) -> bool:
return self.n_gpu > 0
| 172 |
"""simple docstring"""
from __future__ import annotations
_a : List[Any]= []
def __UpperCAmelCase ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> bool:
'''simple docstring'''
for i in range(len(UpperCAmelCase_ ) ):
if board[row][i] == 1:
return False
for i in range(len(UpperCAmelCase_ ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(UpperCAmelCase_ , -1 , -1 ) , range(UpperCAmelCase_ , -1 , -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(UpperCAmelCase_ , -1 , -1 ) , range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ):
if board[i][j] == 1:
return False
return True
def __UpperCAmelCase ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : int ) -> bool:
'''simple docstring'''
if row >= len(UpperCAmelCase_ ):
solution.append(UpperCAmelCase_ )
printboard(UpperCAmelCase_ )
print()
return True
for i in range(len(UpperCAmelCase_ ) ):
if is_safe(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
__snake_case : Any = 1
solve(UpperCAmelCase_ , row + 1 )
__snake_case : List[str] = 0
return False
def __UpperCAmelCase ( UpperCAmelCase_ : list[list[int]] ) -> None:
'''simple docstring'''
for i in range(len(UpperCAmelCase_ ) ):
for j in range(len(UpperCAmelCase_ ) ):
if board[i][j] == 1:
print('Q' , end=' ' )
else:
print('.' , end=' ' )
print()
# n=int(input("The no. of queens"))
_a : Optional[int]= 8
_a : List[str]= [[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print("The total no. of solutions are :", len(solution))
| 172 | 1 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=a )
class __A( a ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} )
snake_case_ = Features(
{
'''answers''': Sequence(
{
'''text''': Value('''string''' ),
'''answer_start''': Value('''int32''' ),
} )
} )
snake_case_ = "question"
snake_case_ = "context"
snake_case_ = "answers"
@property
def SCREAMING_SNAKE_CASE_ ( self ) -> Dict[str, str]:
'''simple docstring'''
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 33 |
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
A : str = logging.get_logger(__name__)
A : Any = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'encoder.layer_norm_for_extract': 'layer_norm_for_extract',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'label_embs_concat': 'label_embeddings_concat',
'mask_emb': 'masked_spec_embed',
'spk_proj': 'speaker_proj',
}
A : Optional[Any] = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'label_embeddings_concat',
'speaker_proj',
'layer_norm_for_extract',
]
def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> Dict:
for attribute in key.split('''.''' ):
__a = getattr(a__ , a__ )
if weight_type is not None:
__a = getattr(a__ , a__ ).shape
else:
__a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
__a = value
elif weight_type == "weight_g":
__a = value
elif weight_type == "weight_v":
__a = value
elif weight_type == "bias":
__a = value
else:
__a = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def __lowerCAmelCase ( a__ , a__ ) -> List[str]:
__a = []
__a = fairseq_model.state_dict()
__a = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
__a = False
if "conv_layers" in name:
load_conv_layer(
a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == '''group''' , )
__a = True
else:
for key, mapped_key in MAPPING.items():
__a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key):
# special case since naming is very similar
continue
__a = True
if "*" in mapped_key:
__a = name.split(a__ )[0].split('''.''' )[-2]
__a = mapped_key.replace('''*''' , a__ )
if "weight_g" in name:
__a = '''weight_g'''
elif "weight_v" in name:
__a = '''weight_v'''
elif "bias" in name:
__a = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__a = '''weight'''
else:
__a = None
set_recursively(a__ , a__ , a__ , a__ , a__ )
continue
if not is_used:
unused_weights.append(a__ )
logger.warning(F"""Unused weights: {unused_weights}""" )
def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> int:
__a = full_name.split('''conv_layers.''' )[-1]
__a = name.split('''.''' )
__a = int(items[0] )
__a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
__a = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
__a = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" )
__a = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" )
__a = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(a__ )
@torch.no_grad()
def __lowerCAmelCase ( a__ , a__ , a__=None , a__=None , a__=True ) -> Tuple:
if config_path is not None:
__a = UniSpeechSatConfig.from_pretrained(a__ )
else:
__a = UniSpeechSatConfig()
__a = ''''''
if is_finetuned:
__a = UniSpeechSatForCTC(a__ )
else:
__a = UniSpeechSatForPreTraining(a__ )
__a , __a , __a = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
__a = model[0].eval()
recursively_load_weights(a__ , a__ )
hf_wavavec.save_pretrained(a__ )
if __name__ == "__main__":
A : List[Any] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
A : Dict = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 33 | 1 |
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
lowerCAmelCase__ = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'''text-classification''',
'''language-modeling''',
'''summarization''',
'''token-classification''',
'''question-answering''',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
lowerCAmelCase__ = logging.getLogger()
def _A ( ):
"""simple docstring"""
__lowercase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
__lowercase = parser.parse_args()
return args.f
def _A ( A__ , A__="eval" ):
"""simple docstring"""
__lowercase = os.path.join(A__ , F"{split}_results.json" )
if os.path.exists(A__ ):
with open(A__ , '''r''' ) as f:
return json.load(A__ )
raise ValueError(F"can't find {path}" )
lowerCAmelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = self.get_auto_remove_tmp_dir()
__lowercase = F"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split()
with patch.object(lowercase__ ,'''argv''' ,lowercase__ ):
run_flax_glue.main()
__lowercase = get_results(lowercase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] ,0.7_5 )
@slow
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
__lowercase = self.get_auto_remove_tmp_dir()
__lowercase = F"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowercase__ ,'''argv''' ,lowercase__ ):
run_clm_flax.main()
__lowercase = get_results(lowercase__ )
self.assertLess(result['''eval_perplexity'''] ,1_0_0 )
@slow
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
__lowercase = self.get_auto_remove_tmp_dir()
__lowercase = F"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split()
with patch.object(lowercase__ ,'''argv''' ,lowercase__ ):
run_summarization_flax.main()
__lowercase = get_results(lowercase__ ,split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] ,1_0 )
self.assertGreaterEqual(result['''test_rouge2'''] ,2 )
self.assertGreaterEqual(result['''test_rougeL'''] ,7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] ,7 )
@slow
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
__lowercase = self.get_auto_remove_tmp_dir()
__lowercase = F"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split()
with patch.object(lowercase__ ,'''argv''' ,lowercase__ ):
run_mlm_flax.main()
__lowercase = get_results(lowercase__ )
self.assertLess(result['''eval_perplexity'''] ,4_2 )
@slow
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
__lowercase = self.get_auto_remove_tmp_dir()
__lowercase = F"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowercase__ ,'''argv''' ,lowercase__ ):
run_ta_mlm_flax.main()
__lowercase = get_results(lowercase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] ,0.4_2 )
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
__lowercase = 7 if get_gpu_count() > 1 else 2
__lowercase = self.get_auto_remove_tmp_dir()
__lowercase = F"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split()
with patch.object(lowercase__ ,'''argv''' ,lowercase__ ):
run_flax_ner.main()
__lowercase = get_results(lowercase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] ,0.7_5 )
self.assertGreaterEqual(result['''eval_f1'''] ,0.3 )
@slow
def SCREAMING_SNAKE_CASE ( self : Any ):
__lowercase = self.get_auto_remove_tmp_dir()
__lowercase = F"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split()
with patch.object(lowercase__ ,'''argv''' ,lowercase__ ):
run_qa.main()
__lowercase = get_results(lowercase__ )
self.assertGreaterEqual(result['''eval_f1'''] ,3_0 )
self.assertGreaterEqual(result['''eval_exact'''] ,3_0 )
| 104 |
'''simple docstring'''
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''lm_head''',
'''label_embs_concat''': '''label_embeddings_concat''',
'''mask_emb''': '''masked_spec_embed''',
'''spk_proj''': '''speaker_proj''',
}
lowerCAmelCase__ = [
'''lm_head''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
'''label_embeddings_concat''',
'''speaker_proj''',
'''layer_norm_for_extract''',
]
def _A ( A__ , A__ , A__ , A__ , A__ ):
"""simple docstring"""
for attribute in key.split('''.''' ):
__lowercase = getattr(A__ , A__ )
if weight_type is not None:
__lowercase = getattr(A__ , A__ ).shape
else:
__lowercase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
F" {value.shape} for {full_name}" )
if weight_type == "weight":
__lowercase = value
elif weight_type == "weight_g":
__lowercase = value
elif weight_type == "weight_v":
__lowercase = value
elif weight_type == "bias":
__lowercase = value
else:
__lowercase = value
logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def _A ( A__ , A__ ):
"""simple docstring"""
__lowercase = []
__lowercase = fairseq_model.state_dict()
__lowercase = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
__lowercase = False
if "conv_layers" in name:
load_conv_layer(
A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == '''group''' , )
__lowercase = True
else:
for key, mapped_key in MAPPING.items():
__lowercase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key):
# special case since naming is very similar
continue
__lowercase = True
if "*" in mapped_key:
__lowercase = name.split(A__ )[0].split('''.''' )[-2]
__lowercase = mapped_key.replace('''*''' , A__ )
if "weight_g" in name:
__lowercase = '''weight_g'''
elif "weight_v" in name:
__lowercase = '''weight_v'''
elif "bias" in name:
__lowercase = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__lowercase = '''weight'''
else:
__lowercase = None
set_recursively(A__ , A__ , A__ , A__ , A__ )
continue
if not is_used:
unused_weights.append(A__ )
logger.warning(F"Unused weights: {unused_weights}" )
def _A ( A__ , A__ , A__ , A__ , A__ ):
"""simple docstring"""
__lowercase = full_name.split('''conv_layers.''' )[-1]
__lowercase = name.split('''.''' )
__lowercase = int(items[0] )
__lowercase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
__lowercase = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
__lowercase = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." )
__lowercase = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." )
__lowercase = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(A__ )
@torch.no_grad()
def _A ( A__ , A__ , A__=None , A__=None , A__=True ):
"""simple docstring"""
if config_path is not None:
__lowercase = UniSpeechSatConfig.from_pretrained(A__ )
else:
__lowercase = UniSpeechSatConfig()
__lowercase = ''''''
if is_finetuned:
__lowercase = UniSpeechSatForCTC(A__ )
else:
__lowercase = UniSpeechSatForPreTraining(A__ )
__lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
__lowercase = model[0].eval()
recursively_load_weights(A__ , A__ )
hf_wavavec.save_pretrained(A__ )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
lowerCAmelCase__ = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 104 | 1 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def _lowerCAmelCase ( UpperCAmelCase : int ):
'''simple docstring'''
if (
(cp >= 0X4e00 and cp <= 0X9fff)
or (cp >= 0X3400 and cp <= 0X4dbf) #
or (cp >= 0X2_0000 and cp <= 0X2_a6df) #
or (cp >= 0X2_a700 and cp <= 0X2_b73f) #
or (cp >= 0X2_b740 and cp <= 0X2_b81f) #
or (cp >= 0X2_b820 and cp <= 0X2_ceaf) #
or (cp >= 0Xf900 and cp <= 0Xfaff)
or (cp >= 0X2_f800 and cp <= 0X2_fa1f) #
): #
return True
return False
def _lowerCAmelCase ( UpperCAmelCase : str ):
'''simple docstring'''
for char in word:
UpperCamelCase__ : Union[str, Any] =ord(UpperCAmelCase )
if not _is_chinese_char(UpperCAmelCase ):
return 0
return 1
def _lowerCAmelCase ( UpperCAmelCase : List[str] ):
'''simple docstring'''
UpperCamelCase__ : List[str] =set()
for token in tokens:
UpperCamelCase__ : Union[str, Any] =len(UpperCAmelCase ) > 1 and is_chinese(UpperCAmelCase )
if chinese_word:
word_set.add(UpperCAmelCase )
UpperCamelCase__ : List[str] =list(UpperCAmelCase )
return word_list
def _lowerCAmelCase ( UpperCAmelCase : List[str] , UpperCAmelCase : set() ):
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
UpperCamelCase__ : List[Any] =max([len(UpperCAmelCase ) for w in chinese_word_set] )
UpperCamelCase__ : Any =bert_tokens
UpperCamelCase__ , UpperCamelCase__ : Any =0, len(UpperCAmelCase )
while start < end:
UpperCamelCase__ : List[str] =True
if is_chinese(bert_word[start] ):
UpperCamelCase__ : Any =min(end - start , UpperCAmelCase )
for i in range(UpperCAmelCase , 1 , -1 ):
UpperCamelCase__ : Optional[int] =''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
UpperCamelCase__ : List[Any] ='''##''' + bert_word[j]
UpperCamelCase__ : List[str] =start + i
UpperCamelCase__ : List[str] =False
break
if single_word:
start += 1
return bert_word
def _lowerCAmelCase ( UpperCAmelCase : List[str] , UpperCAmelCase : LTP , UpperCAmelCase : BertTokenizer ):
'''simple docstring'''
UpperCamelCase__ : Tuple =[]
for i in range(0 , len(UpperCAmelCase ) , 100 ):
UpperCamelCase__ : str =ltp_tokenizer.seg(lines[i : i + 100] )[0]
UpperCamelCase__ : str =[get_chinese_word(UpperCAmelCase ) for r in res]
ltp_res.extend(UpperCAmelCase )
assert len(UpperCAmelCase ) == len(UpperCAmelCase )
UpperCamelCase__ : Any =[]
for i in range(0 , len(UpperCAmelCase ) , 100 ):
UpperCamelCase__ : Union[str, Any] =bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCAmelCase , truncation=UpperCAmelCase , max_length=512 )
bert_res.extend(res['''input_ids'''] )
assert len(UpperCAmelCase ) == len(UpperCAmelCase )
UpperCamelCase__ : int =[]
for input_ids, chinese_word in zip(UpperCAmelCase , UpperCAmelCase ):
UpperCamelCase__ : List[Any] =[]
for id in input_ids:
UpperCamelCase__ : Tuple =bert_tokenizer._convert_id_to_token(UpperCAmelCase )
input_tokens.append(UpperCAmelCase )
UpperCamelCase__ : int =add_sub_symbol(UpperCAmelCase , UpperCAmelCase )
UpperCamelCase__ : str =[]
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(UpperCAmelCase ):
if token[:2] == "##":
UpperCamelCase__ : Dict =token[2:]
# save chinese tokens' pos
if len(UpperCAmelCase ) == 1 and _is_chinese_char(ord(UpperCAmelCase ) ):
ref_id.append(UpperCAmelCase )
ref_ids.append(UpperCAmelCase )
assert len(UpperCAmelCase ) == len(UpperCAmelCase )
return ref_ids
def _lowerCAmelCase ( UpperCAmelCase : Tuple ):
'''simple docstring'''
with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f:
UpperCamelCase__ : Union[str, Any] =f.readlines()
UpperCamelCase__ : int =[line.strip() for line in data if len(UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
UpperCamelCase__ : str =LTP(args.ltp ) # faster in GPU device
UpperCamelCase__ : Any =BertTokenizer.from_pretrained(args.bert )
UpperCamelCase__ : int =prepare_ref(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f:
UpperCamelCase__ : Tuple =[json.dumps(UpperCAmelCase ) + '''\n''' for ref in ref_ids]
f.writelines(UpperCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser(description="""prepare_chinese_ref""")
parser.add_argument(
"""--file_name""",
type=str,
default="""./resources/chinese-demo.txt""",
help="""file need process, same as training data in lm""",
)
parser.add_argument(
"""--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path"""
)
parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""")
parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""")
_SCREAMING_SNAKE_CASE : str = parser.parse_args()
main(args)
| 157 |
"""simple docstring"""
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
_SCREAMING_SNAKE_CASE : str = False
class __a ( unittest.TestCase ):
"""simple docstring"""
pass
@nightly
@require_torch_gpu
class __a ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : List[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self : Optional[int] ):
UpperCamelCase__ : Any =VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
UpperCamelCase__ : int =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCamelCase__ : Dict =torch.manual_seed(0 )
UpperCamelCase__ : Optional[int] =pipe.dual_guided(
prompt='''first prompt''' , image=lowercase_ , text_to_image_strength=0.7_5 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowercase_ )
UpperCamelCase__ : str =VersatileDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
UpperCamelCase__ : int =generator.manual_seed(0 )
UpperCamelCase__ : str =pipe.dual_guided(
prompt='''first prompt''' , image=lowercase_ , text_to_image_strength=0.7_5 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def _lowerCAmelCase ( self : Optional[Any] ):
UpperCamelCase__ : Dict =VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
UpperCamelCase__ : str ='''cyberpunk 2077'''
UpperCamelCase__ : str =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCamelCase__ : int =torch.manual_seed(0 )
UpperCamelCase__ : int =pipe.dual_guided(
prompt=lowercase_ , image=lowercase_ , text_to_image_strength=0.7_5 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCamelCase__ : List[str] =image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase__ : Dict =np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
UpperCamelCase__ : Dict ='''A painting of a squirrel eating a burger '''
UpperCamelCase__ : Optional[int] =torch.manual_seed(0 )
UpperCamelCase__ : str =pipe.text_to_image(
prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
UpperCamelCase__ : str =image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase__ : List[Any] =np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
UpperCamelCase__ : Optional[Any] =pipe.image_variation(lowercase_ , generator=lowercase_ , output_type='''numpy''' ).images
UpperCamelCase__ : str =image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase__ : Tuple =np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
| 157 | 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ):
@slow
@require_torch
def lowerCamelCase ( self ):
'''simple docstring'''
__lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' )
__lowerCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' )
__lowerCamelCase = bertabert.config.encoder.vocab_size
__lowerCamelCase = tokenizer.sep_token_id
__lowerCamelCase = tokenizer.cls_token_id
__lowerCamelCase = 128
__lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' )
__lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' )
__lowerCamelCase = train_dataset.select(range(32 ) )
__lowerCamelCase = val_dataset.select(range(16 ) )
__lowerCamelCase = 4
def _map_to_encoder_decoder_inputs(__UpperCAmelCase ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__lowerCamelCase = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=SCREAMING_SNAKE_CASE_ , max_length=512 )
__lowerCamelCase = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=SCREAMING_SNAKE_CASE_ , max_length=128 )
__lowerCamelCase = inputs.input_ids
__lowerCamelCase = inputs.attention_mask
__lowerCamelCase = outputs.input_ids
__lowerCamelCase = outputs.input_ids.copy()
__lowerCamelCase = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels''']
]
__lowerCamelCase = outputs.attention_mask
assert all(len(SCREAMING_SNAKE_CASE_ ) == 512 for x in inputs.input_ids )
assert all(len(SCREAMING_SNAKE_CASE_ ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(__UpperCAmelCase ):
__lowerCamelCase = pred.label_ids
__lowerCamelCase = pred.predictions
# all unnecessary tokens are removed
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] ) / len(SCREAMING_SNAKE_CASE_ )
return {"accuracy": accuracy}
# map train dataset
__lowerCamelCase = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , remove_columns=['''article''', '''highlights'''] , )
train_dataset.set_format(
type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , )
# same for validation dataset
__lowerCamelCase = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , remove_columns=['''article''', '''highlights'''] , )
val_dataset.set_format(
type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , )
__lowerCamelCase = self.get_auto_remove_tmp_dir()
__lowerCamelCase = SeqaSeqTrainingArguments(
output_dir=SCREAMING_SNAKE_CASE_ , per_device_train_batch_size=SCREAMING_SNAKE_CASE_ , per_device_eval_batch_size=SCREAMING_SNAKE_CASE_ , predict_with_generate=SCREAMING_SNAKE_CASE_ , evaluation_strategy='''steps''' , do_train=SCREAMING_SNAKE_CASE_ , do_eval=SCREAMING_SNAKE_CASE_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
__lowerCamelCase = SeqaSeqTrainer(
model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , compute_metrics=_compute_metrics , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , )
# start training
trainer.train()
| 330 |
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict:
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_token_type_ids
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = type_sequence_label_size
__UpperCamelCase = initializer_range
__UpperCamelCase = num_labels
__UpperCamelCase = num_choices
__UpperCamelCase = scope
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self )-> str:
'''simple docstring'''
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
__UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple:
'''simple docstring'''
__UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = self.num_choices
__UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCamelCase = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs
__UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
_snake_case = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
_snake_case = (
{
'feature-extraction': DistilBertModel,
'fill-mask': DistilBertForMaskedLM,
'question-answering': DistilBertForQuestionAnswering,
'text-classification': DistilBertForSequenceClassification,
'token-classification': DistilBertForTokenClassification,
'zero-shot': DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_snake_case = True
_snake_case = True
_snake_case = True
_snake_case = True
def A__ ( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = DistilBertModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 )
def A__ ( self )-> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Tuple:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
@slow
def A__ ( self )-> List[str]:
'''simple docstring'''
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@slow
@require_torch_gpu
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
__UpperCamelCase = True
__UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = torch.jit.trace(
SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) )
__UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ )
loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) )
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A__ ( self )-> Tuple:
'''simple docstring'''
__UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' )
__UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
__UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0]
__UpperCamelCase = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = torch.tensor(
[[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
| 328 | 0 |
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
lowerCAmelCase_ = re.compile("""[^A-Za-z_0-9]""")
# parameters used in DuplicationIndex
lowerCAmelCase_ = 10
lowerCAmelCase_ = 256
def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> Optional[MinHash]:
if len(lowerCAmelCase ) < MIN_NUM_TOKENS:
return None
_snake_case : Dict = MinHash(num_perm=lowerCAmelCase )
for token in set(lowerCAmelCase ):
min_hash.update(token.encode() )
return min_hash
def lowerCamelCase_ ( lowerCAmelCase: str )-> Set[str]:
return {t for t in NON_ALPHA.split(lowerCAmelCase ) if len(t.strip() ) > 0}
class _lowerCAmelCase :
'''simple docstring'''
def __init__( self : Optional[int] , *,
UpperCamelCase : float = 0.85 , ):
'''simple docstring'''
_snake_case : List[Any] = duplication_jaccard_threshold
_snake_case : int = NUM_PERM
_snake_case : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
_snake_case : str = defaultdict(UpperCamelCase )
def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : MinHash ):
'''simple docstring'''
_snake_case : List[str] = self._index.query(UpperCamelCase )
if code_key in self._index.keys:
print(f"""Duplicate key {code_key}""" )
return
self._index.insert(UpperCamelCase , UpperCamelCase )
if len(UpperCamelCase ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(UpperCamelCase )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(UpperCamelCase )
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
_snake_case : Optional[Any] = []
for base, duplicates in self._duplicate_clusters.items():
_snake_case : Optional[int] = [base] + list(UpperCamelCase )
# reformat the cluster to be a list of dict
_snake_case : Optional[int] = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster]
duplicate_clusters.append(UpperCamelCase )
return duplicate_clusters
def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : List[Any] ):
'''simple docstring'''
_snake_case : Dict = self.get_duplicate_clusters()
with open(UpperCamelCase , 'w' ) as f:
json.dump(UpperCamelCase , UpperCamelCase )
def lowerCamelCase_ ( lowerCAmelCase: str )-> Union[str, Any]:
_snake_case , _snake_case : Dict = element
_snake_case : List[str] = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def lowerCamelCase_ ( lowerCAmelCase: Type[Dataset] )-> List[str]:
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ):
if data is not None:
yield data
def lowerCamelCase_ ( lowerCAmelCase: Type[Dataset] , lowerCAmelCase: float )-> List[Any]:
_snake_case : int = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase ) ) , max_queue_size=1_00 ) ):
di.add(lowerCAmelCase , lowerCAmelCase )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str )-> float:
_snake_case : Any = get_tokens(lowerCAmelCase )
_snake_case : Dict = get_tokens(lowerCAmelCase )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
lowerCAmelCase_ = None
def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> List[str]:
_snake_case : Dict = []
for elementa in cluster:
_snake_case : List[Any] = _shared_dataset[elementa['base_index']]['content']
for elementa in extremes:
_snake_case : Union[str, Any] = _shared_dataset[elementa['base_index']]['content']
if jaccard_similarity(lowerCAmelCase , lowerCAmelCase ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
_snake_case : List[str] = 1
extremes.append(lowerCAmelCase )
return extremes
def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Union[str, Any] )-> List[Any]:
global _shared_dataset
_snake_case : List[Any] = dataset
_snake_case : List[str] = []
_snake_case : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
lowerCAmelCase , lowerCAmelCase , ) , total=len(lowerCAmelCase ) , ):
extremes_list.append(lowerCAmelCase )
return extremes_list
def lowerCamelCase_ ( lowerCAmelCase: Type[Dataset] , lowerCAmelCase: float = 0.8_5 )-> Tuple[Type[Dataset], List[List[Dict]]]:
_snake_case : Union[str, Any] = make_duplicate_clusters(lowerCAmelCase , lowerCAmelCase )
_snake_case : Union[str, Any] = {x['base_index'] for cluster in duplicate_clusters for x in cluster}
_snake_case : Optional[Any] = {}
_snake_case : int = find_extremes(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
for extremes in extremes_clusters:
for element in extremes:
_snake_case : Union[str, Any] = element
_snake_case : Optional[Any] = duplicate_indices - set(extreme_dict.keys() )
_snake_case : Dict = dataset.filter(lambda lowerCAmelCase , lowerCAmelCase : idx not in remove_indices , with_indices=lowerCAmelCase )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
_snake_case : Tuple = element['base_index'] in extreme_dict
if element["is_extreme"]:
_snake_case : List[Any] = extreme_dict[element['base_index']]['copies']
print(F"""Original dataset size: {len(lowerCAmelCase )}""" )
print(F"""Number of duplicate clusters: {len(lowerCAmelCase )}""" )
print(F"""Files in duplicate cluster: {len(lowerCAmelCase )}""" )
print(F"""Unique files in duplicate cluster: {len(lowerCAmelCase )}""" )
print(F"""Filtered dataset size: {len(lowerCAmelCase )}""" )
return ds_filter, duplicate_clusters
| 260 |
from __future__ import annotations
lowerCAmelCase_ = """#"""
class _lowerCAmelCase :
'''simple docstring'''
def __init__( self : Any ):
'''simple docstring'''
_snake_case : dict = {}
def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : str ):
'''simple docstring'''
_snake_case : List[Any] = self._trie
for char in text:
if char not in trie:
_snake_case : int = {}
_snake_case : int = trie[char]
_snake_case : Optional[Any] = True
def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
_snake_case : Optional[int] = self._trie
for char in prefix:
if char in trie:
_snake_case : Optional[Any] = trie[char]
else:
return []
return self._elements(UpperCamelCase )
def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : dict ):
'''simple docstring'''
_snake_case : int = []
for c, v in d.items():
_snake_case : Dict = [' '] if c == END else [(c + s) for s in self._elements(UpperCamelCase )]
result.extend(UpperCamelCase )
return tuple(UpperCamelCase )
lowerCAmelCase_ = Trie()
lowerCAmelCase_ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""")
for word in words:
trie.insert_word(word)
def lowerCamelCase_ ( lowerCAmelCase: str )-> tuple:
_snake_case : List[Any] = trie.find_word(lowerCAmelCase )
return tuple(string + word for word in suffixes )
def lowerCamelCase_ ( )-> None:
print(autocomplete_using_trie('de' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 260 | 1 |
from __future__ import annotations
from numpy import array, cos, cross, floataa, radians, sin
from numpy.typing import NDArray
def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Optional[Any] , __A : Optional[int] = False ) -> Tuple:
"""simple docstring"""
if radian_mode:
return [magnitude * cos(lowerCamelCase__ ), magnitude * sin(lowerCamelCase__ )]
return [magnitude * cos(radians(lowerCamelCase__ ) ), magnitude * sin(radians(lowerCamelCase__ ) )]
def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Dict , __A : Tuple = 10**-1 ) -> int:
"""simple docstring"""
a_ : NDArray[floataa] = cross(lowerCamelCase__ , lowerCamelCase__ )
a_ : float = sum(lowerCamelCase__ )
return abs(lowerCamelCase__ ) < eps
if __name__ == "__main__":
# Test to check if it works
UpperCAmelCase_ : List[str] = array(
[
polar_force(7_1_8.4, 180 - 30),
polar_force(8_7_9.5_4, 45),
polar_force(100, -90),
]
)
UpperCAmelCase_ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
UpperCAmelCase_ : Union[str, Any] = array(
[
polar_force(30 * 9.8_1, 15),
polar_force(215, 180 - 45),
polar_force(264, 90 - 30),
]
)
UpperCAmelCase_ : List[str] = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
UpperCAmelCase_ : Tuple = array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]])
UpperCAmelCase_ : Union[str, Any] = array([[0, 0], [6, 0], [10, 0], [12, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod()
| 32 |
'''simple docstring'''
from math import pow
def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ):
'''simple docstring'''
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
A_ : Optional[int] = int(pow(lowerCamelCase__ , lowerCamelCase__ ) )
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
A_, A_ : int = backtrack(
lowerCamelCase__ , lowerCamelCase__ , current_number + 1 , lowerCamelCase__ , lowerCamelCase__ )
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
A_, A_ : int = backtrack(
lowerCamelCase__ , lowerCamelCase__ , current_number + 1 , lowerCamelCase__ , lowerCamelCase__ )
return current_sum, solutions_count
def a ( lowerCamelCase__ , lowerCamelCase__ ):
'''simple docstring'''
if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10):
raise ValueError(
"""Invalid input\n"""
"""needed_sum must be between 1 and 1000, power between 2 and 10.""" )
return backtrack(lowerCamelCase__ , lowerCamelCase__ , 1 , 0 , 0 )[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 206 | 0 |
"""simple docstring"""
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> None:
lowerCamelCase__ : Optional[Any] = len(_UpperCAmelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_UpperCAmelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _UpperCAmelCase , _UpperCAmelCase , )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None:
lowerCamelCase__ : list[list[str]] = []
depth_first_search([] , [] , [] , _UpperCAmelCase , _UpperCAmelCase )
# Print all the boards
for board in boards:
for column in board:
print(_UpperCAmelCase )
print('' )
print(len(_UpperCAmelCase ) , 'solutions were found.' )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 366 |
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig
_UpperCAmelCase : Tuple = [
"""openmmlab/upernet-convnext-tiny""",
# See all UperNet models at https://huggingface.co/models?filter=upernet
]
# General docstring
_UpperCAmelCase : List[str] = """UperNetConfig"""
class lowerCAmelCase ( nn.Module ):
def __init__( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[int, Tuple[int, int]] , UpperCAmelCase : Union[int, Tuple[int, int], str] = 0 , UpperCAmelCase : bool = False , UpperCAmelCase : Union[int, Tuple[int, int]] = 1 , ) -> None:
super().__init__()
lowerCamelCase__ : Any = nn.Convad(
in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , kernel_size=UpperCAmelCase , padding=UpperCAmelCase , bias=UpperCAmelCase , dilation=UpperCAmelCase , )
lowerCamelCase__ : str = nn.BatchNormad(UpperCAmelCase )
lowerCamelCase__ : Tuple = nn.ReLU()
def A_ ( self : Tuple , UpperCAmelCase : torch.Tensor ) -> torch.Tensor:
lowerCamelCase__ : Tuple = self.conv(UpperCAmelCase )
lowerCamelCase__ : int = self.batch_norm(UpperCAmelCase )
lowerCamelCase__ : List[Any] = self.activation(UpperCAmelCase )
return output
class lowerCAmelCase ( nn.Module ):
def __init__( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ) -> None:
super().__init__()
lowerCamelCase__ : int = [
nn.AdaptiveAvgPoolad(UpperCAmelCase ),
UperNetConvModule(UpperCAmelCase , UpperCAmelCase , kernel_size=1 ),
]
for i, layer in enumerate(self.layers ):
self.add_module(str(UpperCAmelCase ) , UpperCAmelCase )
def A_ ( self : Union[str, Any] , UpperCAmelCase : torch.Tensor ) -> torch.Tensor:
lowerCamelCase__ : Dict = input
for layer in self.layers:
lowerCamelCase__ : Tuple = layer(UpperCAmelCase )
return hidden_state
class lowerCAmelCase ( nn.Module ):
def __init__( self : Tuple , UpperCAmelCase : Tuple[int, ...] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : bool ) -> None:
super().__init__()
lowerCamelCase__ : int = pool_scales
lowerCamelCase__ : Tuple = align_corners
lowerCamelCase__ : Union[str, Any] = in_channels
lowerCamelCase__ : List[Any] = channels
lowerCamelCase__ : Tuple = []
for i, pool_scale in enumerate(UpperCAmelCase ):
lowerCamelCase__ : Dict = UperNetPyramidPoolingBlock(pool_scale=UpperCAmelCase , in_channels=UpperCAmelCase , channels=UpperCAmelCase )
self.blocks.append(UpperCAmelCase )
self.add_module(str(UpperCAmelCase ) , UpperCAmelCase )
def A_ ( self : Optional[int] , UpperCAmelCase : torch.Tensor ) -> List[torch.Tensor]:
lowerCamelCase__ : Tuple = []
for ppm in self.blocks:
lowerCamelCase__ : Union[str, Any] = ppm(UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = nn.functional.interpolate(
UpperCAmelCase , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners )
ppm_outs.append(UpperCAmelCase )
return ppm_outs
class lowerCAmelCase ( nn.Module ):
def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : Any ) -> int:
super().__init__()
lowerCamelCase__ : Tuple = config
lowerCamelCase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6)
lowerCamelCase__ : List[Any] = in_channels
lowerCamelCase__ : Optional[int] = config.hidden_size
lowerCamelCase__ : Dict = False
lowerCamelCase__ : List[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 )
# PSP Module
lowerCamelCase__ : Tuple = UperNetPyramidPoolingModule(
self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , )
lowerCamelCase__ : int = UperNetConvModule(
self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
# FPN Module
lowerCamelCase__ : str = nn.ModuleList()
lowerCamelCase__ : str = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
lowerCamelCase__ : str = UperNetConvModule(UpperCAmelCase , self.channels , kernel_size=1 )
lowerCamelCase__ : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 )
self.lateral_convs.append(UpperCAmelCase )
self.fpn_convs.append(UpperCAmelCase )
lowerCamelCase__ : List[Any] = UperNetConvModule(
len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
def A_ ( self : Tuple ) -> List[Any]:
self.apply(self._init_weights )
def A_ ( self : Tuple , UpperCAmelCase : Dict ) -> str:
if isinstance(UpperCAmelCase , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def A_ ( self : Optional[int] , UpperCAmelCase : Optional[int] ) -> Optional[int]:
lowerCamelCase__ : str = inputs[-1]
lowerCamelCase__ : List[str] = [x]
psp_outs.extend(self.psp_modules(UpperCAmelCase ) )
lowerCamelCase__ : Tuple = torch.cat(UpperCAmelCase , dim=1 )
lowerCamelCase__ : Optional[Any] = self.bottleneck(UpperCAmelCase )
return output
def A_ ( self : str , UpperCAmelCase : torch.Tensor ) -> torch.Tensor:
# build laterals
lowerCamelCase__ : Union[str, Any] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )]
laterals.append(self.psp_forward(UpperCAmelCase ) )
# build top-down path
lowerCamelCase__ : Tuple = len(UpperCAmelCase )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
lowerCamelCase__ : Optional[Any] = laterals[i - 1].shape[2:]
lowerCamelCase__ : Any = laterals[i - 1] + nn.functional.interpolate(
laterals[i] , size=UpperCAmelCase , mode='bilinear' , align_corners=self.align_corners )
# build outputs
lowerCamelCase__ : Any = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )]
# append psp feature
fpn_outs.append(laterals[-1] )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
lowerCamelCase__ : Optional[Any] = nn.functional.interpolate(
fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners )
lowerCamelCase__ : Dict = torch.cat(UpperCAmelCase , dim=1 )
lowerCamelCase__ : List[str] = self.fpn_bottleneck(UpperCAmelCase )
lowerCamelCase__ : int = self.classifier(UpperCAmelCase )
return output
class lowerCAmelCase ( nn.Module ):
def __init__( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 3 , UpperCAmelCase : Union[int, Tuple[int, int]] = 1 ) -> None:
super().__init__()
lowerCamelCase__ : Any = config
lowerCamelCase__ : Optional[Any] = config.auxiliary_in_channels
lowerCamelCase__ : str = config.auxiliary_channels
lowerCamelCase__ : Optional[Any] = config.auxiliary_num_convs
lowerCamelCase__ : str = config.auxiliary_concat_input
lowerCamelCase__ : List[Any] = in_index
lowerCamelCase__ : List[str] = (kernel_size // 2) * dilation
lowerCamelCase__ : Optional[int] = []
convs.append(
UperNetConvModule(
self.in_channels , self.channels , kernel_size=UpperCAmelCase , padding=UpperCAmelCase , dilation=UpperCAmelCase ) )
for i in range(self.num_convs - 1 ):
convs.append(
UperNetConvModule(
self.channels , self.channels , kernel_size=UpperCAmelCase , padding=UpperCAmelCase , dilation=UpperCAmelCase ) )
if self.num_convs == 0:
lowerCamelCase__ : Optional[Any] = nn.Identity()
else:
lowerCamelCase__ : Optional[Any] = nn.Sequential(*UpperCAmelCase )
if self.concat_input:
lowerCamelCase__ : Any = UperNetConvModule(
self.in_channels + self.channels , self.channels , kernel_size=UpperCAmelCase , padding=kernel_size // 2 )
lowerCamelCase__ : Dict = nn.Convad(self.channels , config.num_labels , kernel_size=1 )
def A_ ( self : Tuple ) -> Tuple:
self.apply(self._init_weights )
def A_ ( self : Union[str, Any] , UpperCAmelCase : List[Any] ) -> List[str]:
if isinstance(UpperCAmelCase , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def A_ ( self : Tuple , UpperCAmelCase : torch.Tensor ) -> torch.Tensor:
# just take the relevant feature maps
lowerCamelCase__ : str = encoder_hidden_states[self.in_index]
lowerCamelCase__ : Union[str, Any] = self.convs(UpperCAmelCase )
if self.concat_input:
lowerCamelCase__ : Optional[Any] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) )
lowerCamelCase__ : Optional[int] = self.classifier(UpperCAmelCase )
return output
class lowerCAmelCase ( __UpperCamelCase ):
UpperCAmelCase__ = UperNetConfig
UpperCAmelCase__ = """pixel_values"""
UpperCAmelCase__ = True
def A_ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
if isinstance(UpperCAmelCase , UpperCAmelCase ):
module.backbone.init_weights()
module.decode_head.init_weights()
module.auxiliary_head.init_weights()
def A_ ( self : str ) -> Tuple:
self.backbone.init_weights()
self.decode_head.init_weights()
self.auxiliary_head.init_weights()
def A_ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]=False ) -> str:
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase__ : Any = value
_UpperCAmelCase : List[Any] = R"""
Parameters:
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
_UpperCAmelCase : Union[str, Any] = R"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See
`attentions` under returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under
returned tensors for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""", __UpperCamelCase, )
class lowerCAmelCase ( __UpperCamelCase ):
def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any] ) -> Dict:
super().__init__(UpperCAmelCase )
lowerCamelCase__ : List[str] = AutoBackbone.from_config(config.backbone_config )
# Semantic segmentation head(s)
lowerCamelCase__ : List[Any] = UperNetHead(UpperCAmelCase , in_channels=self.backbone.channels )
lowerCamelCase__ : int = UperNetFCNHead(UpperCAmelCase ) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) )
@replace_return_docstrings(output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC )
def A_ ( self : Union[str, Any] , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]:
lowerCamelCase__ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict
lowerCamelCase__ : int = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCamelCase__ : str = output_attentions if output_attentions is not None else self.config.output_attentions
lowerCamelCase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs(
UpperCAmelCase , output_hidden_states=UpperCAmelCase , output_attentions=UpperCAmelCase )
lowerCamelCase__ : List[str] = outputs.feature_maps
lowerCamelCase__ : Optional[int] = self.decode_head(UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = nn.functional.interpolate(UpperCAmelCase , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=UpperCAmelCase )
lowerCamelCase__ : List[str] = None
if self.auxiliary_head is not None:
lowerCamelCase__ : List[Any] = self.auxiliary_head(UpperCAmelCase )
lowerCamelCase__ : Union[str, Any] = nn.functional.interpolate(
UpperCAmelCase , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=UpperCAmelCase )
lowerCamelCase__ : List[str] = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError('The number of labels should be greater than one' )
else:
# compute weighted loss
lowerCamelCase__ : Optional[Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index )
lowerCamelCase__ : str = loss_fct(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase__ : Tuple = loss_fct(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase__ : Tuple = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
lowerCamelCase__ : List[str] = (logits,) + outputs[1:]
else:
lowerCamelCase__ : int = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
| 45 | 0 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"""vocab_file""": """spiece.model"""}
_SCREAMING_SNAKE_CASE = {
"""vocab_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""",
}
}
_SCREAMING_SNAKE_CASE = {
"""albert-base-v1""": 5_12,
"""albert-large-v1""": 5_12,
"""albert-xlarge-v1""": 5_12,
"""albert-xxlarge-v1""": 5_12,
"""albert-base-v2""": 5_12,
"""albert-large-v2""": 5_12,
"""albert-xlarge-v2""": 5_12,
"""albert-xxlarge-v2""": 5_12,
}
_SCREAMING_SNAKE_CASE = """▁"""
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
__magic_name__: Union[str, Any] = VOCAB_FILES_NAMES
__magic_name__: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , _A : Optional[Any] , _A : Optional[int]=True , _A : Any=True , _A : Dict=False , _A : Tuple="[CLS]" , _A : Optional[Any]="[SEP]" , _A : Union[str, Any]="<unk>" , _A : Dict="[SEP]" , _A : List[str]="<pad>" , _A : List[Any]="[CLS]" , _A : Tuple="[MASK]" , _A : Optional[Dict[str, Any]] = None , **_A : Optional[int] , ) -> None:
"""simple docstring"""
snake_case_ : Optional[int] = (
AddedToken(_A , lstrip=_A , rstrip=_A , normalized=_A )
if isinstance(_A , _A )
else mask_token
)
snake_case_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , )
snake_case_ : str = do_lower_case
snake_case_ : Union[str, Any] = remove_space
snake_case_ : List[str] = keep_accents
snake_case_ : List[Any] = vocab_file
snake_case_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_A )
@property
def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return len(self.sp_model )
def UpperCAmelCase_ ( self : str ) -> Optional[int]:
"""simple docstring"""
snake_case_ : Union[str, Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : List[str] ) -> int:
"""simple docstring"""
snake_case_ : str = self.__dict__.copy()
snake_case_ : List[str] = None
return state
def __setstate__( self : List[Any] , _A : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : int = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
snake_case_ : Union[str, Any] = {}
snake_case_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase_ ( self : Optional[Any] , _A : Any ) -> Any:
"""simple docstring"""
if self.remove_space:
snake_case_ : int = ' '.join(inputs.strip().split() )
else:
snake_case_ : Dict = inputs
snake_case_ : List[str] = outputs.replace('``' , '"' ).replace('\'\'' , '"' )
if not self.keep_accents:
snake_case_ : int = unicodedata.normalize('NFKD' , _A )
snake_case_ : List[str] = ''.join([c for c in outputs if not unicodedata.combining(_A )] )
if self.do_lower_case:
snake_case_ : Union[str, Any] = outputs.lower()
return outputs
def UpperCAmelCase_ ( self : Union[str, Any] , _A : str ) -> List[str]:
"""simple docstring"""
snake_case_ : Dict = self.preprocess_text(_A )
snake_case_ : int = self.sp_model.encode(_A , out_type=_A )
snake_case_ : Any = []
for piece in pieces:
if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit():
snake_case_ : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A , '' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ : Union[str, Any] = cur_pieces[1:]
else:
snake_case_ : Dict = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_A )
else:
new_pieces.append(_A )
return new_pieces
def UpperCAmelCase_ ( self : Tuple , _A : Tuple ) -> Any:
"""simple docstring"""
return self.sp_model.PieceToId(_A )
def UpperCAmelCase_ ( self : List[Any] , _A : Optional[Any] ) -> int:
"""simple docstring"""
return self.sp_model.IdToPiece(_A )
def UpperCAmelCase_ ( self : Optional[Any] , _A : str ) -> Dict:
"""simple docstring"""
snake_case_ : str = []
snake_case_ : List[str] = ''
snake_case_ : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_A ) + token
snake_case_ : Dict = True
snake_case_ : Optional[int] = []
else:
current_sub_tokens.append(_A )
snake_case_ : Dict = False
out_string += self.sp_model.decode(_A )
return out_string.strip()
def UpperCAmelCase_ ( self : str , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
snake_case_ : str = [self.sep_token_id]
snake_case_ : Any = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase_ ( self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A )
if token_ids_a is not None:
return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1]
return [1] + ([0] * len(_A )) + [1]
def UpperCAmelCase_ ( self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
snake_case_ : Any = [self.sep_token_id]
snake_case_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase_ ( self : List[str] , _A : str , _A : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ : str = os.path.join(
_A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _A )
elif not os.path.isfile(self.vocab_file ):
with open(_A , 'wb' ) as fi:
snake_case_ : Dict = self.sp_model.serialized_model_proto()
fi.write(_A )
return (out_vocab_file,)
| 327 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_SCREAMING_SNAKE_CASE = {
"""configuration_poolformer""": [
"""POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""PoolFormerConfig""",
"""PoolFormerOnnxConfig""",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""]
_SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PoolFormerForImageClassification""",
"""PoolFormerModel""",
"""PoolFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 327 | 1 |
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
if is_torch_available():
import torch
from transformers import AutoModelForImageClassification
if is_vision_available():
from transformers import AutoImageProcessor
@require_torch
@require_vision
class lowercase_ ( unittest.TestCase ):
@slow
def UpperCamelCase_ ( self : str ) -> List[str]:
_snake_case = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' )
_snake_case = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' )
model.to(A__ )
from datasets import load_dataset
_snake_case = load_dataset('''nielsr/rvlcdip-demo''' )
_snake_case = dataset['''train'''][0]['''image'''].convert('''RGB''' )
_snake_case = image_processor(A__ , return_tensors='''pt''' ).to(A__ )
# forward pass
with torch.no_grad():
_snake_case = model(**A__ )
_snake_case = outputs.logits
_snake_case = torch.Size((1, 16) )
self.assertEqual(logits.shape , A__ )
_snake_case = torch.tensor(
[-0.4158, -0.4092, -0.4347] , device=A__ , dtype=torch.float , )
self.assertTrue(torch.allclose(logits[0, :3] , A__ , atol=1e-4 ) )
| 278 |
import cmath
import math
def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> complex:
"""simple docstring"""
_snake_case = math.radians(_UpperCamelCase )
_snake_case = math.radians(_UpperCamelCase )
# Convert voltage and current to rectangular form
_snake_case = cmath.rect(_UpperCamelCase , _UpperCamelCase )
_snake_case = cmath.rect(_UpperCamelCase , _UpperCamelCase )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod()
| 278 | 1 |
"""simple docstring"""
from math import pi, sqrt
def a__ ( __SCREAMING_SNAKE_CASE ) -> float:
if num <= 0:
raise ValueError("math domain error" )
if num > 171.5:
raise OverflowError("math range error" )
elif num - int(_A ) not in (0, 0.5):
raise NotImplementedError("num must be an integer or a half-integer" )
elif num == 0.5:
return sqrt(_A )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def a__ ( ) -> None:
assert gamma(0.5 ) == sqrt(_A )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
__A = 1.0
while num:
__A = float(input("Gamma of: "))
print(F'''gamma({num}) = {gamma(num)}''')
print("\nEnter 0 to exit...")
| 217 |
'''simple docstring'''
import argparse
import glob
import logging
import os
import time
from argparse import Namespace
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from torch.utils.data import DataLoader, TensorDataset
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes, glue_tasks_num_labels
from transformers import glue_processors as processors
__lowercase = logging.getLogger(__name__)
class a__( lowerCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase_ : Any = '''sequence-classification'''
def __init__( self , __lowerCAmelCase):
"""simple docstring"""
if type(__lowerCAmelCase) == dict:
lowerCAmelCase = Namespace(**__lowerCAmelCase)
lowerCAmelCase = glue_output_modes[hparams.task]
lowerCAmelCase = glue_tasks_num_labels[hparams.task]
super().__init__(__lowerCAmelCase , __lowerCAmelCase , self.mode)
def a_ ( self , **__lowerCAmelCase):
"""simple docstring"""
return self.model(**__lowerCAmelCase)
def a_ ( self , __lowerCAmelCase , __lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
lowerCAmelCase = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None
lowerCAmelCase = self(**__lowerCAmelCase)
lowerCAmelCase = outputs[0]
lowerCAmelCase = self.trainer.lr_schedulers[0]["""scheduler"""]
lowerCAmelCase = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]}
return {"loss": loss, "log": tensorboard_logs}
def a_ ( self):
"""simple docstring"""
lowerCAmelCase = self.hparams
lowerCAmelCase = processors[args.task]()
lowerCAmelCase = processor.get_labels()
for mode in ["train", "dev"]:
lowerCAmelCase = self._feature_file(__lowerCAmelCase)
if os.path.exists(__lowerCAmelCase) and not args.overwrite_cache:
logger.info("""Loading features from cached file %s""" , __lowerCAmelCase)
else:
logger.info("""Creating features from dataset file at %s""" , args.data_dir)
lowerCAmelCase = (
processor.get_dev_examples(args.data_dir)
if mode == """dev"""
else processor.get_train_examples(args.data_dir)
)
lowerCAmelCase = convert_examples_to_features(
__lowerCAmelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , )
logger.info("""Saving features into cached file %s""" , __lowerCAmelCase)
torch.save(__lowerCAmelCase , __lowerCAmelCase)
def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False):
"""simple docstring"""
lowerCAmelCase = """dev""" if mode == """test""" else mode
lowerCAmelCase = self._feature_file(__lowerCAmelCase)
logger.info("""Loading features from cached file %s""" , __lowerCAmelCase)
lowerCAmelCase = torch.load(__lowerCAmelCase)
lowerCAmelCase = torch.tensor([f.input_ids for f in features] , dtype=torch.long)
lowerCAmelCase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long)
lowerCAmelCase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long)
if self.hparams.glue_output_mode == "classification":
lowerCAmelCase = torch.tensor([f.label for f in features] , dtype=torch.long)
elif self.hparams.glue_output_mode == "regression":
lowerCAmelCase = torch.tensor([f.label for f in features] , dtype=torch.float)
return DataLoader(
TensorDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) , batch_size=__lowerCAmelCase , shuffle=__lowerCAmelCase , )
def a_ ( self , __lowerCAmelCase , __lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
lowerCAmelCase = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None
lowerCAmelCase = self(**__lowerCAmelCase)
lowerCAmelCase , lowerCAmelCase = outputs[:2]
lowerCAmelCase = logits.detach().cpu().numpy()
lowerCAmelCase = inputs["""labels"""].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def a_ ( self , __lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = torch.stack([x["""val_loss"""] for x in outputs]).mean().detach().cpu().item()
lowerCAmelCase = np.concatenate([x["""pred"""] for x in outputs] , axis=0)
if self.hparams.glue_output_mode == "classification":
lowerCAmelCase = np.argmax(__lowerCAmelCase , axis=1)
elif self.hparams.glue_output_mode == "regression":
lowerCAmelCase = np.squeeze(__lowerCAmelCase)
lowerCAmelCase = np.concatenate([x["""target"""] for x in outputs] , axis=0)
lowerCAmelCase = [[] for _ in range(out_label_ids.shape[0])]
lowerCAmelCase = [[] for _ in range(out_label_ids.shape[0])]
lowerCAmelCase = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , __lowerCAmelCase , __lowerCAmelCase)}
lowerCAmelCase = dict(results.items())
lowerCAmelCase = results
return ret, preds_list, out_label_list
def a_ ( self , __lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self._eval_end(__lowerCAmelCase)
lowerCAmelCase = ret["""log"""]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def a_ ( self , __lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self._eval_end(__lowerCAmelCase)
lowerCAmelCase = ret["""log"""]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def a_ ( __lowerCAmelCase , __lowerCAmelCase):
"""simple docstring"""
BaseTransformer.add_model_specific_args(__lowerCAmelCase , __lowerCAmelCase)
parser.add_argument(
"""--max_seq_length""" , default=128 , type=__lowerCAmelCase , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--task""" , default="""""" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""The GLUE task to run""" , )
parser.add_argument(
"""--gpus""" , default=0 , type=__lowerCAmelCase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , )
parser.add_argument(
"""--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""")
return parser
def snake_case__ ( ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase = argparse.ArgumentParser()
add_generic_args(_A , os.getcwd() )
lowerCAmelCase = GLUETransformer.add_model_specific_args(_A , os.getcwd() )
lowerCAmelCase = parser.parse_args()
# If output_dir not provided, a folder will be generated in pwd
if args.output_dir is None:
lowerCAmelCase = os.path.join(
"""./results""" , f"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , )
os.makedirs(args.output_dir )
lowerCAmelCase = GLUETransformer(_A )
lowerCAmelCase = generic_train(_A , _A )
# Optionally, predict on dev set and write to output_dir
if args.do_predict:
lowerCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=_A ) )
lowerCAmelCase = model.load_from_checkpoint(checkpoints[-1] )
return trainer.test(_A )
if __name__ == "__main__":
main()
| 272 | 0 |
from __future__ import annotations
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[str] | None = None ):
__UpperCamelCase =word_bank or []
# create a table
__UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) + 1
__UpperCamelCase =[]
for _ in range(SCREAMING_SNAKE_CASE__ ):
table.append([] )
# seed value
__UpperCamelCase =[[]] # because empty string has empty combination
# iterate through the indices
for i in range(SCREAMING_SNAKE_CASE__ ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(SCREAMING_SNAKE_CASE__ )] == word:
__UpperCamelCase =[
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(SCREAMING_SNAKE_CASE__ )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(SCREAMING_SNAKE_CASE__ )]:
combination.reverse()
return table[len(SCREAMING_SNAKE_CASE__ )]
if __name__ == "__main__":
print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa']))
print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't']))
print(
all_construct(
'hexagonosaurus',
['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'],
)
)
| 117 |
from __future__ import annotations
from typing import Any
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[Any] ):
create_state_space_tree(SCREAMING_SNAKE_CASE__ , [] , 0 )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[Any] , SCREAMING_SNAKE_CASE__ : list[Any] , SCREAMING_SNAKE_CASE__ : int ):
if index == len(SCREAMING_SNAKE_CASE__ ):
print(SCREAMING_SNAKE_CASE__ )
return
create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 )
current_subsequence.append(sequence[index] )
create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 )
current_subsequence.pop()
if __name__ == "__main__":
_A = [3, 1, 2, 4]
generate_all_subsequences(seq)
seq.clear()
seq.extend(['A', 'B', 'C'])
generate_all_subsequences(seq)
| 117 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json",
# See all BioGPT models at https://huggingface.co/models?filter=biogpt
}
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 'biogpt'
def __init__( self : str,lowercase_ : Union[str, Any]=4_2_3_8_4,lowercase_ : List[str]=1_0_2_4,lowercase_ : Dict=2_4,lowercase_ : str=1_6,lowercase_ : Dict=4_0_9_6,lowercase_ : Optional[Any]="gelu",lowercase_ : List[str]=0.1,lowercase_ : List[Any]=0.1,lowercase_ : List[str]=1_0_2_4,lowercase_ : Optional[Any]=0.02,lowercase_ : str=1E-12,lowercase_ : List[Any]=True,lowercase_ : Dict=True,lowercase_ : Union[str, Any]=0.0,lowercase_ : Optional[Any]=0.0,lowercase_ : Union[str, Any]=1,lowercase_ : List[Any]=0,lowercase_ : Dict=2,**lowercase_ : List[str],)-> Dict:
'''simple docstring'''
A__ = vocab_size
A__ = max_position_embeddings
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = initializer_range
A__ = layer_norm_eps
A__ = scale_embedding
A__ = use_cache
A__ = layerdrop
A__ = activation_dropout
super().__init__(pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,**lowercase_ )
| 7 |
"""simple docstring"""
import cva
import numpy as np
class UpperCamelCase :
def __init__( self : Optional[int] , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> Dict:
if k in (0.0_4, 0.0_6):
_a : List[str] = k
_a : List[Any] = window_size
else:
raise ValueError("""invalid k value""" )
def __str__( self : Dict ) -> str:
return str(self.k )
def _lowercase ( self : int , UpperCAmelCase__ : str ) -> tuple[cva.Mat, list[list[int]]]:
_a : Dict = cva.imread(UpperCAmelCase__ , 0 )
_a , _a : List[Any] = img.shape
_a : list[list[int]] = []
_a : List[Any] = img.copy()
_a : int = cva.cvtColor(UpperCAmelCase__ , cva.COLOR_GRAY2RGB )
_a , _a : Any = np.gradient(UpperCAmelCase__ )
_a : Tuple = dx**2
_a : Union[str, Any] = dy**2
_a : Union[str, Any] = dx * dy
_a : int = 0.0_4
_a : List[str] = self.window_size // 2
for y in range(UpperCAmelCase__ , h - offset ):
for x in range(UpperCAmelCase__ , w - offset ):
_a : str = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
_a : List[Any] = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
_a : Tuple = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
_a : Any = (wxx * wyy) - (wxy**2)
_a : Tuple = wxx + wyy
_a : Any = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
_snake_case = HarrisCorner(0.04, 3)
_snake_case , _snake_case = edge_detect.detect('path_to_image')
cva.imwrite('detect.png', color_img)
| 294 | 0 |
'''simple docstring'''
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
lowercase__ = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
lowercase__ = direct_transformers_import(PATH_TO_TRANSFORMERS)
lowercase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
lowercase__ = re.compile(R"\[(.+?)\]\((https://huggingface\.co/.+?)\)")
lowercase__ = {
'DecisionTransformerConfig',
'EncoderDecoderConfig',
'MusicgenConfig',
'RagConfig',
'SpeechEncoderDecoderConfig',
'TimmBackboneConfig',
'VisionEncoderDecoderConfig',
'VisionTextDualEncoderConfig',
'LlamaConfig',
}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Any:
'''simple docstring'''
snake_case : Optional[int] = None
# source code of `config_class`
snake_case : Dict = inspect.getsource(lowerCAmelCase__ )
snake_case : Optional[Any] = _re_checkpoint.findall(lowerCAmelCase__ )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith('''/''' ):
snake_case : Any = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
snake_case : Optional[Any] = F'https://huggingface.co/{ckpt_name}'
if ckpt_link == ckpt_link_from_name:
snake_case : Optional[int] = ckpt_name
break
return checkpoint
def _UpperCamelCase ( ) -> Tuple:
'''simple docstring'''
snake_case : List[Any] = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
snake_case : int = get_checkpoint_from_config_class(lowerCAmelCase__ )
snake_case : Tuple = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(lowerCAmelCase__ )
if len(lowerCAmelCase__ ) > 0:
snake_case : Union[str, Any] = """\n""".join(sorted(lowerCAmelCase__ ) )
raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 366 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class snake_case__ ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowerCamelCase = 42
lowerCamelCase = 42
class snake_case__ ( nn.Module ):
"""simple docstring"""
lowerCamelCase = 42
lowerCamelCase = (16, 32, 96, 256)
lowerCamelCase = jnp.floataa
def lowerCAmelCase ( self : List[Any] ) -> Dict:
"""simple docstring"""
snake_case : Optional[int] = nn.Conv(
self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
snake_case : Union[str, Any] = []
for i in range(len(self.block_out_channels ) - 1 ):
snake_case : Optional[Any] = self.block_out_channels[i]
snake_case : Optional[int] = self.block_out_channels[i + 1]
snake_case : Optional[int] = nn.Conv(
UpperCamelCase__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(UpperCamelCase__ )
snake_case : Optional[int] = nn.Conv(
UpperCamelCase__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(UpperCamelCase__ )
snake_case : Tuple = blocks
snake_case : Tuple = nn.Conv(
self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self : Optional[int] , UpperCamelCase__ : Any ) -> Tuple:
"""simple docstring"""
snake_case : Dict = self.conv_in(UpperCamelCase__ )
snake_case : int = nn.silu(UpperCamelCase__ )
for block in self.blocks:
snake_case : str = block(UpperCamelCase__ )
snake_case : Optional[Any] = nn.silu(UpperCamelCase__ )
snake_case : Optional[Any] = self.conv_out(UpperCamelCase__ )
return embedding
@flax_register_to_config
class snake_case__ ( nn.Module , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowerCamelCase = 32
lowerCamelCase = 4
lowerCamelCase = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
lowerCamelCase = False
lowerCamelCase = (320, 640, 1280, 1280)
lowerCamelCase = 2
lowerCamelCase = 8
lowerCamelCase = None
lowerCamelCase = 1280
lowerCamelCase = 0.0
lowerCamelCase = False
lowerCamelCase = jnp.floataa
lowerCamelCase = True
lowerCamelCase = 0
lowerCamelCase = "rgb"
lowerCamelCase = (16, 32, 96, 256)
def lowerCAmelCase ( self : Tuple , UpperCamelCase__ : jax.random.KeyArray ) -> FrozenDict:
"""simple docstring"""
snake_case : Union[str, Any] = (1, self.in_channels, self.sample_size, self.sample_size)
snake_case : Any = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa )
snake_case : Dict = jnp.ones((1,) , dtype=jnp.intaa )
snake_case : List[str] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
snake_case : Optional[int] = (1, 3, self.sample_size * 8, self.sample_size * 8)
snake_case : int = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa )
snake_case ,snake_case : Optional[int] = jax.random.split(UpperCamelCase__ )
snake_case : Optional[int] = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )["params"]
def lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
snake_case : Optional[int] = self.block_out_channels
snake_case : Optional[int] = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
snake_case : Union[str, Any] = self.num_attention_heads or self.attention_head_dim
# input
snake_case : List[Any] = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
snake_case : Any = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
snake_case : List[Any] = FlaxTimestepEmbedding(UpperCamelCase__ , dtype=self.dtype )
snake_case : int = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , )
snake_case : Any = self.only_cross_attention
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
snake_case : Union[str, Any] = (only_cross_attention,) * len(self.down_block_types )
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
snake_case : str = (num_attention_heads,) * len(self.down_block_types )
# down
snake_case : str = []
snake_case : List[str] = []
snake_case : Union[str, Any] = block_out_channels[0]
snake_case : Tuple = nn.Conv(
UpperCamelCase__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(UpperCamelCase__ )
for i, down_block_type in enumerate(self.down_block_types ):
snake_case : Dict = output_channel
snake_case : Union[str, Any] = block_out_channels[i]
snake_case : Tuple = i == len(UpperCamelCase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
snake_case : List[Any] = FlaxCrossAttnDownBlockaD(
in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , )
else:
snake_case : str = FlaxDownBlockaD(
in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(UpperCamelCase__ )
for _ in range(self.layers_per_block ):
snake_case : Union[str, Any] = nn.Conv(
UpperCamelCase__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(UpperCamelCase__ )
if not is_final_block:
snake_case : str = nn.Conv(
UpperCamelCase__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(UpperCamelCase__ )
snake_case : List[Any] = down_blocks
snake_case : List[Any] = controlnet_down_blocks
# mid
snake_case : Optional[int] = block_out_channels[-1]
snake_case : Optional[Any] = FlaxUNetMidBlockaDCrossAttn(
in_channels=UpperCamelCase__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , )
snake_case : List[Any] = nn.Conv(
UpperCamelCase__ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = False , ) -> Union[FlaxControlNetOutput, Tuple]:
"""simple docstring"""
snake_case : Optional[Any] = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
snake_case : Dict = jnp.flip(UpperCamelCase__ , axis=1 )
# 1. time
if not isinstance(UpperCamelCase__ , jnp.ndarray ):
snake_case : str = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(UpperCamelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
snake_case : Any = timesteps.astype(dtype=jnp.floataa )
snake_case : Optional[Any] = jnp.expand_dims(UpperCamelCase__ , 0 )
snake_case : int = self.time_proj(UpperCamelCase__ )
snake_case : Tuple = self.time_embedding(UpperCamelCase__ )
# 2. pre-process
snake_case : Dict = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) )
snake_case : Optional[int] = self.conv_in(UpperCamelCase__ )
snake_case : str = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) )
snake_case : Optional[int] = self.controlnet_cond_embedding(UpperCamelCase__ )
sample += controlnet_cond
# 3. down
snake_case : Optional[Any] = (sample,)
for down_block in self.down_blocks:
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
snake_case ,snake_case : Dict = down_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train )
else:
snake_case ,snake_case : Dict = down_block(UpperCamelCase__ , UpperCamelCase__ , deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
snake_case : List[str] = self.mid_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train )
# 5. contronet blocks
snake_case : Tuple = ()
for down_block_res_sample, controlnet_block in zip(UpperCamelCase__ , self.controlnet_down_blocks ):
snake_case : Any = controlnet_block(UpperCamelCase__ )
controlnet_down_block_res_samples += (down_block_res_sample,)
snake_case : Optional[Any] = controlnet_down_block_res_samples
snake_case : int = self.controlnet_mid_block(UpperCamelCase__ )
# 6. scaling
snake_case : Optional[int] = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=UpperCamelCase__ , mid_block_res_sample=UpperCamelCase__ )
| 83 | 0 |
import re
def snake_case_ ( snake_case ) -> bool:
lowercase__: List[str] = re.compile(
R'^(?:0|94|\+94|0{2}94)' R'7(0|1|2|4|5|6|7|8)' R'(-| |)' R'\d{7}$' )
return bool(re.search(snake_case , snake_case ) )
if __name__ == "__main__":
__lowerCAmelCase = '''0094702343221'''
print(is_sri_lankan_phone_number(phone))
| 196 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCAmelCase = {
'''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''],
'''tokenization_canine''': ['''CanineTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CanineForMultipleChoice''',
'''CanineForQuestionAnswering''',
'''CanineForSequenceClassification''',
'''CanineForTokenClassification''',
'''CanineLayer''',
'''CanineModel''',
'''CaninePreTrainedModel''',
'''load_tf_weights_in_canine''',
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 196 | 1 |
'''simple docstring'''
def snake_case_ ( lowerCAmelCase_ )-> int:
'''simple docstring'''
_UpperCAmelCase : Tuple = []
_UpperCAmelCase : Optional[int] = []
_UpperCAmelCase : Dict = {
'''^''': 3,
'''*''': 2,
'''/''': 2,
'''%''': 2,
'''+''': 1,
'''-''': 1,
} # Priority of each operator
_UpperCAmelCase : Tuple = len(lowerCAmelCase__ ) if (len(lowerCAmelCase__ ) > 7) else 7
# Print table header for output
print(
"""Symbol""".center(8 ) , """Stack""".center(lowerCAmelCase__ ) , """Postfix""".center(lowerCAmelCase__ ) , sep=""" | """ , )
print("""-""" * (print_width * 3 + 7) )
for x in infix:
if x.isalpha() or x.isdigit():
post_fix.append(lowerCAmelCase__ ) # if x is Alphabet / Digit, add it to Postfix
elif x == "(":
stack.append(lowerCAmelCase__ ) # if x is "(" push to Stack
elif x == ")": # if x is ")" pop stack until "(" is encountered
while stack[-1] != "(":
post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix
stack.pop()
else:
if len(lowerCAmelCase__ ) == 0:
stack.append(lowerCAmelCase__ ) # If stack is empty, push x to stack
else: # while priority of x is not > priority of element in the stack
while len(lowerCAmelCase__ ) > 0 and priority[x] <= priority[stack[-1]]:
post_fix.append(stack.pop() ) # pop stack & add to Postfix
stack.append(lowerCAmelCase__ ) # push x to stack
print(
x.center(8 ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format
while len(lowerCAmelCase__ ) > 0: # while stack is not empty
post_fix.append(stack.pop() ) # pop stack & add to Postfix
print(
""" """.center(8 ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format
return "".join(lowerCAmelCase__ ) # return Postfix as str
def snake_case_ ( lowerCAmelCase_ )-> Tuple:
'''simple docstring'''
_UpperCAmelCase : Dict = list(infix[::-1] ) # reverse the infix equation
for i in range(len(lowerCAmelCase__ ) ):
if infix[i] == "(":
_UpperCAmelCase : Union[str, Any] = ''')''' # change "(" to ")"
elif infix[i] == ")":
_UpperCAmelCase : List[Any] = '''(''' # change ")" to "("
return (infix_2_postfix("""""".join(lowerCAmelCase__ ) ))[
::-1
] # call infix_2_postfix on Infix, return reverse of Postfix
if __name__ == "__main__":
A_ : str = input("""\nEnter an Infix Equation = """) # Input an Infix equation
A_ : Any = """""".join(Infix.split()) # Remove spaces from the input
print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
| 352 |
'''simple docstring'''
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
A_ : Dict = logging.get_logger(__name__)
def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None:
'''simple docstring'''
_UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] )
assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}'''
dest_layers.load_state_dict(layers_to_copy.state_dict() )
A_ : Union[str, Any] = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
1_2: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 1_1],
4: [0, 4, 8, 1_1],
6: [0, 2, 4, 7, 9, 1_1],
9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1],
1_2: list(range(1_2)),
},
1_6: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 1_5],
3: [0, 8, 1_5],
4: [0, 5, 1_0, 1_5],
6: [0, 3, 6, 9, 1_2, 1_5],
8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5],
9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5],
1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5],
1_6: list(range(1_6)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
A_ : int = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]},
1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]},
}
def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]:
'''simple docstring'''
try:
_UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first'''
F''' {n_student}''' )
return list(range(lowerCAmelCase_ ) )
def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]:
'''simple docstring'''
if n_student > n_teacher:
raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' )
elif n_teacher == n_student:
return list(range(lowerCAmelCase_ ) )
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]:
'''simple docstring'''
_UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher."""
assert (e is not None) or (d is not None), _msg
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience
_UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval()
else:
assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}'''
_UpperCAmelCase : str = teacher.config.to_diff_dict()
try:
_UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
_UpperCAmelCase : Tuple = teacher_e
if d is None:
_UpperCAmelCase : Dict = teacher_d
init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} )
except AttributeError: # T5
if hasattr(teacher.config , """num_encoder_layers""" ):
_UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
_UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
_UpperCAmelCase : List[str] = teacher_e
if d is None:
_UpperCAmelCase : str = teacher_d
if hasattr(teacher.config , """num_encoder_layers""" ):
init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} )
else:
init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} )
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(lowerCAmelCase_ )
# Copy weights
_UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ )
_UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ )
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
_UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ )
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) )
logger.info(
F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to'''
F''' {save_path}''' )
student.save_pretrained(lowerCAmelCase_ )
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
_UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ )
if d_layers_to_copy is None:
_UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ )
try:
if hasattr(
lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ )
copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ )
else:
copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ )
copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ )
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ )
copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ )
logger.info(
F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' )
_UpperCAmelCase : Dict = {
"""teacher_type""": teacher.config.model_type,
"""copied_encoder_layers""": e_layers_to_copy,
"""copied_decoder_layers""": d_layers_to_copy,
}
student.save_pretrained(lowerCAmelCase_ )
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
| 349 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
a_ = logging.get_logger(__name__)
a_ = {
'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json',
# See all Marian models at https://huggingface.co/models?filter=marian
}
class __SCREAMING_SNAKE_CASE ( lowerCamelCase ):
snake_case_ = """marian"""
snake_case_ = ["""past_key_values"""]
snake_case_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : int , __lowercase : Optional[Any]=5_81_01 , __lowercase : Tuple=None , __lowercase : Tuple=10_24 , __lowercase : Optional[int]=12 , __lowercase : List[Any]=40_96 , __lowercase : List[Any]=16 , __lowercase : List[str]=12 , __lowercase : int=40_96 , __lowercase : str=16 , __lowercase : List[str]=0.0 , __lowercase : Union[str, Any]=0.0 , __lowercase : Union[str, Any]=True , __lowercase : Optional[Any]=True , __lowercase : int="gelu" , __lowercase : Optional[Any]=10_24 , __lowercase : str=0.1 , __lowercase : int=0.0 , __lowercase : List[str]=0.0 , __lowercase : str=0.02 , __lowercase : Optional[int]=5_81_00 , __lowercase : Tuple=False , __lowercase : Tuple=5_81_00 , __lowercase : int=0 , __lowercase : Any=0 , __lowercase : Optional[int]=True , **__lowercase : Optional[Any] , ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ : Any =vocab_size
SCREAMING_SNAKE_CASE__ : List[Any] =decoder_vocab_size or vocab_size
SCREAMING_SNAKE_CASE__ : Optional[int] =max_position_embeddings
SCREAMING_SNAKE_CASE__ : int =d_model
SCREAMING_SNAKE_CASE__ : Optional[Any] =encoder_ffn_dim
SCREAMING_SNAKE_CASE__ : List[str] =encoder_layers
SCREAMING_SNAKE_CASE__ : Optional[Any] =encoder_attention_heads
SCREAMING_SNAKE_CASE__ : List[Any] =decoder_ffn_dim
SCREAMING_SNAKE_CASE__ : Dict =decoder_layers
SCREAMING_SNAKE_CASE__ : int =decoder_attention_heads
SCREAMING_SNAKE_CASE__ : str =dropout
SCREAMING_SNAKE_CASE__ : Optional[Any] =attention_dropout
SCREAMING_SNAKE_CASE__ : Union[str, Any] =activation_dropout
SCREAMING_SNAKE_CASE__ : Optional[int] =activation_function
SCREAMING_SNAKE_CASE__ : Tuple =init_std
SCREAMING_SNAKE_CASE__ : Union[str, Any] =encoder_layerdrop
SCREAMING_SNAKE_CASE__ : Tuple =decoder_layerdrop
SCREAMING_SNAKE_CASE__ : List[Any] =use_cache
SCREAMING_SNAKE_CASE__ : List[Any] =encoder_layers
SCREAMING_SNAKE_CASE__ : Dict =scale_embedding # scale factor will be sqrt(d_model) if True
SCREAMING_SNAKE_CASE__ : Optional[Any] =share_encoder_decoder_embeddings
super().__init__(
pad_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , )
class __SCREAMING_SNAKE_CASE ( lowerCamelCase ):
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def __magic_name__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
SCREAMING_SNAKE_CASE__ : Optional[int] =OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
SCREAMING_SNAKE_CASE__ : Dict ={0: '''batch'''}
SCREAMING_SNAKE_CASE__ : Optional[int] ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
SCREAMING_SNAKE_CASE__ : Tuple ={0: '''batch''', 1: '''decoder_sequence'''}
SCREAMING_SNAKE_CASE__ : Union[str, Any] ={0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__lowercase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
SCREAMING_SNAKE_CASE__ : List[Any] =OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =self.num_layers
for i in range(__lowercase ):
SCREAMING_SNAKE_CASE__ : int ={0: '''batch''', 2: '''past_sequence + sequence'''}
SCREAMING_SNAKE_CASE__ : int ={0: '''batch''', 2: '''past_sequence + sequence'''}
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] =OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def __magic_name__ ( self : str ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
SCREAMING_SNAKE_CASE__ : Optional[Any] =super().outputs
else:
SCREAMING_SNAKE_CASE__ : Optional[int] =super(__lowercase , self ).outputs
if self.use_past:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =self.num_layers
for i in range(__lowercase ):
SCREAMING_SNAKE_CASE__ : str ={0: '''batch''', 2: '''past_sequence + sequence'''}
SCREAMING_SNAKE_CASE__ : List[str] ={0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def __magic_name__ ( self : Tuple , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]:
SCREAMING_SNAKE_CASE__ : Optional[Any] =self._generate_dummy_inputs_for_encoder_and_decoder(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase )
# Generate decoder inputs
SCREAMING_SNAKE_CASE__ : List[str] =seq_length if not self.use_past else 1
SCREAMING_SNAKE_CASE__ : List[Any] =self._generate_dummy_inputs_for_encoder_and_decoder(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase )
SCREAMING_SNAKE_CASE__ : List[str] ={F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
SCREAMING_SNAKE_CASE__ : Union[str, Any] =dict(**__lowercase , **__lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =common_inputs['''input_ids'''].shape
SCREAMING_SNAKE_CASE__ : Dict =common_inputs['''decoder_input_ids'''].shape[1]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =self.num_attention_heads
SCREAMING_SNAKE_CASE__ : str =(
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
SCREAMING_SNAKE_CASE__ : Optional[int] =decoder_seq_length + 3
SCREAMING_SNAKE_CASE__ : List[str] =(
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
SCREAMING_SNAKE_CASE__ : Dict =torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(__lowercase , __lowercase )] , dim=1 )
SCREAMING_SNAKE_CASE__ : Tuple =[]
# If the number of encoder and decoder layers are present in the model configuration, both are considered
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =self.num_layers
SCREAMING_SNAKE_CASE__ : int =min(__lowercase , __lowercase )
SCREAMING_SNAKE_CASE__ : Dict =max(__lowercase , __lowercase ) - min_num_layers
SCREAMING_SNAKE_CASE__ : Dict ='''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(__lowercase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__lowercase ),
torch.zeros(__lowercase ),
torch.zeros(__lowercase ),
torch.zeros(__lowercase ),
) )
# TODO: test this.
SCREAMING_SNAKE_CASE__ : List[str] =encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(__lowercase , __lowercase ):
common_inputs["past_key_values"].append((torch.zeros(__lowercase ), torch.zeros(__lowercase )) )
return common_inputs
def __magic_name__ ( self : Tuple , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]:
SCREAMING_SNAKE_CASE__ : Dict =self._generate_dummy_inputs_for_encoder_and_decoder(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE__ : str =seqlen + 2
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =self.num_layers
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =self.num_attention_heads
SCREAMING_SNAKE_CASE__ : int =(
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
SCREAMING_SNAKE_CASE__ : Optional[int] =common_inputs['''attention_mask'''].dtype
SCREAMING_SNAKE_CASE__ : Tuple =torch.cat(
[common_inputs['''attention_mask'''], torch.ones(__lowercase , __lowercase , dtype=__lowercase )] , dim=1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] =[
(torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(__lowercase )
]
return common_inputs
def __magic_name__ ( self : Optional[int] , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
SCREAMING_SNAKE_CASE__ : Optional[Any] =compute_effective_axis_dimension(
__lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.num_special_tokens_to_add(__lowercase )
SCREAMING_SNAKE_CASE__ : Optional[Any] =compute_effective_axis_dimension(
__lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowercase )
# Generate dummy inputs according to compute batch and sequence
SCREAMING_SNAKE_CASE__ : Any =[''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
SCREAMING_SNAKE_CASE__ : Any =dict(tokenizer(__lowercase , return_tensors=__lowercase ) )
return common_inputs
def __magic_name__ ( self : List[Any] , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
SCREAMING_SNAKE_CASE__ : Tuple =self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase )
else:
SCREAMING_SNAKE_CASE__ : int =self._generate_dummy_inputs_for_causal_lm(
__lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase )
return common_inputs
def __magic_name__ ( self : Optional[Any] , __lowercase : int , __lowercase : Dict , __lowercase : int , __lowercase : Tuple ) -> Tuple:
if self.task in ["default", "seq2seq-lm"]:
SCREAMING_SNAKE_CASE__ : Any =super()._flatten_past_key_values_(__lowercase , __lowercase , __lowercase , __lowercase )
else:
SCREAMING_SNAKE_CASE__ : Dict =super(__lowercase , self )._flatten_past_key_values_(
__lowercase , __lowercase , __lowercase , __lowercase )
@property
def __magic_name__ ( self : Optional[int] ) -> float:
return 1e-4
| 152 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ):
snake_case_ = CanineTokenizer
snake_case_ = False
def __magic_name__ ( self : Any ) -> List[Any]:
super().setUp()
SCREAMING_SNAKE_CASE__ : int =CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __magic_name__ ( self : Optional[int] ) -> List[str]:
return CanineTokenizer.from_pretrained('''google/canine-s''' )
def __magic_name__ ( self : Optional[int] , **__lowercase : int ) -> CanineTokenizer:
SCREAMING_SNAKE_CASE__ : int =self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase )
SCREAMING_SNAKE_CASE__ : Tuple =10_24
return tokenizer
@require_torch
def __magic_name__ ( self : List[Any] ) -> List[str]:
SCREAMING_SNAKE_CASE__ : Optional[int] =self.canine_tokenizer
SCREAMING_SNAKE_CASE__ : Union[str, Any] =['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.''']
# fmt: off
SCREAMING_SNAKE_CASE__ : List[Any] =[5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
SCREAMING_SNAKE_CASE__ : Union[str, Any] =tokenizer(__lowercase , padding=__lowercase , return_tensors='''pt''' )
self.assertIsInstance(__lowercase , __lowercase )
SCREAMING_SNAKE_CASE__ : Optional[Any] =list(batch.input_ids.numpy()[0] )
self.assertListEqual(__lowercase , __lowercase )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def __magic_name__ ( self : Any ) -> List[str]:
SCREAMING_SNAKE_CASE__ : Dict =self.canine_tokenizer
SCREAMING_SNAKE_CASE__ : str =['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.''']
SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer(__lowercase , padding=__lowercase , return_tensors='''pt''' )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn('''input_ids''' , __lowercase )
self.assertIn('''attention_mask''' , __lowercase )
self.assertIn('''token_type_ids''' , __lowercase )
@require_torch
def __magic_name__ ( self : Dict ) -> List[str]:
SCREAMING_SNAKE_CASE__ : List[str] =self.canine_tokenizer
SCREAMING_SNAKE_CASE__ : Dict =[
'''What\'s the weater?''',
'''It\'s about 25 degrees.''',
]
SCREAMING_SNAKE_CASE__ : int =tokenizer(
text_target=__lowercase , max_length=32 , padding='''max_length''' , truncation=__lowercase , return_tensors='''pt''' )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
def __magic_name__ ( self : List[str] ) -> Any:
# safety check on max_len default value so we are sure the test works
SCREAMING_SNAKE_CASE__ : str =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
SCREAMING_SNAKE_CASE__ : int =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
SCREAMING_SNAKE_CASE__ : List[str] =tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__ : Dict =''' He is very happy, UNwant\u00E9d,running'''
SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase )
tokenizer.save_pretrained(__lowercase )
SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.__class__.from_pretrained(__lowercase )
SCREAMING_SNAKE_CASE__ : List[Any] =after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase )
self.assertListEqual(__lowercase , __lowercase )
shutil.rmtree(__lowercase )
SCREAMING_SNAKE_CASE__ : Any =self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
SCREAMING_SNAKE_CASE__ : Union[str, Any] =tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__ : Union[str, Any] =''' He is very happy, UNwant\u00E9d,running'''
SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
SCREAMING_SNAKE_CASE__ : str =chr(0xE007 )
additional_special_tokens.append(__lowercase )
tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} )
SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase )
tokenizer.save_pretrained(__lowercase )
SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.__class__.from_pretrained(__lowercase )
SCREAMING_SNAKE_CASE__ : Optional[int] =after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase )
self.assertListEqual(__lowercase , __lowercase )
self.assertIn(__lowercase , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.__class__.from_pretrained(__lowercase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__lowercase )
def __magic_name__ ( self : Optional[int] ) -> Optional[int]:
SCREAMING_SNAKE_CASE__ : Tuple =self.get_tokenizers(do_lower_case=__lowercase )
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =self.get_clean_sequence(__lowercase )
# a special token for Canine can be defined as follows:
SCREAMING_SNAKE_CASE__ : Optional[int] =0xE005
SCREAMING_SNAKE_CASE__ : Any =chr(__lowercase )
tokenizer.add_special_tokens({'''cls_token''': special_token} )
SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.encode(__lowercase , add_special_tokens=__lowercase )
self.assertEqual(len(__lowercase ) , 1 )
SCREAMING_SNAKE_CASE__ : str =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowercase )
SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase )
SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase )
SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase )
self.assertEqual(__lowercase , input_encoded + special_token_id )
SCREAMING_SNAKE_CASE__ : Any =tokenizer.decode(__lowercase , skip_special_tokens=__lowercase )
self.assertTrue(special_token not in decoded )
def __magic_name__ ( self : int ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : Tuple =self.get_tokenizers(do_lower_case=__lowercase )
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
SCREAMING_SNAKE_CASE__ : Tuple =chr(0xE005 )
SCREAMING_SNAKE_CASE__ : List[Any] =chr(0xE006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowercase )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} )
SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.tokenize(__lowercase )
SCREAMING_SNAKE_CASE__ : Any =tokenizer.tokenize(__lowercase )
self.assertEqual(len(__lowercase ) , 1 )
self.assertEqual(len(__lowercase ) , 1 )
self.assertEqual(token_a[0] , __lowercase )
self.assertEqual(token_a[0] , __lowercase )
@require_tokenizers
def __magic_name__ ( self : List[Any] ) -> Dict:
SCREAMING_SNAKE_CASE__ : Tuple =self.get_tokenizers(do_lower_case=__lowercase )
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
# a special token for Canine can be defined as follows:
SCREAMING_SNAKE_CASE__ : str =0xE006
SCREAMING_SNAKE_CASE__ : int =chr(__lowercase )
SCREAMING_SNAKE_CASE__ : Dict =AddedToken(__lowercase , lstrip=__lowercase )
tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__lowercase )
tokenizer.from_pretrained(__lowercase )
def __magic_name__ ( self : Optional[int] ) -> int:
SCREAMING_SNAKE_CASE__ : int =[]
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__lowercase )
with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file:
SCREAMING_SNAKE_CASE__ : List[Any] =json.load(__lowercase )
with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file:
SCREAMING_SNAKE_CASE__ : Dict =json.load(__lowercase )
# a special token for Canine can be defined as follows:
SCREAMING_SNAKE_CASE__ : Optional[Any] =0xE006
SCREAMING_SNAKE_CASE__ : Dict =chr(__lowercase )
SCREAMING_SNAKE_CASE__ : str =[new_token_a]
SCREAMING_SNAKE_CASE__ : Optional[Any] =[new_token_a]
with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(__lowercase , __lowercase )
with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(__lowercase , __lowercase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer_class.from_pretrained(__lowercase , extra_ids=0 )
self.assertIn(__lowercase , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
SCREAMING_SNAKE_CASE__ : str =0xE007
SCREAMING_SNAKE_CASE__ : Optional[int] =chr(__lowercase )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
SCREAMING_SNAKE_CASE__ : Tuple =[AddedToken(__lowercase , lstrip=__lowercase )]
SCREAMING_SNAKE_CASE__ : Any =tokenizer_class.from_pretrained(
__lowercase , additional_special_tokens=__lowercase , extra_ids=0 )
self.assertIn(__lowercase , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def __magic_name__ ( self : Dict ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : int =self.get_tokenizers(do_lower_case=__lowercase )
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
SCREAMING_SNAKE_CASE__ : List[str] ='''hello world'''
if self.space_between_special_tokens:
SCREAMING_SNAKE_CASE__ : str ='''[CLS] hello world [SEP]'''
else:
SCREAMING_SNAKE_CASE__ : int =input
SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase )
SCREAMING_SNAKE_CASE__ : str =tokenizer.decode(__lowercase , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__lowercase , [output, output.lower()] )
def __magic_name__ ( self : str ) -> Dict:
SCREAMING_SNAKE_CASE__ : Dict =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
SCREAMING_SNAKE_CASE__ : str =[
'''bos_token''',
'''eos_token''',
'''unk_token''',
'''sep_token''',
'''pad_token''',
'''cls_token''',
'''mask_token''',
]
SCREAMING_SNAKE_CASE__ : Tuple ='''a'''
SCREAMING_SNAKE_CASE__ : Tuple =ord(__lowercase )
for attr in attributes_list:
setattr(__lowercase , attr + '''_id''' , __lowercase )
self.assertEqual(getattr(__lowercase , __lowercase ) , __lowercase )
self.assertEqual(getattr(__lowercase , attr + '''_id''' ) , __lowercase )
setattr(__lowercase , attr + '''_id''' , __lowercase )
self.assertEqual(getattr(__lowercase , __lowercase ) , __lowercase )
self.assertEqual(getattr(__lowercase , attr + '''_id''' ) , __lowercase )
setattr(__lowercase , '''additional_special_tokens_ids''' , [] )
self.assertListEqual(getattr(__lowercase , '''additional_special_tokens''' ) , [] )
self.assertListEqual(getattr(__lowercase , '''additional_special_tokens_ids''' ) , [] )
SCREAMING_SNAKE_CASE__ : str =0xE006
SCREAMING_SNAKE_CASE__ : List[str] =chr(__lowercase )
setattr(__lowercase , '''additional_special_tokens_ids''' , [additional_special_token_id] )
self.assertListEqual(getattr(__lowercase , '''additional_special_tokens''' ) , [additional_special_token] )
self.assertListEqual(getattr(__lowercase , '''additional_special_tokens_ids''' ) , [additional_special_token_id] )
def __magic_name__ ( self : str ) -> Dict:
pass
def __magic_name__ ( self : List[Any] ) -> List[Any]:
pass
def __magic_name__ ( self : Any ) -> int:
pass
def __magic_name__ ( self : Union[str, Any] ) -> Union[str, Any]:
pass
def __magic_name__ ( self : List[Any] ) -> Optional[int]:
pass
def __magic_name__ ( self : Tuple ) -> Optional[Any]:
pass
def __magic_name__ ( self : Dict ) -> Dict:
pass
def __magic_name__ ( self : List[str] ) -> Dict:
pass
| 152 | 1 |
"""simple docstring"""
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
__UpperCAmelCase = logging.getLogger(__name__)
__UpperCAmelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
__UpperCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _SCREAMING_SNAKE_CASE :
UpperCAmelCase_ :Optional[str] = field(
default=A__ , metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
} , )
UpperCAmelCase_ :Optional[str] = field(
default=A__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(A__ )} , )
UpperCAmelCase_ :Optional[str] = field(
default=A__ , metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
} , )
UpperCAmelCase_ :Optional[str] = field(
default=A__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
UpperCAmelCase_ :Optional[str] = field(
default=A__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
UpperCAmelCase_ :Optional[str] = field(
default=A__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
UpperCAmelCase_ :bool = field(
default=A__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
UpperCAmelCase_ :str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
UpperCAmelCase_ :bool = field(
default=A__ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
def __lowerCAmelCase ( self ) -> Tuple:
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"""--config_overrides can't be used in combination with --config_name or --model_name_or_path""" )
@dataclass
class _SCREAMING_SNAKE_CASE :
UpperCAmelCase_ :Optional[str] = field(
default=A__ , metadata={"help": "The name of the dataset to use (via the datasets library)."} )
UpperCAmelCase_ :Optional[str] = field(
default=A__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
UpperCAmelCase_ :Optional[str] = field(default=A__ , metadata={"help": "The input training data file (a text file)."} )
UpperCAmelCase_ :Optional[str] = field(
default=A__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
UpperCAmelCase_ :Optional[str] = field(
default=A__ , metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} , )
UpperCAmelCase_ :Optional[str] = field(
default=A__ , metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} , )
UpperCAmelCase_ :bool = field(
default=A__ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
UpperCAmelCase_ :Optional[int] = field(
default=5 , metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
} , )
UpperCAmelCase_ :Optional[int] = field(
default=A__ , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated. Default to the max input length of the model."
)
} , )
UpperCAmelCase_ :Optional[int] = field(
default=A__ , metadata={"help": "The number of processes to use for the preprocessing."} , )
UpperCAmelCase_ :float = field(
default=0.1_5 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} )
UpperCAmelCase_ :bool = field(
default=A__ , metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} , )
def __lowerCAmelCase ( self ) -> Dict:
if self.train_file is not None:
lowerCAmelCase_ :List[Any] = self.train_file.split(""".""" )[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
lowerCAmelCase_ :List[Any] = self.validation_file.split(""".""" )[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def _snake_case ( lowercase__ : Tuple , lowercase__ : Any ) -> str:
'''simple docstring'''
with open(lowercase__ , """r""" , encoding="""utf-8""" ) as f:
lowerCAmelCase_ :Optional[int] = [json.loads(lowercase__ ) for line in f.read().splitlines() if (len(lowercase__ ) > 0 and not line.isspace())]
assert len(lowercase__ ) == len(lowercase__ )
lowerCAmelCase_ :Union[str, Any] = {c: dataset[c] for c in dataset.column_names}
lowerCAmelCase_ :Any = refs
return Dataset.from_dict(lowercase__ )
def _snake_case ( ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :int = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
lowerCAmelCase_ :List[str] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCAmelCase_ :Tuple = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , lowercase__ )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
lowerCAmelCase_ :Tuple = load_dataset(data_args.dataset_name , data_args.dataset_config_name )
if "validation" not in datasets.keys():
lowerCAmelCase_ :Optional[int] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=f"""train[:{data_args.validation_split_percentage}%]""" , )
lowerCAmelCase_ :str = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=f"""train[{data_args.validation_split_percentage}%:]""" , )
else:
lowerCAmelCase_ :Dict = {}
if data_args.train_file is not None:
lowerCAmelCase_ :str = data_args.train_file
if data_args.validation_file is not None:
lowerCAmelCase_ :Union[str, Any] = data_args.validation_file
lowerCAmelCase_ :Optional[Any] = data_args.train_file.split(""".""" )[-1]
if extension == "txt":
lowerCAmelCase_ :Any = """text"""
lowerCAmelCase_ :str = load_dataset(lowercase__ , data_files=lowercase__ )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCAmelCase_ :List[Any] = {
"""cache_dir""": model_args.cache_dir,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.config_name:
lowerCAmelCase_ :Dict = AutoConfig.from_pretrained(model_args.config_name , **lowercase__ )
elif model_args.model_name_or_path:
lowerCAmelCase_ :Any = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ )
else:
lowerCAmelCase_ :Optional[int] = CONFIG_MAPPING[model_args.model_type]()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.config_overrides is not None:
logger.info(f"""Overriding config: {model_args.config_overrides}""" )
config.update_from_string(model_args.config_overrides )
logger.info(f"""New config: {config}""" )
lowerCAmelCase_ :List[Any] = {
"""cache_dir""": model_args.cache_dir,
"""use_fast""": model_args.use_fast_tokenizer,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
lowerCAmelCase_ :int = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowercase__ )
elif model_args.model_name_or_path:
lowerCAmelCase_ :List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowercase__ )
else:
raise ValueError(
"""You are instantiating a new tokenizer from scratch. This is not supported by this script."""
"""You can do it from another script, save it, and load it from here, using --tokenizer_name.""" )
if model_args.model_name_or_path:
lowerCAmelCase_ :List[Any] = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info("""Training new model from scratch""" )
lowerCAmelCase_ :Dict = AutoModelForMaskedLM.from_config(lowercase__ )
model.resize_token_embeddings(len(lowercase__ ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
lowerCAmelCase_ :Optional[int] = datasets["""train"""].column_names
else:
lowerCAmelCase_ :List[str] = datasets["""validation"""].column_names
lowerCAmelCase_ :int = """text""" if """text""" in column_names else column_names[0]
lowerCAmelCase_ :Union[str, Any] = """max_length""" if data_args.pad_to_max_length else False
def tokenize_function(lowercase__ : Optional[Any] ):
# Remove empty lines
lowerCAmelCase_ :List[Any] = [line for line in examples["""text"""] if len(lowercase__ ) > 0 and not line.isspace()]
return tokenizer(examples["""text"""] , padding=lowercase__ , truncation=lowercase__ , max_length=data_args.max_seq_length )
lowerCAmelCase_ :Tuple = datasets.map(
lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
lowerCAmelCase_ :List[str] = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file )
if data_args.validation_ref_file is not None:
lowerCAmelCase_ :str = add_chinese_references(
tokenized_datasets["""validation"""] , data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
lowerCAmelCase_ :List[str] = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
lowerCAmelCase_ :Optional[Any] = False
# Data collator
# This one will take care of randomly masking the tokens.
lowerCAmelCase_ :List[str] = DataCollatorForWholeWordMask(tokenizer=lowercase__ , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
lowerCAmelCase_ :str = Trainer(
model=lowercase__ , args=lowercase__ , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
lowerCAmelCase_ :str = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
lowerCAmelCase_ :List[Any] = model_args.model_name_or_path
else:
lowerCAmelCase_ :Dict = None
lowerCAmelCase_ :int = trainer.train(resume_from_checkpoint=lowercase__ )
trainer.save_model() # Saves the tokenizer too for easy upload
lowerCAmelCase_ :List[Any] = os.path.join(training_args.output_dir , """train_results.txt""" )
if trainer.is_world_process_zero():
with open(lowercase__ , """w""" ) as writer:
logger.info("""***** Train results *****""" )
for key, value in sorted(train_result.metrics.items() ):
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) )
# Evaluation
lowerCAmelCase_ :Union[str, Any] = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
lowerCAmelCase_ :Optional[Any] = trainer.evaluate()
lowerCAmelCase_ :int = math.exp(eval_output["""eval_loss"""] )
lowerCAmelCase_ :str = perplexity
lowerCAmelCase_ :Any = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" )
if trainer.is_world_process_zero():
with open(lowercase__ , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in sorted(results.items() ):
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
return results
def _snake_case ( lowercase__ : List[Any] ) -> Optional[Any]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class _SCREAMING_SNAKE_CASE ( A__ ):
UpperCAmelCase_ :Dict = (
"This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image."
"It takes two arguments named `image` which should be the original image, and `label` which should be a text "
"describing the elements what should be identified in the segmentation mask. The tool returns the mask."
)
UpperCAmelCase_ :List[str] = "CIDAS/clipseg-rd64-refined"
UpperCAmelCase_ :List[Any] = "image_segmenter"
UpperCAmelCase_ :Optional[int] = CLIPSegForImageSegmentation
UpperCAmelCase_ :Tuple = ["image", "text"]
UpperCAmelCase_ :Dict = ["image"]
def __init__( self , *__A , **__A ) -> Optional[Any]:
requires_backends(self , ["""vision"""] )
super().__init__(*__A , **__A )
def __lowerCAmelCase ( self , __A , __A ) -> Any:
return self.pre_processor(text=[label] , images=[image] , padding=__A , return_tensors="""pt""" )
def __lowerCAmelCase ( self , __A ) -> Tuple:
with torch.no_grad():
lowerCAmelCase_ :Dict = self.model(**__A ).logits
return logits
def __lowerCAmelCase ( self , __A ) -> Tuple:
lowerCAmelCase_ :Optional[int] = outputs.cpu().detach().numpy()
lowerCAmelCase_ :List[str] = 0
lowerCAmelCase_ :str = 1
return Image.fromarray((array * 255).astype(np.uinta ) )
| 1 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
def __init__( self : Any , A : Union[str, Any] , A : Union[str, Any]=7 , A : Dict=3 , A : Any=10 , A : Optional[int]=18 , A : List[str]=30 , A : str=4_00 , A : Any=True , A : Union[str, Any]=None , A : Optional[int]=True , A : List[str]=[0.5, 0.5, 0.5] , A : Union[str, Any]=[0.5, 0.5, 0.5] , A : Tuple=None , ) -> Tuple:
lowercase_ : int = size if size is not None else {'''shortest_edge''': 18}
lowercase_ : str = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
lowercase_ : List[Any] = parent
lowercase_ : List[Any] = batch_size
lowercase_ : Tuple = num_channels
lowercase_ : Union[str, Any] = num_frames
lowercase_ : Dict = image_size
lowercase_ : List[Any] = min_resolution
lowercase_ : Dict = max_resolution
lowercase_ : Optional[Any] = do_resize
lowercase_ : Any = size
lowercase_ : Dict = do_normalize
lowercase_ : Optional[Any] = image_mean
lowercase_ : Optional[Any] = image_std
lowercase_ : List[Any] = crop_size
def A ( self : List[str] ) -> Tuple:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class _UpperCAmelCase ( _A , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ : Any = VivitImageProcessor if is_vision_available() else None
def A ( self : List[Any] ) -> List[Any]:
lowercase_ : Optional[Any] = VivitImageProcessingTester(self )
@property
def A ( self : Optional[Any] ) -> Optional[int]:
return self.image_processor_tester.prepare_image_processor_dict()
def A ( self : Union[str, Any] ) -> Optional[Any]:
lowercase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A , '''image_mean''' ) )
self.assertTrue(hasattr(A , '''image_std''' ) )
self.assertTrue(hasattr(A , '''do_normalize''' ) )
self.assertTrue(hasattr(A , '''do_resize''' ) )
self.assertTrue(hasattr(A , '''do_center_crop''' ) )
self.assertTrue(hasattr(A , '''size''' ) )
def A ( self : List[Any] ) -> List[str]:
lowercase_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
lowercase_ : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def A ( self : int ) -> Optional[Any]:
# Initialize image_processing
lowercase_ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
lowercase_ : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A )
for video in video_inputs:
self.assertIsInstance(A , A )
self.assertIsInstance(video[0] , Image.Image )
# Test not batched input
lowercase_ : Optional[Any] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowercase_ : Dict = image_processing(A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : int ) -> Optional[int]:
# Initialize image_processing
lowercase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase_ : Optional[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , numpify=A )
for video in video_inputs:
self.assertIsInstance(A , A )
self.assertIsInstance(video[0] , np.ndarray )
# Test not batched input
lowercase_ : Any = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowercase_ : List[Any] = image_processing(A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def A ( self : Tuple ) -> Dict:
# Initialize image_processing
lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase_ : Any = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , torchify=A )
for video in video_inputs:
self.assertIsInstance(A , A )
self.assertIsInstance(video[0] , torch.Tensor )
# Test not batched input
lowercase_ : Any = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowercase_ : Any = image_processing(A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 33 |
"""simple docstring"""
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class _UpperCAmelCase ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ):
def __init__( self : Any , A : int=None , **A : str ) -> Union[str, Any]:
super().__init__(features=A )
lowercase_ : Union[str, Any] = torch_tensor_kwargs
import torch # noqa import torch at initialization
def A ( self : Dict , A : int ) -> List[Any]:
import torch
if isinstance(A , A ) and column:
if all(
isinstance(A , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(A )
return column
def A ( self : int , A : Any ) -> Optional[Any]:
import torch
if isinstance(A , (str, bytes, type(A )) ):
return value
elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
lowercase_ : Any = {}
if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
lowercase_ : Any = {'''dtype''': torch.intaa}
elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
lowercase_ : Dict = {'''dtype''': torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(A , PIL.Image.Image ):
lowercase_ : Dict = np.asarray(A )
return torch.tensor(A , **{**default_dtype, **self.torch_tensor_kwargs} )
def A ( self : Union[str, Any] , A : Optional[int] ) -> str:
import torch
# support for torch, tf, jax etc.
if hasattr(A , '''__array__''' ) and not isinstance(A , torch.Tensor ):
lowercase_ : Optional[int] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(A , np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] )
elif isinstance(A , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] )
return self._tensorize(A )
def A ( self : Dict , A : dict ) -> Tuple:
return map_nested(self._recursive_tensorize , A , map_list=A )
def A ( self : str , A : pa.Table ) -> Mapping:
lowercase_ : Optional[Any] = self.numpy_arrow_extractor().extract_row(A )
lowercase_ : str = self.python_features_decoder.decode_row(A )
return self.recursive_tensorize(A )
def A ( self : List[Any] , A : pa.Table ) -> "torch.Tensor":
lowercase_ : List[str] = self.numpy_arrow_extractor().extract_column(A )
lowercase_ : str = self.python_features_decoder.decode_column(A , pa_table.column_names[0] )
lowercase_ : Optional[int] = self.recursive_tensorize(A )
lowercase_ : Any = self._consolidate(A )
return column
def A ( self : List[str] , A : pa.Table ) -> Mapping:
lowercase_ : Optional[int] = self.numpy_arrow_extractor().extract_batch(A )
lowercase_ : int = self.python_features_decoder.decode_batch(A )
lowercase_ : Dict = self.recursive_tensorize(A )
for column_name in batch:
lowercase_ : Optional[Any] = self._consolidate(batch[column_name] )
return batch
| 33 | 1 |
'''simple docstring'''
import argparse
from collections import defaultdict
import yaml
__UpperCAmelCase :Any = "docs/source/en/_toctree.yml"
def _a ( _lowercase : Any ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = defaultdict(_lowercase )
for doc in model_doc:
counts[doc["local"]] += 1
__UpperCAmelCase : str = [key for key, value in counts.items() if value > 1]
__UpperCAmelCase : Dict = []
for duplicate_key in duplicates:
__UpperCAmelCase : Optional[int] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} )
if len(_lowercase ) > 1:
raise ValueError(
F'{duplicate_key} is present several times in the documentation table of content at '
'''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '''
'''others.''' )
# Only add this once
new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] )
# Sort
return sorted(_lowercase , key=lambda _lowercase : s["title"].lower() )
def _a ( _lowercase : Optional[Any]=False ):
'''simple docstring'''
with open(_lowercase , encoding='''utf-8''' ) as f:
__UpperCAmelCase : Dict = yaml.safe_load(f.read() )
# Get to the API doc
__UpperCAmelCase : Tuple = 0
while content[api_idx]["title"] != "API":
api_idx += 1
__UpperCAmelCase : Optional[Any] = content[api_idx]['''sections''']
# Then to the model doc
__UpperCAmelCase : Optional[int] = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
__UpperCAmelCase : Optional[int] = api_doc[model_idx]['''sections''']
__UpperCAmelCase : Any = [(idx, section) for idx, section in enumerate(_lowercase ) if '''sections''' in section]
__UpperCAmelCase : Any = False
for idx, modality_doc in modalities_docs:
__UpperCAmelCase : str = modality_doc['''sections''']
__UpperCAmelCase : str = clean_model_doc_toc(_lowercase )
if old_modality_doc != new_modality_doc:
__UpperCAmelCase : Optional[int] = True
if overwrite:
__UpperCAmelCase : Any = new_modality_doc
if diff:
if overwrite:
__UpperCAmelCase : Optional[Any] = model_doc
__UpperCAmelCase : List[Any] = api_doc
with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f:
f.write(yaml.dump(_lowercase , allow_unicode=_lowercase ) )
else:
raise ValueError(
'''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' )
if __name__ == "__main__":
__UpperCAmelCase :Any = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
__UpperCAmelCase :Optional[Any] = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 240 |
'''simple docstring'''
def _a ( _lowercase : List[str] ):
'''simple docstring'''
__UpperCAmelCase : str = 1
__UpperCAmelCase : List[str] = 2
while i * i <= n:
__UpperCAmelCase : Optional[Any] = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def _a ( ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : List[Any] = 1
while True:
i += 1
t_num += i
if count_divisors(_lowercase ) > 500:
break
return t_num
if __name__ == "__main__":
print(solution())
| 240 | 1 |
class _snake_case :
'''simple docstring'''
def __init__( self: int ,lowerCamelCase_: int ) -> int:
UpperCAmelCase_ : Tuple = n
UpperCAmelCase_ : Tuple = [None] * self.n
UpperCAmelCase_ : Optional[int] = 0 # index of the first element
UpperCAmelCase_ : str = 0
UpperCAmelCase_ : List[str] = 0
def __len__( self: Union[str, Any] ) -> int:
return self.size
def A__ ( self: Optional[int] ) -> bool:
return self.size == 0
def A__ ( self: Union[str, Any] ) -> Tuple:
return False if self.is_empty() else self.array[self.front]
def A__ ( self: Dict ,lowerCamelCase_: Tuple ) -> str:
if self.size >= self.n:
raise Exception("""QUEUE IS FULL""" )
UpperCAmelCase_ : List[str] = data
UpperCAmelCase_ : Tuple = (self.rear + 1) % self.n
self.size += 1
return self
def A__ ( self: Any ) -> Union[str, Any]:
if self.size == 0:
raise Exception("""UNDERFLOW""" )
UpperCAmelCase_ : int = self.array[self.front]
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : List[str] = (self.front + 1) % self.n
self.size -= 1
return temp
| 345 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {
'''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''',
}
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : Optional[Any] = "layoutlmv3"
def __init__( self: str ,lowerCamelCase_: Any=50265 ,lowerCamelCase_: int=768 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: List[Any]=3072 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Any=0.1 ,lowerCamelCase_: Tuple=512 ,lowerCamelCase_: Union[str, Any]=2 ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: List[str]=1e-5 ,lowerCamelCase_: int=1 ,lowerCamelCase_: int=0 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Dict=1024 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=32 ,lowerCamelCase_: Union[str, Any]=128 ,lowerCamelCase_: Tuple=64 ,lowerCamelCase_: Tuple=256 ,lowerCamelCase_: List[str]=True ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Any=True ,lowerCamelCase_: Dict=224 ,lowerCamelCase_: Optional[int]=3 ,lowerCamelCase_: Optional[int]=16 ,lowerCamelCase_: Dict=None ,**lowerCamelCase_: str ,) -> List[Any]:
super().__init__(
vocab_size=lowerCamelCase_ ,hidden_size=lowerCamelCase_ ,num_hidden_layers=lowerCamelCase_ ,num_attention_heads=lowerCamelCase_ ,intermediate_size=lowerCamelCase_ ,hidden_act=lowerCamelCase_ ,hidden_dropout_prob=lowerCamelCase_ ,attention_probs_dropout_prob=lowerCamelCase_ ,max_position_embeddings=lowerCamelCase_ ,type_vocab_size=lowerCamelCase_ ,initializer_range=lowerCamelCase_ ,layer_norm_eps=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,)
UpperCAmelCase_ : List[Any] = max_ad_position_embeddings
UpperCAmelCase_ : Optional[int] = coordinate_size
UpperCAmelCase_ : Optional[int] = shape_size
UpperCAmelCase_ : Optional[Any] = has_relative_attention_bias
UpperCAmelCase_ : Optional[int] = rel_pos_bins
UpperCAmelCase_ : Union[str, Any] = max_rel_pos
UpperCAmelCase_ : Dict = has_spatial_attention_bias
UpperCAmelCase_ : Optional[int] = rel_ad_pos_bins
UpperCAmelCase_ : Tuple = max_rel_ad_pos
UpperCAmelCase_ : Union[str, Any] = text_embed
UpperCAmelCase_ : Optional[Any] = visual_embed
UpperCAmelCase_ : List[str] = input_size
UpperCAmelCase_ : str = num_channels
UpperCAmelCase_ : Optional[int] = patch_size
UpperCAmelCase_ : Tuple = classifier_dropout
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : Optional[Any] = version.parse("1.12" )
@property
def A__ ( self: Dict ) -> Mapping[str, Mapping[int, str]]:
# The order of inputs is different for question answering and sequence classification
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
("""bbox""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
else:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""bbox""", {0: """batch""", 1: """sequence"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels"""}),
] )
@property
def A__ ( self: Any ) -> float:
return 1e-5
@property
def A__ ( self: int ) -> int:
return 12
def A__ ( self: List[str] ,lowerCamelCase_: "ProcessorMixin" ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional["TensorType"] = None ,lowerCamelCase_: int = 3 ,lowerCamelCase_: int = 40 ,lowerCamelCase_: int = 40 ,) -> Mapping[str, Any]:
setattr(processor.image_processor ,"""apply_ocr""" ,lowerCamelCase_ )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCAmelCase_ : List[str] = compute_effective_axis_dimension(
lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCAmelCase_ : int = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ )
UpperCAmelCase_ : int = compute_effective_axis_dimension(
lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowerCamelCase_ )
# Generate dummy inputs according to compute batch and sequence
UpperCAmelCase_ : Optional[int] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
UpperCAmelCase_ : List[Any] = [[[48, 84, 73, 128]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
UpperCAmelCase_ : Any = self._generate_dummy_images(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = dict(
processor(
lowerCamelCase_ ,text=lowerCamelCase_ ,boxes=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,) )
return inputs
| 345 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase: str = logging.get_logger(__name__)
__lowercase: Optional[Any] = {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json",
}
class UpperCAmelCase ( SCREAMING_SNAKE_CASE__):
_lowerCamelCase : Any = 'gpt_neox_japanese'
def __init__( self : List[str], a_ : Union[str, Any]=3_2000, a_ : str=2560, a_ : Dict=32, a_ : Tuple=32, a_ : Union[str, Any]=4, a_ : Union[str, Any]="gelu", a_ : int=1.00, a_ : Dict=1_0000, a_ : Any=2048, a_ : Optional[int]=0.02, a_ : int=1e-5, a_ : int=True, a_ : Optional[int]=3_1996, a_ : List[str]=3_1999, a_ : List[str]=0.1, a_ : Optional[int]=0.0, **a_ : Tuple, ):
"""simple docstring"""
super().__init__(bos_token_id=a_, eos_token_id=a_, **a_ )
UpperCamelCase__ = vocab_size
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_multiple_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = rotary_pct
UpperCamelCase__ = rotary_emb_base
UpperCamelCase__ = initializer_range
UpperCamelCase__ = layer_norm_eps
UpperCamelCase__ = use_cache
UpperCamelCase__ = attention_dropout
UpperCamelCase__ = hidden_dropout
| 369 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowercase: Dict = {
"configuration_time_series_transformer": [
"TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TimeSeriesTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase: Optional[int] = [
"TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TimeSeriesTransformerForPrediction",
"TimeSeriesTransformerModel",
"TimeSeriesTransformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
__lowercase: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 31 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase__ = {
'configuration_efficientformer': [
'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EfficientFormerConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['EfficientFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'EfficientFormerForImageClassification',
'EfficientFormerForImageClassificationWithTeacher',
'EfficientFormerModel',
'EfficientFormerPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFEfficientFormerForImageClassification',
'TFEfficientFormerForImageClassificationWithTeacher',
'TFEfficientFormerModel',
'TFEfficientFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 11 |
lowercase_ : Optional[int] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)]
def __SCREAMING_SNAKE_CASE ( snake_case_ ):
'''simple docstring'''
_UpperCAmelCase = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
lowercase_ : list[bool | None] = [None] * 10_00_00_00
lowercase_ : Optional[int] = True
lowercase_ : str = False
def __SCREAMING_SNAKE_CASE ( snake_case_ ):
'''simple docstring'''
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
_UpperCAmelCase = chain(next_number(snake_case_ ) )
_UpperCAmelCase = number_chain
while number < 1000_0000:
_UpperCAmelCase = number_chain
number *= 10
return number_chain
def __SCREAMING_SNAKE_CASE ( snake_case_ = 1000_0000 ):
'''simple docstring'''
for i in range(1 , snake_case_ ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{solution() = }""")
| 133 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
a : List[str] = logging.get_logger(__name__)
def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: int=False ):
"""simple docstring"""
UpperCAmelCase_: Any = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
UpperCAmelCase_: Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def lowerCAmelCase_ (lowerCAmelCase__: Dict , lowerCAmelCase__: Dict , lowerCAmelCase__: Tuple=False ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
UpperCAmelCase_: Tuple = """"""
else:
UpperCAmelCase_: Optional[Any] = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase_: Optional[int] = state_dict.pop(F'blocks.{i}.attn.qkv.weight' )
UpperCAmelCase_: Optional[int] = state_dict.pop(F'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_: Optional[Any] = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase_: str = in_proj_bias[: config.hidden_size]
UpperCAmelCase_: Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase_: List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase_: List[str] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase_: Optional[int] = in_proj_bias[-config.hidden_size :]
def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase_: Optional[Any] = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ )
def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: int , lowerCAmelCase__: List[str] ):
"""simple docstring"""
UpperCAmelCase_: List[Any] = dct.pop(lowerCAmelCase__ )
UpperCAmelCase_: Dict = val
def lowerCAmelCase_ ():
"""simple docstring"""
UpperCAmelCase_: Any = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCAmelCase_: List[str] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Union[str, Any]=True ):
"""simple docstring"""
UpperCAmelCase_: Optional[Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
UpperCAmelCase_: int = 8
# set labels if required
if not base_model:
UpperCAmelCase_: Optional[int] = 1_0_0_0
UpperCAmelCase_: str = """huggingface/label-files"""
UpperCAmelCase_: int = """imagenet-1k-id2label.json"""
UpperCAmelCase_: List[str] = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) , """r""" ) )
UpperCAmelCase_: Union[str, Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
UpperCAmelCase_: Tuple = idalabel
UpperCAmelCase_: Optional[int] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
UpperCAmelCase_: Dict = 3_8_4
UpperCAmelCase_: Dict = 1_5_3_6
UpperCAmelCase_: List[Any] = 1_2
UpperCAmelCase_: Dict = 6
# load original model from torch hub
UpperCAmelCase_: Optional[int] = torch.hub.load("""facebookresearch/dino:main""" , lowerCAmelCase__ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
UpperCAmelCase_: Dict = original_model.state_dict()
if base_model:
remove_classification_head_(lowerCAmelCase__ )
UpperCAmelCase_: Dict = create_rename_keys(lowerCAmelCase__ , base_model=lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# load HuggingFace model
if base_model:
UpperCAmelCase_: Optional[int] = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ).eval()
else:
UpperCAmelCase_: Union[str, Any] = ViTForImageClassification(lowerCAmelCase__ ).eval()
model.load_state_dict(lowerCAmelCase__ )
# Check outputs on an image, prepared by ViTImageProcessor
UpperCAmelCase_: str = ViTImageProcessor()
UpperCAmelCase_: Optional[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" )
UpperCAmelCase_: Any = encoding["""pixel_values"""]
UpperCAmelCase_: List[Any] = model(lowerCAmelCase__ )
if base_model:
UpperCAmelCase_: int = original_model(lowerCAmelCase__ )
assert torch.allclose(lowerCAmelCase__ , outputs.last_hidden_state[:, 0, :] , atol=1e-1 )
else:
UpperCAmelCase_: str = original_model(lowerCAmelCase__ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1e-3 )
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCAmelCase__ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
a : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
a : List[str] = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 82 |
from collections import defaultdict
class _a :
def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]:
UpperCAmelCase_: Optional[int] = total # total no of tasks (N)
# DP table will have a dimension of (2^M)*N
# initially all values are set to -1
UpperCAmelCase_: List[Any] = [
[-1 for i in range(total + 1 )] for j in range(2 ** len(SCREAMING_SNAKE_CASE_ ) )
]
UpperCAmelCase_: Union[str, Any] = defaultdict(SCREAMING_SNAKE_CASE_ ) # stores the list of persons for each task
# final_mask is used to check if all persons are included by setting all bits
# to 1
UpperCAmelCase_: List[Any] = (1 << len(SCREAMING_SNAKE_CASE_ )) - 1
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
# if mask == self.finalmask all persons are distributed tasks, return 1
if mask == self.final_mask:
return 1
# if not everyone gets the task and no more tasks are available, return 0
if task_no > self.total_tasks:
return 0
# if case already considered
if self.dp[mask][task_no] != -1:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
UpperCAmelCase_: List[Any] = self.count_ways_until(SCREAMING_SNAKE_CASE_, task_no + 1 )
# now assign the tasks one by one to all possible persons and recursively
# assign for the remaining tasks.
if task_no in self.task:
for p in self.task[task_no]:
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively
# assign tasks with the new mask value.
total_ways_util += self.count_ways_until(mask | (1 << p), task_no + 1 )
# save the value.
UpperCAmelCase_: List[Any] = total_ways_util
return self.dp[mask][task_no]
def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> str:
# Store the list of persons for each task
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
for j in task_performed[i]:
self.task[j].append(SCREAMING_SNAKE_CASE_ )
# call the function to fill the DP table, final answer is stored in dp[0][1]
return self.count_ways_until(0, 1 )
if __name__ == "__main__":
a : Optional[Any] = 5 # total no of tasks (the value of N)
# the list of tasks that can be done by M persons.
a : Optional[Any] = [[1, 3, 4], [1, 2, 5], [3, 4]]
print(
AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways(
task_performed
)
)
| 82 | 1 |
"""simple docstring"""
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
a__ : Optional[int] = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''')
class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase):
"""simple docstring"""
snake_case__ : Optional[int] = BartphoTokenizer
snake_case__ : Union[str, Any] = False
snake_case__ : Optional[int] = True
def UpperCAmelCase_ ( self : List[str] ) -> int:
super().setUp()
__SCREAMING_SNAKE_CASE = ["▁This", "▁is", "▁a", "▁t", "est"]
__SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) )
__SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"}
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] )
with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp:
for token in vocab_tokens:
fp.write(F"""{token} {vocab_tokens[token]}\n""" )
__SCREAMING_SNAKE_CASE = BartphoTokenizer(UpperCAmelCase__ , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase_ ( self : str , **UpperCAmelCase__ : int ) -> int:
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ )
def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] ) -> List[Any]:
__SCREAMING_SNAKE_CASE = "This is a là test"
__SCREAMING_SNAKE_CASE = "This is a<unk><unk> test"
return input_text, output_text
def UpperCAmelCase_ ( self : List[str] ) -> str:
__SCREAMING_SNAKE_CASE = BartphoTokenizer(UpperCAmelCase__ , self.monolingual_vocab_file , **self.special_tokens_map )
__SCREAMING_SNAKE_CASE = "This is a là test"
__SCREAMING_SNAKE_CASE = "▁This ▁is ▁a ▁l à ▁t est".split()
__SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token]
__SCREAMING_SNAKE_CASE = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ )
| 54 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class UpperCamelCase_ ( unittest.TestCase):
"""simple docstring"""
def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]:
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
__SCREAMING_SNAKE_CASE = [[1, 2, 4], [1, 2, 3, 4]]
__SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ )
self.assertTrue(isinstance(dc.token_ids , UpperCAmelCase__ ) )
with self.assertRaises(UpperCAmelCase__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(UpperCAmelCase__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCAmelCase_ ( self : Any ) -> int:
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
__SCREAMING_SNAKE_CASE = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(UpperCAmelCase__ ):
DisjunctiveConstraint(UpperCAmelCase__ ) # fails here
def UpperCAmelCase_ ( self : List[Any] ) -> Any:
__SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4]]
__SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 )
__SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False
self.assertTrue(UpperCAmelCase__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 )
__SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False
self.assertTrue(UpperCAmelCase__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(3 )
__SCREAMING_SNAKE_CASE = stepped is True and completed is True and reset is False
self.assertTrue(UpperCAmelCase__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCAmelCase_ ( self : str ) -> List[str]:
__SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 54 | 1 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase_ : str = logging.get_logger(__name__)
UpperCamelCase_ : Optional[Any] = {
'''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''',
# See all SEW models at https://huggingface.co/models?filter=sew
}
class _a ( __lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ : Dict = """sew"""
def __init__( self ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.0_2 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE="group" ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,_SCREAMING_SNAKE_CASE=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,_SCREAMING_SNAKE_CASE=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=0.0_5 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE="mean" ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=2 ,**_SCREAMING_SNAKE_CASE ,) -> str:
super().__init__(**_SCREAMING_SNAKE_CASE ,pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE )
_snake_case = hidden_size
_snake_case = feat_extract_norm
_snake_case = feat_extract_activation
_snake_case = list(_SCREAMING_SNAKE_CASE )
_snake_case = list(_SCREAMING_SNAKE_CASE )
_snake_case = list(_SCREAMING_SNAKE_CASE )
_snake_case = conv_bias
_snake_case = num_conv_pos_embeddings
_snake_case = num_conv_pos_embedding_groups
_snake_case = len(self.conv_dim )
_snake_case = num_hidden_layers
_snake_case = intermediate_size
_snake_case = squeeze_factor
_snake_case = hidden_act
_snake_case = num_attention_heads
_snake_case = hidden_dropout
_snake_case = attention_dropout
_snake_case = activation_dropout
_snake_case = feat_proj_dropout
_snake_case = final_dropout
_snake_case = layerdrop
_snake_case = layer_norm_eps
_snake_case = initializer_range
_snake_case = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect."
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"
f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"""
f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_snake_case = apply_spec_augment
_snake_case = mask_time_prob
_snake_case = mask_time_length
_snake_case = mask_time_min_masks
_snake_case = mask_feature_prob
_snake_case = mask_feature_length
_snake_case = mask_feature_min_masks
# ctc loss
_snake_case = ctc_loss_reduction
_snake_case = ctc_zero_infinity
# sequence classification
_snake_case = use_weighted_layer_sum
_snake_case = classifier_proj_size
@property
def _lowercase ( self ) -> Optional[Any]:
return functools.reduce(operator.mul ,self.conv_stride ,1 )
| 354 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
UpperCamelCase_ : int = '''pytorch_model.bin'''
UpperCamelCase_ : str = '''pytorch_model.bin.index.json'''
UpperCamelCase_ : int = '''adapter_config.json'''
UpperCamelCase_ : str = '''adapter_model.bin'''
UpperCamelCase_ : str = '''adapter_model.safetensors'''
UpperCamelCase_ : List[Any] = '''tf_model.h5'''
UpperCamelCase_ : Union[str, Any] = '''tf_model.h5.index.json'''
UpperCamelCase_ : Tuple = '''model.ckpt'''
UpperCamelCase_ : Union[str, Any] = '''flax_model.msgpack'''
UpperCamelCase_ : Union[str, Any] = '''flax_model.msgpack.index.json'''
UpperCamelCase_ : Dict = '''model.safetensors'''
UpperCamelCase_ : List[Any] = '''model.safetensors.index.json'''
UpperCamelCase_ : Tuple = '''config.json'''
UpperCamelCase_ : List[str] = '''preprocessor_config.json'''
UpperCamelCase_ : List[Any] = FEATURE_EXTRACTOR_NAME
UpperCamelCase_ : Union[str, Any] = '''generation_config.json'''
UpperCamelCase_ : str = '''modelcard.json'''
UpperCamelCase_ : List[Any] = '''▁'''
UpperCamelCase_ : Tuple = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
UpperCamelCase_ : Any = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
UpperCamelCase_ : Tuple = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
UpperCamelCase_ : str = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def __a ( _UpperCamelCase: Optional[Any] ) -> int:
"""simple docstring"""
if version.parse(_UpperCamelCase ) < version.parse(_UpperCamelCase ):
if "dev" in min_version:
_snake_case = (
"This example requires a source install from HuggingFace Transformers (see "
"`https://huggingface.co/docs/transformers/installation#install-from-source`),"
)
else:
_snake_case = F"""This example requires a minimum version of {min_version},"""
error_message += F""" but the version found is {__version__}.\n"""
raise ImportError(
error_message
+ "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other "
"versions of HuggingFace Transformers." )
| 142 | 0 |
import math
import flax.linen as nn
import jax.numpy as jnp
def __lowerCamelCase ( lowerCamelCase__ : jnp.ndarray , lowerCamelCase__ : int , lowerCamelCase__ : float = 1 , lowerCamelCase__ : float = 1 , lowerCamelCase__ : float = 1.0E4 , lowerCamelCase__ : bool = False , lowerCamelCase__ : float = 1.0 , ):
'''simple docstring'''
assert timesteps.ndim == 1, "Timesteps should be a 1d-array"
assert embedding_dim % 2 == 0, f'Embedding dimension {embedding_dim} should be even'
lowerCamelCase = float(embedding_dim // 2 )
lowerCamelCase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift)
lowerCamelCase = min_timescale * jnp.exp(jnp.arange(lowerCamelCase__ , dtype=jnp.floataa ) * -log_timescale_increment )
lowerCamelCase = jnp.expand_dims(lowerCamelCase__ , 1 ) * jnp.expand_dims(lowerCamelCase__ , 0 )
# scale embeddings
lowerCamelCase = scale * emb
if flip_sin_to_cos:
lowerCamelCase = jnp.concatenate([jnp.cos(lowerCamelCase__ ), jnp.sin(lowerCamelCase__ )] , axis=1 )
else:
lowerCamelCase = jnp.concatenate([jnp.sin(lowerCamelCase__ ), jnp.cos(lowerCamelCase__ )] , axis=1 )
lowerCamelCase = jnp.reshape(lowerCamelCase__ , [jnp.shape(lowerCamelCase__ )[0], embedding_dim] )
return signal
class __lowercase ( nn.Module ):
"""simple docstring"""
UpperCamelCase : int = 3_2
UpperCamelCase : jnp.dtype = jnp.floataa
@nn.compact
def __call__( self , A ) -> int:
'''simple docstring'''
lowerCamelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(A )
lowerCamelCase = nn.silu(A )
lowerCamelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(A )
return temb
class __lowercase ( nn.Module ):
"""simple docstring"""
UpperCamelCase : int = 3_2
UpperCamelCase : bool = False
UpperCamelCase : float = 1
@nn.compact
def __call__( self , A ) -> int:
'''simple docstring'''
return get_sinusoidal_embeddings(
A , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
| 252 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCAmelCase : Any = {
"configuration_altclip": [
"ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AltCLIPConfig",
"AltCLIPTextConfig",
"AltCLIPVisionConfig",
],
"processing_altclip": ["AltCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Tuple = [
"ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"AltCLIPPreTrainedModel",
"AltCLIPModel",
"AltCLIPTextModel",
"AltCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
UpperCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 252 | 1 |
from __future__ import annotations
lowercase_ = 10
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ):
lowercase__ = 1
lowercase__ = max(SCREAMING_SNAKE_CASE_ )
while placement <= max_digit:
# declare and initialize empty buckets
lowercase__ = [[] for _ in range(SCREAMING_SNAKE_CASE_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
lowercase__ = int((i / placement) % RADIX )
buckets[tmp].append(SCREAMING_SNAKE_CASE_ )
# put each buckets' contents into list_of_ints
lowercase__ = 0
for b in range(SCREAMING_SNAKE_CASE_ ):
for i in buckets[b]:
lowercase__ = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 224 |
import argparse
import json
import subprocess
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
lowercase__ = []
lowercase__ = (
f'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"'''
" https://api.github.com/repos/huggingface/transformers/actions/runners"
)
lowercase__ = subprocess.run(SCREAMING_SNAKE_CASE_ , shell=SCREAMING_SNAKE_CASE_ , stdout=subprocess.PIPE )
lowercase__ = output.stdout.decode("utf-8" )
lowercase__ = json.loads(SCREAMING_SNAKE_CASE_ )
lowercase__ = status["runners"]
for runner in runners:
if runner["name"] in target_runners:
if runner["status"] == "offline":
offline_runners.append(SCREAMING_SNAKE_CASE_ )
# save the result so we can report them on Slack
with open("offline_runners.txt" , "w" ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
lowercase__ = "\n".join([x["name"] for x in offline_runners] )
raise ValueError(f'''The following runners are offline:\n{failed}''' )
if __name__ == "__main__":
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ):
return values.split("," )
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--target_runners""",
default=None,
type=list_str,
required=True,
help="""Comma-separated list of runners to check status.""",
)
parser.add_argument(
"""--token""", default=None, type=str, required=True, help="""A token that has actions:read permission."""
)
lowercase_ = parser.parse_args()
get_runner_status(args.target_runners, args.token)
| 224 | 1 |
"""simple docstring"""
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class _UpperCAmelCase( unittest.TestCase ):
def UpperCAmelCase ( self) -> int:
'''simple docstring'''
_UpperCamelCase = 0
def UpperCAmelCase ( self) -> Any:
'''simple docstring'''
_UpperCamelCase = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''')
self.assertIsInstance(__a , __a)
def UpperCAmelCase ( self) -> Dict:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
_UpperCamelCase = Path(__a) / '''preprocessor_config.json'''
_UpperCamelCase = Path(__a) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__a , '''w''') , )
json.dump({'''model_type''': '''clip'''} , open(__a , '''w'''))
_UpperCamelCase = AutoImageProcessor.from_pretrained(__a)
self.assertIsInstance(__a , __a)
def UpperCAmelCase ( self) -> Optional[Any]:
'''simple docstring'''
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
_UpperCamelCase = Path(__a) / '''preprocessor_config.json'''
_UpperCamelCase = Path(__a) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__a , '''w''') , )
json.dump({'''model_type''': '''clip'''} , open(__a , '''w'''))
_UpperCamelCase = AutoImageProcessor.from_pretrained(__a)
self.assertIsInstance(__a , __a)
def UpperCAmelCase ( self) -> Optional[int]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
_UpperCamelCase = CLIPConfig()
# Create a dummy config file with image_proceesor_type
_UpperCamelCase = Path(__a) / '''preprocessor_config.json'''
_UpperCamelCase = Path(__a) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__a , '''w''') , )
json.dump({'''model_type''': '''clip'''} , open(__a , '''w'''))
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
_UpperCamelCase = AutoImageProcessor.from_pretrained(__a).to_dict()
config_dict.pop('''image_processor_type''')
_UpperCamelCase = CLIPImageProcessor(**__a)
# save in new folder
model_config.save_pretrained(__a)
config.save_pretrained(__a)
_UpperCamelCase = AutoImageProcessor.from_pretrained(__a)
# make sure private variable is not incorrectly saved
_UpperCamelCase = json.loads(config.to_json_string())
self.assertTrue('''_processor_class''' not in dict_as_saved)
self.assertIsInstance(__a , __a)
def UpperCAmelCase ( self) -> Dict:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
_UpperCamelCase = Path(__a) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__a , '''w''') , )
_UpperCamelCase = AutoImageProcessor.from_pretrained(__a)
self.assertIsInstance(__a , __a)
def UpperCAmelCase ( self) -> Optional[int]:
'''simple docstring'''
with self.assertRaisesRegex(
__a , '''clip-base is not a local folder and is not a valid model identifier'''):
_UpperCamelCase = AutoImageProcessor.from_pretrained('''clip-base''')
def UpperCAmelCase ( self) -> Optional[Any]:
'''simple docstring'''
with self.assertRaisesRegex(
__a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''):
_UpperCamelCase = AutoImageProcessor.from_pretrained(__a , revision='''aaaaaa''')
def UpperCAmelCase ( self) -> Optional[Any]:
'''simple docstring'''
with self.assertRaisesRegex(
__a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
_UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''')
def UpperCAmelCase ( self) -> str:
'''simple docstring'''
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__a):
_UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''')
# If remote code is disabled, we can't load this config.
with self.assertRaises(__a):
_UpperCamelCase = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__a)
_UpperCamelCase = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__a)
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''')
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__a)
_UpperCamelCase = AutoImageProcessor.from_pretrained(__a , trust_remote_code=__a)
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''')
def UpperCAmelCase ( self) -> Optional[Any]:
'''simple docstring'''
try:
AutoConfig.register('''custom''' , __a)
AutoImageProcessor.register(__a , __a)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__a):
AutoImageProcessor.register(__a , __a)
with tempfile.TemporaryDirectory() as tmpdirname:
_UpperCamelCase = Path(__a) / '''preprocessor_config.json'''
_UpperCamelCase = Path(__a) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__a , '''w''') , )
json.dump({'''model_type''': '''clip'''} , open(__a , '''w'''))
_UpperCamelCase = CustomImageProcessor.from_pretrained(__a)
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__a)
_UpperCamelCase = AutoImageProcessor.from_pretrained(__a)
self.assertIsInstance(__a , __a)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def UpperCAmelCase ( self) -> Union[str, Any]:
'''simple docstring'''
class _UpperCAmelCase( lowerCamelCase ):
lowercase__ = True
try:
AutoConfig.register('''custom''' , __a)
AutoImageProcessor.register(__a , __a)
# If remote code is not set, the default is to use local
_UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''')
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''')
self.assertTrue(image_processor.is_local)
# If remote code is disabled, we load the local one.
_UpperCamelCase = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__a)
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''')
self.assertTrue(image_processor.is_local)
# If remote is enabled, we load from the Hub
_UpperCamelCase = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__a)
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''')
self.assertTrue(not hasattr(__a , '''is_local'''))
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 194 |
"""simple docstring"""
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def lowerCamelCase__ ( __snake_case ) -> Tuple:
"""simple docstring"""
return 1 / (1 + np.exp(-z ))
def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]:
"""simple docstring"""
return (-y * np.log(__snake_case ) - (1 - y) * np.log(1 - h )).mean()
def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int:
"""simple docstring"""
_UpperCamelCase = np.dot(__snake_case, __snake_case )
return np.sum(y * scores - np.log(1 + np.exp(__snake_case ) ) )
def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=7_00_00 ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = np.zeros(x.shape[1] )
for iterations in range(__snake_case ):
_UpperCamelCase = np.dot(__snake_case, __snake_case )
_UpperCamelCase = sigmoid_function(__snake_case )
_UpperCamelCase = np.dot(x.T, h - y ) / y.size
_UpperCamelCase = theta - alpha * gradient # updating the weights
_UpperCamelCase = np.dot(__snake_case, __snake_case )
_UpperCamelCase = sigmoid_function(__snake_case )
_UpperCamelCase = cost_function(__snake_case, __snake_case )
if iterations % 1_00 == 0:
print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
_a = datasets.load_iris()
_a = iris.data[:, :2]
_a = (iris.target != 0) * 1
_a = 0.1
_a = logistic_reg(alpha, x, y, max_iterations=7_0000)
print("""theta: """, theta) # printing the theta i.e our weights vector
def lowerCamelCase__ ( __snake_case ) -> Tuple:
"""simple docstring"""
return sigmoid_function(
np.dot(__snake_case, __snake_case ) ) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""")
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""")
((_a) , (_a)) = (x[:, 0].min(), x[:, 0].max())
((_a) , (_a)) = (x[:, 1].min(), x[:, 1].max())
((_a) , (_a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
_a = np.c_[xxa.ravel(), xxa.ravel()]
_a = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""")
plt.legend()
plt.show()
| 194 | 1 |
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
__lowerCamelCase : Optional[Any] = {
"""n_samples""": 64,
"""horizon""": 32,
"""num_inference_steps""": 20,
"""n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network
"""scale_grad_by_std""": True,
"""scale""": 0.1,
"""eta""": 0.0,
"""t_grad_cutoff""": 2,
"""device""": """cpu""",
}
if __name__ == "__main__":
__lowerCamelCase : Union[str, Any] = """hopper-medium-v2"""
__lowerCamelCase : Union[str, Any] = gym.make(env_name)
__lowerCamelCase : Tuple = ValueGuidedRLPipeline.from_pretrained(
"""bglick13/hopper-medium-v2-value-function-hor32""",
env=env,
)
env.seed(0)
__lowerCamelCase : Union[str, Any] = env.reset()
__lowerCamelCase : List[str] = 0
__lowerCamelCase : Dict = 0
__lowerCamelCase : Union[str, Any] = 1000
__lowerCamelCase : int = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
__lowerCamelCase : List[Any] = pipeline(obs, planning_horizon=32)
# execute action in environment
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = env.step(denorm_actions)
__lowerCamelCase : str = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
f"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"""
f""" {total_score}"""
)
# save observations for rendering
rollout.append(next_observation.copy())
__lowerCamelCase : str = next_observation
except KeyboardInterrupt:
pass
print(f"""Total reward: {total_reward}""")
| 140 |
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
__lowerCamelCase : Any = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
__lowerCamelCase : str = """https://storage.googleapis.com/cvdf-datasets/mnist/"""
def A_ ( _lowerCAmelCase ) -> Optional[Any]:
UpperCamelCase : Tuple = numpy.dtype(numpy.uintaa ).newbyteorder(">" )
return numpy.frombuffer(bytestream.read(4 ) , dtype=_lowerCAmelCase )[0]
@deprecated(_lowerCAmelCase , "Please use tf.data to implement this functionality." )
def A_ ( _lowerCAmelCase ) -> int:
print("Extracting" , f.name )
with gzip.GzipFile(fileobj=_lowerCAmelCase ) as bytestream:
UpperCamelCase : Dict = _readaa(_lowerCAmelCase )
if magic != 2051:
raise ValueError(
"Invalid magic number %d in MNIST image file: %s" % (magic, f.name) )
UpperCamelCase : Optional[int] = _readaa(_lowerCAmelCase )
UpperCamelCase : int = _readaa(_lowerCAmelCase )
UpperCamelCase : Union[str, Any] = _readaa(_lowerCAmelCase )
UpperCamelCase : List[Any] = bytestream.read(rows * cols * num_images )
UpperCamelCase : List[str] = numpy.frombuffer(_lowerCAmelCase , dtype=numpy.uinta )
UpperCamelCase : Optional[Any] = data.reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 )
return data
@deprecated(_lowerCAmelCase , "Please use tf.one_hot on tensors." )
def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
UpperCamelCase : List[str] = labels_dense.shape[0]
UpperCamelCase : str = numpy.arange(_lowerCAmelCase ) * num_classes
UpperCamelCase : Optional[Any] = numpy.zeros((num_labels, num_classes) )
UpperCamelCase : Dict = 1
return labels_one_hot
@deprecated(_lowerCAmelCase , "Please use tf.data to implement this functionality." )
def A_ ( _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=10 ) -> str:
print("Extracting" , f.name )
with gzip.GzipFile(fileobj=_lowerCAmelCase ) as bytestream:
UpperCamelCase : int = _readaa(_lowerCAmelCase )
if magic != 2049:
raise ValueError(
"Invalid magic number %d in MNIST label file: %s" % (magic, f.name) )
UpperCamelCase : List[str] = _readaa(_lowerCAmelCase )
UpperCamelCase : List[Any] = bytestream.read(_lowerCAmelCase )
UpperCamelCase : List[str] = numpy.frombuffer(_lowerCAmelCase , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(_lowerCAmelCase , _lowerCAmelCase )
return labels
class A__ :
@deprecated(
A_ , "Please use alternatives such as official/mnist/_DataSet.py"
" from tensorflow/models." , )
def __init__( self , A_ , A_ , A_=False , A_=False , A_=dtypes.floataa , A_=True , A_=None , ):
'''simple docstring'''
UpperCamelCase , UpperCamelCase : int = random_seed.get_seed(A_ )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
UpperCamelCase : Optional[Any] = dtypes.as_dtype(A_ ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype )
if fake_data:
UpperCamelCase : List[str] = 1_0000
UpperCamelCase : int = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), F"""images.shape: {images.shape} labels.shape: {labels.shape}"""
UpperCamelCase : Optional[Any] = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
UpperCamelCase : int = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
UpperCamelCase : str = images.astype(numpy.floataa )
UpperCamelCase : str = numpy.multiply(A_ , 1.0 / 2_55.0 )
UpperCamelCase : Optional[int] = images
UpperCamelCase : str = labels
UpperCamelCase : Optional[Any] = 0
UpperCamelCase : Optional[int] = 0
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return self._images
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return self._labels
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return self._num_examples
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return self._epochs_completed
def __UpperCamelCase( self , A_ , A_=False , A_=True ):
'''simple docstring'''
if fake_data:
UpperCamelCase : Optional[int] = [1] * 784
UpperCamelCase : Optional[Any] = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(A_ )],
[fake_label for _ in range(A_ )],
)
UpperCamelCase : Optional[Any] = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
UpperCamelCase : Optional[Any] = numpy.arange(self._num_examples )
numpy.random.shuffle(A_ )
UpperCamelCase : int = self.images[perma]
UpperCamelCase : Any = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
UpperCamelCase : List[Any] = self._num_examples - start
UpperCamelCase : Union[str, Any] = self._images[start : self._num_examples]
UpperCamelCase : str = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
UpperCamelCase : Union[str, Any] = numpy.arange(self._num_examples )
numpy.random.shuffle(A_ )
UpperCamelCase : Union[str, Any] = self.images[perm]
UpperCamelCase : Union[str, Any] = self.labels[perm]
# Start next epoch
UpperCamelCase : Tuple = 0
UpperCamelCase : Tuple = batch_size - rest_num_examples
UpperCamelCase : List[str] = self._index_in_epoch
UpperCamelCase : Dict = self._images[start:end]
UpperCamelCase : int = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
UpperCamelCase : Union[str, Any] = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(_lowerCAmelCase , "Please write your own downloading logic." )
def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]:
if not gfile.Exists(_lowerCAmelCase ):
gfile.MakeDirs(_lowerCAmelCase )
UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
if not gfile.Exists(_lowerCAmelCase ):
urllib.request.urlretrieve(_lowerCAmelCase , _lowerCAmelCase ) # noqa: S310
with gfile.GFile(_lowerCAmelCase ) as f:
UpperCamelCase : Optional[int] = f.size()
print("Successfully downloaded" , _lowerCAmelCase , _lowerCAmelCase , "bytes." )
return filepath
@deprecated(
_lowerCAmelCase , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" )
def A_ ( _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=dtypes.floataa , _lowerCAmelCase=True , _lowerCAmelCase=5000 , _lowerCAmelCase=None , _lowerCAmelCase=DEFAULT_SOURCE_URL , ) -> List[str]:
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=_lowerCAmelCase , one_hot=_lowerCAmelCase , dtype=_lowerCAmelCase , seed=_lowerCAmelCase )
UpperCamelCase : Any = fake()
UpperCamelCase : List[str] = fake()
UpperCamelCase : Union[str, Any] = fake()
return _Datasets(train=_lowerCAmelCase , validation=_lowerCAmelCase , test=_lowerCAmelCase )
if not source_url: # empty string check
UpperCamelCase : str = DEFAULT_SOURCE_URL
UpperCamelCase : List[str] = "train-images-idx3-ubyte.gz"
UpperCamelCase : Optional[int] = "train-labels-idx1-ubyte.gz"
UpperCamelCase : List[str] = "t10k-images-idx3-ubyte.gz"
UpperCamelCase : Union[str, Any] = "t10k-labels-idx1-ubyte.gz"
UpperCamelCase : Optional[int] = _maybe_download(
_lowerCAmelCase , _lowerCAmelCase , source_url + train_images_file )
with gfile.Open(_lowerCAmelCase , "rb" ) as f:
UpperCamelCase : List[str] = _extract_images(_lowerCAmelCase )
UpperCamelCase : Dict = _maybe_download(
_lowerCAmelCase , _lowerCAmelCase , source_url + train_labels_file )
with gfile.Open(_lowerCAmelCase , "rb" ) as f:
UpperCamelCase : List[Any] = _extract_labels(_lowerCAmelCase , one_hot=_lowerCAmelCase )
UpperCamelCase : Any = _maybe_download(
_lowerCAmelCase , _lowerCAmelCase , source_url + test_images_file )
with gfile.Open(_lowerCAmelCase , "rb" ) as f:
UpperCamelCase : Any = _extract_images(_lowerCAmelCase )
UpperCamelCase : List[str] = _maybe_download(
_lowerCAmelCase , _lowerCAmelCase , source_url + test_labels_file )
with gfile.Open(_lowerCAmelCase , "rb" ) as f:
UpperCamelCase : str = _extract_labels(_lowerCAmelCase , one_hot=_lowerCAmelCase )
if not 0 <= validation_size <= len(_lowerCAmelCase ):
UpperCamelCase : Any = (
"Validation size should be between 0 and "
F"""{len(_lowerCAmelCase )}. Received: {validation_size}."""
)
raise ValueError(_lowerCAmelCase )
UpperCamelCase : str = train_images[:validation_size]
UpperCamelCase : int = train_labels[:validation_size]
UpperCamelCase : List[str] = train_images[validation_size:]
UpperCamelCase : Union[str, Any] = train_labels[validation_size:]
UpperCamelCase : List[str] = {"dtype": dtype, "reshape": reshape, "seed": seed}
UpperCamelCase : List[str] = _DataSet(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
UpperCamelCase : List[str] = _DataSet(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
UpperCamelCase : Any = _DataSet(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
return _Datasets(train=_lowerCAmelCase , validation=_lowerCAmelCase , test=_lowerCAmelCase )
| 140 | 1 |
"""simple docstring"""
def A_ ( _lowercase = 50 ):
'''simple docstring'''
snake_case_ :Dict = [1] * (length + 1)
for row_length in range(3, length + 1 ):
for block_length in range(3, row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(F"""{solution() = }""")
| 66 |
from math import factorial
def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> int:
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError('''Please enter positive integers for n and k where n >= k''' )
return factorial(__UpperCAmelCase ) // (factorial(__UpperCAmelCase ) * factorial(n - k ))
if __name__ == "__main__":
print(
'The number of five-card hands possible from a standard',
F'''fifty-two card deck is: {combinations(52, 5)}\n''',
)
print(
'If a class of 40 students must be arranged into groups of',
F'''4 for group projects, there are {combinations(40, 4)} ways''',
'to arrange them.\n',
)
print(
'If 10 teams are competing in a Formula One race, there',
F'''are {combinations(10, 3)} ways that first, second and''',
'third place can be awarded.',
)
| 201 | 0 |
import importlib
import os
import fsspec
import pytest
from fsspec import register_implementation
from fsspec.registry import _registry as _fsspec_registry
from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem
from .utils import require_lza, require_zstandard
def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
assert "mock" in _fsspec_registry
assert "bz2" in _fsspec_registry
def _snake_case( ) -> Dict:
'''simple docstring'''
assert "mock" not in _fsspec_registry
assert "bz2" in _fsspec_registry
def _snake_case( ) -> List[Any]:
'''simple docstring'''
A__ = 'mock-s3-bucket'
A__ = f's3://{mock_bucket}'
A__ = extract_path_from_uri(SCREAMING_SNAKE_CASE__ )
assert dataset_path.startswith('s3://' ) is False
A__ = './local/path'
A__ = extract_path_from_uri(SCREAMING_SNAKE_CASE__ )
assert dataset_path == new_dataset_path
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
'''simple docstring'''
A__ = is_remote_filesystem(SCREAMING_SNAKE_CASE__ )
assert is_remote is True
A__ = fsspec.filesystem('file' )
A__ = is_remote_filesystem(SCREAMING_SNAKE_CASE__ )
assert is_remote is False
@pytest.mark.parametrize('compression_fs_class' , SCREAMING_SNAKE_CASE__ )
def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
'''simple docstring'''
A__ = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file}
A__ = input_paths[compression_fs_class.protocol]
if input_path is None:
A__ = f'for \'{compression_fs_class.protocol}\' compression protocol, '
if compression_fs_class.protocol == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_fs_class.protocol == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(SCREAMING_SNAKE_CASE__ )
A__ = fsspec.filesystem(compression_fs_class.protocol , fo=SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A__ = os.path.basename(SCREAMING_SNAKE_CASE__ )
A__ = expected_filename[: expected_filename.rindex('.' )]
assert fs.glob('*' ) == [expected_filename]
with fs.open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f, open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as expected_file:
assert f.read() == expected_file.read()
@pytest.mark.parametrize('protocol' , ['zip', 'gzip'] )
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> List[Any]:
'''simple docstring'''
A__ = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path}
A__ = compressed_file_paths[protocol]
A__ = 'dataset.jsonl'
A__ = f'{protocol}://{member_file_path}::{compressed_file_path}'
A__ , *A__ = fsspec.get_fs_token_paths(SCREAMING_SNAKE_CASE__ )
assert fs.isfile(SCREAMING_SNAKE_CASE__ )
assert not fs.isfile('non_existing_' + member_file_path )
@pytest.mark.integration
def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict:
'''simple docstring'''
A__ = hf_api.dataset_info(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ )
A__ = HfFileSystem(repo_info=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ )
assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"]
assert hffs.isdir('data' )
assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' )
with open(SCREAMING_SNAKE_CASE__ ) as f:
assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read()
def _snake_case( ) -> str:
'''simple docstring'''
A__ = 'bz2'
# Import module
import datasets.filesystems
# Overwrite protocol and reload
register_implementation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , clobber=SCREAMING_SNAKE_CASE__ )
with pytest.warns(SCREAMING_SNAKE_CASE__ ) as warning_info:
importlib.reload(datasets.filesystems )
assert len(SCREAMING_SNAKE_CASE__ ) == 1
assert (
str(warning_info[0].message )
== f'A filesystem protocol was already set for {protocol} and will be overwritten.'
)
| 282 |
import numpy as np
from transformers import Pipeline
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int:
'''simple docstring'''
A__ = np.max(SCREAMING_SNAKE_CASE__ , axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ )
A__ = np.exp(outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ )
class A ( _UpperCAmelCase ):
"""simple docstring"""
def snake_case__ ( self : Dict,**lowercase_ : Tuple )-> Tuple:
'''simple docstring'''
A__ = {}
if "second_text" in kwargs:
A__ = kwargs['second_text']
return preprocess_kwargs, {}, {}
def snake_case__ ( self : List[Any],lowercase_ : int,lowercase_ : Optional[int]=None )-> List[str]:
'''simple docstring'''
return self.tokenizer(lowercase_,text_pair=lowercase_,return_tensors=self.framework )
def snake_case__ ( self : str,lowercase_ : Dict )-> List[str]:
'''simple docstring'''
return self.model(**lowercase_ )
def snake_case__ ( self : Dict,lowercase_ : Optional[int] )-> Dict:
'''simple docstring'''
A__ = model_outputs.logits[0].numpy()
A__ = softmax(lowercase_ )
A__ = np.argmax(lowercase_ )
A__ = self.model.config.idalabel[best_class]
A__ = probabilities[best_class].item()
A__ = logits.tolist()
return {"label": label, "score": score, "logits": logits}
| 282 | 1 |
'''simple docstring'''
import json
import sys
def _UpperCamelCase ( __A , __A ) -> List[Any]:
'''simple docstring'''
with open(__A , encoding="utf-8" ) as f:
UpperCamelCase__ = json.load(__A )
UpperCamelCase__ = ["<details>", "<summary>Show updated benchmarks!</summary>", " "]
for benchmark_name in sorted(__A ):
UpperCamelCase__ = results[benchmark_name]
UpperCamelCase__ = benchmark_name.split("/" )[-1]
output_md.append(F'''### Benchmark: {benchmark_file_name}''' )
UpperCamelCase__ = "| metric |"
UpperCamelCase__ = "|--------|"
UpperCamelCase__ = "| new / old (diff) |"
for metric_name in sorted(__A ):
UpperCamelCase__ = benchmark_res[metric_name]
UpperCamelCase__ = metric_vals["new"]
UpperCamelCase__ = metric_vals.get("old" , __A )
UpperCamelCase__ = metric_vals.get("diff" , __A )
UpperCamelCase__ = F''' {new_val:f}''' if isinstance(__A , (int, float) ) else "None"
if old_val is not None:
val_str += F''' / {old_val:f}''' if isinstance(__A , (int, float) ) else "None"
if dif_val is not None:
val_str += F''' ({dif_val:f})''' if isinstance(__A , (int, float) ) else "None"
title += " " + metric_name + " |"
lines += "---|"
value += val_str + " |"
output_md += [title, lines, value, " "]
output_md.append("</details>" )
with open(__A , "w" , encoding="utf-8" ) as f:
f.writelines("\n".join(__A ) )
if __name__ == "__main__":
a__ : Tuple = sys.argv[1]
a__ : Union[str, Any] = sys.argv[2]
format_json_to_md(input_json_file, output_md_file)
| 80 |
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple:
SCREAMING_SNAKE_CASE_ = parent
SCREAMING_SNAKE_CASE_ = batch_size
SCREAMING_SNAKE_CASE_ = image_size
SCREAMING_SNAKE_CASE_ = num_channels
SCREAMING_SNAKE_CASE_ = embeddings_size
SCREAMING_SNAKE_CASE_ = hidden_sizes
SCREAMING_SNAKE_CASE_ = depths
SCREAMING_SNAKE_CASE_ = is_training
SCREAMING_SNAKE_CASE_ = use_labels
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = num_labels
SCREAMING_SNAKE_CASE_ = scope
SCREAMING_SNAKE_CASE_ = len(_A )
def _UpperCamelCase ( self ) -> Optional[int]:
SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE_ = self.get_config()
return config, pixel_values
def _UpperCamelCase ( self ) -> Optional[Any]:
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def _UpperCamelCase ( self , _A , _A ) -> int:
SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A )
SCREAMING_SNAKE_CASE_ = model(_A )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _UpperCamelCase ( self , _A , _A ) -> Any:
SCREAMING_SNAKE_CASE_ = self.num_labels
SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A )
SCREAMING_SNAKE_CASE_ = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self ) -> Any:
SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs
SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
UpperCAmelCase_ =False
UpperCAmelCase_ =False
UpperCAmelCase_ =False
def _UpperCamelCase ( self ) -> None:
SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self )
SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A )
def _UpperCamelCase ( self ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _UpperCamelCase ( self ) -> str:
return
def _UpperCamelCase ( self ) -> List[str]:
SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def _UpperCamelCase ( self ) -> str:
SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_A )
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def _UpperCamelCase ( self ) -> int:
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def _UpperCamelCase ( self ) -> Dict:
pass
def _UpperCamelCase ( self ) -> List[Any]:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ = model_class(_A )
SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE_ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _A )
def _UpperCamelCase ( self ) -> Any:
def check_hidden_states_output(_A , _A , _A ):
SCREAMING_SNAKE_CASE_ = model_class(_A )
SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) )
SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages
self.assertEqual(len(_A ) , expected_num_stages + 1 )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ = True
check_hidden_states_output(_A , _A , _A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE_ = True
check_hidden_states_output(_A , _A , _A )
def _UpperCamelCase ( self ) -> Optional[Any]:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A )
SCREAMING_SNAKE_CASE_ = model_class(_A )
@jax.jit
def model_jitted(_A , **_A ):
return model(pixel_values=_A , **_A )
with self.subTest('''JIT Enabled''' ):
SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple()
self.assertEqual(len(_A ) , len(_A ) )
for jitted_output, output in zip(_A , _A ):
self.assertEqual(jitted_output.shape , output.shape )
def A__ ( ):
SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _UpperCamelCase ( self ) -> Optional[int]:
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None
@slow
def _UpperCamelCase ( self ) -> int:
SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' )
SCREAMING_SNAKE_CASE_ = self.default_image_processor
SCREAMING_SNAKE_CASE_ = prepare_img()
SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' )
SCREAMING_SNAKE_CASE_ = model(**_A )
# verify the logits
SCREAMING_SNAKE_CASE_ = (1, 1000)
self.assertEqual(outputs.logits.shape , _A )
SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
| 299 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__lowerCamelCase = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = ['''SpeechEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = ['''FlaxSpeechEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
__lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 367 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int:
if not postfix_notation:
return 0
A_ = {"""+""", """-""", """*""", """/"""}
A_ = []
for token in postfix_notation:
if token in operations:
A_ , A_ = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(UpperCAmelCase__ ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 101 | 0 |
'''simple docstring'''
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
SCREAMING_SNAKE_CASE_: str =logging.getLogger(__name__)
SCREAMING_SNAKE_CASE_: str =list(MODEL_FOR_MASKED_LM_MAPPING.keys())
SCREAMING_SNAKE_CASE_: Tuple =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class __A :
a__ : Optional[str] = field(
default=UpperCamelCase__ , metadata={
"""help""": (
"""The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."""
)
} , )
a__ : Optional[str] = field(
default=UpperCamelCase__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCamelCase__ )} , )
a__ : Optional[str] = field(
default=UpperCamelCase__ , metadata={
"""help""": (
"""Override some existing default config settings when a model is trained from scratch. Example: """
"""n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"""
)
} , )
a__ : Optional[str] = field(
default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=UpperCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a__ : bool = field(
default=UpperCamelCase__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
a__ : str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
a__ : bool = field(
default=UpperCamelCase__ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def _lowercase (self : str ):
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"--config_overrides can't be used in combination with --config_name or --model_name_or_path" )
@dataclass
class __A :
a__ : Optional[str] = field(
default=UpperCamelCase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
a__ : Optional[str] = field(
default=UpperCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
a__ : Optional[str] = field(default=UpperCamelCase__ , metadata={"""help""": """The input training data file (a text file)."""} )
a__ : Optional[str] = field(
default=UpperCamelCase__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , )
a__ : Optional[str] = field(
default=UpperCamelCase__ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , )
a__ : Optional[str] = field(
default=UpperCamelCase__ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , )
a__ : bool = field(
default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
a__ : Optional[int] = field(
default=5 , metadata={
"""help""": """The percentage of the train set used as validation set in case there's no validation split"""
} , )
a__ : Optional[int] = field(
default=UpperCamelCase__ , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated. Default to the max input length of the model."""
)
} , )
a__ : Optional[int] = field(
default=UpperCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
a__ : float = field(
default=0.1_5 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} )
a__ : bool = field(
default=UpperCamelCase__ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
def _lowercase (self : List[str] ):
if self.train_file is not None:
UpperCAmelCase_ = self.train_file.split("." )[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
UpperCAmelCase_ = self.validation_file.split("." )[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
with open(snake_case_ , "r" , encoding="utf-8" ) as f:
UpperCAmelCase_ = [json.loads(snake_case_ ) for line in f.read().splitlines() if (len(snake_case_ ) > 0 and not line.isspace())]
assert len(snake_case_ ) == len(snake_case_ )
UpperCAmelCase_ = {c: dataset[c] for c in dataset.column_names}
UpperCAmelCase_ = refs
return Dataset.from_dict(snake_case_ )
def lowerCAmelCase_ ( ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
UpperCAmelCase_ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase_ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s" , snake_case_ )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
UpperCAmelCase_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name )
if "validation" not in datasets.keys():
UpperCAmelCase_ = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=f"""train[:{data_args.validation_split_percentage}%]""" , )
UpperCAmelCase_ = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=f"""train[{data_args.validation_split_percentage}%:]""" , )
else:
UpperCAmelCase_ = {}
if data_args.train_file is not None:
UpperCAmelCase_ = data_args.train_file
if data_args.validation_file is not None:
UpperCAmelCase_ = data_args.validation_file
UpperCAmelCase_ = data_args.train_file.split("." )[-1]
if extension == "txt":
UpperCAmelCase_ = "text"
UpperCAmelCase_ = load_dataset(snake_case_ , data_files=snake_case_ )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase_ = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name:
UpperCAmelCase_ = AutoConfig.from_pretrained(model_args.config_name , **snake_case_ )
elif model_args.model_name_or_path:
UpperCAmelCase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **snake_case_ )
else:
UpperCAmelCase_ = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch." )
if model_args.config_overrides is not None:
logger.info(f"""Overriding config: {model_args.config_overrides}""" )
config.update_from_string(model_args.config_overrides )
logger.info(f"""New config: {config}""" )
UpperCAmelCase_ = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
UpperCAmelCase_ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **snake_case_ )
elif model_args.model_name_or_path:
UpperCAmelCase_ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **snake_case_ )
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name." )
if model_args.model_name_or_path:
UpperCAmelCase_ = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info("Training new model from scratch" )
UpperCAmelCase_ = AutoModelForMaskedLM.from_config(snake_case_ )
model.resize_token_embeddings(len(snake_case_ ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
UpperCAmelCase_ = datasets["train"].column_names
else:
UpperCAmelCase_ = datasets["validation"].column_names
UpperCAmelCase_ = "text" if "text" in column_names else column_names[0]
UpperCAmelCase_ = "max_length" if data_args.pad_to_max_length else False
def tokenize_function(snake_case_ : int ):
# Remove empty lines
UpperCAmelCase_ = [line for line in examples["text"] if len(snake_case_ ) > 0 and not line.isspace()]
return tokenizer(examples["text"] , padding=snake_case_ , truncation=snake_case_ , max_length=data_args.max_seq_length )
UpperCAmelCase_ = datasets.map(
snake_case_ , batched=snake_case_ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
UpperCAmelCase_ = add_chinese_references(tokenized_datasets["train"] , data_args.train_ref_file )
if data_args.validation_ref_file is not None:
UpperCAmelCase_ = add_chinese_references(
tokenized_datasets["validation"] , data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
UpperCAmelCase_ = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
UpperCAmelCase_ = False
# Data collator
# This one will take care of randomly masking the tokens.
UpperCAmelCase_ = DataCollatorForWholeWordMask(tokenizer=snake_case_ , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
UpperCAmelCase_ = Trainer(
model=snake_case_ , args=snake_case_ , train_dataset=tokenized_datasets["train"] if training_args.do_train else None , eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None , tokenizer=snake_case_ , data_collator=snake_case_ , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
UpperCAmelCase_ = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
UpperCAmelCase_ = model_args.model_name_or_path
else:
UpperCAmelCase_ = None
UpperCAmelCase_ = trainer.train(resume_from_checkpoint=snake_case_ )
trainer.save_model() # Saves the tokenizer too for easy upload
UpperCAmelCase_ = os.path.join(training_args.output_dir , "train_results.txt" )
if trainer.is_world_process_zero():
with open(snake_case_ , "w" ) as writer:
logger.info("***** Train results *****" )
for key, value in sorted(train_result.metrics.items() ):
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) )
# Evaluation
UpperCAmelCase_ = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
UpperCAmelCase_ = trainer.evaluate()
UpperCAmelCase_ = math.exp(eval_output["eval_loss"] )
UpperCAmelCase_ = perplexity
UpperCAmelCase_ = os.path.join(training_args.output_dir , "eval_results_mlm_wwm.txt" )
if trainer.is_world_process_zero():
with open(snake_case_ , "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in sorted(results.items() ):
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
return results
def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 1 |
'''simple docstring'''
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = checkpoint
UpperCAmelCase_ = {}
UpperCAmelCase_ = vae_state_dict["encoder.conv_in.weight"]
UpperCAmelCase_ = vae_state_dict["encoder.conv_in.bias"]
UpperCAmelCase_ = vae_state_dict["encoder.conv_out.weight"]
UpperCAmelCase_ = vae_state_dict["encoder.conv_out.bias"]
UpperCAmelCase_ = vae_state_dict["encoder.norm_out.weight"]
UpperCAmelCase_ = vae_state_dict["encoder.norm_out.bias"]
UpperCAmelCase_ = vae_state_dict["decoder.conv_in.weight"]
UpperCAmelCase_ = vae_state_dict["decoder.conv_in.bias"]
UpperCAmelCase_ = vae_state_dict["decoder.conv_out.weight"]
UpperCAmelCase_ = vae_state_dict["decoder.conv_out.bias"]
UpperCAmelCase_ = vae_state_dict["decoder.norm_out.weight"]
UpperCAmelCase_ = vae_state_dict["decoder.norm_out.bias"]
UpperCAmelCase_ = vae_state_dict["quant_conv.weight"]
UpperCAmelCase_ = vae_state_dict["quant_conv.bias"]
UpperCAmelCase_ = vae_state_dict["post_quant_conv.weight"]
UpperCAmelCase_ = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} )
UpperCAmelCase_ = {
layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(snake_case_ )
}
# Retrieves the keys for the decoder up blocks only
UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} )
UpperCAmelCase_ = {
layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(snake_case_ )
}
for i in range(snake_case_ ):
UpperCAmelCase_ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key]
if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict:
UpperCAmelCase_ = vae_state_dict.pop(
f"""encoder.down.{i}.downsample.conv.weight""" )
UpperCAmelCase_ = vae_state_dict.pop(
f"""encoder.down.{i}.downsample.conv.bias""" )
UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ )
UpperCAmelCase_ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""}
assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ )
UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key]
UpperCAmelCase_ = 2
for i in range(1 , num_mid_res_blocks + 1 ):
UpperCAmelCase_ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key]
UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ )
UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""}
assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ )
UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key]
UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ )
UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ )
conv_attn_to_linear(snake_case_ )
for i in range(snake_case_ ):
UpperCAmelCase_ = num_up_blocks - 1 - i
UpperCAmelCase_ = [
key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key
]
if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict:
UpperCAmelCase_ = vae_state_dict[
f"""decoder.up.{block_id}.upsample.conv.weight"""
]
UpperCAmelCase_ = vae_state_dict[
f"""decoder.up.{block_id}.upsample.conv.bias"""
]
UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ )
UpperCAmelCase_ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""}
assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ )
UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key]
UpperCAmelCase_ = 2
for i in range(1 , num_mid_res_blocks + 1 ):
UpperCAmelCase_ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key]
UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ )
UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""}
assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ )
UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key]
UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ )
UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ )
conv_attn_to_linear(snake_case_ )
return new_checkpoint
def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = requests.get(
" https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" )
UpperCAmelCase_ = io.BytesIO(r.content )
UpperCAmelCase_ = OmegaConf.load(snake_case_ )
UpperCAmelCase_ = 5_12
UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu"
if checkpoint_path.endswith("safetensors" ):
from safetensors import safe_open
UpperCAmelCase_ = {}
with safe_open(snake_case_ , framework="pt" , device="cpu" ) as f:
for key in f.keys():
UpperCAmelCase_ = f.get_tensor(snake_case_ )
else:
UpperCAmelCase_ = torch.load(snake_case_ , map_location=snake_case_ )["state_dict"]
# Convert the VAE model.
UpperCAmelCase_ = create_vae_diffusers_config(snake_case_ , image_size=snake_case_ )
UpperCAmelCase_ = custom_convert_ldm_vae_checkpoint(snake_case_ , snake_case_ )
UpperCAmelCase_ = AutoencoderKL(**snake_case_ )
vae.load_state_dict(snake_case_ )
vae.save_pretrained(snake_case_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser()
parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.')
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.')
SCREAMING_SNAKE_CASE_: str =parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 1 | 1 |
'''simple docstring'''
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
lowercase__ : Tuple = datasets.utils.logging.get_logger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE (datasets.BuilderConfig ):
lowerCAmelCase = None
lowerCAmelCase = "utf-8"
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = True # deprecated
lowerCAmelCase = None # deprecated
lowerCAmelCase = 10 << 20 # 10MB
lowerCAmelCase = None
class SCREAMING_SNAKE_CASE (datasets.ArrowBasedBuilder ):
lowerCAmelCase = JsonConfig
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
if self.config.block_size is not None:
logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead')
__A : Union[str, Any] = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.')
if self.config.newlines_in_values is not None:
raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported')
return datasets.DatasetInfo(features=self.config.features)
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}')
__A : Optional[int] = dl_manager.download_and_extract(self.config.data_files)
if isinstance(_UpperCAmelCase , (str, list, tuple)):
__A : Optional[Any] = data_files
if isinstance(_UpperCAmelCase , _UpperCAmelCase):
__A : Any = [files]
__A : Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})]
__A : Optional[int] = []
for split_name, files in data_files.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase):
__A : Optional[int] = [files]
__A : Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files]
splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files}))
return splits
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features) - set(pa_table.column_names):
__A : Any = self.config.features.arrow_schema.field(_UpperCAmelCase).type
__A : Tuple = pa_table.append_column(_UpperCAmelCase , pa.array([None] * len(_UpperCAmelCase) , type=_UpperCAmelCase))
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
__A : str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema)
return pa_table
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase)):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(_UpperCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
__A : str = json.load(_UpperCAmelCase)
# We keep only the field we are interested in
__A : List[Any] = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(_UpperCAmelCase , (list, tuple)):
__A : Tuple = set().union(*[row.keys() for row in dataset])
__A : str = {col: [row.get(_UpperCAmelCase) for row in dataset] for col in keys}
else:
__A : List[Any] = dataset
__A : Optional[Any] = pa.Table.from_pydict(_UpperCAmelCase)
yield file_idx, self._cast_table(_UpperCAmelCase)
# If the file has one json object per line
else:
with open(_UpperCAmelCase , 'rb') as f:
__A : Dict = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
__A : List[str] = max(self.config.chunksize // 32 , 16 << 10)
__A : int = (
self.config.encoding_errors if self.config.encoding_errors is not None else 'strict'
)
while True:
__A : Optional[int] = f.read(self.config.chunksize)
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(_UpperCAmelCase)
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
__A : Union[str, Any] = batch.decode(self.config.encoding , errors=_UpperCAmelCase).encode('utf-8')
try:
while True:
try:
__A : str = paj.read_json(
io.BytesIO(_UpperCAmelCase) , read_options=paj.ReadOptions(block_size=_UpperCAmelCase))
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(_UpperCAmelCase , pa.ArrowInvalid)
and "straddling" not in str(_UpperCAmelCase)
or block_size > len(_UpperCAmelCase)
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F'Batch of {len(_UpperCAmelCase)} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.')
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
_UpperCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
__A : List[str] = json.load(_UpperCAmelCase)
except json.JSONDecodeError:
logger.error(F'Failed to read file \'{file}\' with error {type(_UpperCAmelCase)}: {e}')
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(_UpperCAmelCase , _UpperCAmelCase): # list is the only sequence type supported in JSON
try:
__A : Tuple = set().union(*[row.keys() for row in dataset])
__A : Any = {col: [row.get(_UpperCAmelCase) for row in dataset] for col in keys}
__A : Tuple = pa.Table.from_pydict(_UpperCAmelCase)
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F'Failed to read file \'{file}\' with error {type(_UpperCAmelCase)}: {e}')
raise ValueError(F'Not able to read records in the JSON file at {file}.') from None
yield file_idx, self._cast_table(_UpperCAmelCase)
break
else:
logger.error(F'Failed to read file \'{file}\' with error {type(_UpperCAmelCase)}: {e}')
raise ValueError(
F'Not able to read records in the JSON file at {file}. '
F'You should probably indicate the field of the JSON file containing your records. '
F'This JSON file contain the following fields: {str(list(dataset.keys()))}. '
F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ') from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(_UpperCAmelCase)
batch_idx += 1
| 190 |
'''simple docstring'''
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''):
lowercase__ : Dict = {
'''linear''': PIL.Image.Resampling.BILINEAR,
'''bilinear''': PIL.Image.Resampling.BILINEAR,
'''bicubic''': PIL.Image.Resampling.BICUBIC,
'''lanczos''': PIL.Image.Resampling.LANCZOS,
'''nearest''': PIL.Image.Resampling.NEAREST,
}
else:
lowercase__ : Any = {
'''linear''': PIL.Image.LINEAR,
'''bilinear''': PIL.Image.BILINEAR,
'''bicubic''': PIL.Image.BICUBIC,
'''lanczos''': PIL.Image.LANCZOS,
'''nearest''': PIL.Image.NEAREST,
}
def _lowerCAmelCase ( __snake_case : Any ) -> Optional[Any]:
__A : Dict = (images / 2 + 0.5).clamp(0 , 1 )
__A : str = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__A : Dict = numpy_to_pil(__snake_case )
return images
def _lowerCAmelCase ( __snake_case : List[Any] ) -> Optional[Any]:
if images.ndim == 3:
__A : List[Any] = images[None, ...]
__A : List[str] = (images * 2_55).round().astype('uint8' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
__A : str = [Image.fromarray(image.squeeze() , mode='L' ) for image in images]
else:
__A : str = [Image.fromarray(__snake_case ) for image in images]
return pil_images
| 190 | 1 |
import html
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...utils import is_bsa_available, logging, requires_backends
if is_bsa_available():
import bsa
from bsa import BeautifulSoup
lowercase : Any = logging.get_logger(__name__)
class A__ ( __UpperCAmelCase ):
"""simple docstring"""
def __init__( self , **lowercase) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ['bs4'])
super().__init__(**lowercase)
def __lowercase ( self , lowercase) -> List[str]:
'''simple docstring'''
a__ : int = []
a__ : Dict = []
a__ : Optional[Any] = element if element.name else element.parent
for parent in child.parents: # type: bs4.element.Tag
a__ : str = parent.find_all(child.name , recursive=lowercase)
xpath_tags.append(child.name)
xpath_subscripts.append(
0 if 1 == len(lowercase) else next(i for i, s in enumerate(lowercase , 1) if s is child))
a__ : Optional[Any] = parent
xpath_tags.reverse()
xpath_subscripts.reverse()
return xpath_tags, xpath_subscripts
def __lowercase ( self , lowercase) -> str:
'''simple docstring'''
a__ : int = BeautifulSoup(lowercase , 'html.parser')
a__ : List[str] = []
a__ : str = []
a__ : List[Any] = []
for element in html_code.descendants:
if type(lowercase) == bsa.element.NavigableString:
if type(element.parent) != bsa.element.Tag:
continue
a__ : Union[str, Any] = html.unescape(lowercase).strip()
if not text_in_this_tag:
continue
all_doc_strings.append(lowercase)
a__ , a__ : List[str] = self.xpath_soup(lowercase)
stringaxtag_seq.append(lowercase)
stringaxsubs_seq.append(lowercase)
if len(lowercase) != len(lowercase):
raise ValueError('Number of doc strings and xtags does not correspond')
if len(lowercase) != len(lowercase):
raise ValueError('Number of doc strings and xsubs does not correspond')
return all_doc_strings, stringaxtag_seq, stringaxsubs_seq
def __lowercase ( self , lowercase , lowercase) -> Union[str, Any]:
'''simple docstring'''
a__ : int = ''
for tagname, subs in zip(lowercase , lowercase):
xpath += F'/{tagname}'
if subs != 0:
xpath += F'[{subs}]'
return xpath
def __call__( self , lowercase) -> BatchFeature:
'''simple docstring'''
a__ : List[str] = False
# Check that strings has a valid type
if isinstance(lowercase , lowercase):
a__ : Optional[int] = True
elif isinstance(lowercase , (list, tuple)):
if len(lowercase) == 0 or isinstance(html_strings[0] , lowercase):
a__ : Dict = True
if not valid_strings:
raise ValueError(
'HTML strings must of type `str`, `List[str]` (batch of examples), '
F'but is of type {type(lowercase)}.')
a__ : Dict = bool(isinstance(lowercase , (list, tuple)) and (isinstance(html_strings[0] , lowercase)))
if not is_batched:
a__ : Tuple = [html_strings]
# Get nodes + xpaths
a__ : Optional[int] = []
a__ : int = []
for html_string in html_strings:
a__ , a__ , a__ : int = self.get_three_from_single(lowercase)
nodes.append(lowercase)
a__ : Optional[Any] = []
for node, tag_list, sub_list in zip(lowercase , lowercase , lowercase):
a__ : List[Any] = self.construct_xpath(lowercase , lowercase)
xpath_strings.append(lowercase)
xpaths.append(lowercase)
# return as Dict
a__ : Dict = {'nodes': nodes, 'xpaths': xpaths}
a__ : int = BatchFeature(data=lowercase , tensor_type=lowercase)
return encoded_inputs
| 99 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase : List[Any] = {
"""configuration_nllb_moe""": [
"""NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""NllbMoeConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Dict = [
"""NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NllbMoeForConditionalGeneration""",
"""NllbMoeModel""",
"""NllbMoePreTrainedModel""",
"""NllbMoeTop2Router""",
"""NllbMoeSparseMLP""",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 99 | 1 |
import argparse
import intel_extension_for_pytorch as ipex
import torch
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline
__UpperCAmelCase : Optional[int] = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False)
parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not")
parser.add_argument("--steps", default=None, type=int, help="Num inference steps")
__UpperCAmelCase : List[Any] = parser.parse_args()
__UpperCAmelCase : Optional[int] = "cpu"
__UpperCAmelCase : Tuple = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings"
__UpperCAmelCase : List[Any] = "path-to-your-trained-model"
__UpperCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id)
if args.dpm:
__UpperCAmelCase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
__UpperCAmelCase : Union[str, Any] = pipe.to(device)
# to channels last
__UpperCAmelCase : Tuple = pipe.unet.to(memory_format=torch.channels_last)
__UpperCAmelCase : Union[str, Any] = pipe.vae.to(memory_format=torch.channels_last)
__UpperCAmelCase : int = pipe.text_encoder.to(memory_format=torch.channels_last)
if pipe.requires_safety_checker:
__UpperCAmelCase : Optional[Any] = pipe.safety_checker.to(memory_format=torch.channels_last)
# optimize with ipex
__UpperCAmelCase : Optional[int] = torch.randn(2, 4, 64, 64)
__UpperCAmelCase : Dict = torch.rand(1) * 999
__UpperCAmelCase : Dict = torch.randn(2, 77, 768)
__UpperCAmelCase : Union[str, Any] = (sample, timestep, encoder_hidden_status)
try:
__UpperCAmelCase : Any = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example)
except Exception:
__UpperCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True)
__UpperCAmelCase : Optional[int] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True)
__UpperCAmelCase : Optional[int] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True)
if pipe.requires_safety_checker:
__UpperCAmelCase : Optional[Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True)
# compute
__UpperCAmelCase : Tuple = 666
__UpperCAmelCase : List[str] = torch.Generator(device).manual_seed(seed)
__UpperCAmelCase : List[str] = {"generator": generator}
if args.steps is not None:
__UpperCAmelCase : List[Any] = args.steps
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa):
__UpperCAmelCase : str = pipe(prompt, **generate_kwargs).images[0]
# save image
image.save("generated.png")
| 362 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCAmelCase : Union[str, Any] = {
"asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class __snake_case ( __lowerCamelCase ):
'''simple docstring'''
lowerCAmelCase__ = """sew-d"""
def __init__( self : Dict , A : Any=32 , A : Dict=768 , A : Optional[Any]=12 , A : Union[str, Any]=12 , A : Union[str, Any]=3_072 , A : Optional[Any]=2 , A : Union[str, Any]=512 , A : List[Any]=256 , A : Dict=True , A : Union[str, Any]=True , A : Optional[int]=("p2c", "c2p") , A : str="layer_norm" , A : Dict="gelu_python" , A : Tuple=0.1 , A : Any=0.1 , A : Tuple=0.1 , A : Optional[int]=0.0 , A : Any=0.1 , A : Any=0.02 , A : Dict=1E-7 , A : str=1E-5 , A : int="group" , A : int="gelu" , A : str=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , A : Union[str, Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A : List[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A : Optional[int]=False , A : int=128 , A : int=16 , A : Optional[Any]=True , A : List[Any]=0.05 , A : Any=10 , A : Dict=2 , A : List[Any]=0.0 , A : Union[str, Any]=10 , A : int=0 , A : List[Any]="mean" , A : Union[str, Any]=False , A : Any=False , A : Optional[int]=256 , A : List[Any]=0 , A : Any=1 , A : List[Any]=2 , **A : List[Any] , ):
super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A )
__snake_case: Optional[int] = hidden_size
__snake_case: str = feat_extract_norm
__snake_case: int = feat_extract_activation
__snake_case: str = list(A )
__snake_case: Any = list(A )
__snake_case: str = list(A )
__snake_case: Union[str, Any] = conv_bias
__snake_case: int = num_conv_pos_embeddings
__snake_case: str = num_conv_pos_embedding_groups
__snake_case: List[Any] = len(self.conv_dim )
__snake_case: List[str] = num_hidden_layers
__snake_case: Union[str, Any] = intermediate_size
__snake_case: Dict = squeeze_factor
__snake_case: List[Any] = max_position_embeddings
__snake_case: List[Any] = position_buckets
__snake_case: List[str] = share_att_key
__snake_case: int = relative_attention
__snake_case: Union[str, Any] = norm_rel_ebd
__snake_case: List[str] = list(A )
__snake_case: Tuple = hidden_act
__snake_case: List[Any] = num_attention_heads
__snake_case: str = hidden_dropout
__snake_case: int = attention_dropout
__snake_case: Dict = activation_dropout
__snake_case: Any = feat_proj_dropout
__snake_case: int = final_dropout
__snake_case: List[Any] = layer_norm_eps
__snake_case: List[str] = feature_layer_norm_eps
__snake_case: List[Any] = initializer_range
__snake_case: List[Any] = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect."""
"""It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"""
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__snake_case: List[Any] = apply_spec_augment
__snake_case: List[Any] = mask_time_prob
__snake_case: str = mask_time_length
__snake_case: List[str] = mask_time_min_masks
__snake_case: str = mask_feature_prob
__snake_case: Optional[int] = mask_feature_length
__snake_case: Dict = mask_feature_min_masks
# ctc loss
__snake_case: Any = ctc_loss_reduction
__snake_case: str = ctc_zero_infinity
# sequence classification
__snake_case: Optional[Any] = use_weighted_layer_sum
__snake_case: List[Any] = classifier_proj_size
@property
def UpperCAmelCase__ ( self : int ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 293 | 0 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all BART models at https://huggingface.co/models?filter=bart
__snake_case = {
"""vocab_file""": {
"""facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""",
"""facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""",
"""facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""",
"""facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""",
"""facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""",
"""yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""",
},
"""merges_file""": {
"""facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""",
"""facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""",
"""facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""",
"""facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""",
"""facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""",
"""yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""",
},
}
__snake_case = {
"""facebook/bart-base""": 10_24,
"""facebook/bart-large""": 10_24,
"""facebook/bart-large-mnli""": 10_24,
"""facebook/bart-large-cnn""": 10_24,
"""facebook/bart-large-xsum""": 10_24,
"""yjernite/bart_eli5""": 10_24,
}
@lru_cache()
def _A ( ):
UpperCamelCase :str = (
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
UpperCamelCase :Union[str, Any] = bs[:]
UpperCamelCase :int = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_UpperCAmelCase )
cs.append(2**8 + n )
n += 1
UpperCamelCase :Dict = [chr(_UpperCAmelCase ) for n in cs]
return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) )
def _A ( SCREAMING_SNAKE_CASE__ : List[str] ):
UpperCamelCase :Optional[int] = set()
UpperCamelCase :Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCamelCase :str = char
return pairs
class UpperCAmelCase_ ( snake_case__ ):
"""simple docstring"""
UpperCamelCase_ : int =VOCAB_FILES_NAMES
UpperCamelCase_ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : List[str] =["input_ids", "attention_mask"]
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]:
UpperCamelCase :Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token
UpperCamelCase :Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token
UpperCamelCase :Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token
UpperCamelCase :str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token
UpperCamelCase :List[Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token
UpperCamelCase :List[Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase :Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
super().__init__(
errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle:
UpperCamelCase :Any = json.load(SCREAMING_SNAKE_CASE_ )
UpperCamelCase :Dict = {v: k for k, v in self.encoder.items()}
UpperCamelCase :List[str] = errors # how to handle errors in decoding
UpperCamelCase :List[str] = bytes_to_unicode()
UpperCamelCase :Optional[int] = {v: k for k, v in self.byte_encoder.items()}
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle:
UpperCamelCase :Dict = merges_handle.read().split('''\n''' )[1:-1]
UpperCamelCase :int = [tuple(merge.split() ) for merge in bpe_merges]
UpperCamelCase :Dict = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
UpperCamelCase :Tuple = {}
UpperCamelCase :Any = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCamelCase :List[str] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
def UpperCAmelCase ( self ) -> str:
return len(self.encoder )
def UpperCAmelCase ( self ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
if token in self.cache:
return self.cache[token]
UpperCamelCase :Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ )
UpperCamelCase :List[Any] = get_pairs(SCREAMING_SNAKE_CASE_ )
if not pairs:
return token
while True:
UpperCamelCase :Tuple = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCamelCase :Optional[Any] = bigram
UpperCamelCase :int = []
UpperCamelCase :Optional[int] = 0
while i < len(SCREAMING_SNAKE_CASE_ ):
try:
UpperCamelCase :List[Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCamelCase :List[Any] = j
if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCamelCase :Optional[int] = tuple(SCREAMING_SNAKE_CASE_ )
UpperCamelCase :List[Any] = new_word
if len(SCREAMING_SNAKE_CASE_ ) == 1:
break
else:
UpperCamelCase :Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase :Optional[Any] = " ".join(SCREAMING_SNAKE_CASE_ )
UpperCamelCase :Any = word
return word
def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> str:
UpperCamelCase :List[str] = []
for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase :Dict = "".join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) )
return bpe_tokens
def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) )
def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Any:
return self.decoder.get(SCREAMING_SNAKE_CASE_ )
def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
UpperCamelCase :Dict = "".join(SCREAMING_SNAKE_CASE_ )
UpperCamelCase :Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Optional[Any]:
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase :Tuple = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCamelCase :List[str] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' )
UpperCamelCase :Union[str, Any] = 0
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
''' Please check that the tokenizer is not corrupted!''' )
UpperCamelCase :Union[str, Any] = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Dict:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase :List[Any] = [self.cls_token_id]
UpperCamelCase :List[str] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> Dict:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Optional[Any]:
UpperCamelCase :List[Any] = [self.sep_token_id]
UpperCamelCase :str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
UpperCamelCase :Dict = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()):
UpperCamelCase :List[Any] = " " + text
return (text, kwargs)
| 259 |
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
class lowerCamelCase_ (snake_case__ ):
'''simple docstring'''
__UpperCamelCase: Optional[int] = ["input_features", "is_longer"]
def __init__( self : str , A : int=64 , A : Dict=48000 , A : str=480 , A : List[Any]=10 , A : Optional[Any]=1024 , A : Tuple=0.0 , A : List[Any]=False , A : float = 0 , A : float = 14000 , A : int = None , A : str = "fusion" , A : str = "repeatpad" , **A : Dict , ):
super().__init__(
feature_size=A , sampling_rate=A , padding_value=A , return_attention_mask=A , **A , )
_UpperCAmelCase : Optional[Any] = top_db
_UpperCAmelCase : Dict = truncation
_UpperCAmelCase : List[Any] = padding
_UpperCAmelCase : Optional[Any] = fft_window_size
_UpperCAmelCase : Dict = (fft_window_size >> 1) + 1
_UpperCAmelCase : Any = hop_length
_UpperCAmelCase : Tuple = max_length_s
_UpperCAmelCase : str = max_length_s * sampling_rate
_UpperCAmelCase : Any = sampling_rate
_UpperCAmelCase : Optional[int] = frequency_min
_UpperCAmelCase : str = frequency_max
_UpperCAmelCase : Union[str, Any] = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A , min_frequency=A , max_frequency=A , sampling_rate=A , norm=A , mel_scale="htk" , )
_UpperCAmelCase : Tuple = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A , min_frequency=A , max_frequency=A , sampling_rate=A , norm="slaney" , mel_scale="slaney" , )
def _A ( self : List[str] ):
_UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ )
_UpperCAmelCase : Dict = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def _A ( self : Optional[Any] , A : np.array , A : Optional[np.array] = None ):
_UpperCAmelCase : Dict = spectrogram(
A , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=A , log_mel="dB" , )
return log_mel_spectrogram.T
def _A ( self : str , A : str , A : List[str] , A : List[Any] ):
_UpperCAmelCase : List[str] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
_UpperCAmelCase : Optional[Any] = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
_UpperCAmelCase : Tuple = [0]
# randomly choose index for each part
_UpperCAmelCase : Dict = np.random.choice(ranges[0] )
_UpperCAmelCase : str = np.random.choice(ranges[1] )
_UpperCAmelCase : Tuple = np.random.choice(ranges[2] )
_UpperCAmelCase : str = mel[idx_front : idx_front + chunk_frames, :]
_UpperCAmelCase : str = mel[idx_middle : idx_middle + chunk_frames, :]
_UpperCAmelCase : List[Any] = mel[idx_back : idx_back + chunk_frames, :]
_UpperCAmelCase : Dict = torch.tensor(mel[None, None, :] )
_UpperCAmelCase : Optional[Any] = torch.nn.functional.interpolate(
A , size=[chunk_frames, 64] , mode="bilinear" , align_corners=A )
_UpperCAmelCase : List[str] = mel_shrink[0][0].numpy()
_UpperCAmelCase : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 )
return mel_fusion
def _A ( self : List[Any] , A : np.array , A : List[str] , A : Any , A : Optional[int] ):
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
_UpperCAmelCase : int = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
_UpperCAmelCase : str = len(A ) - max_length
_UpperCAmelCase : str = np.random.randint(0 , overflow + 1 )
_UpperCAmelCase : int = waveform[idx : idx + max_length]
_UpperCAmelCase : Any = self._np_extract_fbank_features(A , self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
_UpperCAmelCase : Tuple = self._np_extract_fbank_features(A , self.mel_filters )
_UpperCAmelCase : List[str] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
_UpperCAmelCase : Optional[Any] = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
_UpperCAmelCase : Any = np.stack([mel, mel, mel, mel] , axis=0 )
_UpperCAmelCase : int = False
else:
_UpperCAmelCase : Tuple = self._random_mel_fusion(A , A , A )
_UpperCAmelCase : Any = True
else:
raise NotImplementedError(F"""data_truncating {truncation} not implemented""" )
else:
_UpperCAmelCase : Optional[Any] = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
_UpperCAmelCase : str = int(max_length / len(A ) )
_UpperCAmelCase : Dict = np.stack(np.tile(A , n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
_UpperCAmelCase : Dict = int(max_length / len(A ) )
_UpperCAmelCase : List[str] = np.stack(np.tile(A , A ) )
_UpperCAmelCase : Optional[Any] = np.pad(A , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 )
if truncation == "fusion":
_UpperCAmelCase : str = self._np_extract_fbank_features(A , self.mel_filters )
_UpperCAmelCase : Optional[int] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 )
else:
_UpperCAmelCase : List[str] = self._np_extract_fbank_features(A , self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : Union[str, Any] , A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , A : str = None , A : Optional[str] = None , A : Optional[int] = None , A : Optional[int] = None , A : Optional[Union[str, TensorType]] = None , **A : List[str] , ):
_UpperCAmelCase : int = truncation if truncation is not None else self.truncation
_UpperCAmelCase : Optional[int] = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"""
F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"""
F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
_UpperCAmelCase : Any = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
_UpperCAmelCase : Optional[Any] = is_batched_numpy or (
isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_UpperCAmelCase : int = [np.asarray(A , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(A , np.ndarray ):
_UpperCAmelCase : List[str] = np.asarray(A , dtype=np.floataa )
elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_UpperCAmelCase : Any = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_UpperCAmelCase : List[str] = [np.asarray(A )]
# convert to mel spectrogram, truncate and pad if needed.
_UpperCAmelCase : Dict = [
self._get_input_mel(A , max_length if max_length else self.nb_max_samples , A , A )
for waveform in raw_speech
]
_UpperCAmelCase : int = []
_UpperCAmelCase : Optional[Any] = []
for mel, longer in padded_inputs:
input_mel.append(A )
is_longer.append(A )
if truncation == "fusion" and sum(A ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
_UpperCAmelCase : Union[str, Any] = np.random.randint(0 , len(A ) )
_UpperCAmelCase : Optional[Any] = True
if isinstance(input_mel[0] , A ):
_UpperCAmelCase : List[str] = [np.asarray(A , dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
_UpperCAmelCase : Tuple = [[longer] for longer in is_longer]
_UpperCAmelCase : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer}
_UpperCAmelCase : Tuple = BatchFeature(A )
if return_tensors is not None:
_UpperCAmelCase : List[Any] = input_features.convert_to_tensors(A )
return input_features
| 31 | 0 |
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
def __init__(self : Union[str, Any] , _A : Any , _A : Tuple=1_3 , _A : Optional[int]=7 , _A : Any=True , _A : str=True , _A : Union[str, Any]=True , _A : Optional[int]=True , _A : str=9_9 , _A : str=2_4 , _A : int=2 , _A : Optional[Any]=6 , _A : int=3_7 , _A : List[Any]="gelu" , _A : str=0.1 , _A : Dict=0.1 , _A : Dict=5_1_2 , _A : Tuple=1_6 , _A : List[str]=2 , _A : Dict=0.02 , _A : List[str]=3 , _A : Optional[Any]=None , _A : Dict=1_0_0_0 , ) -> Any:
snake_case = parent
snake_case = batch_size
snake_case = seq_length
snake_case = is_training
snake_case = use_input_mask
snake_case = use_token_type_ids
snake_case = use_labels
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = intermediate_size
snake_case = hidden_act
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = type_sequence_label_size
snake_case = initializer_range
snake_case = num_labels
snake_case = scope
snake_case = range_bbox
def UpperCAmelCase(self : List[str] ) -> List[str]:
snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case = bbox[i, j, 3]
snake_case = bbox[i, j, 1]
snake_case = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case = bbox[i, j, 2]
snake_case = bbox[i, j, 0]
snake_case = t
snake_case = None
if self.use_input_mask:
snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case = None
if self.use_token_type_ids:
snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case = None
snake_case = None
if self.use_labels:
snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase(self : Tuple ) -> Tuple:
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCAmelCase(self : List[str] , _A : Dict , _A : List[Any] , _A : Optional[Any] , _A : Dict , _A : str , _A : Optional[Any] , _A : Tuple , ) -> Dict:
snake_case = LiltModel(config=_A )
model.to(_A )
model.eval()
snake_case = model(_A , bbox=_A , attention_mask=_A , token_type_ids=_A )
snake_case = model(_A , bbox=_A , token_type_ids=_A )
snake_case = model(_A , bbox=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase(self : Optional[Any] , _A : Optional[int] , _A : Dict , _A : List[Any] , _A : Tuple , _A : Optional[int] , _A : Tuple , _A : Union[str, Any] , ) -> Optional[int]:
snake_case = self.num_labels
snake_case = LiltForTokenClassification(config=_A )
model.to(_A )
model.eval()
snake_case = model(
_A , bbox=_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase(self : str , _A : List[Any] , _A : Union[str, Any] , _A : Any , _A : List[str] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , ) -> Optional[int]:
snake_case = LiltForQuestionAnswering(config=_A )
model.to(_A )
model.eval()
snake_case = model(
_A , bbox=_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase(self : str ) -> str:
snake_case = self.prepare_config_and_inputs()
(
(
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) ,
) = config_and_inputs
snake_case = {
"input_ids": input_ids,
"bbox": bbox,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class lowerCamelCase ( A_ , A_ , A_ , unittest.TestCase ):
UpperCAmelCase__ : Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
UpperCAmelCase__ : List[Any] = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ : Optional[Any] = False
UpperCAmelCase__ : Optional[int] = False
def UpperCAmelCase(self : Dict , _A : Optional[Any] , _A : Dict , _A : Union[str, Any] , _A : int , _A : Union[str, Any] ) -> int:
return True
def UpperCAmelCase(self : str ) -> Tuple:
snake_case = LiltModelTester(self )
snake_case = ConfigTester(self , config_class=_A , hidden_size=3_7 )
def UpperCAmelCase(self : Optional[int] ) -> List[str]:
self.config_tester.run_common_tests()
def UpperCAmelCase(self : Tuple ) -> Dict:
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCAmelCase(self : int ) -> Union[str, Any]:
snake_case = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case = type
self.model_tester.create_and_check_model(*_A )
def UpperCAmelCase(self : Optional[Any] ) -> List[Any]:
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_A )
def UpperCAmelCase(self : Optional[Any] ) -> Optional[int]:
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_A )
@slow
def UpperCAmelCase(self : Optional[Any] ) -> Optional[Any]:
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case = LiltModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@require_torch
@slow
class lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase(self : Tuple ) -> Optional[int]:
snake_case = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(_A )
snake_case = torch.tensor([[1, 2]] , device=_A )
snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_A )
# forward pass
with torch.no_grad():
snake_case = model(input_ids=_A , bbox=_A )
snake_case = torch.Size([1, 2, 7_6_8] )
snake_case = torch.tensor(
[[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=_A , )
self.assertTrue(outputs.last_hidden_state.shape , _A )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _A , atol=1E-3 ) )
| 366 |
class lowerCamelCase :
def __init__(self : List[Any] , _A : str ) -> Any:
# we need a list not a string, so do something to change the type
snake_case = arr.split("," )
def UpperCAmelCase(self : str ) -> str:
snake_case = [int(self.array[0] )] * len(self.array )
snake_case = [int(self.array[0] )] * len(self.array )
for i in range(1 , len(self.array ) ):
snake_case = max(
int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) )
snake_case = max(sum_value[i] , rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
_A = input("please input some numbers:")
_A = SubArray(whole_array)
_A = array.solve_sub_array()
print(("the results is:", re))
| 137 | 0 |
from __future__ import annotations
from collections import Counter
from random import random
class __lowerCAmelCase :
def __init__( self ) -> Optional[int]:
'''simple docstring'''
_lowercase ={}
def A__ ( self , lowerCAmelCase ) -> Tuple:
'''simple docstring'''
_lowercase ={}
def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> List[str]:
'''simple docstring'''
if nodea not in self.connections:
self.add_node(snake_case_ )
if nodea not in self.connections:
self.add_node(snake_case_ )
_lowercase =probability
def A__ ( self ) -> str:
'''simple docstring'''
return list(self.connections )
def A__ ( self , lowerCAmelCase ) -> Any:
'''simple docstring'''
_lowercase =0
_lowercase =random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def a ( A__ : int , A__ : Dict , A__ : int ) -> dict[str, int]:
"""simple docstring"""
_lowercase =MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowercase =Counter(graph.get_nodes() )
_lowercase =start
for _ in range(_lowerCAmelCase ):
_lowercase =graph.transition(_lowerCAmelCase )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 205 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase_ ( _a , unittest.TestCase ):
"""simple docstring"""
lowercase = GPTSanJapaneseTokenizer
lowercase = False
lowercase = {"do_clean_text": False, "add_prefix_space": False}
def lowerCamelCase ( self : str ):
super().setUp()
# fmt: off
snake_case__ : Optional[Any] = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""]
# fmt: on
snake_case__ : int = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀
snake_case__ : List[Any] = {"""unk_token""": """<unk>"""}
snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
with open(self.emoji_file , """w""" ) as emoji_writer:
emoji_writer.write(json.dumps(snake_case_ ) )
def lowerCamelCase ( self : Any , **snake_case_ : Union[str, Any] ):
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case_ )
def lowerCamelCase ( self : Any , snake_case_ : str ):
snake_case__ : Union[str, Any] = """こんにちは、世界。 \nこんばんは、㔺界。😀"""
snake_case__ : List[str] = """こんにちは、世界。 \nこんばんは、世界。😀"""
return input_text, output_text
def lowerCamelCase ( self : Any , snake_case_ : Dict ):
snake_case__ , snake_case__ : int = self.get_input_output_texts(snake_case_ )
snake_case__ : int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
snake_case__ : List[str] = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ )
return text, ids
def lowerCamelCase ( self : Optional[Any] ):
pass # TODO add if relevant
def lowerCamelCase ( self : Union[str, Any] ):
pass # TODO add if relevant
def lowerCamelCase ( self : List[str] ):
pass # TODO add if relevant
def lowerCamelCase ( self : Dict ):
snake_case__ : Optional[Any] = self.get_tokenizer()
# Testing tokenization
snake_case__ : int = """こんにちは、世界。 こんばんは、㔺界。"""
snake_case__ : Optional[int] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""]
snake_case__ : Dict = tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
# Testing conversion to ids without special tokens
snake_case__ : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
snake_case__ : List[Any] = tokenizer.convert_tokens_to_ids(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
# Testing conversion to ids with special tokens
snake_case__ : Union[str, Any] = tokens + [tokenizer.unk_token]
snake_case__ : Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
snake_case__ : Any = tokenizer.convert_tokens_to_ids(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
def lowerCamelCase ( self : Optional[Any] ):
snake_case__ : Union[str, Any] = self.get_tokenizer()
# Testing tokenization
snake_case__ : Union[str, Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。"""
snake_case__ : Optional[int] = """こんにちは、、、、世界。こんばんは、、、、世界。"""
snake_case__ : Any = tokenizer.encode(snake_case_ )
snake_case__ : int = tokenizer.decode(snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
@slow
def lowerCamelCase ( self : Union[str, Any] ):
snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
snake_case__ : Tuple = """こんにちは、世界。"""
snake_case__ : Optional[Any] = """こんばんは、㔺界。😀"""
snake_case__ : List[str] = """こんにちは、世界。こんばんは、世界。😀"""
snake_case__ : Dict = tokenizer.encode(prefix_text + input_text )
snake_case__ : Dict = tokenizer.encode("""""" , prefix_text=prefix_text + input_text )
snake_case__ : int = tokenizer.encode(snake_case_ , prefix_text=snake_case_ )
snake_case__ : Optional[Any] = tokenizer.decode(snake_case_ )
snake_case__ : Union[str, Any] = tokenizer.decode(snake_case_ )
snake_case__ : str = tokenizer.decode(snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
@slow
def lowerCamelCase ( self : Union[str, Any] ):
snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
snake_case__ : Dict = """こんにちは、世界。"""
snake_case__ : Optional[int] = """こんばんは、㔺界。😀"""
snake_case__ : Any = len(tokenizer.encode(snake_case_ ) ) - 2
snake_case__ : Optional[int] = len(tokenizer.encode(snake_case_ ) ) - 2
snake_case__ : List[str] = [1] + [0] * (len_prefix + len_text + 1)
snake_case__ : Optional[int] = [1] * (len_prefix + len_text + 1) + [0]
snake_case__ : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
snake_case__ : Any = tokenizer(prefix_text + input_text ).token_type_ids
snake_case__ : str = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids
snake_case__ : Optional[Any] = tokenizer(snake_case_ , prefix_text=snake_case_ ).token_type_ids
self.assertListEqual(snake_case_ , snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
@slow
def lowerCamelCase ( self : Optional[int] ):
snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
snake_case__ : Union[str, Any] = tokenizer.encode("""あンいワ""" )
snake_case__ : int = tokenizer.encode("""""" , prefix_text="""あンいワ""" )
snake_case__ : Dict = tokenizer.encode("""いワ""" , prefix_text="""あン""" )
self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) )
self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) )
self.assertNotEqual(snake_case_ , snake_case_ )
self.assertNotEqual(snake_case_ , snake_case_ )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def lowerCamelCase ( self : Any ):
snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
snake_case__ : int = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]]
snake_case__ : Optional[Any] = tokenizer(snake_case_ , padding=snake_case_ )
snake_case__ : Tuple = tokenizer.batch_encode_plus(snake_case_ , padding=snake_case_ )
# fmt: off
snake_case__ : Optional[Any] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]]
snake_case__ : Optional[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
snake_case__ : Optional[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , snake_case_ )
self.assertListEqual(x_token.token_type_ids , snake_case_ )
self.assertListEqual(x_token.attention_mask , snake_case_ )
self.assertListEqual(x_token_a.input_ids , snake_case_ )
self.assertListEqual(x_token_a.token_type_ids , snake_case_ )
self.assertListEqual(x_token_a.attention_mask , snake_case_ )
def lowerCamelCase ( self : Any ):
# Intentionally convert some words to accommodate character fluctuations unique to Japanese
pass
def lowerCamelCase ( self : List[str] ):
# tokenizer has no padding token
pass
| 35 | 0 |
'''simple docstring'''
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_SCREAMING_SNAKE_CASE : Tuple = logging.getLogger()
def UpperCamelCase_( ):
'''simple docstring'''
snake_case_ = argparse.ArgumentParser()
parser.add_argument("-f" )
snake_case_ = parser.parse_args()
return args.f
class _snake_case ( lowercase_ ):
def lowerCAmelCase__ ( self ) -> None:
'''simple docstring'''
snake_case_ = logging.StreamHandler(sys.stdout )
logger.addHandler(a__ )
def lowerCAmelCase__ ( self , a__ ) -> List[Any]:
'''simple docstring'''
snake_case_ = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , "run_glue_deebert.py" )
with patch.object(a__ , "argv" , a__ ):
snake_case_ = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(a__ , 0.6_6_6 )
@slow
@require_torch_non_multi_gpu
def lowerCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
snake_case_ = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split()
self.run_and_check(a__ )
snake_case_ = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(a__ )
snake_case_ = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(a__ )
| 92 |
'''simple docstring'''
from sympy import diff, lambdify, symbols
from sympy.functions import * # noqa: F403
def UpperCamelCase_( snake_case : str , snake_case : complex , snake_case : str = "x" , snake_case : float = 1_0**-1_0 , snake_case : int = 1 , ):
'''simple docstring'''
snake_case_ = symbols(snake_case )
snake_case_ = lambdify(snake_case , snake_case )
snake_case_ = lambdify(snake_case , diff(snake_case , snake_case ) )
snake_case_ = starting_point
while True:
if diff_function(snake_case ) != 0:
snake_case_ = prev_guess - multiplicity * func(snake_case ) / diff_function(
snake_case )
else:
raise ZeroDivisionError("Could not find root" ) from None
# Precision is checked by comparing the difference of consecutive guesses
if abs(next_guess - prev_guess ) < precision:
return next_guess
snake_case_ = next_guess
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}")
# Find root of polynomial
# Find fourth Root of 5
print(F"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}")
# Find value of e
print(
"The root of log(y) - 1 = 0 is ",
F"{newton_raphson('log(y) - 1', 2, variable='y')}",
)
# Exponential Roots
print(
"The root of exp(x) - 1 = 0 is",
F"{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}",
)
# Find root of cos(x)
print(F"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
| 92 | 1 |
"""simple docstring"""
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
"""kwargs, expected""" , [
({"""num_shards""": 0, """max_num_jobs""": 1}, []),
({"""num_shards""": 1_0, """max_num_jobs""": 1}, [range(1_0 )]),
({"""num_shards""": 1_0, """max_num_jobs""": 1_0}, [range(__lowerCamelCase , i + 1 ) for i in range(1_0 )]),
({"""num_shards""": 1, """max_num_jobs""": 1_0}, [range(1 )]),
({"""num_shards""": 1_0, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 1_0 )]),
({"""num_shards""": 3, """max_num_jobs""": 1_0}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = _distribute_shards(**__lowerCamelCase )
assert out == expected
@pytest.mark.parametrize(
"""gen_kwargs, max_num_jobs, expected""" , [
({"""foo""": 0}, 1_0, [{"""foo""": 0}]),
({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]),
({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]),
({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]),
({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]),
] , )
def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Dict ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : str = _split_gen_kwargs(__lowerCamelCase , __lowerCamelCase )
assert out == expected
@pytest.mark.parametrize(
"""gen_kwargs, expected""" , [
({"""foo""": 0}, 1),
({"""shards""": [0]}, 1),
({"""shards""": [0, 1, 2, 3]}, 4),
({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4),
({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4),
({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError),
] , )
def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> List[str]:
'''simple docstring'''
if expected is RuntimeError:
with pytest.raises(__lowerCamelCase ):
_number_of_shards_in_gen_kwargs(__lowerCamelCase )
else:
__UpperCAmelCase : Optional[Any] = _number_of_shards_in_gen_kwargs(__lowerCamelCase )
assert out == expected
| 115 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCamelCase = {
"""configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""],
"""tokenization_biogpt""": ["""BioGptTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
"""BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BioGptForCausalLM""",
"""BioGptForTokenClassification""",
"""BioGptForSequenceClassification""",
"""BioGptModel""",
"""BioGptPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 59 | 0 |
from __future__ import annotations
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ):
print(f"""Vertex\tShortest Distance from vertex {src}""" )
for i, d in enumerate(_lowerCamelCase ):
print(f"""{i}\t\t{d}""" )
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
for j in range(_lowerCamelCase ):
A : Tuple = (graph[j][k] for k in ["src", "dst", "weight"])
if distance[u] != float("inf" ) and distance[u] + w < distance[v]:
return True
return False
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
A : List[str] = [float("inf" )] * vertex_count
A : Union[str, Any] = 0.0
for _ in range(vertex_count - 1 ):
for j in range(_lowerCamelCase ):
A : int = (graph[j][k] for k in ["src", "dst", "weight"])
if distance[u] != float("inf" ) and distance[u] + w < distance[v]:
A : int = distance[u] + w
A : Optional[Any] = check_negative_cycle(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
if negative_cycle_exists:
raise Exception("Negative cycle found" )
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE = int(input("""Enter number of vertices: """).strip())
__SCREAMING_SNAKE_CASE = int(input("""Enter number of edges: """).strip())
__SCREAMING_SNAKE_CASE = [{} for _ in range(E)]
for i in range(E):
print("""Edge """, i + 1)
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (
int(x)
for x in input("""Enter source, destination, weight: """).strip().split(""" """)
)
__SCREAMING_SNAKE_CASE = {"""src""": src, """dst""": dest, """weight""": weight}
__SCREAMING_SNAKE_CASE = int(input("""\nEnter shortest path source:""").strip())
__SCREAMING_SNAKE_CASE = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 361 |
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
__SCREAMING_SNAKE_CASE = 637_8137.0
__SCREAMING_SNAKE_CASE = 635_6752.31_4245
__SCREAMING_SNAKE_CASE = 6378137
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
A : List[Any] = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
A : Tuple = atan((1 - flattening) * tan(radians(_lowerCamelCase ) ) )
A : Tuple = atan((1 - flattening) * tan(radians(_lowerCamelCase ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
A : List[str] = haversine_distance(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
A : List[Any] = (b_lata + b_lata) / 2
A : Optional[Any] = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
A : List[str] = (sin(_lowerCamelCase ) ** 2) * (cos(_lowerCamelCase ) ** 2)
A : Optional[int] = cos(sigma / 2 ) ** 2
A : int = (sigma - sin(_lowerCamelCase )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
A : List[str] = (cos(_lowerCamelCase ) ** 2) * (sin(_lowerCamelCase ) ** 2)
A : Union[str, Any] = sin(sigma / 2 ) ** 2
A : int = (sigma + sin(_lowerCamelCase )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 256 | 0 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCAmelCase = logging.get_logger(__name__)
def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]:
_a : int = 'huggingface/label-files'
_a : Union[str, Any] = 'imagenet-1k-id2label.json'
_a : Optional[int] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='dataset' ) , 'r' ) )
_a : List[Any] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
_a : str = {v: k for k, v in idalabel.items()}
_a : Dict = 'std_conv' if 'bit' in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
_a : List[Any] = BitConfig(
conv_layer=lowerCAmelCase_ , num_labels=1000 , idalabel=lowerCAmelCase_ , labelaid=lowerCAmelCase_ , )
return config
def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]:
if "stem.conv" in name:
_a : int = name.replace('stem.conv' , 'bit.embedder.convolution' )
if "blocks" in name:
_a : int = name.replace('blocks' , 'layers' )
if "head.fc" in name:
_a : Tuple = name.replace('head.fc' , 'classifier.1' )
if name.startswith('norm' ):
_a : List[Any] = 'bit.' + name
if "bit" not in name and "classifier" not in name:
_a : Optional[int] = 'bit.encoder.' + name
return name
def __lowerCamelCase ( ) -> str:
_a : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_a : List[str] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Optional[int]:
_a : int = get_config(lowerCAmelCase_ )
# load original model from timm
_a : List[Any] = create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ )
timm_model.eval()
# load state_dict of original model
_a : Optional[Any] = timm_model.state_dict()
for key in state_dict.copy().keys():
_a : Optional[int] = state_dict.pop(lowerCAmelCase_ )
_a : Any = val.squeeze() if 'head' in key else val
# load HuggingFace model
_a : str = BitForImageClassification(lowerCAmelCase_ )
model.eval()
model.load_state_dict(lowerCAmelCase_ )
# create image processor
_a : Union[str, Any] = create_transform(**resolve_data_config({} , model=lowerCAmelCase_ ) )
_a : Union[str, Any] = transform.transforms
_a : Any = {
'bilinear': PILImageResampling.BILINEAR,
'bicubic': PILImageResampling.BICUBIC,
'nearest': PILImageResampling.NEAREST,
}
_a : str = BitImageProcessor(
do_resize=lowerCAmelCase_ , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase_ , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
_a : Tuple = prepare_img()
_a : int = transform(lowerCAmelCase_ ).unsqueeze(0 )
_a : List[str] = processor(lowerCAmelCase_ , return_tensors='pt' ).pixel_values
# verify pixel values
assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ )
# verify logits
with torch.no_grad():
_a : int = model(lowerCAmelCase_ )
_a : Union[str, Any] = outputs.logits
print('Logits:' , logits[0, :3] )
print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] )
_a : List[Any] = timm_model(lowerCAmelCase_ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1E-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
print(f"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowerCAmelCase_ )
processor.save_pretrained(lowerCAmelCase_ )
if push_to_hub:
print(f"""Pushing model {model_name} and processor to the hub""" )
model.push_to_hub(f"""ybelkada/{model_name}""" )
processor.push_to_hub(f"""ybelkada/{model_name}""" )
if __name__ == "__main__":
__lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''resnetv2_50x1_bitm''',
type=str,
help='''Name of the BiT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model to the hub.''',
)
__lowerCAmelCase = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 89 |
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __magic_name__ :
def __init__( self : List[str] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[str]=13 ,_UpperCAmelCase : Any=32 ,_UpperCAmelCase : Union[str, Any]=3 ,_UpperCAmelCase : Optional[int]=4 ,_UpperCAmelCase : Optional[Any]=[10, 20, 30, 40] ,_UpperCAmelCase : Tuple=[2, 2, 3, 2] ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : Union[str, Any]=37 ,_UpperCAmelCase : Optional[int]="gelu" ,_UpperCAmelCase : Optional[Any]=10 ,_UpperCAmelCase : Tuple=0.02 ,_UpperCAmelCase : Any=["stage2", "stage3", "stage4"] ,_UpperCAmelCase : Any=[2, 3, 4] ,_UpperCAmelCase : Tuple=None ,):
_a : Optional[Any] = parent
_a : List[Any] = batch_size
_a : str = image_size
_a : Union[str, Any] = num_channels
_a : List[Any] = num_stages
_a : Dict = hidden_sizes
_a : int = depths
_a : Tuple = is_training
_a : List[str] = use_labels
_a : Dict = intermediate_size
_a : int = hidden_act
_a : int = num_labels
_a : Any = initializer_range
_a : Tuple = out_features
_a : int = out_indices
_a : List[Any] = scope
def __lowercase ( self : Dict ):
_a : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a : Union[str, Any] = None
if self.use_labels:
_a : Tuple = ids_tensor([self.batch_size] ,self.num_labels )
_a : str = self.get_config()
return config, pixel_values, labels
def __lowercase ( self : Any ):
return ConvNextVaConfig(
num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=_UpperCAmelCase ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,)
def __lowercase ( self : Tuple ,_UpperCAmelCase : Any ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[Any] ):
_a : Optional[Any] = ConvNextVaModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_a : Any = model(_UpperCAmelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,)
def __lowercase ( self : Tuple ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ):
_a : List[Any] = ConvNextVaForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_a : List[str] = model(_UpperCAmelCase ,labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def __lowercase ( self : str ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ):
_a : Optional[int] = ConvNextVaBackbone(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_a : Dict = model(_UpperCAmelCase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) )
self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_a : Tuple = None
_a : List[Any] = ConvNextVaBackbone(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_a : List[str] = model(_UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) ,1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,1 )
self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] )
def __lowercase ( self : Optional[Any] ):
_a : Any = self.prepare_config_and_inputs()
_a , _a , _a : Union[str, Any] = config_and_inputs
_a : Any = {'pixel_values': pixel_values}
return config, inputs_dict
def __lowercase ( self : str ):
_a : Tuple = self.prepare_config_and_inputs()
_a , _a , _a : Tuple = config_and_inputs
_a : List[Any] = {'pixel_values': pixel_values, 'labels': labels}
return config, inputs_dict
@require_torch
class __magic_name__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
lowerCAmelCase : str = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowerCAmelCase : str = (
{'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowerCAmelCase : int = False
lowerCAmelCase : str = False
lowerCAmelCase : Optional[Any] = False
lowerCAmelCase : List[str] = False
lowerCAmelCase : Optional[int] = False
def __lowercase ( self : List[Any] ):
_a : str = ConvNextVaModelTester(self )
_a : Tuple = ConfigTester(self ,config_class=_UpperCAmelCase ,has_text_modality=_UpperCAmelCase ,hidden_size=37 )
def __lowercase ( self : Optional[Any] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __lowercase ( self : str ):
return
@unittest.skip(reason='ConvNextV2 does not use inputs_embeds' )
def __lowercase ( self : List[Any] ):
pass
@unittest.skip(reason='ConvNextV2 does not support input and output embeddings' )
def __lowercase ( self : Optional[int] ):
pass
@unittest.skip(reason='ConvNextV2 does not use feedforward chunking' )
def __lowercase ( self : Any ):
pass
def __lowercase ( self : List[str] ):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_a , _a : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels()
_a : Any = True
if model_class.__name__ in [
*get_values(_UpperCAmelCase ),
*get_values(_UpperCAmelCase ),
]:
continue
_a : Optional[Any] = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.train()
_a : str = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase )
_a : Optional[int] = model(**_UpperCAmelCase ).loss
loss.backward()
def __lowercase ( self : str ):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels()
_a : Optional[int] = False
_a : Tuple = True
if (
model_class.__name__
in [*get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase )]
or not model_class.supports_gradient_checkpointing
):
continue
_a : Tuple = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.gradient_checkpointing_enable()
model.train()
_a : Any = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase )
_a : List[Any] = model(**_UpperCAmelCase ).loss
loss.backward()
def __lowercase ( self : List[Any] ):
_a , _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : int = model_class(_UpperCAmelCase )
_a : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a : Dict = [*signature.parameters.keys()]
_a : int = ['pixel_values']
self.assertListEqual(arg_names[:1] ,_UpperCAmelCase )
def __lowercase ( self : int ):
_a : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def __lowercase ( self : Any ):
def check_hidden_states_output(_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Dict ):
_a : Union[str, Any] = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
_a : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ) )
_a : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_a : str = self.model_tester.num_stages
self.assertEqual(len(_UpperCAmelCase ) ,expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,)
_a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : int = True
check_hidden_states_output(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_a : Optional[Any] = True
check_hidden_states_output(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
def __lowercase ( self : List[Any] ):
_a : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@slow
def __lowercase ( self : int ):
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a : Any = ConvNextVaModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def __lowerCamelCase ( ) -> List[Any]:
_a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __magic_name__ ( unittest.TestCase ):
@cached_property
def __lowercase ( self : Optional[Any] ):
return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None
@slow
def __lowercase ( self : Any ):
_a : List[str] = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(_UpperCAmelCase )
_a : Optional[int] = self.default_image_processor
_a : str = prepare_img()
_a : str = preprocessor(images=_UpperCAmelCase ,return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
_a : Dict = model(**_UpperCAmelCase )
# verify the logits
_a : Optional[Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape ,_UpperCAmelCase )
_a : Optional[Any] = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_UpperCAmelCase ,atol=1E-4 ) )
| 89 | 1 |
'''simple docstring'''
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
__lowerCAmelCase = 1E-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=16 , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=14 , UpperCAmelCase=10 , UpperCAmelCase=19 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=True , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=[1, 2, 3, 4, 5] , UpperCAmelCase=25 , UpperCAmelCase=5 , ) -> int:
_snake_case = d_model
_snake_case = parent
_snake_case = batch_size
_snake_case = prediction_length
_snake_case = context_length
_snake_case = cardinality
_snake_case = num_time_features
_snake_case = lags_sequence
_snake_case = embedding_dimension
_snake_case = is_training
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = context_length
_snake_case = prediction_length + label_length
_snake_case = label_length
_snake_case = moving_average
_snake_case = autocorrelation_factor
def lowercase (self ) -> str:
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def lowercase (self , UpperCAmelCase ) -> Tuple:
_snake_case = config.context_length + max(config.lags_sequence )
_snake_case = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
_snake_case = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
_snake_case = floats_tensor([self.batch_size, _past_length] )
_snake_case = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
_snake_case = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
_snake_case = floats_tensor([self.batch_size, config.prediction_length] )
_snake_case = {
"""past_values""": past_values,
"""static_categorical_features""": static_categorical_features,
"""past_time_features""": past_time_features,
"""past_observed_mask""": past_observed_mask,
"""future_time_features""": future_time_features,
"""future_values""": future_values,
}
return inputs_dict
def lowercase (self ) -> int:
_snake_case = self.get_config()
_snake_case = self.prepare_autoformer_inputs_dict(UpperCAmelCase )
return config, inputs_dict
def lowercase (self ) -> List[Any]:
_snake_case, _snake_case = self.prepare_config_and_inputs()
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Tuple:
_snake_case = AutoformerModel(config=UpperCAmelCase ).to(UpperCAmelCase ).eval()
_snake_case = model(**UpperCAmelCase )
_snake_case = outputs.encoder_last_hidden_state
_snake_case = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
_snake_case = model.get_encoder()
encoder.save_pretrained(UpperCAmelCase )
_snake_case = AutoformerEncoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase )
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = model.create_network_inputs(**UpperCAmelCase )
_snake_case, _snake_case = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
_snake_case = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
_snake_case = encoder(inputs_embeds=UpperCAmelCase )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
_snake_case = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
_snake_case = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
_snake_case = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
_snake_case = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
_snake_case = model.get_decoder()
decoder.save_pretrained(UpperCAmelCase )
_snake_case = AutoformerDecoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase )
_snake_case = decoder(
trend=UpperCAmelCase , inputs_embeds=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
lowerCAmelCase_ = (AutoformerForPrediction,) if is_torch_available() else ()
lowerCAmelCase_ = {"feature-extraction": AutoformerModel} if is_torch_available() else {}
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> List[Any]:
_snake_case = AutoformerModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase )
def lowercase (self ) -> List[Any]:
self.config_tester.run_common_tests()
def lowercase (self ) -> Any:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase )
_snake_case, _snake_case = model_class.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase )
self.assertEqual(info["""missing_keys"""] , [] )
def lowercase (self ) -> List[Any]:
_snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*UpperCAmelCase )
@unittest.skip(reason="""Model has no tokens embeddings""" )
def lowercase (self ) -> Tuple:
pass
def lowercase (self ) -> Any:
_snake_case = inspect.signature(getattr(UpperCAmelCase , """forward""" ) )
# The main input is the name of the argument after `self`
_snake_case = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , UpperCAmelCase )
def lowercase (self ) -> List[Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = [
"""past_values""",
"""past_time_features""",
"""past_observed_mask""",
"""static_categorical_features""",
"""static_real_features""",
"""future_values""",
"""future_time_features""",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("""future_observed_mask""" )
expected_arg_names.extend(
[
"""decoder_attention_mask""",
"""head_mask""",
"""decoder_head_mask""",
"""cross_attn_head_mask""",
"""encoder_outputs""",
"""past_key_values""",
"""output_hidden_states""",
"""output_attentions""",
"""use_cache""",
"""return_dict""",
] )
self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase )
def lowercase (self ) -> List[Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case = True
_snake_case = getattr(self.model_tester , """seq_length""" , UpperCAmelCase )
_snake_case = getattr(self.model_tester , """decoder_seq_length""" , UpperCAmelCase )
_snake_case = getattr(self.model_tester , """encoder_seq_length""" , UpperCAmelCase )
_snake_case = getattr(self.model_tester , """d_model""" , UpperCAmelCase )
_snake_case = getattr(self.model_tester , """num_attention_heads""" , UpperCAmelCase )
_snake_case = d_model // num_attention_heads
for model_class in self.all_model_classes:
_snake_case = True
_snake_case = False
_snake_case = True
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
_snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
_snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_snake_case = True
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
_snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
_snake_case = outputs.encoder_attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
_snake_case = len(UpperCAmelCase )
_snake_case = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
# decoder attentions
_snake_case = outputs.decoder_attentions
self.assertIsInstance(UpperCAmelCase , (list, tuple) )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
_snake_case = outputs.cross_attentions
self.assertIsInstance(UpperCAmelCase , (list, tuple) )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
_snake_case = True
_snake_case = True
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
_snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + 2 , len(UpperCAmelCase ) )
_snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def lowercase (self ) -> List[Any]:
super().test_retain_grad_hidden_states_attentions()
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE="train-batch.pt" ):
_snake_case = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" )
_snake_case = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE )
return batch
@require_torch
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self ) -> Union[str, Any]:
_snake_case = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase )
_snake_case = prepare_batch()
with torch.no_grad():
_snake_case = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0]
_snake_case = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=UpperCAmelCase )
self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> str:
_snake_case = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase )
_snake_case = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
_snake_case = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state
_snake_case = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=UpperCAmelCase )
self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> Optional[int]:
_snake_case = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase )
_snake_case = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
_snake_case = model.generate(
static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , )
_snake_case = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , UpperCAmelCase )
_snake_case = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=UpperCAmelCase )
_snake_case = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCAmelCase , rtol=1e-1 ) )
| 270 |
'''simple docstring'''
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
__lowerCAmelCase = 1E-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=16 , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=14 , UpperCAmelCase=10 , UpperCAmelCase=19 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=True , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=[1, 2, 3, 4, 5] , UpperCAmelCase=25 , UpperCAmelCase=5 , ) -> int:
_snake_case = d_model
_snake_case = parent
_snake_case = batch_size
_snake_case = prediction_length
_snake_case = context_length
_snake_case = cardinality
_snake_case = num_time_features
_snake_case = lags_sequence
_snake_case = embedding_dimension
_snake_case = is_training
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = context_length
_snake_case = prediction_length + label_length
_snake_case = label_length
_snake_case = moving_average
_snake_case = autocorrelation_factor
def lowercase (self ) -> str:
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def lowercase (self , UpperCAmelCase ) -> Tuple:
_snake_case = config.context_length + max(config.lags_sequence )
_snake_case = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
_snake_case = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
_snake_case = floats_tensor([self.batch_size, _past_length] )
_snake_case = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
_snake_case = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
_snake_case = floats_tensor([self.batch_size, config.prediction_length] )
_snake_case = {
"""past_values""": past_values,
"""static_categorical_features""": static_categorical_features,
"""past_time_features""": past_time_features,
"""past_observed_mask""": past_observed_mask,
"""future_time_features""": future_time_features,
"""future_values""": future_values,
}
return inputs_dict
def lowercase (self ) -> int:
_snake_case = self.get_config()
_snake_case = self.prepare_autoformer_inputs_dict(UpperCAmelCase )
return config, inputs_dict
def lowercase (self ) -> List[Any]:
_snake_case, _snake_case = self.prepare_config_and_inputs()
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Tuple:
_snake_case = AutoformerModel(config=UpperCAmelCase ).to(UpperCAmelCase ).eval()
_snake_case = model(**UpperCAmelCase )
_snake_case = outputs.encoder_last_hidden_state
_snake_case = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
_snake_case = model.get_encoder()
encoder.save_pretrained(UpperCAmelCase )
_snake_case = AutoformerEncoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase )
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = model.create_network_inputs(**UpperCAmelCase )
_snake_case, _snake_case = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
_snake_case = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
_snake_case = encoder(inputs_embeds=UpperCAmelCase )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
_snake_case = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
_snake_case = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
_snake_case = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
_snake_case = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
_snake_case = model.get_decoder()
decoder.save_pretrained(UpperCAmelCase )
_snake_case = AutoformerDecoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase )
_snake_case = decoder(
trend=UpperCAmelCase , inputs_embeds=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
lowerCAmelCase_ = (AutoformerForPrediction,) if is_torch_available() else ()
lowerCAmelCase_ = {"feature-extraction": AutoformerModel} if is_torch_available() else {}
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> List[Any]:
_snake_case = AutoformerModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase )
def lowercase (self ) -> List[Any]:
self.config_tester.run_common_tests()
def lowercase (self ) -> Any:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase )
_snake_case, _snake_case = model_class.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase )
self.assertEqual(info["""missing_keys"""] , [] )
def lowercase (self ) -> List[Any]:
_snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*UpperCAmelCase )
@unittest.skip(reason="""Model has no tokens embeddings""" )
def lowercase (self ) -> Tuple:
pass
def lowercase (self ) -> Any:
_snake_case = inspect.signature(getattr(UpperCAmelCase , """forward""" ) )
# The main input is the name of the argument after `self`
_snake_case = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , UpperCAmelCase )
def lowercase (self ) -> List[Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = [
"""past_values""",
"""past_time_features""",
"""past_observed_mask""",
"""static_categorical_features""",
"""static_real_features""",
"""future_values""",
"""future_time_features""",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("""future_observed_mask""" )
expected_arg_names.extend(
[
"""decoder_attention_mask""",
"""head_mask""",
"""decoder_head_mask""",
"""cross_attn_head_mask""",
"""encoder_outputs""",
"""past_key_values""",
"""output_hidden_states""",
"""output_attentions""",
"""use_cache""",
"""return_dict""",
] )
self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase )
def lowercase (self ) -> List[Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case = True
_snake_case = getattr(self.model_tester , """seq_length""" , UpperCAmelCase )
_snake_case = getattr(self.model_tester , """decoder_seq_length""" , UpperCAmelCase )
_snake_case = getattr(self.model_tester , """encoder_seq_length""" , UpperCAmelCase )
_snake_case = getattr(self.model_tester , """d_model""" , UpperCAmelCase )
_snake_case = getattr(self.model_tester , """num_attention_heads""" , UpperCAmelCase )
_snake_case = d_model // num_attention_heads
for model_class in self.all_model_classes:
_snake_case = True
_snake_case = False
_snake_case = True
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
_snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
_snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_snake_case = True
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
_snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
_snake_case = outputs.encoder_attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
_snake_case = len(UpperCAmelCase )
_snake_case = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
# decoder attentions
_snake_case = outputs.decoder_attentions
self.assertIsInstance(UpperCAmelCase , (list, tuple) )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
_snake_case = outputs.cross_attentions
self.assertIsInstance(UpperCAmelCase , (list, tuple) )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
_snake_case = True
_snake_case = True
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
_snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + 2 , len(UpperCAmelCase ) )
_snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def lowercase (self ) -> List[Any]:
super().test_retain_grad_hidden_states_attentions()
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE="train-batch.pt" ):
_snake_case = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" )
_snake_case = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE )
return batch
@require_torch
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self ) -> Union[str, Any]:
_snake_case = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase )
_snake_case = prepare_batch()
with torch.no_grad():
_snake_case = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0]
_snake_case = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=UpperCAmelCase )
self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> str:
_snake_case = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase )
_snake_case = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
_snake_case = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state
_snake_case = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=UpperCAmelCase )
self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> Optional[int]:
_snake_case = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCAmelCase )
_snake_case = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
_snake_case = model.generate(
static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , )
_snake_case = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , UpperCAmelCase )
_snake_case = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=UpperCAmelCase )
_snake_case = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCAmelCase , rtol=1e-1 ) )
| 270 | 1 |
'''simple docstring'''
def __lowerCAmelCase ( UpperCamelCase__ ) -> int:
__lowerCamelCase = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def __lowerCAmelCase ( UpperCamelCase__ = 1_00 ) -> int:
__lowerCamelCase = 1
__lowerCamelCase = 2
for i in range(2 , max_n + 1 ):
__lowerCamelCase = pre_numerator
__lowerCamelCase = 2 * i // 3 if i % 3 == 0 else 1
__lowerCamelCase = cur_numerator
__lowerCamelCase = e_cont * pre_numerator + temp
return sum_digits(UpperCamelCase__ )
if __name__ == "__main__":
print(f'{solution() = }')
| 67 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: PreTrainedTokenizer , _lowerCamelCase: int , _lowerCamelCase: Optional[int] = None , ) -> Tuple:
'''simple docstring'''
__lowerCamelCase : Optional[int] = {}
if train_file is not None:
__lowerCamelCase : List[Any] = [train_file]
if eval_file is not None:
__lowerCamelCase : List[Any] = [eval_file]
if test_file is not None:
__lowerCamelCase : Optional[int] = [test_file]
__lowerCamelCase : Optional[int] = datasets.load_dataset("csv" , data_files=_lowerCamelCase )
__lowerCamelCase : Union[str, Any] = list(ds[list(files.keys() )[0]].features.keys() )
__lowerCamelCase : Optional[Any] = features_name.pop(_lowerCamelCase )
__lowerCamelCase : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) )
__lowerCamelCase : List[str] = {label: i for i, label in enumerate(_lowerCamelCase )}
__lowerCamelCase : Dict = tokenizer.model_input_names
__lowerCamelCase : int = {}
if len(_lowerCamelCase ) == 1:
for k in files.keys():
__lowerCamelCase : Optional[int] = ds[k].map(
lambda _lowerCamelCase : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" ) , batched=_lowerCamelCase , )
elif len(_lowerCamelCase ) == 2:
for k in files.keys():
__lowerCamelCase : Optional[Any] = ds[k].map(
lambda _lowerCamelCase : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" , ) , batched=_lowerCamelCase , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
__lowerCamelCase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names}
__lowerCamelCase : str = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
__lowerCamelCase : str = {k: v for k, v in ex.items() if k in input_names}
__lowerCamelCase : Optional[int] = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
__lowerCamelCase : List[Any] = {k: v for k, v in ex.items() if k in input_names}
__lowerCamelCase : Dict = labelaid[ex[label_name]]
yield (d, label)
__lowerCamelCase : Optional[Any] = (
tf.data.Dataset.from_generator(
_lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
__lowerCamelCase : int = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
__lowerCamelCase : Tuple = (
tf.data.Dataset.from_generator(
_lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
__lowerCamelCase : List[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
__lowerCamelCase : int = (
tf.data.Dataset.from_generator(
_lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
__lowerCamelCase : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
__A = logging.getLogger(__name__)
@dataclass
class _snake_case :
snake_case__ = field(metadata={"help": "Which column contains the label"} )
snake_case__ = field(default=a__ , metadata={"help": "The path of the training file"} )
snake_case__ = field(default=a__ , metadata={"help": "The path of the development file"} )
snake_case__ = field(default=a__ , metadata={"help": "The path of the test file"} )
snake_case__ = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
snake_case__ = field(
default=a__ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
@dataclass
class _snake_case :
snake_case__ = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
snake_case__ = field(
default=a__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
snake_case__ = field(
default=a__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
snake_case__ = field(default=a__ , metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
snake_case__ = field(
default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
def lowercase_ ( ) -> str:
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
" --overwrite_output_dir to overcome." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.info(
F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """
F"""16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCamelCase : Dict = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
__lowerCamelCase : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
__lowerCamelCase : List[str] = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , )
def compute_metrics(_lowerCamelCase: EvalPrediction ) -> Dict:
__lowerCamelCase : List[str] = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
__lowerCamelCase : Dict = TFTrainer(
model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__lowerCamelCase : int = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
__lowerCamelCase : Any = trainer.evaluate()
__lowerCamelCase : List[str] = os.path.join(training_args.output_dir , "eval_results.txt" )
with open(_lowerCamelCase , "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
results.update(_lowerCamelCase )
return results
if __name__ == "__main__":
main()
| 135 | 0 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = IFImgaImgSuperResolutionPipeline
lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''}
lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} )
lowercase = PipelineTesterMixin.required_optional_params - {'''latents'''}
def UpperCAmelCase ( self ):
'''simple docstring'''
return self._get_superresolution_dummy_components()
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ):
'''simple docstring'''
if str(_a ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(_a )
else:
__UpperCamelCase = torch.Generator(device=_a ).manual_seed(_a )
__UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
__UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a )
__UpperCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'original_image': original_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def UpperCAmelCase ( self ):
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_save_load_local()
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 363 |
"""simple docstring"""
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : int = {
"artists_file": "artists.json",
"lyrics_file": "lyrics.json",
"genres_file": "genres.json",
}
UpperCamelCase : Optional[Any] = {
"artists_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json",
},
"genres_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json",
},
"lyrics_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json",
},
}
UpperCamelCase : Any = {
"jukebox": 5_1_2,
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_LYRIC_TOKENS_SIZES
lowercase = ["input_ids", "attention_mask"]
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=["v3", "v2", "v2"] , __UpperCAmelCase=512 , __UpperCAmelCase=5 , __UpperCAmelCase="<|endoftext|>" , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token
super().__init__(
unk_token=__UpperCAmelCase , n_genres=__UpperCAmelCase , version=__UpperCAmelCase , max_n_lyric_tokens=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCamelCase = version
__UpperCamelCase = max_n_lyric_tokens
__UpperCamelCase = n_genres
with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__UpperCamelCase = json.load(__UpperCAmelCase )
with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__UpperCamelCase = json.load(__UpperCAmelCase )
with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__UpperCamelCase = json.load(__UpperCAmelCase )
__UpperCamelCase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
__UpperCamelCase = oov.replace(R'\-\'' , R'\-+\'' )
__UpperCamelCase = regex.compile(__UpperCAmelCase )
__UpperCamelCase = {v: k for k, v in self.artists_encoder.items()}
__UpperCamelCase = {v: k for k, v in self.genres_encoder.items()}
__UpperCamelCase = {v: k for k, v in self.lyrics_encoder.items()}
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def UpperCAmelCase ( self ):
'''simple docstring'''
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = [self.artists_encoder.get(__UpperCAmelCase , 0 ) for artist in list_artists]
for genres in range(len(__UpperCAmelCase ) ):
__UpperCamelCase = [self.genres_encoder.get(__UpperCAmelCase , 0 ) for genre in list_genres[genres]]
__UpperCamelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
__UpperCamelCase = [[self.lyrics_encoder.get(__UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return list(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.prepare_for_tokenization(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase = self._tokenize(__UpperCAmelCase )
return artist, genre, lyrics
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ):
'''simple docstring'''
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
__UpperCamelCase = artists[idx].lower()
__UpperCamelCase = [genres[idx].lower()]
else:
__UpperCamelCase = self._normalize(artists[idx] ) + '.v2'
__UpperCamelCase = [
self._normalize(__UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
__UpperCamelCase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' )
__UpperCamelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'
__UpperCamelCase = {vocab[index]: index + 1 for index in range(len(__UpperCAmelCase ) )}
__UpperCamelCase = 0
__UpperCamelCase = len(__UpperCAmelCase ) + 1
__UpperCamelCase = self.vocab
__UpperCamelCase = {v: k for k, v in self.vocab.items()}
__UpperCamelCase = ''
else:
__UpperCamelCase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' )
__UpperCamelCase = self._run_strip_accents(__UpperCAmelCase )
__UpperCamelCase = lyrics.replace('\\' , '\n' )
__UpperCamelCase = self.out_of_vocab.sub('' , __UpperCAmelCase ), [], []
return artists, genres, lyrics
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = unicodedata.normalize('NFD' , __UpperCAmelCase )
__UpperCamelCase = []
for char in text:
__UpperCamelCase = unicodedata.category(__UpperCAmelCase )
if cat == "Mn":
continue
output.append(__UpperCAmelCase )
return "".join(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = (
[chr(__UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )]
+ [chr(__UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )]
+ [chr(__UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )]
+ ['.']
)
__UpperCamelCase = frozenset(__UpperCAmelCase )
__UpperCamelCase = re.compile(R'_+' )
__UpperCamelCase = ''.join([c if c in accepted else '_' for c in text.lower()] )
__UpperCamelCase = pattern.sub('_' , __UpperCAmelCase ).strip('_' )
return text
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return " ".join(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ):
'''simple docstring'''
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
__UpperCamelCase = TensorType(__UpperCAmelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' )
import tensorflow as tf
__UpperCamelCase = tf.constant
__UpperCamelCase = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' )
import torch
__UpperCamelCase = torch.tensor
__UpperCamelCase = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' )
import jax.numpy as jnp # noqa: F811
__UpperCamelCase = jnp.array
__UpperCamelCase = _is_jax
else:
__UpperCamelCase = np.asarray
__UpperCamelCase = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
__UpperCamelCase = [inputs]
if not is_tensor(__UpperCAmelCase ):
__UpperCamelCase = as_tensor(__UpperCAmelCase )
except: # noqa E722
raise ValueError(
'Unable to create tensor, you should probably activate truncation and/or padding '
'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' )
return inputs
def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="" , __UpperCAmelCase="pt" ):
'''simple docstring'''
__UpperCamelCase = [0, 0, 0]
__UpperCamelCase = [artist] * len(self.version )
__UpperCamelCase = [genres] * len(self.version )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.tokenize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self._convert_token_to_id(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase = [-INFINITY] * len(full_tokens[-1] )
__UpperCamelCase = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__UpperCAmelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
if not os.path.isdir(__UpperCAmelCase ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__UpperCamelCase = os.path.join(
__UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] )
with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=__UpperCAmelCase ) )
__UpperCamelCase = os.path.join(
__UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] )
with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=__UpperCAmelCase ) )
__UpperCamelCase = os.path.join(
__UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] )
with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__UpperCAmelCase ) )
return (artists_file, genres_file, lyrics_file)
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.artists_decoder.get(__UpperCAmelCase )
__UpperCamelCase = [self.genres_decoder.get(__UpperCAmelCase ) for genre in genres_index]
__UpperCamelCase = [self.lyrics_decoder.get(__UpperCAmelCase ) for character in lyric_index]
return artist, genres, lyrics
| 263 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.