code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A__ : Dict = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A__ : Union[str, Any] = logging.getLogger() def UpperCamelCase( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''-f''' ) lowerCAmelCase_ : Optional[Any] = parser.parse_args() return args.f def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : int="eval" ): lowerCAmelCase_ : Union[str, Any] = os.path.join(__UpperCamelCase ,f"""{split}_results.json""" ) if os.path.exists(__UpperCamelCase ): with open(__UpperCamelCase ,'''r''' ) as f: return json.load(__UpperCamelCase ) raise ValueError(f"""can\'t find {path}""" ) A__ : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __snake_case ( _a ): def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : str = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : List[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__): run_flax_glue.main() lowerCAmelCase_ : List[Any] = get_results(SCREAMING_SNAKE_CASE__) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75) @slow def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : Optional[int] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Any = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__): run_clm_flax.main() lowerCAmelCase_ : List[Any] = get_results(SCREAMING_SNAKE_CASE__) self.assertLess(result['''eval_perplexity'''] , 1_0_0) @slow def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : Any = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : List[Any] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__): run_summarization_flax.main() lowerCAmelCase_ : Optional[int] = get_results(SCREAMING_SNAKE_CASE__ , split='''test''') self.assertGreaterEqual(result['''test_rouge1'''] , 1_0) self.assertGreaterEqual(result['''test_rouge2'''] , 2) self.assertGreaterEqual(result['''test_rougeL'''] , 7) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7) @slow def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Union[str, Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__): run_mlm_flax.main() lowerCAmelCase_ : Dict = get_results(SCREAMING_SNAKE_CASE__) self.assertLess(result['''eval_perplexity'''] , 4_2) @slow def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : List[str] = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__): run_ta_mlm_flax.main() lowerCAmelCase_ : Optional[Any] = get_results(SCREAMING_SNAKE_CASE__) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42) @slow def UpperCAmelCase__ ( self : List[str]): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu lowerCAmelCase_ : List[Any] = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase_ : List[str] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Any = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__): run_flax_ner.main() lowerCAmelCase_ : List[Any] = get_results(SCREAMING_SNAKE_CASE__) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75) self.assertGreaterEqual(result['''eval_f1'''] , 0.3) @slow def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Optional[Any] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__): run_qa.main() lowerCAmelCase_ : Dict = get_results(SCREAMING_SNAKE_CASE__) self.assertGreaterEqual(result['''eval_f1'''] , 3_0) self.assertGreaterEqual(result['''eval_exact'''] , 3_0)
103
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def A_ ( snake_case ): return 1 / (1 + np.exp(-z )) def A_ ( snake_case , snake_case ): return (-y * np.log(snake_case ) - (1 - y) * np.log(1 - h )).mean() def A_ ( snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:Dict = np.dot(snake_case , snake_case ) return np.sum(y * scores - np.log(1 + np.exp(snake_case ) ) ) def A_ ( snake_case , snake_case , snake_case , snake_case=70000 ): SCREAMING_SNAKE_CASE:List[str] = np.zeros(x.shape[1] ) for iterations in range(snake_case ): SCREAMING_SNAKE_CASE:Union[str, Any] = np.dot(snake_case , snake_case ) SCREAMING_SNAKE_CASE:Dict = sigmoid_function(snake_case ) SCREAMING_SNAKE_CASE:List[str] = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE:Any = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE:Dict = np.dot(snake_case , snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = sigmoid_function(snake_case ) SCREAMING_SNAKE_CASE:Dict = cost_function(snake_case , snake_case ) if iterations % 100 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": A_ = datasets.load_iris() A_ = iris.data[:, :2] A_ = (iris.target != 0) * 1 A_ = 0.1 A_ = logistic_reg(alpha, x, y, max_iterations=7_00_00) print("theta: ", theta) # printing the theta i.e our weights vector def A_ ( snake_case ): return sigmoid_function( np.dot(snake_case , snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((A_) , (A_)) = (x[:, 0].min(), x[:, 0].max()) ((A_) , (A_)) = (x[:, 1].min(), x[:, 1].max()) ((A_) , (A_)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) A_ = np.c_[xxa.ravel(), xxa.ravel()] A_ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
139
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a : '''simple docstring''' def __init__( self : str , __snake_case : Dict , __snake_case : Any=13 , __snake_case : Optional[Any]=7 , __snake_case : str=True , __snake_case : str=True , __snake_case : Dict=True , __snake_case : List[Any]=True , __snake_case : List[str]=99 , __snake_case : Union[str, Any]=16 , __snake_case : Optional[Any]=36 , __snake_case : Dict=6 , __snake_case : str=6 , __snake_case : Tuple=6 , __snake_case : Any=37 , __snake_case : Optional[Any]="gelu" , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=5_12 , __snake_case : str=16 , __snake_case : Optional[Any]=2 , __snake_case : Optional[int]=0.02 , __snake_case : List[Any]=3 , __snake_case : Tuple=4 , __snake_case : Optional[Any]=None , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = embedding_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_hidden_groups UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def lowerCamelCase_ ( self : Optional[int] ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : List[Any] ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Any , __snake_case : List[str] ): UpperCAmelCase_ = AlbertModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) UpperCAmelCase_ = model(__snake_case , token_type_ids=__snake_case ) UpperCAmelCase_ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self : Any , __snake_case : int , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : int , __snake_case : Any , __snake_case : Optional[Any] ): UpperCAmelCase_ = AlbertForPreTraining(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , sentence_order_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCamelCase_ ( self : List[str] , __snake_case : Tuple , __snake_case : int , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[int] ): UpperCAmelCase_ = AlbertForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Optional[Any] , __snake_case : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : Any , __snake_case : str , __snake_case : Dict , __snake_case : str ): UpperCAmelCase_ = AlbertForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : List[str] , __snake_case : Dict , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Any , __snake_case : Dict ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = AlbertForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Any , __snake_case : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Optional[int] ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = AlbertForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Dict , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Any , __snake_case : List[str] ): UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = AlbertForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : Tuple ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( _A , _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase : List[str] = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : Tuple = True def lowerCamelCase_ ( self : List[str] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : int=False ): UpperCAmelCase_ = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class in get_values(__snake_case ): UpperCAmelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def lowerCamelCase_ ( self : str ): UpperCAmelCase_ = AlbertModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowerCamelCase_ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Union[str, Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__snake_case ) def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def lowerCamelCase_ ( self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def lowerCamelCase_ ( self : List[Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ = type self.model_tester.create_and_check_model(*__snake_case ) @slow def lowerCamelCase_ ( self : str ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AlbertModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class a ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase_ ( self : Optional[int] ): UpperCAmelCase_ = AlbertModel.from_pretrained('''albert-base-v2''' ) UpperCAmelCase_ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) UpperCAmelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case )[0] UpperCAmelCase_ = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase_ = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __snake_case , atol=1E-4 ) )
356
import numpy as np def SCREAMING_SNAKE_CASE ( __UpperCamelCase : np.array ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
177
0
from collections import defaultdict def UpperCamelCase (lowercase_: str , lowercase_: str ) -> bool: A__ : Optional[Any] = first_str.lower().strip() A__ : List[str] = second_str.lower().strip() # Remove whitespace A__ : int = first_str.replace(""" """ , """""" ) A__ : List[Any] = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False # Default values for count should be 0 A__ : defaultdict[str, int] = defaultdict(_UpperCAmelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_UpperCAmelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() A_ : Tuple = input('Enter the first string ').strip() A_ : Optional[int] = input('Enter the second string ').strip() A_ : int = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {"" if status else "not "}anagrams.''')
192
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
276
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> int: '''simple docstring''' snake_case : int = [0] * len(SCREAMING_SNAKE_CASE__ ) snake_case : str = [] snake_case : Optional[int] = [] snake_case : int = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if indegree[i] == 0: queue.append(SCREAMING_SNAKE_CASE__ ) while queue: snake_case : Union[str, Any] = queue.pop(0 ) cnt += 1 topo.append(SCREAMING_SNAKE_CASE__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(SCREAMING_SNAKE_CASE__ ) if cnt != len(SCREAMING_SNAKE_CASE__ ): print('''Cycle exists''' ) else: print(SCREAMING_SNAKE_CASE__ ) # Adjacency List of Graph lowercase__ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
83
'''simple docstring''' from functools import lru_cache @lru_cache def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> int: '''simple docstring''' if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
83
1
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowerCAmelCase (__A): """simple docstring""" _a = args.pruning_method _a = args.threshold _a = args.model_name_or_path.rstrip('''/''') _a = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''') _a = torch.load(os.path.join(__A , '''pytorch_model.bin''')) _a = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _a = tensor print(F'''Copied layer {name}''') elif "classifier" in name or "qa_output" in name: _a = tensor print(F'''Copied layer {name}''') elif "bias" in name: _a = tensor print(F'''Copied layer {name}''') else: if pruning_method == "magnitude": _a = MagnitudeBinarizer.apply(inputs=__A , threshold=__A) _a = tensor * mask print(F'''Pruned layer {name}''') elif pruning_method == "topK": if "mask_scores" in name: continue _a = name[:-6] _a = model[F'''{prefix_}mask_scores'''] _a = TopKBinarizer.apply(__A , __A) _a = tensor * mask print(F'''Pruned layer {name}''') elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _a = name[:-6] _a = model[F'''{prefix_}mask_scores'''] _a = ThresholdBinarizer.apply(__A , __A , __A) _a = tensor * mask print(F'''Pruned layer {name}''') elif pruning_method == "l0": if "mask_scores" in name: continue _a = name[:-6] _a = model[F'''{prefix_}mask_scores'''] _a , _a = -0.1, 1.1 _a = torch.sigmoid(__A) _a = s * (r - l) + l _a = s_bar.clamp(min=0.0 , max=1.0) _a = tensor * mask print(F'''Pruned layer {name}''') else: raise ValueError('''Unknown pruning method''') if target_model_path is None: _a = os.path.join( os.path.dirname(__A) , F'''bertarized_{os.path.basename(__A)}''') if not os.path.isdir(__A): shutil.copytree(__A , __A) print(F'''\nCreated folder {target_model_path}''') torch.save(__A , os.path.join(__A , '''pytorch_model.bin''')) print('''\nPruned model saved! See you later!''') if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) lowercase_ = parser.parse_args() main(args)
211
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __A : '''simple docstring''' __lowerCamelCase : CommonSchedulerState # setable values __lowerCamelCase : jnp.ndarray __lowerCamelCase : jnp.ndarray __lowerCamelCase : Optional[int] = None @classmethod def a__ (cls , A , A , A ) -> str: """simple docstring""" return cls(common=A , init_noise_sigma=A , timesteps=A ) @dataclass class __A ( A ): '''simple docstring''' __lowerCamelCase : DDPMSchedulerState class __A ( A , A ): '''simple docstring''' __lowerCamelCase : Dict = [e.name for e in FlaxKarrasDiffusionSchedulers] __lowerCamelCase : jnp.dtype @property def a__ (self ) -> List[str]: """simple docstring""" return True @register_to_config def __init__(self , A = 1_000 , A = 0.0001 , A = 0.02 , A = "linear" , A = None , A = "fixed_small" , A = True , A = "epsilon" , A = jnp.floataa , ) -> Union[str, Any]: """simple docstring""" _a = dtype def a__ (self , A = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: _a = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _a = jnp.array(1.0 , dtype=self.dtype ) _a = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=A , init_noise_sigma=A , timesteps=A , ) def a__ (self , A , A , A = None ) -> jnp.ndarray: """simple docstring""" return sample def a__ (self , A , A , A = () ) -> DDPMSchedulerState: """simple docstring""" _a = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _a = (jnp.arange(0 , A ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=A , timesteps=A , ) def a__ (self , A , A , A=None , A=None ) -> int: """simple docstring""" _a = state.common.alphas_cumprod[t] _a = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _a = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _a = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _a = jnp.clip(A , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _a = jnp.log(jnp.clip(A , a_min=1E-20 ) ) elif variance_type == "fixed_large": _a = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _a = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _a = variance _a = state.common.betas[t] _a = (predicted_variance + 1) / 2 _a = frac * max_log + (1 - frac) * min_log return variance def a__ (self , A , A , A , A , A = None , A = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" _a = timestep if key is None: _a = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _a , _a = jnp.split(A , sample.shape[1] , axis=1 ) else: _a = None # 1. compute alphas, betas _a = state.common.alphas_cumprod[t] _a = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _a = 1 - alpha_prod_t _a = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _a = model_output elif self.config.prediction_type == "v_prediction": _a = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: _a = jnp.clip(A , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _a = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _a = jax.random.split(A , num=1 ) _a = jax.random.normal(A , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(A , A , predicted_variance=A ) ** 0.5) * noise _a = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _a = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=A , state=A ) def a__ (self , A , A , A , A , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , A , A , A ) def a__ (self , A , A , A , A , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , A , A , A ) def __len__(self ) -> Tuple: """simple docstring""" return self.config.num_train_timesteps
211
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _lowercase : """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Dict=7 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[int]=99 , UpperCamelCase__ : str=32 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : int=4 , UpperCamelCase__ : str=37 , UpperCamelCase__ : Dict="gelu" , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Optional[Any]=512 , UpperCamelCase__ : Optional[int]=16 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Tuple="None" , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : int=4 , UpperCamelCase__ : Any=None , ) -> List[Any]: '''simple docstring''' __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =relative_attention __UpperCamelCase =position_biased_input __UpperCamelCase =pos_att_type __UpperCamelCase =scope def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCamelCase__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : int ) -> Dict: '''simple docstring''' __UpperCamelCase =TFDebertaVaModel(config=UpperCamelCase__ ) __UpperCamelCase ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(UpperCamelCase__ ) __UpperCamelCase =model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ) -> Any: '''simple docstring''' __UpperCamelCase =TFDebertaVaForMaskedLM(config=UpperCamelCase__ ) __UpperCamelCase ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCamelCase =model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ) -> Any: '''simple docstring''' __UpperCamelCase =self.num_labels __UpperCamelCase =TFDebertaVaForSequenceClassification(config=UpperCamelCase__ ) __UpperCamelCase ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCamelCase =model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ) -> List[Any]: '''simple docstring''' __UpperCamelCase =self.num_labels __UpperCamelCase =TFDebertaVaForTokenClassification(config=UpperCamelCase__ ) __UpperCamelCase ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCamelCase =model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : str , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: '''simple docstring''' __UpperCamelCase =TFDebertaVaForQuestionAnswering(config=UpperCamelCase__ ) __UpperCamelCase ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCamelCase =model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : str ) -> List[str]: '''simple docstring''' __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _lowercase ( __a , __a , unittest.TestCase ): """simple docstring""" lowercase__ = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowercase__ = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowercase__ = False lowercase__ = False def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' __UpperCamelCase =TFDebertaVaModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase_ ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : int ) -> List[str]: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> str: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def UpperCAmelCase_ ( self : str ) -> str: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> str: '''simple docstring''' __UpperCamelCase =TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class _lowercase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' pass @slow def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) __UpperCamelCase =tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __UpperCamelCase =tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] __UpperCamelCase =tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1E-4 )
364
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowercase ( __a ): """simple docstring""" lowercase__ = 42 class _lowercase ( __a , __a ): """simple docstring""" @register_to_config def __init__( self : List[Any] , UpperCamelCase__ : int = 32 , UpperCamelCase__ : int = 64 , UpperCamelCase__ : int = 20 , UpperCamelCase__ : int = 768 , UpperCamelCase__ : str=77 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : str = "silu" , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[str] = "linear" , UpperCamelCase__ : Optional[str] = "prd" , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , ) -> Any: '''simple docstring''' super().__init__() __UpperCamelCase =num_attention_heads __UpperCamelCase =attention_head_dim __UpperCamelCase =num_attention_heads * attention_head_dim __UpperCamelCase =additional_embeddings __UpperCamelCase =time_embed_dim or inner_dim __UpperCamelCase =embedding_proj_dim or embedding_dim __UpperCamelCase =clip_embed_dim or embedding_dim __UpperCamelCase =Timesteps(UpperCamelCase__ , UpperCamelCase__ , 0 ) __UpperCamelCase =TimestepEmbedding(UpperCamelCase__ , UpperCamelCase__ , out_dim=UpperCamelCase__ , act_fn=UpperCamelCase__ ) __UpperCamelCase =nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) if embedding_proj_norm_type is None: __UpperCamelCase =None elif embedding_proj_norm_type == "layer": __UpperCamelCase =nn.LayerNorm(UpperCamelCase__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __UpperCamelCase =nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) if encoder_hid_proj_type is None: __UpperCamelCase =None elif encoder_hid_proj_type == "linear": __UpperCamelCase =nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __UpperCamelCase =nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase__ ) ) if added_emb_type == "prd": __UpperCamelCase =nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase__ ) ) elif added_emb_type is None: __UpperCamelCase =None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __UpperCamelCase =nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , dropout=UpperCamelCase__ , activation_fn='''gelu''' , attention_bias=UpperCamelCase__ , ) for d in range(UpperCamelCase__ ) ] ) if norm_in_type == "layer": __UpperCamelCase =nn.LayerNorm(UpperCamelCase__ ) elif norm_in_type is None: __UpperCamelCase =None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __UpperCamelCase =nn.LayerNorm(UpperCamelCase__ ) __UpperCamelCase =nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __UpperCamelCase =causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , UpperCamelCase__ , persistent=UpperCamelCase__ ) __UpperCamelCase =nn.Parameter(torch.zeros(1 , UpperCamelCase__ ) ) __UpperCamelCase =nn.Parameter(torch.zeros(1 , UpperCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase_ ( self : Any ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __UpperCamelCase ={} def fn_recursive_add_processors(UpperCamelCase__ : str , UpperCamelCase__ : torch.nn.Module , UpperCamelCase__ : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase__ , '''set_processor''' ): __UpperCamelCase =module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase__ , UpperCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return processors def UpperCAmelCase_ ( self : int , UpperCamelCase__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =len(self.attn_processors.keys() ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase__ : str , UpperCamelCase__ : torch.nn.Module , UpperCamelCase__ : int ): if hasattr(UpperCamelCase__ , '''set_processor''' ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): module.set_processor(UpperCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase__ , UpperCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[torch.Tensor, float, int] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.BoolTensor] = None , UpperCamelCase__ : bool = True , ) -> Tuple: '''simple docstring''' __UpperCamelCase =hidden_states.shape[0] __UpperCamelCase =timestep if not torch.is_tensor(UpperCamelCase__ ): __UpperCamelCase =torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase__ ) and len(timesteps.shape ) == 0: __UpperCamelCase =timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCamelCase =timesteps * torch.ones(UpperCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) __UpperCamelCase =self.time_proj(UpperCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __UpperCamelCase =timesteps_projected.to(dtype=self.dtype ) __UpperCamelCase =self.time_embedding(UpperCamelCase__ ) if self.embedding_proj_norm is not None: __UpperCamelCase =self.embedding_proj_norm(UpperCamelCase__ ) __UpperCamelCase =self.embedding_proj(UpperCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __UpperCamelCase =self.encoder_hidden_states_proj(UpperCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) __UpperCamelCase =self.proj_in(UpperCamelCase__ ) __UpperCamelCase =self.positional_embedding.to(hidden_states.dtype ) __UpperCamelCase =[] __UpperCamelCase =0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __UpperCamelCase =proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __UpperCamelCase =hidden_states[:, None, :] __UpperCamelCase =additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __UpperCamelCase =self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase__ , -1 , -1 ) additional_embeds.append(UpperCamelCase__ ) __UpperCamelCase =torch.cat( UpperCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __UpperCamelCase =additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __UpperCamelCase =F.pad( UpperCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __UpperCamelCase =hidden_states + positional_embeddings if attention_mask is not None: __UpperCamelCase =(1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __UpperCamelCase =F.pad(UpperCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) __UpperCamelCase =(attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __UpperCamelCase =attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __UpperCamelCase =self.norm_in(UpperCamelCase__ ) for block in self.transformer_blocks: __UpperCamelCase =block(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) __UpperCamelCase =self.norm_out(UpperCamelCase__ ) if self.prd_embedding is not None: __UpperCamelCase =hidden_states[:, -1] else: __UpperCamelCase =hidden_states[:, additional_embeddings_len:] __UpperCamelCase =self.proj_to_clip_embeddings(UpperCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase__ ) def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : int ) -> List[Any]: '''simple docstring''' __UpperCamelCase =(prior_latents * self.clip_std) + self.clip_mean return prior_latents
85
0
'''simple docstring''' import argparse a_ : Union[str, Any] = """docs/source/_static/js/custom.js""" def __snake_case ( UpperCAmelCase_ : Dict ): with open(UpperCAmelCase_ , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase_ = f.readlines() lowerCamelCase_ = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 lowerCamelCase_ = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(UpperCAmelCase_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": a_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") a_ : Optional[int] = parser.parse_args() update_custom_js(args.version)
55
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a_ : int = logging.get_logger(__name__) class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = ["input_features", "attention_mask"] def __init__( self , UpperCamelCase=80 , UpperCamelCase=1_6000 , UpperCamelCase=80 , UpperCamelCase=0.0 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , **UpperCamelCase , ): """simple docstring""" super().__init__(feature_size=UpperCamelCase , sampling_rate=UpperCamelCase , padding_value=UpperCamelCase , **UpperCamelCase ) lowerCamelCase_ = num_mel_bins lowerCamelCase_ = do_ceptral_normalize lowerCamelCase_ = normalize_means lowerCamelCase_ = normalize_vars lowerCamelCase_ = True def snake_case ( self , UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowerCamelCase_ = torch.from_numpy(UpperCamelCase ).unsqueeze(0 ) lowerCamelCase_ = ta_kaldi.fbank(UpperCamelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = 0.0 , ): """simple docstring""" # make sure we normalize float32 arrays if normalize_means: lowerCamelCase_ = x[:input_length].mean(axis=0 ) lowerCamelCase_ = np.subtract(UpperCamelCase , UpperCamelCase ) if normalize_vars: lowerCamelCase_ = x[:input_length].std(axis=0 ) lowerCamelCase_ = np.divide(UpperCamelCase , UpperCamelCase ) if input_length < x.shape[0]: lowerCamelCase_ = padding_value # make sure array is in float32 lowerCamelCase_ = x.astype(np.floataa ) return x def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCamelCase , UpperCamelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCamelCase , UpperCamelCase ) ] def __call__( self , UpperCamelCase , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCamelCase_ = isinstance(UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCamelCase_ = is_batched_numpy or ( isinstance(UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase , np.ndarray ): lowerCamelCase_ = np.asarray(UpperCamelCase , dtype=np.floataa ) elif isinstance(UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase_ = [raw_speech] # extract fbank features lowerCamelCase_ = [self._extract_fbank_features(UpperCamelCase ) for waveform in raw_speech] # convert into correct format for padding lowerCamelCase_ = BatchFeature({"input_features": features} ) lowerCamelCase_ = self.pad( UpperCamelCase , padding=UpperCamelCase , max_length=UpperCamelCase , truncation=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , **UpperCamelCase , ) # make sure list is in array format lowerCamelCase_ = padded_inputs.get("input_features" ) if isinstance(input_features[0] , UpperCamelCase ): lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.floataa ) for feature in input_features] lowerCamelCase_ = padded_inputs.get("attention_mask" ) if attention_mask is not None: lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowerCamelCase_ = ( np.array(UpperCamelCase , dtype=np.intaa ) if self._get_padding_strategies(UpperCamelCase , max_length=UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCamelCase_ = self.normalize( padded_inputs["input_features"] , attention_mask=UpperCamelCase ) if return_tensors is not None: lowerCamelCase_ = padded_inputs.convert_to_tensors(UpperCamelCase ) return padded_inputs
55
1
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : int , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple ) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
139
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def snake_case_ (__A : Optional[Any] ) -> Tuple: __lowerCAmelCase : Optional[int] = SwinConfig() __lowerCAmelCase : List[Any] = swin_name.split("""_""" ) __lowerCAmelCase : Dict = name_split[1] __lowerCAmelCase : Optional[Any] = int(name_split[4] ) __lowerCAmelCase : List[Any] = int(name_split[3][-1] ) if model_size == "tiny": __lowerCAmelCase : List[Any] = 9_6 __lowerCAmelCase : List[Any] = (2, 2, 6, 2) __lowerCAmelCase : Optional[Any] = (3, 6, 1_2, 2_4) elif model_size == "small": __lowerCAmelCase : List[Any] = 9_6 __lowerCAmelCase : Optional[int] = (2, 2, 1_8, 2) __lowerCAmelCase : Optional[int] = (3, 6, 1_2, 2_4) elif model_size == "base": __lowerCAmelCase : List[Any] = 1_2_8 __lowerCAmelCase : Tuple = (2, 2, 1_8, 2) __lowerCAmelCase : int = (4, 8, 1_6, 3_2) else: __lowerCAmelCase : List[Any] = 1_9_2 __lowerCAmelCase : List[str] = (2, 2, 1_8, 2) __lowerCAmelCase : int = (6, 1_2, 2_4, 4_8) if "in22k" in swin_name: __lowerCAmelCase : Dict = 2_1_8_4_1 else: __lowerCAmelCase : Optional[Any] = 1_0_0_0 __lowerCAmelCase : Union[str, Any] = """huggingface/label-files""" __lowerCAmelCase : Any = """imagenet-1k-id2label.json""" __lowerCAmelCase : Any = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase : int = {int(__A ): v for k, v in idalabel.items()} __lowerCAmelCase : str = idalabel __lowerCAmelCase : int = {v: k for k, v in idalabel.items()} __lowerCAmelCase : Optional[Any] = img_size __lowerCAmelCase : Optional[Any] = num_classes __lowerCAmelCase : Tuple = embed_dim __lowerCAmelCase : Union[str, Any] = depths __lowerCAmelCase : Optional[Any] = num_heads __lowerCAmelCase : Tuple = window_size return config def snake_case_ (__A : int ) -> Optional[Any]: if "patch_embed.proj" in name: __lowerCAmelCase : Optional[Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase : List[Any] = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __lowerCAmelCase : int = """encoder.""" + name if "attn.proj" in name: __lowerCAmelCase : Tuple = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __lowerCAmelCase : Optional[Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __lowerCAmelCase : Dict = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase : List[str] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase : str = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": __lowerCAmelCase : Dict = """layernorm.weight""" if name == "norm.bias": __lowerCAmelCase : Optional[int] = """layernorm.bias""" if "head" in name: __lowerCAmelCase : int = name.replace("""head""" , """classifier""" ) else: __lowerCAmelCase : List[str] = """swin.""" + name return name def snake_case_ (__A : List[Any] , __A : str ) -> int: for key in orig_state_dict.copy().keys(): __lowerCAmelCase : Tuple = orig_state_dict.pop(__A ) if "mask" in key: continue elif "qkv" in key: __lowerCAmelCase : Any = key.split(""".""" ) __lowerCAmelCase : Union[str, Any] = int(key_split[1] ) __lowerCAmelCase : Optional[Any] = int(key_split[3] ) __lowerCAmelCase : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowerCAmelCase : List[str] = val[:dim, :] __lowerCAmelCase : List[Any] = val[ dim : dim * 2, : ] __lowerCAmelCase : str = val[-dim:, :] else: __lowerCAmelCase : str = val[ :dim ] __lowerCAmelCase : int = val[ dim : dim * 2 ] __lowerCAmelCase : int = val[ -dim: ] else: __lowerCAmelCase : Tuple = val return orig_state_dict def snake_case_ (__A : Union[str, Any] , __A : int ) -> Any: __lowerCAmelCase : List[Any] = timm.create_model(__A , pretrained=__A ) timm_model.eval() __lowerCAmelCase : str = get_swin_config(__A ) __lowerCAmelCase : Any = SwinForImageClassification(__A ) model.eval() __lowerCAmelCase : str = convert_state_dict(timm_model.state_dict() , __A ) model.load_state_dict(__A ) __lowerCAmelCase : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase : Any = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) __lowerCAmelCase : List[Any] = Image.open(requests.get(__A , stream=__A ).raw ) __lowerCAmelCase : List[str] = image_processor(images=__A , return_tensors="""pt""" ) __lowerCAmelCase : Tuple = timm_model(inputs["""pixel_values"""] ) __lowerCAmelCase : Dict = model(**__A ).logits assert torch.allclose(__A , __A , atol=1e-3 ) print(f'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __UpperCAmelCase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
139
1
"""simple docstring""" from __future__ import annotations class _A : """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : int = 0): a : Tuple = key def __snake_case ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) a : Dict = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__UpperCAmelCase) ^ key) for ch in content] def __snake_case ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : int): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) a : Optional[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__UpperCAmelCase) ^ key) for ch in content] def __snake_case ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : int = 0): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) a : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned a : Any = "" for ch in content: ans += chr(ord(__UpperCAmelCase) ^ key) return ans def __snake_case ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int = 0): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) a : Dict = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned a : str = "" for ch in content: ans += chr(ord(__UpperCAmelCase) ^ key) return ans def __snake_case ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : int = 0): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) try: with open(__UpperCAmelCase) as fin, open("encrypt.out" , "w+") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__UpperCAmelCase , __UpperCAmelCase)) except OSError: return False return True def __snake_case ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : int): assert isinstance(__UpperCAmelCase , __UpperCAmelCase) and isinstance(__UpperCAmelCase , __UpperCAmelCase) try: with open(__UpperCAmelCase) as fin, open("decrypt.out" , "w+") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__UpperCAmelCase , __UpperCAmelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
40
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
239
0
"""simple docstring""" from __future__ import annotations def _UpperCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ) -> List[Any]: # noqa: E741 while r - l > 1: _snake_case = (l + r) // 2 if v[m] >= key: _snake_case = m else: _snake_case = m # noqa: E741 return r def _UpperCAmelCase ( __lowerCamelCase : list[int] ) -> int: if len(__lowerCamelCase ) == 0: return 0 _snake_case = [0] * len(__lowerCamelCase ) _snake_case = 1 _snake_case = v[0] for i in range(1 , len(__lowerCamelCase ) ): if v[i] < tail[0]: _snake_case = v[i] elif v[i] > tail[length - 1]: _snake_case = v[i] length += 1 else: _snake_case = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
40
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( A_ ): def __init__( self : str , *_lowerCamelCase : Tuple , **_lowerCamelCase : Optional[int] ): warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
40
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a :List[str] = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :Tuple = ["ConvNextFeatureExtractor"] a :str = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :Dict = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :Optional[Any] = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys a :Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
132
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Generator[tuple[str, ...], None, None]: SCREAMING_SNAKE_CASE__ : List[Any] = iter(__lowerCAmelCase ) while True: SCREAMING_SNAKE_CASE__ : Optional[int] = tuple(itertools.islice(__lowerCAmelCase , __lowerCAmelCase ) ) if not chunk: return yield chunk def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : List[Any] = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) SCREAMING_SNAKE_CASE__ : Tuple = """""" if len(__lowerCAmelCase ) < 2: return dirty for i in range(len(__lowerCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__lowerCAmelCase ) & 1: clean += "X" return clean def _lowercase ( __lowerCAmelCase ) -> list[str]: # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) SCREAMING_SNAKE_CASE__ : str = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler SCREAMING_SNAKE_CASE__ : Optional[int] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__lowerCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__lowerCAmelCase ) return table def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Tuple = generate_table(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = prepare_input(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = divmod(table.index(__lowerCAmelCase ) , 5 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : str = generate_table(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = divmod(table.index(__lowerCAmelCase ) , 5 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
132
1
"""simple docstring""" from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( A_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Dict = str(A_ ) lowerCAmelCase__ : Optional[Any] = [n] for i in range(1 , len(A_ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def __SCREAMING_SNAKE_CASE ( A_ ): if len(str(A_ ) ) > 3: if not is_prime(int(str(A_ )[-3:] ) ) or not is_prime(int(str(A_ )[:3] ) ): return False return True def __SCREAMING_SNAKE_CASE ( A_ = 11 ): lowerCAmelCase__ : list[int] = [] lowerCAmelCase__ : Optional[Any] = 13 while len(A_ ) != count: if validate(A_ ): lowerCAmelCase__ : int = list_truncated_nums(A_ ) if all(is_prime(A_ ) for i in list_nums ): list_truncated_primes.append(A_ ) num += 2 return list_truncated_primes def __SCREAMING_SNAKE_CASE ( ): return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(1_1)) = }''')
74
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __UpperCamelCase : Any = NewType('''DataClass''', Any) __UpperCamelCase : List[str] = NewType('''DataClassType''', Any) def __SCREAMING_SNAKE_CASE ( A_ ): if isinstance(A_ , A_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : int = {str(A_ ): choice for choice in choices} return lambda A_ : str_to_choice.get(A_ , A_ ) def __SCREAMING_SNAKE_CASE ( *, A_ = None , A_ = None , A_ = dataclasses.MISSING , A_ = dataclasses.MISSING , A_ = None , **A_ , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCAmelCase__ : Dict = {} if aliases is not None: lowerCAmelCase__ : int = aliases if help is not None: lowerCAmelCase__ : Optional[int] = help return dataclasses.field(metadata=A_ , default=A_ , default_factory=A_ , **A_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 42 def __init__( self : Dict ,lowercase_ : Union[DataClassType, Iterable[DataClassType]] ,**lowercase_ : str ): # To make the default appear when using --help if "formatter_class" not in kwargs: lowerCAmelCase__ : Tuple = ArgumentDefaultsHelpFormatter super().__init__(**lowercase_ ) if dataclasses.is_dataclass(lowercase_ ): lowerCAmelCase__ : Tuple = [dataclass_types] lowerCAmelCase__ : List[str] = list(lowercase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowercase_ ) @staticmethod def __lowerCAmelCase ( lowercase_ : ArgumentParser ,lowercase_ : dataclasses.Field ): lowerCAmelCase__ : Dict = F'--{field.name}' lowerCAmelCase__ : List[str] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,lowercase_ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) lowerCAmelCase__ : List[str] = kwargs.pop('''aliases''' ,[] ) if isinstance(lowercase_ ,lowercase_ ): lowerCAmelCase__ : Optional[Any] = [aliases] lowerCAmelCase__ : Union[str, Any] = getattr(field.type ,'''__origin__''' ,field.type ) if origin_type is Union or (hasattr(lowercase_ ,'''UnionType''' ) and isinstance(lowercase_ ,types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowercase_ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F' Problem encountered in field \'{field.name}\'.' ) if type(lowercase_ ) not in field.type.__args__: # filter `str` in Union lowerCAmelCase__ : int = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCAmelCase__ : List[str] = getattr(field.type ,'''__origin__''' ,field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCAmelCase__ : Optional[int] = ( field.type.__args__[0] if isinstance(lowercase_ ,field.type.__args__[1] ) else field.type.__args__[1] ) lowerCAmelCase__ : Optional[Any] = getattr(field.type ,'''__origin__''' ,field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCAmelCase__ : List[Any] = {} if origin_type is Literal or (isinstance(field.type ,lowercase_ ) and issubclass(field.type ,lowercase_ )): if origin_type is Literal: lowerCAmelCase__ : Union[str, Any] = field.type.__args__ else: lowerCAmelCase__ : Optional[Any] = [x.value for x in field.type] lowerCAmelCase__ : List[str] = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: lowerCAmelCase__ : int = field.default else: lowerCAmelCase__ : Any = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCAmelCase__ : List[Any] = copy(lowercase_ ) # Hack because type=bool in argparse does not behave as we want. lowerCAmelCase__ : Tuple = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCAmelCase__ : List[Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCAmelCase__ : Tuple = default # This tells argparse we accept 0 or 1 value after --field_name lowerCAmelCase__ : Union[str, Any] = '''?''' # This is the value that will get picked if we do --field_name (without value) lowerCAmelCase__ : Any = True elif isclass(lowercase_ ) and issubclass(lowercase_ ,lowercase_ ): lowerCAmelCase__ : List[str] = field.type.__args__[0] lowerCAmelCase__ : str = '''+''' if field.default_factory is not dataclasses.MISSING: lowerCAmelCase__ : Dict = field.default_factory() elif field.default is dataclasses.MISSING: lowerCAmelCase__ : str = True else: lowerCAmelCase__ : List[Any] = field.type if field.default is not dataclasses.MISSING: lowerCAmelCase__ : str = field.default elif field.default_factory is not dataclasses.MISSING: lowerCAmelCase__ : Any = field.default_factory() else: lowerCAmelCase__ : Optional[Any] = True parser.add_argument(lowercase_ ,*lowercase_ ,**lowercase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCAmelCase__ : Optional[Any] = False parser.add_argument(F'--no_{field.name}' ,action='''store_false''' ,dest=field.name ,**lowercase_ ) def __lowerCAmelCase ( self : str ,lowercase_ : DataClassType ): if hasattr(lowercase_ ,'''_argument_group_name''' ): lowerCAmelCase__ : Optional[int] = self.add_argument_group(dtype._argument_group_name ) else: lowerCAmelCase__ : List[str] = self try: lowerCAmelCase__ : Dict[str, type] = get_type_hints(lowercase_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(lowercase_ ): lowerCAmelCase__ : int = '''.'''.join(map(lowercase_ ,sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(lowercase_ ): if not field.init: continue lowerCAmelCase__ : Any = type_hints[field.name] self._parse_dataclass_field(lowercase_ ,lowercase_ ) def __lowerCAmelCase ( self : Any ,lowercase_ : Optional[Any]=None ,lowercase_ : str=False ,lowercase_ : str=True ,lowercase_ : Any=None ,lowercase_ : List[str]=None ,): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowerCAmelCase__ : int = [] if args_filename: args_files.append(Path(lowercase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCAmelCase__ : List[str] = ArgumentParser() args_file_parser.add_argument(lowercase_ ,type=lowercase_ ,action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = args_file_parser.parse_known_args(args=lowercase_ ) lowerCAmelCase__ : int = vars(lowercase_ ).get(args_file_flag.lstrip('''-''' ) ,lowercase_ ) if cmd_args_file_paths: args_files.extend([Path(lowercase_ ) for p in cmd_args_file_paths] ) lowerCAmelCase__ : Tuple = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCAmelCase__ : Dict = file_args + args if args is not None else file_args + sys.argv[1:] lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = self.parse_known_args(args=lowercase_ ) lowerCAmelCase__ : Optional[Any] = [] for dtype in self.dataclass_types: lowerCAmelCase__ : int = {f.name for f in dataclasses.fields(lowercase_ ) if f.init} lowerCAmelCase__ : int = {k: v for k, v in vars(lowercase_ ).items() if k in keys} for k in keys: delattr(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Optional[Any] = dtype(**lowercase_ ) outputs.append(lowercase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowercase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def __lowerCAmelCase ( self : Any ,lowercase_ : Dict[str, Any] ,lowercase_ : bool = False ): lowerCAmelCase__ : List[Any] = set(args.keys() ) lowerCAmelCase__ : Any = [] for dtype in self.dataclass_types: lowerCAmelCase__ : Optional[Any] = {f.name for f in dataclasses.fields(lowercase_ ) if f.init} lowerCAmelCase__ : Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowerCAmelCase__ : Union[str, Any] = dtype(**lowercase_ ) outputs.append(lowercase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(lowercase_ )}' ) return tuple(lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : str ,lowercase_ : bool = False ): with open(Path(lowercase_ ) ,encoding='''utf-8''' ) as open_json_file: lowerCAmelCase__ : Union[str, Any] = json.loads(open_json_file.read() ) lowerCAmelCase__ : List[str] = self.parse_dict(lowercase_ ,allow_extra_keys=lowercase_ ) return tuple(lowercase_ ) def __lowerCAmelCase ( self : Dict ,lowercase_ : str ,lowercase_ : bool = False ): lowerCAmelCase__ : Tuple = self.parse_dict(yaml.safe_load(Path(lowercase_ ).read_text() ) ,allow_extra_keys=lowercase_ ) return tuple(lowercase_ )
74
1
from math import ceil def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] = 1001 ) -> int: __lowercase = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __lowercase = 2 * i + 1 __lowercase = 2 * i __lowercase = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: SCREAMING_SNAKE_CASE__ = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
325
'''simple docstring''' from __future__ import annotations def a__ ( a__ , a__ , a__ ): """simple docstring""" if len(a__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(a__ ) or left < -len(a__ ) or right >= len(a__ ) or right < -len(a__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __SCREAMING_SNAKE_CASE = (left + right) >> 1 # the middle __SCREAMING_SNAKE_CASE = find_max(a__ , a__ , a__ ) # find max in range[left, mid] __SCREAMING_SNAKE_CASE = find_max(a__ , mid + 1 , a__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
267
0
class UpperCAmelCase : def __init__(self : List[Any] , snake_case__ : str = "" , snake_case__ : bool = False ) -> None: '''simple docstring''' snake_case : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word snake_case : Optional[int] = is_leaf snake_case : str = prefix def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : str ) -> tuple[str, str, str]: '''simple docstring''' snake_case : Optional[int] = 0 for q, w in zip(self.prefix , snake_case__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : str ) -> None: '''simple docstring''' if self.prefix == word: snake_case : List[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: snake_case : Tuple = RadixNode(prefix=snake_case__ , is_leaf=snake_case__ ) else: snake_case : str = self.nodes[word[0]] snake_case : Optional[Any] = incoming_node.match( snake_case__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(snake_case__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: snake_case : Optional[Any] = remaining_prefix snake_case : Optional[Any] = self.nodes[matching_string[0]] snake_case : str = RadixNode(snake_case__ , snake_case__ ) snake_case : List[str] = aux_node if remaining_word == "": snake_case : int = True else: self.nodes[matching_string[0]].insert(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : str ) -> bool: '''simple docstring''' snake_case : Optional[int] = self.nodes.get(word[0] , snake_case__ ) if not incoming_node: return False else: snake_case : Dict = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> bool: '''simple docstring''' snake_case : Tuple = self.nodes.get(word[0] , snake_case__ ) if not incoming_node: return False else: snake_case : str = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(snake_case__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: snake_case : List[str] = list(self.nodes.values() )[0] snake_case : int = merging_node.is_leaf self.prefix += merging_node.prefix snake_case : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: snake_case : Tuple = False # If there is 1 edge, we merge it with its child else: snake_case : List[str] = list(incoming_node.nodes.values() )[0] snake_case : Any = merging_node.is_leaf incoming_node.prefix += merging_node.prefix snake_case : Any = merging_node.nodes return True def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): snake_case : Tuple = "banana bananas bandana band apple all beast".split() snake_case : Union[str, Any] = RadixNode() root.insert_many(__lowerCamelCase ) assert all(root.find(__lowerCamelCase ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): snake_case : List[str] = RadixNode() snake_case : List[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(__lowerCamelCase ) print("Words:" , __lowerCamelCase ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
352
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case : Tuple = ksize + 1 snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center snake_case : int = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : List[str] = theta / 180 * np.pi snake_case : List[Any] = np.cos(_theta ) snake_case : Dict = np.sin(_theta ) # get kernel x snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y snake_case : str = -sin_theta * px + cos_theta * py # fill kernel snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase = out / out.max() * 2_55 __lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
10
0
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class lowerCamelCase__ ( lowerCamelCase_ ): def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) self.check_model_type(SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case , snake_case : Optional[Any] = {}, {} if padding is not None: snake_case : Optional[Any] = padding if truncation is not None: snake_case : Union[str, Any] = truncation if top_k is not None: snake_case : str = top_k return preprocess_params, {}, postprocess_params def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , (Image.Image, str) ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case : Tuple = {"image": image, "question": question} else: snake_case : List[str] = image snake_case : Optional[int] = super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return results def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): """simple docstring""" snake_case : List[Any] = load_image(inputs["image"] ) snake_case : Tuple = self.tokenizer( inputs["question"] , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(SCREAMING_SNAKE_CASE ) return model_inputs def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[Any] = self.model(**SCREAMING_SNAKE_CASE ) return model_outputs def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ): """simple docstring""" if top_k > self.model.config.num_labels: snake_case : List[Any] = self.model.config.num_labels if self.framework == "pt": snake_case : Optional[int] = model_outputs.logits.sigmoid()[0] snake_case , snake_case : Any = probs.topk(SCREAMING_SNAKE_CASE ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) snake_case : Optional[Any] = scores.tolist() snake_case : List[Any] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
148
"""simple docstring""" from functools import lru_cache @lru_cache def UpperCamelCase__ ( lowercase__ : int ): if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
148
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : Dict = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = 'conditional_detr' _snake_case : Tuple = ['past_key_values'] _snake_case : List[Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : Optional[Any]=300 , lowerCAmelCase__ : int=6 , lowerCAmelCase__ : Optional[Any]=2048 , lowerCAmelCase__ : int=8 , lowerCAmelCase__ : Union[str, Any]=6 , lowerCAmelCase__ : int=2048 , lowerCAmelCase__ : int=8 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str="relu" , lowerCAmelCase__ : Any=256 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Optional[Any]="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : List[str]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=1 , lowerCAmelCase__ : Dict=1 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : str=5 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : int=0.25 , **lowerCAmelCase__ : Any , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = backbone_config.get('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(lowerCAmelCase__ ) _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = cls_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def snake_case__ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' return self.d_model def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Union[str, Any] = version.parse('1.11' ) @property def snake_case__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def snake_case__ ( self : Optional[Any] ) -> float: '''simple docstring''' return 1e-5 @property def snake_case__ ( self : Optional[int] ) -> int: '''simple docstring''' return 12
287
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() def snake_case__ ( self : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase , _UpperCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase = controlnet_params _UpperCamelCase = '''bird''' _UpperCamelCase = jax.device_count() _UpperCamelCase = pipe.prepare_text_inputs([prompts] * num_samples ) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) _UpperCamelCase = pipe.prepare_image_inputs([canny_image] * num_samples ) _UpperCamelCase = jax.random.PRNGKey(0 ) _UpperCamelCase = jax.random.split(lowerCAmelCase__ , jax.device_count() ) _UpperCamelCase = replicate(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _UpperCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCamelCase = images[0, 253:256, 253:256, -1] _UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase , _UpperCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase = controlnet_params _UpperCamelCase = '''Chef in the kitchen''' _UpperCamelCase = jax.device_count() _UpperCamelCase = pipe.prepare_text_inputs([prompts] * num_samples ) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) _UpperCamelCase = pipe.prepare_image_inputs([pose_image] * num_samples ) _UpperCamelCase = jax.random.PRNGKey(0 ) _UpperCamelCase = jax.random.split(lowerCAmelCase__ , jax.device_count() ) _UpperCamelCase = replicate(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _UpperCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCamelCase = images[0, 253:256, 253:256, -1] _UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
287
1
__A : str = "Tobias Carryer" from time import time class A_ : def __init__( self , _A , _A , _A , _A=int(time() ) ): # noqa: B008 '''simple docstring''' UpperCAmelCase = multiplier UpperCAmelCase = increment UpperCAmelCase = modulo UpperCAmelCase = seed def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __A : Optional[int] = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
273
from datetime import datetime import requests def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> bytes: '''simple docstring''' UpperCAmelCase = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' UpperCAmelCase = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(UpperCamelCase__ ).content if __name__ == "__main__": __A : Union[str, Any] = input("Enter Video/IGTV url: ").strip() __A : Tuple = F'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F'Done. Video saved to disk as {file_name}.')
273
1
UpperCAmelCase = """\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n""" UpperCAmelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
365
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = StableDiffusionInpaintPipeline __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case = frozenset([] ) def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) snake_case_ = CLIPTextModel(_UpperCAmelCase ) snake_case_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) snake_case_ = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_UpperCAmelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCAmelCase ) else: snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self ): snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**_UpperCAmelCase ) snake_case_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = self.get_dummy_inputs(_UpperCAmelCase ) snake_case_ = sd_pipe(**_UpperCAmelCase ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) snake_case_ = '''stabilityai/stable-diffusion-2-inpainting''' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) snake_case_ = '''stabilityai/stable-diffusion-2-inpainting''' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase__ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) snake_case_ = '''stabilityai/stable-diffusion-2-inpainting''' snake_case_ = PNDMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , scheduler=_UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='''np''' , ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
267
0
'''simple docstring''' import re def SCREAMING_SNAKE_CASE__ ( __A ) -> str: if len(re.findall('[ATCG]' , __A ) ) != len(__A ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
42
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowercase : Optional[Any] = False class __UpperCAmelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): """simple docstring""" _snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = 'A painting of a squirrel eating a burger ' _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) _snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = generator.manual_seed(0 ) _snake_case = pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCamelCase ( self ): """simple docstring""" _snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = 'A painting of a squirrel eating a burger ' _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images _snake_case = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) _snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
42
1
from typing import Any def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): if not input_list: return [] __lowerCamelCase : int = [input_list.count(SCREAMING_SNAKE_CASE__ ) for value in input_list] __lowerCamelCase : Union[str, Any] = max(SCREAMING_SNAKE_CASE__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(SCREAMING_SNAKE_CASE__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
370
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowercase_ = 5_0_0_0_0 lowercase_ = 5_0_0_0 lowercase_ ,lowercase_ = os.path.split(__file__) lowercase_ = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for i in range(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = dataset[i] @get_duration def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[Any] = dataset[i : i + batch_size] @get_duration def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): with dataset.formatted_as(type=SCREAMING_SNAKE_CASE__ ): for i in range(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = dataset[i] @get_duration def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): with dataset.formatted_as(type=SCREAMING_SNAKE_CASE__ ): for i in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : int = dataset[i : i + batch_size] def UpperCamelCase__ ( ): __lowerCamelCase : Union[str, Any] = {'num examples': SPEED_TEST_N_EXAMPLES} __lowerCamelCase : Optional[Any] = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}), ] __lowerCamelCase : Any = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) __lowerCamelCase : Optional[int] = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) __lowerCamelCase : str = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__ , 'dataset.arrow' ) , SCREAMING_SNAKE_CASE__ , num_examples=SCREAMING_SNAKE_CASE__ , seq_shapes={'list': (100,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase : Optional[int] = func(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) print('shuffling dataset' ) __lowerCamelCase : str = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase : int = func( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
194
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> list: if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence lowerCAmelCase__ : List[Any] = gray_code_sequence_string(__lowerCAmelCase ) # # convert them to integers for i in range(len(__lowerCAmelCase ) ): lowerCAmelCase__ : Union[str, Any] = int(sequence[i] , 2 ) return sequence def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> list: if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowerCAmelCase__ : Any = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowerCAmelCase__ : Union[str, Any] = gray_code_sequence_string(bit_count - 1 ) lowerCAmelCase__ : Dict = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowerCAmelCase__ : Optional[int] = '0' + smaller_sequence[i] sequence.append(__lowerCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowerCAmelCase__ : Optional[Any] = '1' + smaller_sequence[i] sequence.append(__lowerCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
212
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = ["image_processor", "tokenizer"] UpperCamelCase__ = "Pix2StructImageProcessor" UpperCamelCase__ = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = False super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 2048 , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , **UpperCAmelCase ) else: # add pixel_values and bbox _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , header_text=UpperCAmelCase , **UpperCAmelCase ) if text is not None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if "attention_mask" in text_encoding: _UpperCAmelCase = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: _UpperCAmelCase = text_encoding.pop('input_ids' ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
39
0
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Union[str, Any] = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' A : Tuple = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' A : Dict = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A (datasets.Metric ): '''simple docstring''' def a_ ( self : Any ) -> Optional[int]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def a_ ( self : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : int = CHRF.CHAR_ORDER , __lowerCAmelCase : int = CHRF.WORD_ORDER , __lowerCAmelCase : int = CHRF.BETA , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , ) -> Dict: """simple docstring""" A__ = len(references[0] ) if any(len(__lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) A__ = [[refs[i] for refs in references] for i in range(__lowerCAmelCase )] A__ = CHRF(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = sb_chrf.corpus_score(__lowerCAmelCase , __lowerCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
276
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( __a :int ) -> int: """simple docstring""" A__ = prime_factors(__a ) if is_square_free(__a ): return -1 if len(__a ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
276
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
34
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class snake_case ( ctypes.Structure ): '''simple docstring''' A_ : List[str] = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def lowerCAmelCase ( ): """simple docstring""" if os.name == "nt": __A = CursorInfo() __A = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase ) ) __A = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def lowerCAmelCase ( ): """simple docstring""" if os.name == "nt": __A = CursorInfo() __A = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase ) ) __A = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def lowerCAmelCase ( ): """simple docstring""" try: hide_cursor() yield finally: show_cursor()
266
0
class __lowerCAmelCase : def __init__(self , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : Any = n snake_case_ : Any = [None] * self.n snake_case_ : Tuple = 0 # index of the first element snake_case_ : str = 0 snake_case_ : List[Any] = 0 def __len__(self ) -> int: '''simple docstring''' return self.size def lowerCamelCase (self ) -> bool: '''simple docstring''' return self.size == 0 def lowerCamelCase (self ) -> Dict: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) snake_case_ : Union[str, Any] = data snake_case_ : Optional[int] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase (self ) -> Any: '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) snake_case_ : Optional[int] = self.array[self.front] snake_case_ : Optional[int] = None snake_case_ : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
365
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : lowerCamelCase_ : Optional[int] = field( default=128, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) lowerCamelCase_ : bool = field( default=_a, metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowerCamelCase_ : bool = field( default=_a, metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) }, ) lowerCamelCase_ : Optional[int] = field( default=_a, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) }, ) lowerCamelCase_ : Optional[int] = field( default=_a, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) }, ) lowerCamelCase_ : Optional[int] = field( default=_a, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) }, ) @dataclass class __lowerCAmelCase : lowerCamelCase_ : str = field( default=_a, metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCamelCase_ : str = field( default=_a, metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) lowerCamelCase_ : Optional[bool] = field( default=_a, metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''}, ) lowerCamelCase_ : bool = field( default=_a, metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''}, ) lowerCamelCase_ : str = field( default='''main''', metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''}, ) lowerCamelCase_ : bool = field( default=_a, metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) }, ) lowerCamelCase_ : bool = field( default=_a, metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''}, ) def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ : List[Any] = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) datasets.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case_ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: snake_case_ : Union[str, Any] = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: snake_case_ : str = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Optional[int] = train_dataset.features['''label'''].names if training_args.do_eval: snake_case_ : Dict = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Tuple = eval_dataset.features['''label'''].names if training_args.do_predict: snake_case_ : int = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Optional[int] = predict_dataset.features['''label'''].names # Labels snake_case_ : int = len(_UpperCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCamelCase , idalabel={str(_UpperCamelCase ): label for i, label in enumerate(_UpperCamelCase )} , labelaid={label: i for i, label in enumerate(_UpperCamelCase )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: snake_case_ : Dict = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case_ : str = False def preprocess_function(_UpperCamelCase ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=_UpperCamelCase , max_length=data_args.max_seq_length , truncation=_UpperCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: snake_case_ : List[Any] = min(len(_UpperCamelCase ) , data_args.max_train_samples ) snake_case_ : int = train_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): snake_case_ : Optional[int] = train_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(_UpperCamelCase ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: snake_case_ : List[str] = min(len(_UpperCamelCase ) , data_args.max_eval_samples ) snake_case_ : List[str] = eval_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): snake_case_ : List[str] = eval_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: snake_case_ : Union[str, Any] = min(len(_UpperCamelCase ) , data_args.max_predict_samples ) snake_case_ : Dict = predict_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): snake_case_ : List[str] = predict_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function snake_case_ : int = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase ): snake_case_ : List[str] = p.predictions[0] if isinstance(p.predictions , _UpperCamelCase ) else p.predictions snake_case_ : Tuple = np.argmax(_UpperCamelCase , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case_ : Optional[int] = default_data_collator elif training_args.fpaa: snake_case_ : Any = DataCollatorWithPadding(_UpperCamelCase , pad_to_multiple_of=8 ) else: snake_case_ : Any = None # Initialize our Trainer snake_case_ : Any = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: snake_case_ : int = None if training_args.resume_from_checkpoint is not None: snake_case_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ : Dict = last_checkpoint snake_case_ : int = trainer.train(resume_from_checkpoint=_UpperCamelCase ) snake_case_ : Union[str, Any] = train_result.metrics snake_case_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCamelCase ) ) snake_case_ : Dict = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , _UpperCamelCase ) trainer.save_metrics('''train''' , _UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case_ : Any = trainer.evaluate(eval_dataset=_UpperCamelCase ) snake_case_ : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCamelCase ) snake_case_ : str = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('''eval''' , _UpperCamelCase ) trainer.save_metrics('''eval''' , _UpperCamelCase ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) snake_case_ , snake_case_ , snake_case_ : Optional[int] = trainer.predict(_UpperCamelCase , metric_key_prefix='''predict''' ) snake_case_ : Union[str, Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_UpperCamelCase ) ) snake_case_ : Optional[int] = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('''predict''' , _UpperCamelCase ) trainer.save_metrics('''predict''' , _UpperCamelCase ) snake_case_ : List[Any] = np.argmax(_UpperCamelCase , axis=1 ) snake_case_ : Optional[Any] = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(_UpperCamelCase , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(_UpperCamelCase ): snake_case_ : List[str] = label_list[item] writer.write(f'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
279
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") lowerCamelCase__ = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A__ : A_ : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'}) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) A_ : Optional[str] = field(default=_lowerCamelCase , metadata={'help': 'A folder containing the training data.'}) A_ : Optional[str] = field(default=_lowerCamelCase , metadata={'help': 'A folder containing the validation data.'}) A_ : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'}) A_ : int = field(default=3_2 , metadata={'help': 'The size of the square patches to use for masking.'}) A_ : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) A_ : Optional[int] = field( default=_lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A_ : Optional[int] = field( default=_lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = {} if self.train_dir is not None: __lowerCAmelCase : Dict = self.train_dir if self.validation_dir is not None: __lowerCAmelCase : Dict = self.validation_dir __lowerCAmelCase : str = data_files if data_files else None @dataclass class A__ : A_ : str = field( default=_lowerCamelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCamelCase)} , ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) A_ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A_ : str = field(default=_lowerCamelCase , metadata={'help': 'Name or path of preprocessor config.'}) A_ : bool = field( default=_lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) A_ : Optional[int] = field( default=_lowerCamelCase , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) A_ : Optional[int] = field( default=_lowerCamelCase , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) A_ : Optional[int] = field( default=_lowerCamelCase , metadata={'help': 'Stride to use for the encoder.'} , ) class A__ : def __init__( self , _SCREAMING_SNAKE_CASE=1_92 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.6 ): __lowerCAmelCase : List[str] = input_size __lowerCAmelCase : str = mask_patch_size __lowerCAmelCase : Tuple = model_patch_size __lowerCAmelCase : int = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) __lowerCAmelCase : str = self.input_size // self.mask_patch_size __lowerCAmelCase : Dict = self.mask_patch_size // self.model_patch_size __lowerCAmelCase : Union[str, Any] = self.rand_size**2 __lowerCAmelCase : Any = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ): __lowerCAmelCase : List[Any] = np.random.permutation(self.token_count )[: self.mask_count] __lowerCAmelCase : Union[str, Any] = np.zeros(self.token_count , dtype=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = 1 __lowerCAmelCase : Any = mask.reshape((self.rand_size, self.rand_size) ) __lowerCAmelCase : int = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Optional[int] = torch.stack([example['pixel_values'] for example in examples] ) __lowerCAmelCase : int = torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim' , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCAmelCase : Dict = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. __lowerCAmelCase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. __lowerCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __lowerCAmelCase : Dict = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _UpperCamelCase ) and data_args.train_val_split > 0.0: __lowerCAmelCase : int = ds['train'].train_test_split(data_args.train_val_split ) __lowerCAmelCase : Optional[Any] = split['train'] __lowerCAmelCase : Dict = split['test'] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase : List[str] = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: __lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(model_args.config_name_or_path , **_UpperCamelCase ) elif model_args.model_name_or_path: __lowerCAmelCase : Dict = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCamelCase ) else: __lowerCAmelCase : Optional[int] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(_UpperCamelCase , 'decoder_type' ): __lowerCAmelCase : List[str] = 'simmim' # adapt config __lowerCAmelCase : List[str] = model_args.image_size if model_args.image_size is not None else config.image_size __lowerCAmelCase : Tuple = model_args.patch_size if model_args.patch_size is not None else config.patch_size __lowerCAmelCase : Dict = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: __lowerCAmelCase : Any = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **_UpperCamelCase ) elif model_args.model_name_or_path: __lowerCAmelCase : Dict = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **_UpperCamelCase ) else: __lowerCAmelCase : Optional[Any] = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } __lowerCAmelCase : Optional[Any] = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: __lowerCAmelCase : Optional[Any] = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase : Optional[Any] = AutoModelForMaskedImageModeling.from_config(_UpperCamelCase ) if training_args.do_train: __lowerCAmelCase : Any = ds['train'].column_names else: __lowerCAmelCase : List[str] = ds['validation'].column_names if data_args.image_column_name is not None: __lowerCAmelCase : List[Any] = data_args.image_column_name elif "image" in column_names: __lowerCAmelCase : Dict = 'image' elif "img" in column_names: __lowerCAmelCase : Optional[int] = 'img' else: __lowerCAmelCase : Dict = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py __lowerCAmelCase : Optional[Any] = Compose( [ Lambda(lambda _UpperCamelCase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator __lowerCAmelCase : List[str] = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(_UpperCamelCase ): __lowerCAmelCase : List[Any] = [transforms(_UpperCamelCase ) for image in examples[image_column_name]] __lowerCAmelCase : int = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __lowerCAmelCase : Optional[Any] = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __lowerCAmelCase : Union[str, Any] = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_UpperCamelCase ) # Initialize our trainer __lowerCAmelCase : List[str] = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: __lowerCAmelCase : Optional[int] = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase : str = last_checkpoint __lowerCAmelCase : Union[str, Any] = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowerCAmelCase : List[str] = trainer.evaluate() trainer.log_metrics('eval' , _UpperCamelCase ) trainer.save_metrics('eval' , _UpperCamelCase ) # Write model card and (optionally) push to hub __lowerCAmelCase : int = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'masked-image-modeling', 'dataset': data_args.dataset_name, 'tags': ['masked-image-modeling'], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
86
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase_ : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCamelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
286
0
'''simple docstring''' import functools def _snake_case ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] ) -> int: """simple docstring""" # Validation if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(_SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(_SCREAMING_SNAKE_CASE ) == 0: return 0 if min(_SCREAMING_SNAKE_CASE ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(_SCREAMING_SNAKE_CASE ) >= 366: raise ValueError("""All days elements should be less than 366""" ) lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(_SCREAMING_SNAKE_CASE : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
187
'''simple docstring''' from __future__ import annotations class __snake_case: '''simple docstring''' def __init__( self , A_ = 0 ) -> Dict: lowerCAmelCase = key def __snake_case ( self , A_ , A_ ) -> list[str]: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A_ ) ^ key ) for ch in content] def __snake_case ( self , A_ , A_ ) -> list[str]: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A_ ) ^ key ) for ch in content] def __snake_case ( self , A_ , A_ = 0 ) -> str: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase = """""" for ch in content: ans += chr(ord(A_ ) ^ key ) return ans def __snake_case ( self , A_ , A_ = 0 ) -> str: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) lowerCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase = """""" for ch in content: ans += chr(ord(A_ ) ^ key ) return ans def __snake_case ( self , A_ , A_ = 0 ) -> bool: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) try: with open(A_ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(A_ , A_ ) ) except OSError: return False return True def __snake_case ( self , A_ , A_ ) -> bool: assert isinstance(A_ , A_ ) and isinstance(A_ , A_ ) try: with open(A_ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(A_ , A_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
187
1
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __lowerCAmelCase ( lowercase : Any , lowercase : str , lowercase : str , lowercase : Path , lowercase : str = None , lowercase : str = None , lowercase : str = None , ) -> int: """simple docstring""" if config_name_or_path is None: snake_case : Tuple = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: snake_case : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: snake_case : Any = question_encoder_name_or_path snake_case : str = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. snake_case : str = RagConfig.from_pretrained(lowercase ) snake_case : Dict = AutoConfig.from_pretrained(lowercase ) snake_case : Tuple = AutoConfig.from_pretrained(lowercase ) snake_case : str = gen_config snake_case : Dict = question_encoder_config snake_case : Any = model_class.from_pretrained_question_encoder_generator( lowercase , lowercase , config=lowercase ) rag_model.save_pretrained(lowercase ) # Sanity check. model_class.from_pretrained(lowercase ) # Save tokenizers. snake_case : Optional[int] = AutoTokenizer.from_pretrained(lowercase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowercase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) __snake_case = parser.parse_args() __snake_case = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
203
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Optional[Any] = '''xmod''' def __init__( self , UpperCamelCase__=3_0522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=2 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=("en_XX",) , UpperCamelCase__=None , **UpperCamelCase__ , ) -> int: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) snake_case : List[Any] = vocab_size snake_case : List[Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Any = num_attention_heads snake_case : List[str] = hidden_act snake_case : Union[str, Any] = intermediate_size snake_case : int = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : Optional[int] = max_position_embeddings snake_case : Tuple = type_vocab_size snake_case : List[str] = initializer_range snake_case : int = layer_norm_eps snake_case : Optional[Any] = position_embedding_type snake_case : int = use_cache snake_case : Dict = classifier_dropout snake_case : Dict = pre_norm snake_case : Union[str, Any] = adapter_reduction_factor snake_case : Any = adapter_layer_norm snake_case : Optional[int] = adapter_reuse_layer_norm snake_case : List[Any] = ln_before_adapter snake_case : str = list(UpperCamelCase__ ) snake_case : int = default_language class _lowerCAmelCase ( snake_case_ ): @property def lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
203
1
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 _SCREAMING_SNAKE_CASE = { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } class SCREAMING_SNAKE_CASE_ ( __lowercase ): __magic_name__: List[str] = VOCAB_FILES_NAMES __magic_name__: Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Any = ['''input_ids''', '''attention_mask'''] __magic_name__: Any = TaTokenizer __magic_name__: List[int] = [] def __init__( self : List[str] , _A : Dict=None , _A : Optional[int]=None , _A : List[str]="</s>" , _A : Any="<unk>" , _A : Any="<pad>" , _A : int=100 , _A : List[Any]=None , **_A : Optional[Any] , ) -> Tuple: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: snake_case_ : Optional[int] = [F"""<extra_id_{i}>""" for i in range(_A )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens snake_case_ : Tuple = len(set(filter(lambda _A : bool('extra_id_' in str(_A ) ) , _A ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) super().__init__( _A , tokenizer_file=_A , eos_token=_A , unk_token=_A , pad_token=_A , extra_ids=_A , additional_special_tokens=_A , **_A , ) snake_case_ : Optional[int] = vocab_file snake_case_ : Any = False if not self.vocab_file else True snake_case_ : Union[str, Any] = extra_ids @staticmethod def UpperCAmelCase_ ( _A : Tuple , _A : Any , _A : str ) -> Union[str, Any]: """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: snake_case_ : Dict = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , _A , ) return max_model_length def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ : Dict = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) logger.info(F"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def UpperCAmelCase_ ( self : int , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : Dict = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: snake_case_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase_ ( self : str , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : Optional[Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: """simple docstring""" return list( set(filter(lambda _A : bool(re.search(R'<extra_id_\d+>' , _A ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return [self.convert_tokens_to_ids(_A ) for token in self.get_sentinel_tokens()]
363
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
0
import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] ): '''simple docstring''' __a = (0, 0) __a = None __a = 0 __a = 0 __a = 0 def __eq__( self : Tuple , __lowercase : Optional[Any] ): '''simple docstring''' return self.position == cell.position def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' print(self.position ) class SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , __lowercase : Any=(5, 5) ): '''simple docstring''' __a = np.zeros(__lowercase ) __a = world_size[0] __a = world_size[1] def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' print(self.w ) def UpperCamelCase_ ( self : Optional[Any] , __lowercase : List[str] ): '''simple docstring''' __a = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __a = cell.position[0] __a = cell.position[1] __a = [] for n in neughbour_cord: __a = current_x + n[0] __a = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __a = Cell() __a = (x, y) __a = cell neighbours.append(__lowercase ) return neighbours def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __a = [] __a = [] _open.append(_UpperCamelCase ) while _open: __a = np.argmin([n.f for n in _open] ) __a = _open[min_f] _closed.append(_open.pop(_UpperCamelCase ) ) if current == goal: break for n in world.get_neigbours(_UpperCamelCase ): for c in _closed: if c == n: continue __a = current.g + 1 __a = n.position __a = goal.position __a = (ya - ya) ** 2 + (xa - xa) ** 2 __a = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_UpperCamelCase ) __a = [] while current.parent is not None: path.append(current.position ) __a = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowerCamelCase__ = Gridworld() # Start position and goal lowerCamelCase__ = Cell() lowerCamelCase__ = (0, 0) lowerCamelCase__ = Cell() lowerCamelCase__ = (4, 4) print(F"""path from {start.position} to {goal.position}""") lowerCamelCase__ = astar(world, start, goal) # Just for visual reasons. for i in s: lowerCamelCase__ = 1 print(world.w)
302
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowerCAmelCase_ = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ : str = list(s_dict.keys() ) for key in keys: snake_case_ : Optional[int] = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case_ : List[str] = new_key.replace(_UpperCamelCase , _UpperCamelCase ) print(f'''{key} -> {new_key}''' ) snake_case_ : Tuple = s_dict.pop(_UpperCamelCase ) return s_dict def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ , snake_case_ : Dict = emb.weight.shape snake_case_ : Tuple = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) snake_case_ : Any = emb.weight.data return lin_layer def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> bytes: """simple docstring""" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : List[Any] = os.path.basename(_UpperCamelCase ) snake_case_ : Any = url.split('''/''' )[-2] snake_case_ : str = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ) and not os.path.isfile(_UpperCamelCase ): raise RuntimeError(f'''{download_target} exists and is not a regular file''' ) if os.path.isfile(_UpperCamelCase ): snake_case_ : Union[str, Any] = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(_UpperCamelCase ) as source, open(_UpperCamelCase , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=_UpperCamelCase , unit_divisor=1_024 ) as loop: while True: snake_case_ : Dict = source.read(8_192 ) if not buffer: break output.write(_UpperCamelCase ) loop.update(len(_UpperCamelCase ) ) snake_case_ : Any = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" if ".pt" not in checkpoint_path: snake_case_ : str = _download(_MODELS[checkpoint_path] ) else: snake_case_ : Union[str, Any] = torch.load(_UpperCamelCase , map_location='''cpu''' ) snake_case_ : int = original_checkpoint['''dims'''] snake_case_ : List[str] = original_checkpoint['''model_state_dict'''] snake_case_ : str = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(_UpperCamelCase ) rename_keys(_UpperCamelCase ) snake_case_ : Optional[int] = True snake_case_ : int = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] snake_case_ : List[str] = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_UpperCamelCase , decoder_ffn_dim=_UpperCamelCase , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) snake_case_ : Union[str, Any] = WhisperForConditionalGeneration(_UpperCamelCase ) snake_case_ , snake_case_ : List[Any] = model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) if len(_UpperCamelCase ) > 0 and not set(_UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f''' but all the following weights are missing {missing}''' ) if tie_embeds: snake_case_ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case_ : Any = proj_out_weights model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
279
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _snake_case ( ) -> Optional[Any]: '''simple docstring''' _A = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' _A = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert('RGB' ) return image def _snake_case ( _snake_case : int ) -> Optional[int]: '''simple docstring''' _A = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def _snake_case ( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : str ) -> List[Any]: '''simple docstring''' _A = dct.pop(__UpperCAmelCase ) _A = val def _snake_case ( _snake_case : List[Any] , _snake_case : str ) -> str: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _A = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) _A = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict _A = torch.cat((q_bias, torch.zeros_like(__UpperCAmelCase , requires_grad=__UpperCAmelCase ), v_bias) ) _A = qkv_bias def _snake_case ( _snake_case : List[str] , _snake_case : str ) -> Union[str, Any]: '''simple docstring''' _A = 3_64 if '''coco''' in model_name else 2_24 _A = BlipaVisionConfig(image_size=__UpperCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _A = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=__UpperCAmelCase ).to_dict() elif "opt-6.7b" in model_name: _A = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=__UpperCAmelCase ).to_dict() elif "t5-xl" in model_name: _A = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _A = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() _A = BlipaConfig(vision_config=__UpperCAmelCase , text_config=__UpperCAmelCase ) return config, image_size @torch.no_grad() def _snake_case ( _snake_case : List[Any] , _snake_case : Optional[int]=None , _snake_case : List[Any]=False ) -> int: '''simple docstring''' _A = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) _A = tokenizer('\n' , add_special_tokens=__UpperCAmelCase ).input_ids[0] _A = get_blipa_config(__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) _A = BlipaForConditionalGeneration(__UpperCAmelCase ).eval() _A = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } _A = model_name_to_original[model_name] # load original model print('Loading original model...' ) _A = '''cuda''' if torch.cuda.is_available() else '''cpu''' _A = load_model_and_preprocess( name=__UpperCAmelCase , model_type=__UpperCAmelCase , is_eval=__UpperCAmelCase , device=__UpperCAmelCase ) original_model.eval() print('Done!' ) # update state dict keys _A = original_model.state_dict() _A = create_rename_keys(__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _A = state_dict.pop(__UpperCAmelCase ) if key.startswith('Qformer.bert' ): _A = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: _A = key.replace('self' , 'attention' ) if "opt_proj" in key: _A = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: _A = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): _A = key.replace('opt' , 'language' ) if key.startswith('t5' ): _A = key.replace('t5' , 'language' ) _A = val # read in qv biases read_in_q_v_bias(__UpperCAmelCase , __UpperCAmelCase ) _A = hf_model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) assert len(__UpperCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _A = load_demo_image() _A = vis_processors['''eval'''](__UpperCAmelCase ).unsqueeze(0 ).to(__UpperCAmelCase ) _A = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(__UpperCAmelCase ) # create processor _A = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase ) _A = BlipaProcessor(image_processor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) _A = processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) original_model.to(__UpperCAmelCase ) hf_model.to(__UpperCAmelCase ) with torch.no_grad(): if "opt" in model_name: _A = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits _A = hf_model(__UpperCAmelCase , __UpperCAmelCase ).logits else: _A = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits _A = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _A = hf_model(__UpperCAmelCase , __UpperCAmelCase , labels=__UpperCAmelCase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _A = torch.tensor( [[-41.58_50, -4.4440, -8.9922], [-47.43_22, -5.9143, -1.7340]] , device=__UpperCAmelCase ) assert torch.allclose(logits[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": _A = torch.tensor( [[-57.01_09, -9.8967, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=__UpperCAmelCase ) else: # cast to same type _A = logits.dtype assert torch.allclose(original_logits.to(__UpperCAmelCase ) , __UpperCAmelCase , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) _A = '''''' _A = tokenizer(__UpperCAmelCase , return_tensors='pt' ).input_ids.to(__UpperCAmelCase ) _A = original_model.generate({'image': original_pixel_values} ) _A = hf_model.generate( __UpperCAmelCase , __UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , __UpperCAmelCase ) _A = input_ids.shape[1] _A = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__UpperCAmelCase ) _A = [text.strip() for text in output_text] print('HF generation:' , __UpperCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__UpperCAmelCase ) hf_model.save_pretrained(__UpperCAmelCase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": a = argparse.ArgumentParser() a = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) a = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
352
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : str = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) UpperCAmelCase : List[Any] = ['''accelerate''', '''launch'''] UpperCAmelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' UpperCAmelCase : Union[str, Any] = '''default_config.yaml''' UpperCAmelCase : Union[str, Any] = config_folder / config_file UpperCAmelCase : Union[str, Any] = config_folder / '''_default_config.yaml''' UpperCAmelCase : List[Any] = Path('''tests/test_configs''' ) @classmethod def lowerCAmelCase_ ( cls : List[Any] ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowerCAmelCase_ ( cls : Tuple ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowerCAmelCase_ ( self : List[Any] ): _A = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowerCAmelCase_ ( self : Optional[int] ): for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=_UpperCAmelCase ): execute_subprocess_async( self.base_cmd + ['--config_file', str(_UpperCAmelCase ), self.test_file_path] , env=os.environ.copy() ) def lowerCAmelCase_ ( self : Any ): execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Dict = '''test-tpu''' UpperCAmelCase : Optional[int] = '''us-central1-a''' UpperCAmelCase : List[str] = '''ls''' UpperCAmelCase : str = ['''accelerate''', '''tpu-config'''] UpperCAmelCase : Optional[Any] = '''cd /usr/share''' UpperCAmelCase : Optional[Any] = '''tests/test_samples/test_command_file.sh''' UpperCAmelCase : str = '''Running gcloud compute tpus tpu-vm ssh''' def lowerCAmelCase_ ( self : Any ): _A = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : Dict ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : Optional[int] ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=_UpperCAmelCase ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : str ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : List[str] ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : str ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : List[Any] ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : int ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : Optional[int] ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , )
271
0
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __lowerCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __lowerCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> VectorOut: return np.sqrt(np.sum((np.asarray(__a ) - np.asarray(__a )) ** 2 ) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(__a, __a ) ) ** (1 / 2) if __name__ == "__main__": def UpperCAmelCase__ ( ) -> None: from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""", number=1_00_00, globals=globals(), ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""", number=1_00_00, globals=globals(), ) ) benchmark()
162
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCAmelCase : List[Any] = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
366
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger('''transformers.models.speecht5''') _lowerCAmelCase : int = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } _lowerCAmelCase : str = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } _lowerCAmelCase : int = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } _lowerCAmelCase : Union[str, Any] = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } _lowerCAmelCase : Union[str, Any] = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } _lowerCAmelCase : int = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } _lowerCAmelCase : Any = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } _lowerCAmelCase : List[str] = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } _lowerCAmelCase : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _lowerCAmelCase : Dict = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _lowerCAmelCase : Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Tuple = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] _lowerCAmelCase : Tuple = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] _lowerCAmelCase : int = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] _lowerCAmelCase : Optional[int] = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ) -> Optional[Any]: for attribute in key.split("." ): A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: A_ : Tuple = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: A_ : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": A_ : Dict = value elif weight_type == "weight_g": A_ : int = value elif weight_type == "weight_v": A_ : str = value elif weight_type == "bias": A_ : int = value elif weight_type == "running_mean": A_ : str = value elif weight_type == "running_var": A_ : Any = value elif weight_type == "num_batches_tracked": A_ : str = value else: A_ : int = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ) -> Union[str, Any]: for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: A_ , A_ : Tuple = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: A_ : Tuple = [] if task == "s2t": A_ : Union[str, Any] = hf_model.speechta.encoder.prenet.feature_encoder A_ : str = MAPPING_S2T A_ : Union[str, Any] = IGNORE_KEYS_S2T elif task == "t2s": A_ : Optional[int] = None A_ : Dict = MAPPING_T2S A_ : Any = IGNORE_KEYS_T2S elif task == "s2s": A_ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder A_ : Dict = MAPPING_S2S A_ : List[str] = IGNORE_KEYS_S2S else: raise ValueError(f"Unsupported task: {task}" ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase , _lowerCAmelCase ): logger.info(f"{name} was ignored" ) continue A_ : List[Any] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) A_ : Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: A_ , A_ : Optional[Any] = key.split(".*." ) if prefix in name and suffix in name: A_ : int = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: A_ : str = True if "*" in mapped_key: A_ : List[str] = name.split(_lowerCAmelCase )[0].split("." )[-2] A_ : Optional[int] = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: A_ : Union[str, Any] = "weight_g" elif "weight_v" in name: A_ : List[Any] = "weight_v" elif "bias" in name: A_ : Tuple = "bias" elif "weight" in name: A_ : List[Any] = "weight" elif "running_mean" in name: A_ : Union[str, Any] = "running_mean" elif "running_var" in name: A_ : Union[str, Any] = "running_var" elif "num_batches_tracked" in name: A_ : List[Any] = "num_batches_tracked" else: A_ : Optional[Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ) -> List[Any]: A_ : int = full_name.split("conv_layers." )[-1] A_ : Optional[Any] = name.split("." ) A_ : List[Any] = int(items[0] ) A_ : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A_ : Optional[int] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A_ : Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) A_ : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) A_ : Union[str, Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : int=None , ) -> Optional[Any]: if config_path is not None: A_ : Dict = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: A_ : Optional[int] = SpeechTaConfig() if task == "s2t": A_ : Optional[Any] = config.max_text_positions A_ : Optional[int] = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": A_ : str = 1876 A_ : List[str] = 600 A_ : List[str] = config.max_speech_positions A_ : Tuple = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": A_ : Optional[int] = 1876 A_ : int = config.max_speech_positions A_ : Union[str, Any] = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f"Unknown task name: {task}" ) if vocab_path: A_ : int = SpeechTaTokenizer(_lowerCAmelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it A_ : str = AddedToken("<mask>" , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) A_ : int = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) A_ : int = SpeechTaFeatureExtractor() A_ : Optional[Any] = SpeechTaProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) A_ : Union[str, Any] = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint["model"] , _lowerCAmelCase , _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) _lowerCAmelCase : Tuple = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
70
0
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str=[] ): __UpperCamelCase =size[0] - overlap_pixels * 2 __UpperCamelCase =size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __UpperCamelCase =np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 __UpperCamelCase =np.pad(SCREAMING_SNAKE_CASE__ , mode='linear_ramp' , pad_width=SCREAMING_SNAKE_CASE__ , end_values=0 ) if "l" in remove_borders: __UpperCamelCase =mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __UpperCamelCase =mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __UpperCamelCase =mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __UpperCamelCase =mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): return max(SCREAMING_SNAKE_CASE__ , min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : [int] , SCREAMING_SNAKE_CASE__ : [int] , SCREAMING_SNAKE_CASE__ : [int] ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : [int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : [int] ): __UpperCamelCase =list(SCREAMING_SNAKE_CASE__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __UpperCamelCase =clamp_rect(SCREAMING_SNAKE_CASE__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase =Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE__ , (original_slice, 0) ) return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =(original_image_slice * 4, 0, tile.size[0], tile.size[1]) __UpperCamelCase =tile.crop(SCREAMING_SNAKE_CASE__ ) return tile def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =n % d return n - divisor class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ = 350 , ) -> Union[str, Any]: super().__init__( vae=A_ , text_encoder=A_ , tokenizer=A_ , unet=A_ , low_res_scheduler=A_ , scheduler=A_ , max_noise_level=A_ , ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , **A_ ) -> Union[str, Any]: torch.manual_seed(0 ) __UpperCamelCase =( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __UpperCamelCase =add_overlap_rect(A_ , A_ , image.size ) __UpperCamelCase =image.crop(A_ ) __UpperCamelCase =((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __UpperCamelCase =translated_slice_x - (original_image_slice / 2) __UpperCamelCase =max(0 , A_ ) __UpperCamelCase =squeeze_tile(A_ , A_ , A_ , A_ ) __UpperCamelCase =to_input.size __UpperCamelCase =to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __UpperCamelCase =super(A_ , self ).__call__(image=A_ , **A_ ).images[0] __UpperCamelCase =upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __UpperCamelCase =unsqueeze_tile(A_ , A_ ) __UpperCamelCase =upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __UpperCamelCase =[] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) __UpperCamelCase =Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=A_ ) , mode='L' , ) final_image.paste( A_ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , A_ ) @torch.no_grad() def __call__( self , A_ , A_ , A_ = 75 , A_ = 9.0 , A_ = 50 , A_ = None , A_ = 1 , A_ = 0.0 , A_ = None , A_ = None , A_ = None , A_ = 1 , A_ = 128 , A_ = 32 , A_ = 32 , ) -> Tuple: __UpperCamelCase =Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) __UpperCamelCase =math.ceil(image.size[0] / tile_size ) __UpperCamelCase =math.ceil(image.size[1] / tile_size ) __UpperCamelCase =tcx * tcy __UpperCamelCase =0 for y in range(A_ ): for x in range(A_ ): self._process_tile( A_ , A_ , A_ , A_ , A_ , A_ , A_ , prompt=A_ , num_inference_steps=A_ , guidance_scale=A_ , noise_level=A_ , negative_prompt=A_ , num_images_per_prompt=A_ , eta=A_ , generator=A_ , latents=A_ , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _UpperCAmelCase ( ): # Run a demo __UpperCamelCase ='stabilityai/stable-diffusion-x4-upscaler' __UpperCamelCase =StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE__ , revision='fp16' , torch_dtype=torch.floataa ) __UpperCamelCase =pipe.to('cuda' ) __UpperCamelCase =Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(SCREAMING_SNAKE_CASE__ : List[str] ): print(F'progress: {obj["progress"]:.4f}' ) obj["image"].save('diffusers_library_progress.jpg' ) __UpperCamelCase =pipe(image=SCREAMING_SNAKE_CASE__ , prompt='Black font, white background, vector' , noise_level=40 , callback=SCREAMING_SNAKE_CASE__ ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
62
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int = 10**12 ): __UpperCamelCase =1 __UpperCamelCase =0 __UpperCamelCase =1 __UpperCamelCase =1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f"""{solution() = }""")
62
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( snake_case__ ): _a : Optional[int] = (PNDMScheduler,) _a : Optional[int] = (("""num_inference_steps""", 5_0),) def __SCREAMING_SNAKE_CASE( self , **_A ): """simple docstring""" __lowerCAmelCase = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**_A ) return config def __SCREAMING_SNAKE_CASE( self , _A=0 , **_A ): """simple docstring""" __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , _A ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config(**_A ) __lowerCAmelCase = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals __lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) __lowerCAmelCase = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals __lowerCAmelCase = dummy_past_residuals[:] __lowerCAmelCase = scheduler.step_prk(_A , _A , _A , **_A ).prev_sample __lowerCAmelCase = new_scheduler.step_prk(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __lowerCAmelCase = scheduler.step_plms(_A , _A , _A , **_A ).prev_sample __lowerCAmelCase = new_scheduler.step_plms(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self , _A=0 , **_A ): """simple docstring""" __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , _A ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) __lowerCAmelCase = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase = dummy_past_residuals[:] __lowerCAmelCase = scheduler.step_prk(_A , _A , _A , **_A ).prev_sample __lowerCAmelCase = new_scheduler.step_prk(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __lowerCAmelCase = scheduler.step_plms(_A , _A , _A , **_A ).prev_sample __lowerCAmelCase = new_scheduler.step_plms(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __SCREAMING_SNAKE_CASE( self , **_A ): """simple docstring""" __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(**_A ) __lowerCAmelCase = scheduler_class(**_A ) __lowerCAmelCase = 1_0 __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.prk_timesteps ): __lowerCAmelCase = model(_A , _A ) __lowerCAmelCase = scheduler.step_prk(_A , _A , _A ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __lowerCAmelCase = model(_A , _A ) __lowerCAmelCase = scheduler.step_plms(_A , _A , _A ).prev_sample return sample def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , _A ) for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**_A ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(_A , "set_timesteps" ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A , "set_timesteps" ): __lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __lowerCAmelCase = dummy_past_residuals[:] __lowerCAmelCase = scheduler.step_prk(_A , 0 , _A , **_A ).prev_sample __lowerCAmelCase = scheduler.step_prk(_A , 1 , _A , **_A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __lowerCAmelCase = scheduler.step_plms(_A , 0 , _A , **_A ).prev_sample __lowerCAmelCase = scheduler.step_plms(_A , 1 , _A , **_A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_A ) __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(steps_offset=1 ) __lowerCAmelCase = scheduler_class(**_A ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for t in [1, 5, 1_0]: self.check_over_forward(time_step=_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = 2_7 for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __lowerCAmelCase = scheduler.step_prk(_A , _A , _A ).prev_sample def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" with self.assertRaises(_A ): __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**_A ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.full_loop() __lowerCAmelCase = torch.sum(torch.abs(_A ) ) __lowerCAmelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) __lowerCAmelCase = torch.sum(torch.abs(_A ) ) __lowerCAmelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) __lowerCAmelCase = torch.sum(torch.abs(_A ) ) __lowerCAmelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) __lowerCAmelCase = torch.sum(torch.abs(_A ) ) __lowerCAmelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
102
from pathlib import Path import fire from tqdm import tqdm def _a ( SCREAMING_SNAKE_CASE_ : Dict="ro" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="en" , SCREAMING_SNAKE_CASE_ : Optional[Any]="wmt16" , SCREAMING_SNAKE_CASE_ : List[str]=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) __lowerCAmelCase = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) __lowerCAmelCase = datasets.load_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if save_dir is None: __lowerCAmelCase = F"""{dataset}-{pair}""" __lowerCAmelCase = Path(SCREAMING_SNAKE_CASE_ ) save_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets __lowerCAmelCase = "val" if split == "validation" else split __lowerCAmelCase = save_dir.joinpath(F"""{fn}.source""" ) __lowerCAmelCase = save_dir.joinpath(F"""{fn}.target""" ) __lowerCAmelCase = src_path.open("w+" ) __lowerCAmelCase = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __lowerCAmelCase = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
102
1
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class UpperCAmelCase_ ( unittest.TestCase ): UpperCamelCase =inspect.getfile(accelerate.test_utils ) UpperCamelCase =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) UpperCamelCase =["accelerate", "launch"] UpperCamelCase =Path.home() / ".cache/huggingface/accelerate" UpperCamelCase ="default_config.yaml" UpperCamelCase =config_folder / config_file UpperCamelCase =config_folder / "_default_config.yaml" UpperCamelCase =Path("tests/test_configs" ) @classmethod def _lowerCamelCase ( cls ) -> Dict: if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def _lowerCamelCase ( cls ) -> Union[str, Any]: if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def _lowerCamelCase ( self ) -> Any: __lowercase : int = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def _lowerCamelCase ( self ) -> Optional[int]: for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=__snake_case ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(__snake_case ), self.test_file_path] , env=os.environ.copy() ) def _lowerCamelCase ( self ) -> Any: execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class UpperCAmelCase_ ( unittest.TestCase ): UpperCamelCase ="test-tpu" UpperCamelCase ="us-central1-a" UpperCamelCase ="ls" UpperCamelCase =["accelerate", "tpu-config"] UpperCamelCase ="cd /usr/share" UpperCamelCase ="tests/test_samples/test_command_file.sh" UpperCamelCase ="Running gcloud compute tpus tpu-vm ssh" def _lowerCamelCase ( self ) -> Tuple: __lowercase : Union[str, Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , __snake_case , ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : List[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , __snake_case , ) def _lowerCamelCase ( self ) -> Any: __lowercase : Optional[int] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=__snake_case ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , ) def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : List[str] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , __snake_case , ) def _lowerCamelCase ( self ) -> Dict: __lowercase : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , __snake_case , ) def _lowerCamelCase ( self ) -> str: __lowercase : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , ) def _lowerCamelCase ( self ) -> Any: __lowercase : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , ) def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , )
249
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class A__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case = 1.0 , __snake_case = None , ): super().__init__() snake_case = initial_learning_rate snake_case = warmup_steps snake_case = power snake_case = decay_schedule_fn snake_case = name def __call__( self , __snake_case ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. snake_case = tf.cast(__snake_case , tf.floataa ) snake_case = tf.cast(self.warmup_steps , tf.floataa ) snake_case = global_step_float / warmup_steps_float snake_case = self.initial_learning_rate * tf.math.pow(__snake_case , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=__snake_case , ) def a_ ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = 0.0 ,UpperCamelCase_ = 0.9 ,UpperCamelCase_ = 0.999 ,UpperCamelCase_ = 1e-8 ,UpperCamelCase_ = None ,UpperCamelCase_ = None ,UpperCamelCase_ = 0.0 ,UpperCamelCase_ = 1.0 ,UpperCamelCase_ = None ,): """simple docstring""" snake_case = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCamelCase_ ,decay_steps=num_train_steps - num_warmup_steps ,end_learning_rate=init_lr * min_lr_ratio ,power=UpperCamelCase_ ,) if num_warmup_steps: snake_case = WarmUp( initial_learning_rate=UpperCamelCase_ ,decay_schedule_fn=UpperCamelCase_ ,warmup_steps=UpperCamelCase_ ,) if weight_decay_rate > 0.0: snake_case = AdamWeightDecay( learning_rate=UpperCamelCase_ ,weight_decay_rate=UpperCamelCase_ ,beta_a=UpperCamelCase_ ,beta_a=UpperCamelCase_ ,epsilon=UpperCamelCase_ ,clipnorm=UpperCamelCase_ ,global_clipnorm=UpperCamelCase_ ,exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] ,include_in_weight_decay=UpperCamelCase_ ,) else: snake_case = tf.keras.optimizers.Adam( learning_rate=UpperCamelCase_ ,beta_a=UpperCamelCase_ ,beta_a=UpperCamelCase_ ,epsilon=UpperCamelCase_ ,clipnorm=UpperCamelCase_ ,global_clipnorm=UpperCamelCase_ ,) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class A__ ( snake_case__ ): """simple docstring""" def __init__( self , __snake_case = 0.001 , __snake_case = 0.9 , __snake_case = 0.999 , __snake_case = 1E-7 , __snake_case = False , __snake_case = 0.0 , __snake_case = None , __snake_case = None , __snake_case = "AdamWeightDecay" , **__snake_case , ): super().__init__(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , **__snake_case ) snake_case = weight_decay_rate snake_case = include_in_weight_decay snake_case = exclude_from_weight_decay @classmethod def a_ ( cls , __snake_case ): snake_case = {'''WarmUp''': WarmUp} return super(__snake_case , cls ).from_config(__snake_case , custom_objects=__snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case ): super(__snake_case , self )._prepare_local(__snake_case , __snake_case , __snake_case ) snake_case = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def a_ ( self , __snake_case , __snake_case=None , **__snake_case ): snake_case , snake_case = list(zip(*__snake_case ) ) return super(__snake_case , self ).apply_gradients(zip(__snake_case , __snake_case ) , name=__snake_case , **__snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} snake_case = apply_state or {} snake_case = apply_state.get((var_device, var_dtype) ) if coefficients is None: snake_case = self._fallback_apply_state(__snake_case , __snake_case ) snake_case = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def a_ ( self , __snake_case , __snake_case , __snake_case=None ): snake_case , snake_case = self._get_lr(var.device , var.dtype.base_dtype , __snake_case ) snake_case = self._decay_weights_op(__snake_case , __snake_case , __snake_case ) with tf.control_dependencies([decay] ): return super(__snake_case , self )._resource_apply_dense(__snake_case , __snake_case , **__snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None ): snake_case , snake_case = self._get_lr(var.device , var.dtype.base_dtype , __snake_case ) snake_case = self._decay_weights_op(__snake_case , __snake_case , __snake_case ) with tf.control_dependencies([decay] ): return super(__snake_case , self )._resource_apply_sparse(__snake_case , __snake_case , __snake_case , **__snake_case ) def a_ ( self ): snake_case = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def a_ ( self , __snake_case ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__snake_case , __snake_case ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__snake_case , __snake_case ) is not None: return False return True class A__ ( snake_case__ ): """simple docstring""" def __init__( self ): snake_case = [] snake_case = None @property def a_ ( self ): if self._accum_steps is None: snake_case = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=__snake_case , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def a_ ( self ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , __snake_case ): if not self._gradients: snake_case = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__snake_case ) , trainable=__snake_case , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(__snake_case ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(__snake_case )}''' ) for accum_gradient, gradient in zip(self._gradients , __snake_case ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__snake_case ) self._accum_steps.assign_add(1 ) def a_ ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__snake_case ) )
127
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : List[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } lowercase : List[str] = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } lowercase : List[Any] = { "ctrl": 256, } lowercase : Any = { "Pregnancy": 168629, "Christianity": 7675, "Explain": 106423, "Fitness": 63440, "Saving": 63163, "Ask": 27171, "Ass": 95985, "Joke": 163509, "Questions": 45622, "Thoughts": 49605, "Retail": 52342, "Feminism": 164338, "Writing": 11992, "Atheism": 192263, "Netflix": 48616, "Computing": 39639, "Opinion": 43213, "Alone": 44967, "Funny": 58917, "Gaming": 40358, "Human": 4088, "India": 1331, "Joker": 77138, "Diet": 36206, "Legal": 11859, "Norman": 4939, "Tip": 72689, "Weight": 52343, "Movies": 46273, "Running": 23425, "Science": 2090, "Horror": 37793, "Confession": 60572, "Finance": 12250, "Politics": 16360, "Scary": 191985, "Support": 12654, "Technologies": 32516, "Teenage": 66160, "Event": 32769, "Learned": 67460, "Notion": 182770, "Wikipedia": 37583, "Books": 6665, "Extract": 76050, "Confessions": 102701, "Conspiracy": 75932, "Links": 63674, "Narcissus": 150425, "Relationship": 54766, "Relationships": 134796, "Reviews": 41671, "News": 4256, "Translation": 26820, "multilingual": 128406, } def UpperCAmelCase_ (_lowerCAmelCase : List[str] ): __UpperCamelCase : List[Any] = set() __UpperCamelCase : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCamelCase : Union[str, Any] = char __UpperCamelCase : str = set(_lowerCAmelCase ) return pairs class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : List[str] = VOCAB_FILES_NAMES lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : str = CONTROL_CODES def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="<unk>" , **__UpperCamelCase ) -> Optional[int]: '''simple docstring''' super().__init__(unk_token=__UpperCamelCase , **__UpperCamelCase ) with open(__UpperCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCamelCase : Optional[Any] = json.load(__UpperCamelCase ) __UpperCamelCase : List[str] = {v: k for k, v in self.encoder.items()} with open(__UpperCamelCase , encoding="utf-8" ) as merges_handle: __UpperCamelCase : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] __UpperCamelCase : int = [tuple(merge.split() ) for merge in merges] __UpperCamelCase : Optional[int] = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) __UpperCamelCase : List[Any] = {} @property def __lowerCamelCase ( self ) -> str: '''simple docstring''' return len(self.encoder ) def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCamelCase ( self , __UpperCamelCase ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] __UpperCamelCase : Optional[Any] = tuple(__UpperCamelCase ) __UpperCamelCase : Tuple = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) __UpperCamelCase : List[str] = get_pairs(__UpperCamelCase ) if not pairs: return token while True: __UpperCamelCase : Optional[Any] = min(__UpperCamelCase , key=lambda __UpperCamelCase : self.bpe_ranks.get(__UpperCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCamelCase , __UpperCamelCase : Optional[Any] = bigram __UpperCamelCase : int = [] __UpperCamelCase : str = 0 while i < len(__UpperCamelCase ): try: __UpperCamelCase : Dict = word.index(__UpperCamelCase , __UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCamelCase : Tuple = j if word[i] == first and i < len(__UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCamelCase : str = tuple(__UpperCamelCase ) __UpperCamelCase : List[str] = new_word if len(__UpperCamelCase ) == 1: break else: __UpperCamelCase : Union[str, Any] = get_pairs(__UpperCamelCase ) __UpperCamelCase : Optional[int] = "@@ ".join(__UpperCamelCase ) __UpperCamelCase : Any = word[:-4] __UpperCamelCase : Dict = word return word def __lowerCamelCase ( self , __UpperCamelCase ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : List[Any] = [] __UpperCamelCase : Tuple = re.findall(r"\S+\n?" , __UpperCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__UpperCamelCase ).split(" " ) ) ) return split_tokens def __lowerCamelCase ( self , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' return self.encoder.get(__UpperCamelCase , self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self , __UpperCamelCase ) -> Tuple: '''simple docstring''' return self.decoder.get(__UpperCamelCase , self.unk_token ) def __lowerCamelCase ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' __UpperCamelCase : Optional[Any] = " ".join(__UpperCamelCase ).replace("@@ " , "" ).strip() return out_string def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase : Optional[int] = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCamelCase : List[Any] = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCamelCase , ensure_ascii=__UpperCamelCase ) + "\n" ) __UpperCamelCase : Dict = 0 with open(__UpperCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCamelCase : Any = token_index writer.write(" ".join(__UpperCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
171
def UpperCAmelCase_ (_lowerCAmelCase : list ): if len(_lowerCAmelCase ) <= 1: return lst __UpperCamelCase : Dict = 1 while i < len(_lowerCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: __UpperCamelCase , __UpperCamelCase : Union[str, Any] = lst[i], lst[i - 1] i -= 1 if i == 0: __UpperCamelCase : Any = 1 return lst if __name__ == "__main__": lowercase : Dict = input("Enter numbers separated by a comma:\n").strip() lowercase : Union[str, Any] = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
171
1
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __UpperCAmelCase : Optional[int] = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : int , A : Optional[int] , A : Any , A : Tuple=None , A : Tuple=1 ): __snake_case: Optional[int] = tokenizer __snake_case: str = dataset __snake_case: List[str] = len(__a ) if n_tasks is None else n_tasks __snake_case: Union[str, Any] = n_copies def __iter__( self : List[str] ): __snake_case: Union[str, Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() ) __snake_case: Optional[int] = self.tokenizer(__a , padding=__a , return_tensors="""pt""" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , A : int , A : Optional[Any] , A : Optional[Any] ): __snake_case: Optional[int] = start_length __snake_case: int = eof_strings __snake_case: List[str] = tokenizer def __call__( self : Optional[Any] , A : str , A : Tuple , **A : str ): __snake_case: List[str] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __snake_case: Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__a ) def A__ ( SCREAMING_SNAKE_CASE__) -> str: __snake_case: Any = re.split("""(%s)""" % """|""".join(__snake_case) , __snake_case) # last string should be "" return "".join(string_list[:-2]) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=20 , **SCREAMING_SNAKE_CASE__) -> Optional[int]: __snake_case: List[str] = defaultdict(__snake_case) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case)): with torch.no_grad(): __snake_case: Any = batch["""ids"""].shape[-1] __snake_case: int = accelerator.unwrap_model(__snake_case).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]] , num_return_sequences=__snake_case , **__snake_case) # each task is generated batch_size times __snake_case: List[Any] = batch["""task_id"""].repeat(__snake_case) __snake_case: Dict = accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id) __snake_case , __snake_case: List[Any] = accelerator.gather((generated_tokens, generated_tasks)) __snake_case: List[Any] = generated_tokens.cpu().numpy() __snake_case: Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case): gen_token_dict[task].append(__snake_case) __snake_case: int = [[] for _ in range(__snake_case)] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __snake_case: Dict = tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case) code_gens[task].append(remove_last_block(__snake_case)) return code_gens def A__ ( ) -> Any: __snake_case: int = HfArgumentParser(__snake_case) __snake_case: List[Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __snake_case: Dict = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __snake_case: Tuple = """false""" if args.num_workers is None: __snake_case: int = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __snake_case: str = Accelerator() set_seed(args.seed , device_specific=__snake_case) # Load model and tokenizer __snake_case: int = AutoTokenizer.from_pretrained(args.model_ckpt) __snake_case: Union[str, Any] = tokenizer.eos_token __snake_case: List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) # Generation settings __snake_case: str = { """do_sample""": args.do_sample, """temperature""": args.temperature, """max_new_tokens""": args.max_new_tokens, """top_p""": args.top_p, """top_k""": args.top_k, """stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case)]), } # Load evaluation dataset and metric __snake_case: Any = load_dataset("""openai_humaneval""") __snake_case: Tuple = load_metric("""code_eval""") __snake_case: int = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""]) __snake_case: Optional[Any] = args.n_samples // args.batch_size __snake_case: Dict = TokenizedDataset(__snake_case , human_eval["""test"""] , n_copies=__snake_case , n_tasks=__snake_case) # do not confuse args.batch_size, which is actually the num_return_sequences __snake_case: Tuple = DataLoader(__snake_case , batch_size=1) # Run a quick test to see if code evaluation is enabled try: __snake_case: Any = code_eval_metric.compute(references=[""""""] , predictions=[[""""""]]) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""") raise exception __snake_case , __snake_case: Optional[int] = accelerator.prepare(__snake_case , __snake_case) __snake_case: List[Any] = complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: __snake_case: List[Any] = [] for task in tqdm(range(__snake_case)): __snake_case: int = human_eval["""test"""][task]["""test"""] __snake_case: Union[str, Any] = F'''check({human_eval['test'][task]['entry_point']})''' references.append("""\n""" + test_func + """\n""" + entry_point) # Evaluate completions with "code_eval" metric __snake_case , __snake_case: Optional[int] = code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers) print(F'''Results: {pass_at_k}''') # Save results to json file with open(args.output_file , """w""") as fp: json.dump(__snake_case , __snake_case) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
111
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = 9 _UpperCamelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _UpperCamelCase = kruskal(__snake_case, __snake_case ) _UpperCamelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__snake_case ) == sorted(__snake_case )
194
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
369
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _a : Optional[int] = old_name if "patch_embed" in old_name: _a , _a , _a : int = old_name.split('.' ) if layer == "0": _a : Dict = old_name.replace('0' , 'convolution1' ) elif layer == "1": _a : List[str] = old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": _a : List[str] = old_name.replace('3' , 'convolution2' ) else: _a : Union[str, Any] = old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(r'\d\.\d' , lowerCAmelCase_ ): _a : Dict = r'\b\d{2}\b' if bool(re.search(lowerCAmelCase_ , lowerCAmelCase_ ) ): _a : Dict = re.search(r'\d\.\d\d.' , lowerCAmelCase_ ).group() else: _a : Optional[int] = re.search(r'\d\.\d.' , lowerCAmelCase_ ).group() if int(match[0] ) < 6: _a : int = old_name.replace(lowerCAmelCase_ , '' ) _a : Union[str, Any] = trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) _a : int = 'intermediate_stages.' + trimmed_name else: _a : Tuple = old_name.replace(lowerCAmelCase_ , '' ) if int(match[2] ) < num_meta4D_last_stage: _a : str = trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: _a : int = str(int(match[2] ) - num_meta4D_last_stage ) _a : List[str] = trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: _a : Union[str, Any] = trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: _a : List[Any] = trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: _a : Dict = trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: _a : List[Any] = trimmed_name.replace('fc2' , 'linear_out' ) _a : Dict = 'last_stage.' + trimmed_name elif "network" in old_name and re.search(r'.\d.' , lowerCAmelCase_ ): _a : List[str] = old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: _a : Optional[int] = new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _a : Tuple = new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _a : Union[str, Any] = new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: _a : Tuple = new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: _a : List[Any] = new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: _a : Dict = new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: _a : Tuple = 'efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _a : int = new_name.replace('norm' , 'layernorm' ) _a : Any = 'efficientformer.' + new_name else: _a : Optional[int] = 'efficientformer.encoder.' + new_name return new_name def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: for key in checkpoint.copy().keys(): _a : List[str] = checkpoint.pop(lowerCAmelCase_ ) _a : List[str] = val return checkpoint def __lowerCamelCase ( ) -> Any: _a : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' _a : List[str] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return image def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _a : int = torch.load(lowerCAmelCase_ , map_location='cpu' )['model'] _a : Any = EfficientFormerConfig.from_json_file(lowerCAmelCase_ ) _a : Optional[int] = EfficientFormerForImageClassificationWithTeacher(lowerCAmelCase_ ) _a : List[Any] = '_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) _a : Dict = config.depths[-1] - config.num_metaad_blocks + 1 _a : int = convert_torch_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() _a : Any = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image _a : Any = prepare_img() _a : Dict = 256 _a : Dict = 224 _a : int = EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) _a : Optional[int] = processor(images=lowerCAmelCase_ , return_tensors='pt' ).pixel_values # original processing pipeline _a : str = Compose( [ Resize(lowerCAmelCase_ , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(lowerCAmelCase_ ), ToTensor(), Normalize(lowerCAmelCase_ , lowerCAmelCase_ ), ] ) _a : Any = image_transforms(lowerCAmelCase_ ).unsqueeze(0 ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ ) _a : Tuple = model(lowerCAmelCase_ ) _a : Tuple = outputs.logits _a : List[Any] = (1, 1000) if "l1" in model_name: _a : Optional[Any] = torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , lowerCAmelCase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _a : List[Any] = torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , lowerCAmelCase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _a : Tuple = torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(lowerCAmelCase_ ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='Add model' , use_temp_dir=lowerCAmelCase_ , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='Add image processor' , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) __lowerCAmelCase = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
107
0
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCamelCase = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } UpperCamelCase = F"""{src_lang}-{tgt_lang}""" UpperCamelCase = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=A__ , exist_ok=A__ ) UpperCamelCase = os.path.join(A__ , 'README.md' ) print(F"""Generating {path}""" ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(A__ ) # make sure we are under the root of the project _lowerCamelCase : str = Path(__file__).resolve().parent.parent.parent _lowerCamelCase : Tuple = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _lowerCamelCase : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
28
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=30 , lowerCAmelCase_=2 , lowerCAmelCase_=3 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=10 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=0.6 , lowerCAmelCase_=None , ) -> int: _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = mask_ratio _A = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _A = (image_size // patch_size) ** 2 _A = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> str: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _A = ViTMAEModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _A = ViTMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A = model(lowerCAmelCase_ ) _A = (self.image_size // self.patch_size) ** 2 _A = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _A = 1 _A = ViTMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A = model(lowerCAmelCase_ ) _A = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase ( self ) -> Dict: _A = self.prepare_config_and_inputs() _A , _A , _A = config_and_inputs _A = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCamelCase :List[Any] = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} lowerCamelCase :List[Any] = False lowerCamelCase :Tuple = False lowerCamelCase :int = False lowerCamelCase :Any = False def UpperCAmelCase ( self ) -> str: _A = ViTMAEModelTester(self ) _A = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def UpperCAmelCase ( self ) -> Optional[Any]: pass def UpperCAmelCase ( self ) -> str: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(lowerCAmelCase_ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: # make masks reproducible np.random.seed(2 ) _A = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _A = torch.from_numpy(lowerCAmelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _A = pt_noise super().check_pt_tf_models(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Any: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _A = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A = outputs[0].cpu().numpy() _A = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) _A = model_class.from_pretrained(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _A = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Make sure we don't have nans _A = after_outputs[0].cpu().numpy() _A = 0 _A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1E-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def UpperCAmelCase ( self ) -> str: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def UpperCAmelCase ( self ) -> str: pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def UpperCAmelCase ( self ) -> Dict: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase ( self ) -> str: pass @slow def UpperCAmelCase ( self ) -> Optional[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = ViTMAEModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case ( ) -> List[str]: _A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> int: return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def UpperCAmelCase ( self ) -> Any: # make random mask reproducible across the PT and TF model np.random.seed(2 ) _A = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(lowerCAmelCase_ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ).to(lowerCAmelCase_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _A = ViTMAEConfig() _A = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _A = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _A = model(**lowerCAmelCase_ , noise=torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) ) # verify the logits _A = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCAmelCase_ ) , atol=1E-4 ) )
180
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _lowercase ( ): '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """-m""" ,"""--pretrained_model_name_or_path""" ,type=__A ,default=__A ,required=__A ,help="""Path to pretrained model or model identifier from huggingface.co/models.""" ,) parser.add_argument( """-c""" ,"""--caption""" ,type=__A ,default="""robotic cat with wings""" ,help="""Text used to generate images.""" ,) parser.add_argument( """-n""" ,"""--images_num""" ,type=__A ,default=4 ,help="""How much images to generate.""" ,) parser.add_argument( """-s""" ,"""--seed""" ,type=__A ,default=42 ,help="""Seed for random process.""" ,) parser.add_argument( """-ci""" ,"""--cuda_id""" ,type=__A ,default=0 ,help="""cuda_id.""" ,) __UpperCamelCase = parser.parse_args() return args def _lowercase ( __A ,__A ,__A ): '''simple docstring''' if not len(__A ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) __UpperCamelCase , __UpperCamelCase = imgs[0].size __UpperCamelCase = Image.new("""RGB""" ,size=(cols * w, rows * h) ) __UpperCamelCase , __UpperCamelCase = grid.size for i, img in enumerate(__A ): grid.paste(__A ,box=(i % cols * w, i // cols * h) ) return grid def _lowercase ( __A ,__A="robotic cat with wings" ,__A=7.5 ,__A=50 ,__A=1 ,__A=42 ,): '''simple docstring''' __UpperCamelCase = torch.Generator(pipeline.device ).manual_seed(__A ) __UpperCamelCase = pipeline( __A ,guidance_scale=__A ,num_inference_steps=__A ,generator=__A ,num_images_per_prompt=__A ,).images __UpperCamelCase = int(math.sqrt(__A ) ) __UpperCamelCase = image_grid(__A ,rows=_rows ,cols=num_images_per_prompt // _rows ) return grid, images a__ : str = parse_args() # Load models and create wrapper for stable diffusion a__ : List[str] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') a__ : Any = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') a__ : Dict = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') a__ : Union[str, Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') a__ : Optional[Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) a__ : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): a__ : Optional[int] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: a__ : Tuple = unet.to(torch.device('cuda', args.cuda_id)) a__ : Any = pipeline.to(unet.device) a__ : List[str] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) a__ : Any = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
350
'''simple docstring''' from PIL import Image def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = image.size __UpperCamelCase = 0 __UpperCamelCase = image.load() for i in range(__A ): for j in range(__A ): __UpperCamelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(__A ): for i in range(__A ): __UpperCamelCase = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": a__ : Optional[int] = mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
243
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Dict = """rwkv""" lowerCamelCase_ : List[Any] = {"""max_position_embeddings""": """context_length"""} def __init__( self , UpperCamelCase__=5_0277 , UpperCamelCase__=1024 , UpperCamelCase__=4096 , UpperCamelCase__=32 , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=1e-5 , UpperCamelCase__=0 , UpperCamelCase__=0 , UpperCamelCase__=6 , UpperCamelCase__=False , UpperCamelCase__=True , **UpperCamelCase__ , ) -> Union[str, Any]: lowerCamelCase : Optional[int] = vocab_size lowerCamelCase : Tuple = context_length lowerCamelCase : Dict = hidden_size lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : List[str] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowerCamelCase : Union[str, Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size lowerCamelCase : Tuple = layer_norm_epsilon lowerCamelCase : int = rescale_every lowerCamelCase : List[str] = use_cache lowerCamelCase : Optional[int] = bos_token_id lowerCamelCase : Optional[int] = eos_token_id super().__init__( tie_word_embeddings=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
48
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __lowerCAmelCase : List[Any] = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def __magic_name__ ( A : Dict, A : Union[str, Any], A : Optional[int]=None ): '''simple docstring''' if rng is None: a = random.Random() a = 1 for dim in shape: total_dims *= dim a = [] for _ in range(A ): values.append(rng.randint(0, vocab_size - 1 ) ) a = np.array(A, dtype=jnp.intaa ).reshape(A ) return output def __magic_name__ ( A : Dict, A : Union[str, Any]=None ): '''simple docstring''' a = ids_tensor(A, vocab_size=2, rng=A ) # make sure that at least one token is attended to for each batch a = 1 return attn_mask @require_flax class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Any = () def __UpperCAmelCase ( self : int ) -> List[str]: a , a = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 a = 2 a = inputs["input_ids"].shape[-1] // 2 a = inputs["input_ids"][:max_batch_size, :sequence_length] a = jnp.ones_like(__lowerCamelCase ) a = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens a = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` a = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __UpperCAmelCase ( self : Optional[Any] ) -> int: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length a = 0 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model_class.__name__[4:] # Skip the "Flax" at the beginning a = getattr(__lowerCamelCase , __lowerCamelCase ) a = pt_model_class(__lowerCamelCase ).eval() a = load_flax_weights_in_pytorch_model(__lowerCamelCase , flax_model.params ) a = flax_model.generate(__lowerCamelCase ).sequences a = pt_model.generate(torch.tensor(__lowerCamelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: a = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Optional[int] ) -> Any: a , a , a , a = self._get_input_ids_and_config() a = True a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : int ) -> Dict: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length a = 2 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length a = 2 a = 2 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: a , a , a , a = self._get_input_ids_and_config() a = True a = max_length a = 0.8 a = 10 a = 0.3 a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: a , a , a , a = self._get_input_ids_and_config() a = max_length a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: a , a , a , a = self._get_input_ids_and_config() a = max_length a = 2 a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: a , a , a , a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = False a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Tuple ) -> Tuple: a , a , a , a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = True a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: a , a , a , a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = 2 a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) a = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) a = "Hello world" a = tokenizer(__lowerCamelCase , return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCamelCase , "do_samples" ): model.generate(__lowerCamelCase , do_samples=__lowerCamelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCamelCase , "foo" ): a = {"foo": "bar"} model.generate(__lowerCamelCase , **__lowerCamelCase )
107
0
def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
350
import argparse import copy def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = {} with open(UpperCamelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case = [] _list.append([line.split()[1], line.split()[2]] ) snake_case = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case = [] _list.append([line.split()[0], line.split()[2]] ) snake_case = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" with open(UpperCamelCase_ ) as f: snake_case = f.read(1 ) snake_case = start_node snake_case = [] snake_case = start_node snake_case = 0 while visiting not in first_solution: snake_case = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(UpperCamelCase_ ) and k[0] not in first_solution: snake_case = k[1] snake_case = k[0] first_solution.append(UpperCamelCase_ ) snake_case = distance_of_first_solution + int(UpperCamelCase_ ) snake_case = best_node first_solution.append(UpperCamelCase_ ) snake_case = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = [] for n in solution[1:-1]: snake_case = solution.index(UpperCamelCase_ ) for kn in solution[1:-1]: snake_case = solution.index(UpperCamelCase_ ) if n == kn: continue snake_case = copy.deepcopy(UpperCamelCase_ ) snake_case = kn snake_case = n snake_case = 0 for k in _tmp[:-1]: snake_case = _tmp[_tmp.index(UpperCamelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case = distance + int(i[1] ) _tmp.append(UpperCamelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda UpperCamelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = 1 snake_case = first_solution snake_case = [] snake_case = distance_of_first_solution snake_case = solution while count <= iters: snake_case = find_neighborhood(UpperCamelCase_ ,UpperCamelCase_ ) snake_case = 0 snake_case = neighborhood[index_of_best_solution] snake_case = len(UpperCamelCase_ ) - 1 snake_case = False while not found: snake_case = 0 while i < len(UpperCamelCase_ ): if best_solution[i] != solution[i]: snake_case = best_solution[i] snake_case = solution[i] break snake_case = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case = True snake_case = best_solution[:-1] snake_case = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case = cost snake_case = solution else: snake_case = index_of_best_solution + 1 snake_case = neighborhood[index_of_best_solution] if len(UpperCamelCase_ ) >= size: tabu_list.pop(0 ) snake_case = count + 1 return best_solution_ever, best_cost def UpperCAmelCase__ (UpperCamelCase_=None ): """simple docstring""" snake_case = generate_neighbours(args.File ) snake_case , snake_case = generate_first_solution( args.File ,UpperCamelCase_ ) snake_case , snake_case = tabu_search( UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,args.Iterations ,args.Size ,) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
213
0
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _snake_case = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _snake_case = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" _snake_case = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' if version.parse(scb.__version__) < version.parse("1.4.12"): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`.") return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), }), codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"], reference_urls=[ "https://github.com/m-popovic/chrF", ], ) def snake_case__ ( self, __a, __a, __a = CHRF.CHAR_ORDER, __a = CHRF.WORD_ORDER, __a = CHRF.BETA, __a = False, __a = False, __a = False, ): '''simple docstring''' _lowerCAmelCase : str = len(references[0]) if any(len(__UpperCAmelCase) != references_per_prediction for refs in references): raise ValueError("Sacrebleu requires the same number of references for each prediction") _lowerCAmelCase : str = [[refs[i] for refs in references] for i in range(__UpperCAmelCase)] _lowerCAmelCase : str = CHRF(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase) _lowerCAmelCase : Optional[Any] = sb_chrf.corpus_score(__UpperCAmelCase, __UpperCAmelCase) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
36
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __lowerCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__: lowerCAmelCase__ : str = field( default=__A , metadata={'help': 'Model type selected in the list: ' + ', '.join(__A )} ) lowerCAmelCase__ : str = field( default=__A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase__ : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ : int = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase__ : int = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase__ : int = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase__ : bool = field( default=__A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase__ : bool = field( default=__A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase__ : float = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ : int = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ : int = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase__ : int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCamelCase__( __A ): lowerCAmelCase__ : Dict = 'train' lowerCAmelCase__ : int = 'dev' class UpperCamelCase__( __A ): lowerCAmelCase__ : SquadDataTrainingArguments lowerCAmelCase__ : List[SquadFeatures] lowerCAmelCase__ : Split lowerCAmelCase__ : bool def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = Split.train ,__UpperCAmelCase = False ,__UpperCAmelCase = None ,__UpperCAmelCase = "pt" ,) -> Optional[Any]: A__ = args A__ = is_language_sensitive A__ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): try: A__ = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) A__ = mode # Load data features from cache or dataset file A__ = 'v2' if args.version_2_with_negative else 'v1' A__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir ,f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' ,) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A__ = cached_features_file + '.lock' with FileLock(__UpperCAmelCase ): if os.path.exists(__UpperCAmelCase ) and not args.overwrite_cache: A__ = time.time() A__ = torch.load(__UpperCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. A__ = self.old_features['features'] A__ = self.old_features.get('dataset' ,__UpperCAmelCase ) A__ = self.old_features.get('examples' ,__UpperCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' ,time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: A__ = self.processor.get_dev_examples(args.data_dir ) else: A__ = self.processor.get_train_examples(args.data_dir ) A__ , A__ = squad_convert_examples_to_features( examples=self.examples ,tokenizer=__UpperCAmelCase ,max_seq_length=args.max_seq_length ,doc_stride=args.doc_stride ,max_query_length=args.max_query_length ,is_training=mode == Split.train ,threads=args.threads ,return_dataset=__UpperCAmelCase ,) A__ = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} ,__UpperCAmelCase ,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Union[str, Any]: return len(self.features ) def __getitem__( self ,__UpperCAmelCase ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset A__ = self.features[i] A__ = torch.tensor(feature.input_ids ,dtype=torch.long ) A__ = torch.tensor(feature.attention_mask ,dtype=torch.long ) A__ = torch.tensor(feature.token_type_ids ,dtype=torch.long ) A__ = torch.tensor(feature.cls_index ,dtype=torch.long ) A__ = torch.tensor(feature.p_mask ,dtype=torch.float ) A__ = torch.tensor(feature.is_impossible ,dtype=torch.float ) A__ = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape ,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: A__ = torch.tensor(feature.start_position ,dtype=torch.long ) A__ = torch.tensor(feature.end_position ,dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
221
0
"""simple docstring""" def a__ ( __lowercase ) -> int: assert column_title.isupper() _A = 0 _A = len(__lowercase ) - 1 _A = 0 while index >= 0: _A = (ord(column_title[index] ) - 64) * pow(26 , __lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
163
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {"vocab_file": "spm_char.model"} a_ = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } a_ = { "microsoft/speecht5_asr": 10_24, "microsoft/speecht5_tts": 10_24, "microsoft/speecht5_vc": 10_24, } class snake_case ( _UpperCamelCase): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self : Any , a__ : List[Any] , a__ : Optional[int]="<s>" , a__ : List[Any]="</s>" , a__ : int="<unk>" , a__ : Any="<pad>" , a__ : Optional[Dict[str, Any]] = None , **a__ : str , ) -> None: '''simple docstring''' _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , pad_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a__ ) @property def a_ ( self : List[str] ) -> List[str]: '''simple docstring''' return self.sp_model.get_piece_size() def a_ ( self : int ) -> Tuple: '''simple docstring''' _A = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _A = self.__dict__.copy() _A = None return state def __setstate__( self : Optional[Any] , a__ : Any ) -> List[str]: '''simple docstring''' _A = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a_ ( self : Any , a__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(a__ , out_type=a__ ) def a_ ( self : Optional[Any] , a__ : Optional[int] ) -> Dict: '''simple docstring''' return self.sp_model.piece_to_id(a__ ) def a_ ( self : List[str] , a__ : str ) -> Union[str, Any]: '''simple docstring''' _A = self.sp_model.IdToPiece(a__ ) return token def a_ ( self : Optional[int] , a__ : Union[str, Any] ) -> str: '''simple docstring''' _A = [] _A = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a__ ) + token _A = [] else: current_sub_tokens.append(a__ ) out_string += self.sp_model.decode(a__ ) return out_string.strip() def a_ ( self : str , a__ : Dict , a__ : Dict=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def a_ ( self : Any , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) _A = [1] if token_ids_a is None: return ([0] * len(a__ )) + suffix_ones return ([0] * len(a__ )) + ([0] * len(a__ )) + suffix_ones def a_ ( self : str , a__ : str , a__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , "wb" ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
163
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets a ="""\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ a ="""\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ a =r""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowerCAmelCase ( self : List[Any]): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string'), 'references': datasets.Value('string'), }) ,homepage='https://github.com/hendrycks/math' ,codebase_urls=['https://github.com/hendrycks/math'] ,) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Tuple): __lowerCamelCase : str = 0.0 for i, j in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): n_correct += 1.0 if math_equivalence.is_equiv(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else 0.0 __lowerCamelCase : Tuple = n_correct / len(SCREAMING_SNAKE_CASE__) return { "accuracy": accuracy, }
73
import csv import tweepy # Twitter API credentials a ="""""" a ="""""" a ="""""" a ="""""" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> None: # authorize twitter, initialize tweepy __lowerCamelCase : Tuple = tweepy.OAuthHandler(lowerCamelCase__ , lowerCamelCase__ ) auth.set_access_token(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Optional[int] = tweepy.API(lowerCamelCase__ ) # initialize a list to hold all the tweepy Tweets __lowerCamelCase : str = [] # make initial request for most recent tweets (200 is the maximum allowed count) __lowerCamelCase : Union[str, Any] = api.user_timeline(screen_name=lowerCamelCase__ , count=2_0_0 ) # save most recent tweets alltweets.extend(lowerCamelCase__ ) # save the id of the oldest tweet less one __lowerCamelCase : Any = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCamelCase__ ) > 0: print(F"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates __lowerCamelCase : str = api.user_timeline( screen_name=lowerCamelCase__ , count=2_0_0 , max_id=lowerCamelCase__ ) # save most recent tweets alltweets.extend(lowerCamelCase__ ) # update the id of the oldest tweet less one __lowerCamelCase : Optional[int] = alltweets[-1].id - 1 print(F"...{len(lowerCamelCase__ )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv __lowerCamelCase : str = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"new_{screen_name}_tweets.csv" , 'w' ) as f: __lowerCamelCase : Any = csv.writer(lowerCamelCase__ ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCamelCase__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
73
1
from ...processing_utils import ProcessorMixin class a__ ( UpperCamelCase__ ): a : Union[str, Any] = """WhisperFeatureExtractor""" a : str = """WhisperTokenizer""" def __init__( self , A , A ) -> str: '''simple docstring''' super().__init__(A , A ) a = self.feature_extractor a = False def lowerCAmelCase_ ( self , A=None , A=None , A=True ) -> Tuple: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=A , language=A , no_timestamps=A ) def __call__( self , *A , **A ) -> Dict: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*A , **A ) a = kwargs.pop("audio" , A ) a = kwargs.pop("sampling_rate" , A ) a = kwargs.pop("text" , A ) if len(A ) > 0: a = args[0] a = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: a = self.feature_extractor(A , *A , sampling_rate=A , **A ) if text is not None: a = self.tokenizer(A , **A ) if text is None: return inputs elif audio is None: return encodings else: a = encodings["input_ids"] return inputs def lowerCAmelCase_ ( self , *A , **A ) -> Dict: '''simple docstring''' return self.tokenizer.batch_decode(*A , **A ) def lowerCAmelCase_ ( self , *A , **A ) -> Any: '''simple docstring''' return self.tokenizer.decode(*A , **A ) def lowerCAmelCase_ ( self , A , A="np" ) -> Dict: '''simple docstring''' return self.tokenizer.get_prompt_ids(A , return_tensors=A )
180
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> list[int]: a = 2 a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__UpperCamelCase) if n > 1: factors.append(__UpperCamelCase) return factors if __name__ == "__main__": import doctest doctest.testmod()
180
1
from argparse import ArgumentParser from .env import EnvironmentCommand def A_ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] = ArgumentParser("Diffusers CLI tool" , usage="diffusers-cli <command> [<args>]" ) SCREAMING_SNAKE_CASE_: Dict = parser.add_subparsers(help="diffusers-cli command helpers" ) # Register commands EnvironmentCommand.register_subcommand(__lowerCamelCase ) # Let's go SCREAMING_SNAKE_CASE_: Tuple = parser.parse_args() if not hasattr(__lowerCamelCase , "func" ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_: int = args.func(__lowerCamelCase ) service.run() if __name__ == "__main__": main()
13
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _lowercase : List[str] = logging.get_logger(__name__) _lowercase : int = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'deberta-v2' def __init__( self : Optional[Any], lowerCamelCase : Optional[int]=12_8100, lowerCamelCase : List[Any]=1536, lowerCamelCase : Dict=24, lowerCamelCase : Any=24, lowerCamelCase : Union[str, Any]=6144, lowerCamelCase : List[Any]="gelu", lowerCamelCase : int=0.1, lowerCamelCase : Union[str, Any]=0.1, lowerCamelCase : Union[str, Any]=512, lowerCamelCase : Optional[Any]=0, lowerCamelCase : Any=0.02, lowerCamelCase : int=1E-7, lowerCamelCase : Union[str, Any]=False, lowerCamelCase : Union[str, Any]=-1, lowerCamelCase : Tuple=0, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : int=None, lowerCamelCase : Dict=0, lowerCamelCase : Tuple="gelu", **lowerCamelCase : Optional[int], )-> Union[str, Any]: super().__init__(**lowerCamelCase ) lowerCamelCase__ : str =hidden_size lowerCamelCase__ : Optional[int] =num_hidden_layers lowerCamelCase__ : Optional[Any] =num_attention_heads lowerCamelCase__ : List[Any] =intermediate_size lowerCamelCase__ : int =hidden_act lowerCamelCase__ : Tuple =hidden_dropout_prob lowerCamelCase__ : Union[str, Any] =attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] =max_position_embeddings lowerCamelCase__ : int =type_vocab_size lowerCamelCase__ : Tuple =initializer_range lowerCamelCase__ : Tuple =relative_attention lowerCamelCase__ : Optional[Any] =max_relative_positions lowerCamelCase__ : List[Any] =pad_token_id lowerCamelCase__ : int =position_biased_input # Backwards compatibility if type(lowerCamelCase ) == str: lowerCamelCase__ : Union[str, Any] =[x.strip() for x in pos_att_type.lower().split('''|''' )] lowerCamelCase__ : Tuple =pos_att_type lowerCamelCase__ : Union[str, Any] =vocab_size lowerCamelCase__ : Optional[int] =layer_norm_eps lowerCamelCase__ : Dict =kwargs.get('''pooler_hidden_size''', lowerCamelCase ) lowerCamelCase__ : Tuple =pooler_dropout lowerCamelCase__ : List[Any] =pooler_hidden_act class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' @property def snake_case ( self : List[str] )-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase__ : Union[str, Any] ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ : Any ={0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def snake_case ( self : List[str] )-> int: return 12 def snake_case ( self : str, lowerCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional["TensorType"] = None, lowerCamelCase : int = 3, lowerCamelCase : int = 40, lowerCamelCase : int = 40, lowerCamelCase : "PreTrainedTokenizerBase" = None, )-> Mapping[str, Any]: lowerCamelCase__ : List[Any] =super().generate_dummy_inputs(preprocessor=lowerCamelCase, framework=lowerCamelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
238
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowercase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase_ = IFInpaintingSuperResolutionPipeline lowercase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowercase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowercase_ = PipelineTesterMixin.required_optional_params - {'latents'} def _UpperCamelCase ( self ) -> Union[str, Any]: return self._get_superresolution_dummy_components() def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=0 ) -> Any: if str(UpperCAmelCase_ ).startswith('mps' ): lowerCamelCase : Optional[int] = torch.manual_seed(UpperCAmelCase_ ) else: lowerCamelCase : Optional[Any] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCamelCase : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _UpperCamelCase ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _UpperCamelCase ( self ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def _UpperCamelCase ( self ) -> List[Any]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _UpperCamelCase ( self ) -> str: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _UpperCamelCase ( self ) -> Any: self._test_save_load_local() def _UpperCamelCase ( self ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
356
"""simple docstring""" def UpperCAmelCase ( a_ = 1000 ): '''simple docstring''' lowerCamelCase : Dict = 2**power lowerCamelCase : List[str] = str(a_ ) lowerCamelCase : Dict = list(a_ ) lowerCamelCase : Optional[Any] = 0 for i in list_num: sum_of_num += int(a_ ) return sum_of_num if __name__ == "__main__": _A = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) _A = solution(power) print('Sum of the digits is: ', result)
205
0
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class __A ( unittest.TestCase ): @property def lowercase__ ( self : Union[str, Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase__ ( self : int ): lowerCAmelCase : Tuple = ort.SessionOptions() lowerCAmelCase : str = False return options def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) lowerCAmelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) lowerCAmelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default lowerCAmelCase : Optional[Any] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : List[str] = 'A red cat sitting on a park bench' lowerCAmelCase : Tuple = np.random.RandomState(0 ) lowerCAmelCase : Optional[Any] = pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=UpperCAmelCase_ , output_type='np' , ) lowerCAmelCase : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
138
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __A : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=lowerCAmelCase ) class __A : lowerCAmelCase_ : str lowerCAmelCase_ : str lowerCAmelCase_ : Optional[str] = None lowerCAmelCase_ : Optional[str] = None lowerCAmelCase_ : Optional[str] = None @dataclass(frozen=lowerCAmelCase ) class __A : lowerCAmelCase_ : List[int] lowerCAmelCase_ : Optional[List[int]] = None lowerCAmelCase_ : Optional[List[int]] = None lowerCAmelCase_ : Optional[Union[int, float]] = None lowerCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __A ( lowerCAmelCase ): lowerCAmelCase_ : List[InputFeatures] def __init__( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str=False , UpperCAmelCase_ : bool = False , ): lowerCAmelCase : List[Any] = hans_processors[task]() lowerCAmelCase : Tuple = os.path.join( UpperCAmelCase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCAmelCase_ ) , UpperCAmelCase_ , ) , ) lowerCAmelCase : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase , lowerCAmelCase : List[Any] = label_list[2], label_list[1] lowerCAmelCase : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase : Any = cached_features_file + '.lock' with FileLock(UpperCAmelCase_ ): if os.path.exists(UpperCAmelCase_ ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) lowerCAmelCase : int = torch.load(UpperCAmelCase_ ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) lowerCAmelCase : Optional[int] = ( processor.get_dev_examples(UpperCAmelCase_ ) if evaluate else processor.get_train_examples(UpperCAmelCase_ ) ) logger.info('Training examples: %s' , len(UpperCAmelCase_ ) ) lowerCAmelCase : List[str] = hans_convert_examples_to_features(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) logger.info('Saving features into cached file %s' , UpperCAmelCase_ ) torch.save(self.features , UpperCAmelCase_ ) def __len__( self : str ): return len(self.features ) def __getitem__( self : Optional[Any] , UpperCAmelCase_ : List[str] ): return self.features[i] def lowercase__ ( self : int ): return self.label_list if is_tf_available(): import tensorflow as tf class __A : lowerCAmelCase_ : List[InputFeatures] def __init__( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = 128 , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : bool = False , ): lowerCAmelCase : List[Any] = hans_processors[task]() lowerCAmelCase : List[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase , lowerCAmelCase : int = label_list[2], label_list[1] lowerCAmelCase : str = label_list lowerCAmelCase : Union[str, Any] = processor.get_dev_examples(UpperCAmelCase_ ) if evaluate else processor.get_train_examples(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = hans_convert_examples_to_features(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCAmelCase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCAmelCase : Tuple = tf.data.Dataset.from_generator( UpperCAmelCase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def lowercase__ ( self : Dict ): return self.dataset def __len__( self : Optional[int] ): return len(self.features ) def __getitem__( self : int , UpperCAmelCase_ : List[Any] ): return self.features[i] def lowercase__ ( self : int ): return self.label_list class __A ( lowerCAmelCase ): def lowercase__ ( self : Dict , UpperCAmelCase_ : Dict ): return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Any ): return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def lowercase__ ( self : Optional[Any] ): return ["contradiction", "entailment", "neutral"] def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : List[str] = [] for i, line in enumerate(UpperCAmelCase_ ): if i == 0: continue lowerCAmelCase : Union[str, Any] = '%s-%s' % (set_type, line[0]) lowerCAmelCase : Optional[int] = line[5] lowerCAmelCase : Optional[int] = line[6] lowerCAmelCase : Dict = line[7][2:] if line[7].startswith('ex' ) else line[7] lowerCAmelCase : List[str] = line[0] examples.append(InputExample(guid=UpperCAmelCase_ , text_a=UpperCAmelCase_ , text_b=UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) return examples def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) -> Dict: '''simple docstring''' lowerCAmelCase : List[Any] = {label: i for i, label in enumerate(_UpperCAmelCase )} lowerCAmelCase : Union[str, Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ), desc='convert examples to features' ): if ex_index % 10_000 == 0: logger.info('Writing example %d' % (ex_index) ) lowerCAmelCase : Any = tokenizer( example.text_a, example.text_b, add_special_tokens=_UpperCAmelCase, max_length=_UpperCAmelCase, padding='max_length', truncation=_UpperCAmelCase, return_overflowing_tokens=_UpperCAmelCase, ) lowerCAmelCase : Union[str, Any] = label_map[example.label] if example.label in label_map else 0 lowerCAmelCase : Optional[Any] = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase, label=_UpperCAmelCase, pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(f"guid: {example}" ) logger.info(f"features: {features[i]}" ) return features __A : Union[str, Any] = { '''hans''': 3, } __A : List[Any] = { '''hans''': HansProcessor, }
138
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=99 , UpperCAmelCase_ : Tuple=13 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Union[str, Any]=30 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Dict=None , ) ->str: '''simple docstring''' lowerCamelCase__: Tuple =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Tuple =decoder_seq_length # For common tests lowerCamelCase__: int =self.decoder_seq_length lowerCamelCase__: str =is_training lowerCamelCase__: Union[str, Any] =use_attention_mask lowerCamelCase__: Any =use_labels lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Optional[Any] =d_model lowerCamelCase__: Optional[Any] =d_model lowerCamelCase__: Optional[Any] =decoder_layers lowerCamelCase__: List[str] =decoder_layers lowerCamelCase__: List[str] =decoder_ffn_dim lowerCamelCase__: List[Any] =decoder_attention_heads lowerCamelCase__: List[str] =decoder_attention_heads lowerCamelCase__: Optional[int] =eos_token_id lowerCamelCase__: Any =bos_token_id lowerCamelCase__: str =pad_token_id lowerCamelCase__: List[str] =decoder_start_token_id lowerCamelCase__: Optional[Any] =use_cache lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: Any =None lowerCamelCase__: str =decoder_seq_length lowerCamelCase__: int =2 lowerCamelCase__: Optional[int] =1 def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size) lowerCamelCase__: Tuple =None if self.use_attention_mask: lowerCamelCase__: int =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2) lowerCamelCase__: List[str] =None if self.use_labels: lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size) lowerCamelCase__: Any =TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: int =True lowerCamelCase__: List[str] =TrOCRDecoder(config=UpperCAmelCase_).to(UpperCAmelCase_).eval() lowerCamelCase__: List[str] =input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , use_cache=UpperCAmelCase_) lowerCamelCase__: List[Any] =model(UpperCAmelCase_) lowerCamelCase__: List[str] =model(UpperCAmelCase_ , use_cache=UpperCAmelCase_) self.parent.assertTrue(len(UpperCAmelCase_) == len(UpperCAmelCase_)) self.parent.assertTrue(len(UpperCAmelCase_) == len(UpperCAmelCase_) + 1) lowerCamelCase__: Dict =outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids lowerCamelCase__: Optional[int] =ids_tensor((2, 1) , config.vocab_size - 1) + 1 # append to next input_ids and lowerCamelCase__: List[Any] =torch.cat([input_ids, next_tokens] , dim=-1) lowerCamelCase__: Optional[Any] =model(UpperCAmelCase_)["last_hidden_state"] lowerCamelCase__: Tuple =model(UpperCAmelCase_ , past_key_values=UpperCAmelCase_)["last_hidden_state"] # select random slice lowerCamelCase__: Optional[Any] =ids_tensor((1,) , output_from_past.shape[-1]).item() lowerCamelCase__: Any =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowerCamelCase__: str =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3) def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: str =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =config_and_inputs lowerCamelCase__: Dict ={"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowercase_ = (TrOCRForCausalLM,) if is_torch_available() else () lowercase_ = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} lowercase_ = True lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' lowerCamelCase__: Dict =TrOCRStandaloneDecoderModelTester(self , is_training=UpperCAmelCase_) lowerCamelCase__: Any =ConfigTester(self , config_class=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' lowerCamelCase__: str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple: '''simple docstring''' pass
273
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : str) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =[] def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any) ->Dict: '''simple docstring''' self.events.append("on_init_end") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , **UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' self.events.append("on_train_begin") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str) ->int: '''simple docstring''' self.events.append("on_train_end") def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int]) ->List[Any]: '''simple docstring''' self.events.append("on_epoch_begin") def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , **UpperCAmelCase_ : Any) ->Tuple: '''simple docstring''' self.events.append("on_epoch_end") def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]) ->Optional[int]: '''simple docstring''' self.events.append("on_step_begin") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[str]) ->Tuple: '''simple docstring''' self.events.append("on_step_end") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str) ->Optional[int]: '''simple docstring''' self.events.append("on_evaluate") def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any) ->int: '''simple docstring''' self.events.append("on_predict") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any]) ->Any: '''simple docstring''' self.events.append("on_save") def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' self.events.append("on_log") def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str]) ->Optional[int]: '''simple docstring''' self.events.append("on_prediction_step") @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: Tuple =tempfile.mkdtemp() def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' shutil.rmtree(self.output_dir) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : str=64 , UpperCAmelCase_ : List[Any]=64 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[str]=False , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =RegressionDataset(length=UpperCAmelCase_) lowerCamelCase__: int =RegressionDataset(length=UpperCAmelCase_) lowerCamelCase__: str =RegressionModelConfig(a=UpperCAmelCase_ , b=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =RegressionPreTrainedModel(UpperCAmelCase_) lowerCamelCase__: int =TrainingArguments(self.output_dir , disable_tqdm=UpperCAmelCase_ , report_to=[] , **UpperCAmelCase_) return Trainer( UpperCAmelCase_ , UpperCAmelCase_ , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , callbacks=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str]) ->Dict: '''simple docstring''' self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) # Order doesn't matter lowerCamelCase__: Dict =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: cb.__name__ if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cb.__class__.__name__) lowerCamelCase__: Optional[int] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: cb.__name__ if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cb.__class__.__name__) for cba, cba in zip(UpperCAmelCase_ , UpperCAmelCase_): if isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_) and not isinstance(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(UpperCAmelCase_ , cba.__class__) elif not isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(cba.__class__ , UpperCAmelCase_) else: self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =["on_init_end", "on_train_begin"] lowerCamelCase__: List[str] =0 lowerCamelCase__: List[Any] =len(trainer.get_eval_dataloader()) lowerCamelCase__: Dict =["on_prediction_step"] * len(trainer.get_eval_dataloader()) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs): expected_events.append("on_epoch_begin") for _ in range(UpperCAmelCase_): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save") expected_events.append("on_epoch_end") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.get_trainer() lowerCamelCase__: Any =DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) # Callbacks passed at init are added to the default callbacks lowerCamelCase__: Dict =self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(UpperCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowerCamelCase__: int =self.get_trainer(disable_tqdm=UpperCAmelCase_) lowerCamelCase__: Tuple =DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowerCamelCase__: Optional[int] =self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(UpperCAmelCase_) expected_callbacks.remove(UpperCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) lowerCamelCase__: Dict =self.get_trainer() lowerCamelCase__: str =trainer.pop_callback(UpperCAmelCase_) self.assertEqual(cb.__class__ , UpperCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) trainer.add_callback(UpperCAmelCase_) expected_callbacks.insert(0 , UpperCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) # We can also add, pop, or remove by instance lowerCamelCase__: List[str] =self.get_trainer() lowerCamelCase__: List[str] =trainer.callback_handler.callbacks[0] trainer.remove_callback(UpperCAmelCase_) expected_callbacks.remove(UpperCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) lowerCamelCase__: str =self.get_trainer() lowerCamelCase__: List[Any] =trainer.callback_handler.callbacks[0] lowerCamelCase__: Dict =trainer.pop_callback(UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) trainer.add_callback(UpperCAmelCase_) expected_callbacks.insert(0 , UpperCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() lowerCamelCase__: int =trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_)) # Independent log/save/eval lowerCamelCase__: Dict =self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() lowerCamelCase__: Optional[int] =trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_)) lowerCamelCase__: Any =self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() lowerCamelCase__: List[Any] =trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_)) lowerCamelCase__: int =self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps") trainer.train() lowerCamelCase__: str =trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_)) lowerCamelCase__: Dict =self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch") trainer.train() lowerCamelCase__: Tuple =trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_)) # A bit of everything lowerCamelCase__: Tuple =self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() lowerCamelCase__: int =trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_)) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning") as warn_mock: lowerCamelCase__: Optional[int] =self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(UpperCAmelCase_) in warn_mock.call_args[0][0]
273
1
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters lowerCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): # Recurse if needed if "." in tensor_name: UpperCAmelCase__ = tensor_name.split('.' ) for split in splits[:-1]: UpperCAmelCase__ = getattr(lowerCamelCase , lowerCamelCase ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) UpperCAmelCase__ = new_module UpperCAmelCase__ = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) UpperCAmelCase__ = tensor_name in module._buffers UpperCAmelCase__ = getattr(lowerCamelCase , lowerCamelCase ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(f'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) UpperCAmelCase__ = False UpperCAmelCase__ = False if is_buffer or not is_bitsandbytes_available(): UpperCAmelCase__ = False UpperCAmelCase__ = False else: UpperCAmelCase__ = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) UpperCAmelCase__ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: UpperCAmelCase__ = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCAmelCase__ = old_value.to(lowerCamelCase ) elif isinstance(lowerCamelCase , torch.Tensor ): UpperCAmelCase__ = value.to('cpu' ) if value.dtype == torch.inta: UpperCAmelCase__ = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: UpperCAmelCase__ = torch.tensor(lowerCamelCase , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , lowerCamelCase ) and fpaa_statistics is None: UpperCAmelCase__ = new_value.T UpperCAmelCase__ = old_value.__dict__ if is_abit: UpperCAmelCase__ = bnb.nn.IntaParams(lowerCamelCase , requires_grad=lowerCamelCase , **lowerCamelCase ).to(lowerCamelCase ) elif is_abit: UpperCAmelCase__ = bnb.nn.Paramsabit(lowerCamelCase , requires_grad=lowerCamelCase , **lowerCamelCase ).to(lowerCamelCase ) UpperCAmelCase__ = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(lowerCamelCase ) ) else: if value is None: UpperCAmelCase__ = old_value.to(lowerCamelCase ) elif isinstance(lowerCamelCase , torch.Tensor ): UpperCAmelCase__ = value.to(lowerCamelCase ) else: UpperCAmelCase__ = torch.tensor(lowerCamelCase , device=lowerCamelCase ) if is_buffer: UpperCAmelCase__ = new_value else: UpperCAmelCase__ = nn.Parameter(lowerCamelCase , requires_grad=old_value.requires_grad ) UpperCAmelCase__ = new_value def a_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=False ): for name, module in model.named_children(): if current_key_name is None: UpperCAmelCase__ = [] current_key_name.append(lowerCamelCase ) if (isinstance(lowerCamelCase , nn.Linear ) or isinstance(lowerCamelCase , lowerCamelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(lowerCamelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ , UpperCAmelCase__ = module.weight.shape else: UpperCAmelCase__ = module.in_features UpperCAmelCase__ = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCAmelCase__ = bnb.nn.LinearabitLt( lowerCamelCase , lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) UpperCAmelCase__ = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCAmelCase__ = bnb.nn.Linearabit( lowerCamelCase , lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) UpperCAmelCase__ = True # Store the module class in case we need to transpose the weight later UpperCAmelCase__ = type(lowerCamelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(lowerCamelCase ) if len(list(module.children() ) ) > 0: UpperCAmelCase__ , UpperCAmelCase__ = _replace_with_bnb_linear( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , has_been_replaced=lowerCamelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def a_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None ): UpperCAmelCase__ = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert UpperCAmelCase__ , UpperCAmelCase__ = _replace_with_bnb_linear( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def a_ ( *lowerCamelCase , **lowerCamelCase ): warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , lowerCamelCase , ) return replace_with_bnb_linear(*lowerCamelCase , **lowerCamelCase ) def a_ ( *lowerCamelCase , **lowerCamelCase ): warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , lowerCamelCase , ) return set_module_quantized_tensor_to_device(*lowerCamelCase , **lowerCamelCase ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = deepcopy(lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCAmelCase__ = find_tied_parameters(lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCAmelCase__ = sum(lowerCamelCase , [] ) UpperCAmelCase__ = len(lowerCamelCase ) > 0 # Check if it is a base model UpperCAmelCase__ = not hasattr(lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCAmelCase__ = list(model.named_children() ) UpperCAmelCase__ = [list_modules[-1][0]] # add last module together with tied weights UpperCAmelCase__ = set(lowerCamelCase ) - set(lowerCamelCase ) UpperCAmelCase__ = list(set(lowerCamelCase ) ) + list(lowerCamelCase ) # remove ".weight" from the keys UpperCAmelCase__ = ['.weight', '.bias'] UpperCAmelCase__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCAmelCase__ = name.replace(lowerCamelCase , '' ) filtered_module_names.append(lowerCamelCase ) return filtered_module_names
98
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. SCREAMING_SNAKE_CASE : Optional[int] = len(A ) - 1 def UpperCamelCase_ ( self, A ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree, A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(A ), 5 ) == 1 return output_values def UpperCamelCase_ ( self, A ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE : str = self.basis_function(A ) SCREAMING_SNAKE_CASE : str = 0.0 SCREAMING_SNAKE_CASE : List[Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def UpperCamelCase_ ( self, A = 0.01 ): '''simple docstring''' from matplotlib import pyplot as plt # type: ignore SCREAMING_SNAKE_CASE : list[float] = [] # x coordinates of points to plot SCREAMING_SNAKE_CASE : list[float] = [] # y coordinates of points to plot SCREAMING_SNAKE_CASE : List[str] = 0.0 while t <= 1: SCREAMING_SNAKE_CASE : Optional[int] = self.bezier_curve_function(A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size SCREAMING_SNAKE_CASE : List[Any] = [i[0] for i in self.list_of_points] SCREAMING_SNAKE_CASE : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( A, A, color='blue', label='Curve of Degree ' + str(self.degree ), ) plt.scatter(A, A, color='red', label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
251
0
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Union[str, Any] = """linear""" snake_case : List[Any] = """cosine""" snake_case : Union[str, Any] = """cosine_with_restarts""" snake_case : Union[str, Any] = """polynomial""" snake_case : List[Any] = """constant""" snake_case : int = """constant_with_warmup""" snake_case : Any = """piecewise_constant""" def _UpperCamelCase (a__ :Optimizer , a__ :int = -1 ): """simple docstring""" return LambdaLR(a__ , lambda a__ : 1 , last_epoch=a__ ) def _UpperCamelCase (a__ :Optimizer , a__ :int , a__ :int = -1 ): """simple docstring""" def lr_lambda(a__ :int ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1.0 , a__ ) ) return 1.0 return LambdaLR(a__ , a__ , last_epoch=a__ ) def _UpperCamelCase (a__ :Optimizer , a__ :str , a__ :int = -1 ): """simple docstring""" UpperCamelCase__ = {} UpperCamelCase__ = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: UpperCamelCase__ , UpperCamelCase__ = rule_str.split(""":""" ) UpperCamelCase__ = int(a__ ) UpperCamelCase__ = float(a__ ) UpperCamelCase__ = value UpperCamelCase__ = float(rule_list[-1] ) def create_rules_function(a__ :Dict , a__ :List[Any] ): def rule_func(a__ :int ) -> float: UpperCamelCase__ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(a__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func UpperCamelCase__ = create_rules_function(a__ , a__ ) return LambdaLR(a__ , a__ , last_epoch=a__ ) def _UpperCamelCase (a__ :List[Any] , a__ :Dict , a__ :str , a__ :Optional[int]=-1 ): """simple docstring""" def lr_lambda(a__ :int ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(a__ , a__ , a__ ) def _UpperCamelCase (a__ :Optimizer , a__ :int , a__ :int , a__ :float = 0.5 , a__ :int = -1 ): """simple docstring""" def lr_lambda(a__ :Union[str, Any] ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) UpperCamelCase__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(a__ ) * 2.0 * progress )) ) return LambdaLR(a__ , a__ , a__ ) def _UpperCamelCase (a__ :Optimizer , a__ :int , a__ :int , a__ :int = 1 , a__ :int = -1 ): """simple docstring""" def lr_lambda(a__ :List[Any] ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) UpperCamelCase__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(a__ ) * progress) % 1.0) )) ) return LambdaLR(a__ , a__ , a__ ) def _UpperCamelCase (a__ :Tuple , a__ :Dict , a__ :List[str] , a__ :Optional[int]=1e-7 , a__ :str=1.0 , a__ :int=-1 ): """simple docstring""" UpperCamelCase__ = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(a__ :int ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: UpperCamelCase__ = lr_init - lr_end UpperCamelCase__ = num_training_steps - num_warmup_steps UpperCamelCase__ = 1 - (current_step - num_warmup_steps) / decay_steps UpperCamelCase__ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(a__ , a__ , a__ ) UpperCamelCase__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def _UpperCamelCase (a__ :Union[str, SchedulerType] , a__ :Optimizer , a__ :Optional[str] = None , a__ :Optional[int] = None , a__ :Optional[int] = None , a__ :int = 1 , a__ :float = 1.0 , a__ :int = -1 , ): """simple docstring""" UpperCamelCase__ = SchedulerType(a__ ) UpperCamelCase__ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(a__ , last_epoch=a__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(a__ , step_rules=a__ , last_epoch=a__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(a__ , num_warmup_steps=a__ , last_epoch=a__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , num_cycles=a__ , last_epoch=a__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , power=a__ , last_epoch=a__ , ) return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , last_epoch=a__ )
87
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase__ = logging.getLogger(__name__) def _UpperCamelCase (a__ :Union[str, Any] , a__ :Optional[Any] ): """simple docstring""" return (preds == labels).mean() @dataclass class __SCREAMING_SNAKE_CASE : snake_case : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) snake_case : Optional[str] = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __SCREAMING_SNAKE_CASE : snake_case : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) snake_case : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) snake_case : int = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) snake_case : bool = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , a__ ) # Set seed set_seed(training_args.seed ) try: UpperCamelCase__ = processors[data_args.task_name]() UpperCamelCase__ = processor.get_labels() UpperCamelCase__ = len(a__ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCamelCase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase__ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , ) # Get datasets UpperCamelCase__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCamelCase__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(a__ :EvalPrediction ) -> Dict: UpperCamelCase__ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(a__ , p.label_ids )} # Data collator UpperCamelCase__ = DataCollatorWithPadding(a__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCamelCase__ = Trainer( model=a__ , args=a__ , train_dataset=a__ , eval_dataset=a__ , compute_metrics=a__ , data_collator=a__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase__ = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase__ = trainer.evaluate() UpperCamelCase__ = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(a__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , a__ , a__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(a__ ) return results def _UpperCamelCase (a__ :Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
87
1
"""simple docstring""" import argparse from collections import defaultdict import yaml a = '''docs/source/en/_toctree.yml''' def _snake_case ( _snake_case : Optional[int] ) -> Tuple: '''simple docstring''' _A = defaultdict(_lowercase ) for doc in model_doc: counts[doc["local"]] += 1 _A = [key for key, value in counts.items() if value > 1] _A = [] for duplicate_key in duplicates: _A = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(_lowercase ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(_lowercase , key=lambda _snake_case : s["title"].lower() ) def _snake_case ( _snake_case : Any=False ) -> Tuple: '''simple docstring''' with open(_lowercase , encoding='utf-8' ) as f: _A = yaml.safe_load(f.read() ) # Get to the API doc _A = 0 while content[api_idx]["title"] != "API": api_idx += 1 _A = content[api_idx]['''sections'''] # Then to the model doc _A = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _A = api_doc[model_idx]['''sections'''] _A = [(idx, section) for idx, section in enumerate(_lowercase ) if '''sections''' in section] _A = False for idx, modality_doc in modalities_docs: _A = modality_doc['''sections'''] _A = clean_model_doc_toc(_lowercase ) if old_modality_doc != new_modality_doc: _A = True if overwrite: _A = new_modality_doc if diff: if overwrite: _A = model_doc _A = api_doc with open(_lowercase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_lowercase , allow_unicode=_lowercase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a = parser.parse_args() check_model_doc(args.fix_and_overwrite)
315
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowercase : Optional[Any] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowercase : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens __lowercase : Any = os.environ.get('''USER_TOKEN''', '''''') def lowercase_ ( _lowercase ) -> dict[Any, Any]: '''simple docstring''' lowerCamelCase_ : str = { '''Authorization''': F"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_lowercase , headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
318
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : Optional[Any] = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
362
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
from numpy import exp, pi, sqrt def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict = 0.0 , _SCREAMING_SNAKE_CASE : str = 1.0 ): """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
302
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowerCAmelCase_ = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ : str = list(s_dict.keys() ) for key in keys: snake_case_ : Optional[int] = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case_ : List[str] = new_key.replace(_UpperCamelCase , _UpperCamelCase ) print(f'''{key} -> {new_key}''' ) snake_case_ : Tuple = s_dict.pop(_UpperCamelCase ) return s_dict def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ , snake_case_ : Dict = emb.weight.shape snake_case_ : Tuple = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) snake_case_ : Any = emb.weight.data return lin_layer def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> bytes: """simple docstring""" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : List[Any] = os.path.basename(_UpperCamelCase ) snake_case_ : Any = url.split('''/''' )[-2] snake_case_ : str = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ) and not os.path.isfile(_UpperCamelCase ): raise RuntimeError(f'''{download_target} exists and is not a regular file''' ) if os.path.isfile(_UpperCamelCase ): snake_case_ : Union[str, Any] = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(_UpperCamelCase ) as source, open(_UpperCamelCase , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=_UpperCamelCase , unit_divisor=1_024 ) as loop: while True: snake_case_ : Dict = source.read(8_192 ) if not buffer: break output.write(_UpperCamelCase ) loop.update(len(_UpperCamelCase ) ) snake_case_ : Any = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" if ".pt" not in checkpoint_path: snake_case_ : str = _download(_MODELS[checkpoint_path] ) else: snake_case_ : Union[str, Any] = torch.load(_UpperCamelCase , map_location='''cpu''' ) snake_case_ : int = original_checkpoint['''dims'''] snake_case_ : List[str] = original_checkpoint['''model_state_dict'''] snake_case_ : str = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(_UpperCamelCase ) rename_keys(_UpperCamelCase ) snake_case_ : Optional[int] = True snake_case_ : int = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] snake_case_ : List[str] = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_UpperCamelCase , decoder_ffn_dim=_UpperCamelCase , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) snake_case_ : Union[str, Any] = WhisperForConditionalGeneration(_UpperCamelCase ) snake_case_ , snake_case_ : List[Any] = model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) if len(_UpperCamelCase ) > 0 and not set(_UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f''' but all the following weights are missing {missing}''' ) if tie_embeds: snake_case_ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case_ : Any = proj_out_weights model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
279
0
def A_ ( snake_case_ : Optional[int] ): '''simple docstring''' if not isinstance(lowercase_ ,lowercase_ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) UpperCamelCase : Dict = 0 UpperCamelCase : Optional[int] = str(lowercase_ ) while len(lowercase_ ) != 1: UpperCamelCase : Any = [int(lowercase_ ) for i in num_string] UpperCamelCase : List[Any] = 1 for i in range(0 ,len(lowercase_ ) ): total *= numbers[i] UpperCamelCase : Optional[Any] = str(lowercase_ ) steps += 1 return steps def A_ ( snake_case_ : Dict ): '''simple docstring''' if not isinstance(lowercase_ ,lowercase_ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) UpperCamelCase : Tuple = 0 UpperCamelCase : Any = str(lowercase_ ) while len(lowercase_ ) != 1: UpperCamelCase : Tuple = [int(lowercase_ ) for i in num_string] UpperCamelCase : str = 0 for i in range(0 ,len(lowercase_ ) ): total += numbers[i] UpperCamelCase : Optional[Any] = str(lowercase_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[int] = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class lowerCamelCase ( _UpperCAmelCase ): lowercase : Optional[int] = 'mvp' lowercase : Optional[Any] = ['past_key_values'] lowercase : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=5_0267 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=800 , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : Dict = max_position_embeddings UpperCamelCase : Optional[int] = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : Any = encoder_layers UpperCamelCase : List[Any] = encoder_attention_heads UpperCamelCase : Optional[Any] = decoder_ffn_dim UpperCamelCase : Optional[int] = decoder_layers UpperCamelCase : Dict = decoder_attention_heads UpperCamelCase : List[str] = dropout UpperCamelCase : List[str] = attention_dropout UpperCamelCase : List[Any] = activation_dropout UpperCamelCase : Dict = activation_function UpperCamelCase : List[str] = init_std UpperCamelCase : int = encoder_layerdrop UpperCamelCase : Dict = decoder_layerdrop UpperCamelCase : Any = classifier_dropout UpperCamelCase : Tuple = use_cache UpperCamelCase : Dict = encoder_layers UpperCamelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase : Optional[Any] = use_prompt UpperCamelCase : Any = prompt_length UpperCamelCase : List[Any] = prompt_mid_dim super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , forced_eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = self.bos_token_id warnings.warn( f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' """The config can simply be saved and uploaded again to be fixed.""" )
27
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} __SCREAMING_SNAKE_CASE : Any = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } __SCREAMING_SNAKE_CASE : int = { """camembert-base""": 512, } __SCREAMING_SNAKE_CASE : List[Any] = """▁""" class __A (snake_case__): '''simple docstring''' __lowercase: int = VOCAB_FILES_NAMES __lowercase: List[str] = PRETRAINED_VOCAB_FILES_MAP __lowercase: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase: List[str] = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[Any]="</s>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : Union[str, Any]="<unk>" , UpperCAmelCase_ : Tuple="<pad>" , UpperCAmelCase_ : Any="<mask>" , UpperCAmelCase_ : Any=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : List[str] , ) ->None: """simple docstring""" snake_case_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase_ ) ) snake_case_ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> snake_case_ = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} snake_case_ = len(self.fairseq_tokens_to_ids ) snake_case_ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int = None ) ->List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Dict = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] return [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] + ([0] * len(UpperCAmelCase_ )) + [1] def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict = None ) ->List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : int ) ->List[str]: """simple docstring""" return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase_ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple ) ->Tuple: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : int ) ->Optional[Any]: """simple docstring""" snake_case_ = [] snake_case_ = """""" snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_ ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(UpperCAmelCase_ ) snake_case_ = False out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def __getstate__( self : List[Any] ) ->Optional[int]: """simple docstring""" snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : List[str] , UpperCAmelCase_ : List[str] ) ->Any: """simple docstring""" snake_case_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
347
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> int: if b == 0: return 1 if (b % 2) == 0: return actual_power(_lowercase , int(b / 2 ) ) * actual_power(_lowercase , int(b / 2 ) ) else: return a * actual_power(_lowercase , int(b / 2 ) ) * actual_power(_lowercase , int(b / 2 ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> float: if b < 0: return 1 / actual_power(_lowercase , _lowercase ) return actual_power(_lowercase , _lowercase ) if __name__ == "__main__": print(power(-2, -3))
265
0
import sys a__: Any = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def UpperCamelCase__( UpperCamelCase__ : List[Any] = N )->Optional[Any]: A__ = -sys.maxsize - 1 for i in range(len(_lowercase ) - 12 ): A__ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: A__ = product return largest_product if __name__ == "__main__": print(F"{solution() = }")
358
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = None def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=0.999 , UpperCamelCase__ : Optional[int]="cosine" , )->Optional[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) A__ = [] for i in range(UpperCamelCase__ ): A__ = i / num_diffusion_timesteps A__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = 1 @register_to_config def __init__( self,__lowerCamelCase = 1000,__lowerCamelCase = 0.0001,__lowerCamelCase = 0.02,__lowerCamelCase = "linear",__lowerCamelCase = None,__lowerCamelCase = True,__lowerCamelCase = True,__lowerCamelCase = 0,__lowerCamelCase = "epsilon",__lowerCamelCase = 1.0,**__lowerCamelCase,): if kwargs.get('''set_alpha_to_one''',__lowerCamelCase ) is not None: A__ = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''','''1.0.0''',__lowerCamelCase,standard_warn=__lowerCamelCase ) A__ = kwargs['''set_alpha_to_one'''] if trained_betas is not None: A__ = torch.tensor(__lowerCamelCase,dtype=torch.floataa ) elif beta_schedule == "linear": A__ = torch.linspace(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A__ = ( torch.linspace(beta_start**0.5,beta_end**0.5,__lowerCamelCase,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A__ = betas_for_alpha_bar(__lowerCamelCase ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) A__ = 1.0 - self.betas A__ = torch.cumprod(self.alphas,dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. A__ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution A__ = 1.0 # setable values A__ = None A__ = torch.from_numpy(np.arange(0,__lowerCamelCase ).copy().astype(np.intaa ) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): return sample def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" f" maximal {self.config.num_train_timesteps} timesteps." ) A__ = num_inference_steps A__ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A__ = (np.arange(0,__lowerCamelCase ) * step_ratio).round().copy().astype(np.intaa ) A__ = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) self.timesteps += self.config.steps_offset def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = 0.0,__lowerCamelCase = False,__lowerCamelCase = None,__lowerCamelCase = True,): # 1. get previous step value (=t+1) A__ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process A__ = self.alphas_cumprod[timestep] A__ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) A__ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": A__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 A__ = model_output elif self.config.prediction_type == "sample": A__ = model_output A__ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": A__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output A__ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: A__ = pred_original_sample.clamp( -self.config.clip_sample_range,self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A__ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A__ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__lowerCamelCase,pred_original_sample=__lowerCamelCase ) def __len__( self ): return self.config.num_train_timesteps
39
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=A__): lowerCamelCase__ : List[Any] = ["flax", "transformers"] def __init__( self , *a , **a ) -> Dict: requires_backends(self , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *a , **a ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *a , **a ) -> Union[str, Any]: requires_backends(cls , ['flax', 'transformers'] ) class UpperCAmelCase_ ( metaclass=A__): lowerCamelCase__ : Union[str, Any] = ["flax", "transformers"] def __init__( self , *a , **a ) -> Union[str, Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *a , **a ) -> str: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *a , **a ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) class UpperCAmelCase_ ( metaclass=A__): lowerCamelCase__ : int = ["flax", "transformers"] def __init__( self , *a , **a ) -> Dict: requires_backends(self , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *a , **a ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *a , **a ) -> List[Any]: requires_backends(cls , ['flax', 'transformers'] ) class UpperCAmelCase_ ( metaclass=A__): lowerCamelCase__ : Dict = ["flax", "transformers"] def __init__( self , *a , **a ) -> Union[str, Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *a , **a ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *a , **a ) -> str: requires_backends(cls , ['flax', 'transformers'] )
77
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A_ ( unittest.TestCase ): """simple docstring""" def __init__( self :List[str] , lowerCamelCase_ :str , lowerCamelCase_ :List[Any]=13 , lowerCamelCase_ :Any=7 , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :Any=True , lowerCamelCase_ :List[str]=99 , lowerCamelCase_ :Dict=32 , lowerCamelCase_ :Union[str, Any]=5 , lowerCamelCase_ :int=4 , lowerCamelCase_ :Optional[Any]=37 , lowerCamelCase_ :Optional[Any]="gelu" , lowerCamelCase_ :List[str]=0.1 , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :List[Any]=512 , lowerCamelCase_ :List[str]=16 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Tuple=0.02 , lowerCamelCase_ :Tuple=4 , ): """simple docstring""" lowerCamelCase__ : Optional[Any] =parent lowerCamelCase__ : List[Any] =batch_size lowerCamelCase__ : Optional[int] =seq_length lowerCamelCase__ : Optional[int] =is_training lowerCamelCase__ : Optional[Any] =use_attention_mask lowerCamelCase__ : List[Any] =use_token_type_ids lowerCamelCase__ : List[Any] =use_labels lowerCamelCase__ : Any =vocab_size lowerCamelCase__ : int =hidden_size lowerCamelCase__ : Dict =num_hidden_layers lowerCamelCase__ : int =num_attention_heads lowerCamelCase__ : List[str] =intermediate_size lowerCamelCase__ : Dict =hidden_act lowerCamelCase__ : str =hidden_dropout_prob lowerCamelCase__ : Tuple =attention_probs_dropout_prob lowerCamelCase__ : List[Any] =max_position_embeddings lowerCamelCase__ : Tuple =type_vocab_size lowerCamelCase__ : Any =type_sequence_label_size lowerCamelCase__ : Dict =initializer_range lowerCamelCase__ : str =num_choices def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Any =None if self.use_attention_mask: lowerCamelCase__ : Any =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any =None if self.use_token_type_ids: lowerCamelCase__ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : str =BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self :Dict ): """simple docstring""" lowerCamelCase__ : Dict =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict =config_and_inputs lowerCamelCase__ : int ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" lowerCamelCase__ : int =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =config_and_inputs lowerCamelCase__ : Optional[Any] =True lowerCamelCase__ : Any =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A_ ( A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" lowerCamelCase__ : str =FlaxBertModelTester(self ) @slow def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" lowerCamelCase__ : Dict =FlaxBertModel.from_pretrained('bert-base-cased' ) lowerCamelCase__ : List[str] =model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ )
126
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase ): super().__init__() # make sure scheduler can always be converted to DDIM _lowerCamelCase : Dict = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowercase , scheduler=lowercase ) @torch.no_grad() def __call__( self , lowercase = 1 , lowercase = None , lowercase = 0.0 , lowercase = 50 , lowercase = None , lowercase = "pil" , lowercase = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , lowercase ): _lowerCamelCase : str = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _lowerCamelCase : Dict = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowercase , lowercase ) and len(lowercase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowercase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _lowerCamelCase : Tuple = randn_tensor(lowercase , generator=lowercase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _lowerCamelCase : List[Any] = self.unet(lowercase , lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowerCamelCase : Optional[Any] = self.scheduler.step( lowercase , lowercase , lowercase , eta=lowercase , use_clipped_model_output=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCamelCase : Dict = self.numpy_to_pil(lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase )
351
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
0
def A_ ( ): """simple docstring""" for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 1 SCREAMING_SNAKE_CASE_ : Any = 2 while i * i <= n: SCREAMING_SNAKE_CASE_ : str = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A_ ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(a ) > 5_0_0 ) if __name__ == "__main__": print(solution())
253
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["""pixel_values"""] def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384} __magic_name__ : Dict = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[Any] = do_resize __magic_name__ : str = size # Default value set here for backwards compatibility where the value in config is None __magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 __magic_name__ : int = resample __magic_name__ : List[str] = do_rescale __magic_name__ : List[Any] = rescale_factor __magic_name__ : str = do_normalize __magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: __magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __magic_name__ : Dict = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __magic_name__ : Dict = int(shortest_edge / crop_pct ) __magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) __magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __magic_name__ : Optional[Any] = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : Dict = image_std if image_std is not None else self.image_std __magic_name__ : Dict = size if size is not None else self.size __magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: __magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
331
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : str = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "ibert" def __init__( self , __UpperCAmelCase=3_0522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=False , __UpperCAmelCase="none" , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = quant_mode __UpperCamelCase = force_dequant class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def UpperCAmelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
263
"""simple docstring""" UpperCamelCase : Union[str, Any] = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def A ( snake_case :Dict , snake_case :Tuple , snake_case :str , snake_case :Optional[int] ) -> Union[str, Any]: # Return True if there is node that has not iterated. __UpperCamelCase = [False] * len(snake_case ) __UpperCamelCase = [s] __UpperCamelCase = True while queue: __UpperCamelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(snake_case ) __UpperCamelCase = True __UpperCamelCase = u return visited[t] def A ( snake_case :int , snake_case :Any , snake_case :Union[str, Any] ) -> Optional[int]: __UpperCamelCase = [-1] * (len(snake_case )) __UpperCamelCase = 0 __UpperCamelCase = [] __UpperCamelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(snake_case , snake_case , snake_case , snake_case ): __UpperCamelCase = float('Inf' ) __UpperCamelCase = sink while s != source: # Find the minimum value in select path __UpperCamelCase = min(snake_case , graph[parent[s]][s] ) __UpperCamelCase = parent[s] max_flow += path_flow __UpperCamelCase = sink while v != source: __UpperCamelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __UpperCamelCase = parent[v] for i in range(len(snake_case ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
263
1
from __future__ import annotations def snake_case__ ( SCREAMING_SNAKE_CASE_ : list[float] ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) lowercase__ : Optional[Any] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
214
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class SCREAMING_SNAKE_CASE__ : def __init__( self , a , a=13 , a=7 , a=False , a=True , a=False , a=False , a=19 , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , ): lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : Union[str, Any] = seq_length lowercase__ : Optional[Any] = is_training lowercase__ : Tuple = use_input_mask lowercase__ : List[str] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : List[str] = vocab_size lowercase__ : Optional[int] = hidden_size lowercase__ : List[str] = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : int = intermediate_size lowercase__ : Any = hidden_act lowercase__ : Any = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : List[Any] = type_sequence_label_size lowercase__ : str = initializer_range lowercase__ : List[str] = num_labels lowercase__ : Union[str, Any] = num_choices lowercase__ : Optional[int] = scope def snake_case_ ( self): lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : List[Any] = None if self.use_input_mask: lowercase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ : int = None lowercase__ : Optional[int] = None lowercase__ : Optional[int] = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ : str = ids_tensor([self.batch_size] , self.num_choices) lowercase__ : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self): lowercase__ : str = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=a , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def snake_case_ ( self , a , a , a , a , a , a): lowercase__ : Dict = EsmForProteinFolding(config=a).float() model.to(a) model.eval() lowercase__ : Union[str, Any] = model(a , attention_mask=a) lowercase__ : Dict = model(a) lowercase__ : int = model(a) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3)) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2)) def snake_case_ ( self): lowercase__ : List[str] = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : int = config_and_inputs lowercase__ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ (__snake_case , __snake_case , unittest.TestCase ): __lowerCamelCase : Dict = False __lowerCamelCase : Dict = (EsmForProteinFolding,) if is_torch_available() else () __lowerCamelCase : Union[str, Any] = () __lowerCamelCase : List[Any] = {} if is_torch_available() else {} __lowerCamelCase : Optional[Any] = False def snake_case_ ( self): lowercase__ : Tuple = EsmFoldModelTester(self) lowercase__ : List[Any] = ConfigTester(self , config_class=a , hidden_size=37) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a) @unittest.skip('Does not support attention outputs') def snake_case_ ( self): pass @unittest.skip def snake_case_ ( self): pass @unittest.skip('Esm does not support embedding resizing') def snake_case_ ( self): pass @unittest.skip('Esm does not support embedding resizing') def snake_case_ ( self): pass @unittest.skip('ESMFold does not support passing input embeds!') def snake_case_ ( self): pass @unittest.skip('ESMFold does not support head pruning.') def snake_case_ ( self): pass @unittest.skip('ESMFold does not support head pruning.') def snake_case_ ( self): pass @unittest.skip('ESMFold does not support head pruning.') def snake_case_ ( self): pass @unittest.skip('ESMFold does not support head pruning.') def snake_case_ ( self): pass @unittest.skip('ESMFold does not support head pruning.') def snake_case_ ( self): pass @unittest.skip('ESMFold does not output hidden states in the normal way.') def snake_case_ ( self): pass @unittest.skip('ESMfold does not output hidden states in the normal way.') def snake_case_ ( self): pass @unittest.skip('ESMFold only has one output format.') def snake_case_ ( self): pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality') def snake_case_ ( self): pass @unittest.skip('ESMFold does not support input chunking.') def snake_case_ ( self): pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.') def snake_case_ ( self): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.') def snake_case_ ( self): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.') def snake_case_ ( self): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.') def snake_case_ ( self): pass @unittest.skip('ESMFold doesn\'t support data parallel.') def snake_case_ ( self): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def snake_case_ ( self): pass @require_torch class SCREAMING_SNAKE_CASE__ (__snake_case ): @slow def snake_case_ ( self): lowercase__ : Dict = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1').float() model.eval() lowercase__ : Optional[Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) lowercase__ : Optional[int] = model(a)['positions'] lowercase__ : Dict = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , a , atol=1e-4))
214
1
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase_ = datasets.utils.logging.get_logger(__name__) class lowerCamelCase ( folder_based_builder.FolderBasedBuilderConfig ): snake_case_ = None snake_case_ = None class lowerCamelCase ( folder_based_builder.FolderBasedBuilder ): snake_case_ = datasets.Audio() snake_case_ = '''audio''' snake_case_ = AudioFolderConfig snake_case_ = 42 # definition at the bottom of the script snake_case_ = AudioClassification(audio_column='''audio''' , label_column='''label''' ) lowerCAmelCase_ = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] lowerCAmelCase_ = AUDIO_EXTENSIONS
332
'''simple docstring''' from pathlib import Path import fire def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = Path(A ) snake_case = Path(A ) dest_dir.mkdir(exist_ok=A ) for path in src_dir.iterdir(): snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case = dest_dir.joinpath(path.name ) print(A ) dest_path.open('w' ).write('\n'.join(A ) ) if __name__ == "__main__": fire.Fire(minify)
332
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run SCREAMING_SNAKE_CASE : str = True except (ImportError, AttributeError): SCREAMING_SNAKE_CASE : Any = object def lowercase ( *_snake_case : Tuple , **_snake_case : Optional[Any] ) ->Union[str, Any]: """simple docstring""" pass SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = logging.get_logger("""transformers-cli/serving""") def lowercase ( _snake_case : Namespace ) ->Tuple: """simple docstring""" __snake_case : Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(_snake_case , args.host , args.port , args.workers ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE (a_ ): '''simple docstring''' __snake_case : Dict = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=a_ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=a_ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=a_ , default=88_88 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=a_ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=a_ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=a_ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=a_ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=a_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=a_ ) def __init__(self , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = pipeline __snake_case : int = host __snake_case : Any = port __snake_case : Tuple = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(f"""Serving model over {host}:{port}""" ) __snake_case : Dict = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=a_ , response_class=a_ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=a_ , response_class=a_ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=a_ , response_class=a_ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=a_ , response_class=a_ , methods=['''POST'''] , ), ] , timeout=6_00 , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' run(self._app , host=self.host , port=self.port , workers=self.workers ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def SCREAMING_SNAKE_CASE (self , a_ = Body(a_ , embed=a_ ) , a_ = Body(a_ , embed=a_ ) ): '''simple docstring''' try: __snake_case : int = self._pipeline.tokenizer.tokenize(a_ ) if return_ids: __snake_case : Union[str, Any] = self._pipeline.tokenizer.convert_tokens_to_ids(a_ ) return ServeTokenizeResult(tokens=a_ , tokens_ids=a_ ) else: return ServeTokenizeResult(tokens=a_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(a_ )} ) def SCREAMING_SNAKE_CASE (self , a_ = Body(a_ , embed=a_ ) , a_ = Body(a_ , embed=a_ ) , a_ = Body(a_ , embed=a_ ) , ): '''simple docstring''' try: __snake_case : List[Any] = self._pipeline.tokenizer.decode(a_ , a_ , a_ ) return ServeDeTokenizeResult(model='''''' , text=a_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(a_ )} ) async def SCREAMING_SNAKE_CASE (self , a_=Body(a_ , embed=a_ ) ): '''simple docstring''' if len(a_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __snake_case : Dict = self._pipeline(a_ ) return ServeForwardResult(output=a_ ) except Exception as e: raise HTTPException(5_00 , {'''error''': str(a_ )} )
102
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
102
1
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : """simple docstring""" def __init__( self : int , snake_case_ : Optional[int] , snake_case_ : Dict=2 , snake_case_ : int=8 , snake_case_ : List[str]=True , snake_case_ : Any=True , snake_case_ : List[Any]=True , snake_case_ : List[str]=True , snake_case_ : Any=99 , snake_case_ : Any=16 , snake_case_ : Union[str, Any]=5 , snake_case_ : Tuple=2 , snake_case_ : List[str]=36 , snake_case_ : Tuple="gelu" , snake_case_ : Any=0.0 , snake_case_ : List[str]=0.0 , snake_case_ : Union[str, Any]=512 , snake_case_ : Optional[Any]=16 , snake_case_ : int=2 , snake_case_ : Any=0.02 , snake_case_ : Union[str, Any]=3 , snake_case_ : int=4 , snake_case_ : int=None , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def lowerCamelCase ( self : str ): snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self : Optional[int] ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def lowerCamelCase ( self : List[Any] ): snake_case__ = self.get_config() snake_case__ = 300 return config def lowerCamelCase ( self : List[str] ): ( snake_case__ ) = self.prepare_config_and_inputs() snake_case__ = True snake_case__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase ( self : Optional[int] , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : str , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Tuple ): snake_case__ = MraModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case__ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) snake_case__ = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) snake_case__ = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self : str , snake_case_ : str , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Dict , ): snake_case__ = True snake_case__ = MraModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case__ = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) snake_case__ = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , ) snake_case__ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self : List[str] , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] ): snake_case__ = MraForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case__ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self : int , snake_case_ : int , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Any ): snake_case__ = MraForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case__ = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self : Dict , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : Any , snake_case_ : str , snake_case_ : int , snake_case_ : int , snake_case_ : int ): snake_case__ = self.num_labels snake_case__ = MraForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case__ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Optional[int] , snake_case_ : Tuple , snake_case_ : str , snake_case_ : int , snake_case_ : str , snake_case_ : str , snake_case_ : int , snake_case_ : str ): snake_case__ = self.num_labels snake_case__ = MraForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case__ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self : Tuple , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] ): snake_case__ = self.num_choices snake_case__ = MraForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self : Dict ): snake_case__ = self.prepare_config_and_inputs() ( snake_case__ ) = config_and_inputs snake_case__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = () def lowerCamelCase ( self : Optional[Any] ): snake_case__ = MraModelTester(self ) snake_case__ = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def lowerCamelCase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def lowerCamelCase ( self : Tuple ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def lowerCamelCase ( self : Optional[int] ): snake_case__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ = type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def lowerCamelCase ( self : Dict ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ ) def lowerCamelCase ( self : Dict ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def lowerCamelCase ( self : str ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def lowerCamelCase ( self : Any ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @slow def lowerCamelCase ( self : Optional[Any] ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = MraModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="""MRA does not output attentions""" ) def lowerCamelCase ( self : Tuple ): return @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) snake_case__ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): snake_case__ = model(lowerCAmelCase__ )[0] snake_case__ = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , lowerCAmelCase__ ) snake_case__ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def lowerCamelCase ( self : Optional[Any] ): snake_case__ = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) snake_case__ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): snake_case__ = model(lowerCAmelCase__ )[0] snake_case__ = 50_265 snake_case__ = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase__ ) snake_case__ = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def lowerCamelCase ( self : Any ): snake_case__ = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) snake_case__ = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): snake_case__ = model(lowerCAmelCase__ )[0] snake_case__ = 50_265 snake_case__ = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase__ ) snake_case__ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
367
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Tuple=0 ): snake_case__ : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(snake_case_ ) ) snake_case__ : List[str] = np.random.RandomState(snake_case_ ) snake_case__ : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCamelCase ( self : Optional[Any] ): snake_case__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Tuple = self.get_dummy_inputs() snake_case__ : Union[str, Any] = pipe(**snake_case_ ).images snake_case__ : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case__ : int = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : Dict ): snake_case__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Dict = self.get_dummy_inputs() snake_case__ : int = pipe(**snake_case_ ).images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : Tuple = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : Optional[int] ): snake_case__ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) # warmup pass to apply optimizations snake_case__ : List[Any] = pipe(**self.get_dummy_inputs() ) snake_case__ : List[str] = self.get_dummy_inputs() snake_case__ : Optional[int] = pipe(**snake_case_ ).images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : Any = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : str ): snake_case__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Union[str, Any] = self.get_dummy_inputs() snake_case__ : List[Any] = pipe(**snake_case_ ).images snake_case__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : Optional[Any] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : str ): snake_case__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : List[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Tuple = self.get_dummy_inputs() snake_case__ : Tuple = pipe(**snake_case_ ).images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : int = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : List[str] = self.get_dummy_inputs() snake_case__ : List[str] = pipe(**snake_case_ ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : List[str] = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @property def lowerCamelCase ( self : Dict ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase ( self : Dict ): snake_case__ : Tuple = ort.SessionOptions() snake_case__ : Optional[Any] = False return options def lowerCamelCase ( self : List[str] ): snake_case__ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) snake_case__ : str = init_image.resize((768, 512) ) # using the PNDM scheduler by default snake_case__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Dict = """A fantasy landscape, trending on artstation""" snake_case__ : str = np.random.RandomState(0 ) snake_case__ : Union[str, Any] = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : str = output.images snake_case__ : Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case__ : Optional[Any] = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCamelCase ( self : int ): snake_case__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) snake_case__ : List[Any] = init_image.resize((768, 512) ) snake_case__ : Tuple = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) snake_case__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Union[str, Any] = """A fantasy landscape, trending on artstation""" snake_case__ : Optional[int] = np.random.RandomState(0 ) snake_case__ : Optional[int] = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : Any = output.images snake_case__ : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case__ : Tuple = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
43
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.17.0.dev0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') __lowerCAmelCase = logging.getLogger(__name__) @dataclass class __a : __lowercase : Optional[Any] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __lowercase : List[Any] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) __lowercase : str = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowercase : int = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __lowercase : Optional[int] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) __lowercase : Any = field( default=_lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[Any] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) __lowercase : int = field( default=_lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) __lowercase : int = field( default=_lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) __lowercase : Optional[int] = field( default=_lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) __lowercase : Optional[int] = field(default=_lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: lowercase__: List[Any] = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowercase__: Tuple = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __a : __lowercase : Dict = field( default=_lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowercase : Dict = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : str = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowercase : int = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __lowercase : Any = field( default=_lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __lowercase : Any = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : int = field( default=_lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def snake_case_ ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__: Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__: str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__: Any = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase__: Tuple = training_args.get_process_log_level() logger.setLevel(__lowerCamelCase ) datasets.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowercase__: Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__: List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase__: Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowercase__: Dict = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowercase__: Dict = data_args.train_file.split('.' )[-1] lowercase__: Dict = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowercase__: Tuple = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files lowercase__: Optional[int] = load_dataset('csv' , data_files=__lowerCamelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowercase__: List[Any] = load_dataset('json' , data_files=__lowerCamelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowercase__: List[str] = raw_datasets["train"].features["label"].names lowercase__: Tuple = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__: Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowercase__: Optional[Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__lowerCamelCase , ) lowercase__: List[Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowercase__: Tuple = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowercase__: Tuple = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowercase__: Optional[int] = {"Refused": 0, "Entailed": 1} lowercase__: List[Any] = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) lowercase__: Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(snake_case ): # Tokenize the texts def _convert_table_text_to_pandas(snake_case ): lowercase__: int = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] lowercase__: Tuple = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowercase__: int = examples["statement"] lowercase__: List[str] = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) lowercase__: Dict = tokenizer(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ) lowercase__: Union[str, Any] = examples["label"] return result with training_args.main_process_first(desc='dataset map pre-processing' ): lowercase__: Any = raw_datasets.map( __lowerCamelCase , batched=__lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) lowercase__: Dict = raw_datasets["train"] if data_args.max_train_samples is not None: lowercase__: Any = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) lowercase__: Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: lowercase__: Tuple = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) lowercase__: int = raw_datasets["test"] if data_args.max_predict_samples is not None: lowercase__: int = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__lowerCamelCase ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(snake_case ): lowercase__: Optional[int] = p.predictions[0] if isinstance(p.predictions , __lowerCamelCase ) else p.predictions lowercase__: Tuple = np.argmax(__lowerCamelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowercase__: List[str] = default_data_collator elif training_args.fpaa: lowercase__: Dict = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) else: lowercase__: Any = None # Initialize our Trainer lowercase__: Dict = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCamelCase , tokenizer=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: lowercase__: Any = None if training_args.resume_from_checkpoint is not None: lowercase__: Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__: Dict = last_checkpoint lowercase__: Optional[int] = trainer.train(resume_from_checkpoint=__lowerCamelCase ) lowercase__: Dict = train_result.metrics lowercase__: str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCamelCase ) ) lowercase__: int = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __lowerCamelCase ) trainer.save_metrics('train' , __lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowercase__: Any = trainer.evaluate(eval_dataset=__lowerCamelCase ) lowercase__: List[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCamelCase ) lowercase__: List[str] = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.log_metrics('eval' , __lowerCamelCase ) trainer.save_metrics('eval' , __lowerCamelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowercase__: Union[str, Any] = predict_dataset.remove_columns('label' ) lowercase__: Tuple = trainer.predict(__lowerCamelCase , metric_key_prefix='predict' ).predictions lowercase__: int = np.argmax(__lowerCamelCase , axis=1 ) lowercase__: Dict = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__lowerCamelCase ): lowercase__: Union[str, Any] = label_list[item] writer.write(f'{index}\t{item}\n' ) lowercase__: Any = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**__lowerCamelCase ) else: trainer.create_model_card(**__lowerCamelCase ) def snake_case_ ( snake_case ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
196
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCAmelCase : Dict =collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCAmelCase : str ='''https://storage.googleapis.com/cvdf-datasets/mnist/''' def UpperCAmelCase_ ( __lowerCamelCase : str ): lowercase_ :Tuple = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) ,dtype=__lowerCamelCase )[0] @deprecated(__lowerCamelCase ,"Please use tf.data to implement this functionality." ) def UpperCAmelCase_ ( __lowerCamelCase : Any ): print("Extracting" ,f.name ) with gzip.GzipFile(fileobj=__lowerCamelCase ) as bytestream: lowercase_ :Union[str, Any] = _readaa(__lowerCamelCase ) if magic != 20_51: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) lowercase_ :int = _readaa(__lowerCamelCase ) lowercase_ :int = _readaa(__lowerCamelCase ) lowercase_ :Tuple = _readaa(__lowerCamelCase ) lowercase_ :Optional[Any] = bytestream.read(rows * cols * num_images ) lowercase_ :List[str] = numpy.frombuffer(__lowerCamelCase ,dtype=numpy.uinta ) lowercase_ :Dict = data.reshape(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,1 ) return data @deprecated(__lowerCamelCase ,"Please use tf.one_hot on tensors." ) def UpperCAmelCase_ ( __lowerCamelCase : Optional[Any] ,__lowerCamelCase : Tuple ): lowercase_ :int = labels_dense.shape[0] lowercase_ :Any = numpy.arange(__lowerCamelCase ) * num_classes lowercase_ :Optional[int] = numpy.zeros((num_labels, num_classes) ) lowercase_ :List[Any] = 1 return labels_one_hot @deprecated(__lowerCamelCase ,"Please use tf.data to implement this functionality." ) def UpperCAmelCase_ ( __lowerCamelCase : Tuple ,__lowerCamelCase : Optional[Any]=False ,__lowerCamelCase : List[str]=10 ): print("Extracting" ,f.name ) with gzip.GzipFile(fileobj=__lowerCamelCase ) as bytestream: lowercase_ :List[Any] = _readaa(__lowerCamelCase ) if magic != 20_49: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) lowercase_ :List[str] = _readaa(__lowerCamelCase ) lowercase_ :Tuple = bytestream.read(__lowerCamelCase ) lowercase_ :int = numpy.frombuffer(__lowerCamelCase ,dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowerCamelCase ,__lowerCamelCase ) return labels class a_ : @deprecated( lowercase , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self : Tuple , lowercase : str , lowercase : Optional[int] , lowercase : List[Any]=False , lowercase : Tuple=False , lowercase : Optional[Any]=dtypes.floataa , lowercase : Tuple=True , lowercase : Optional[Any]=None , ): """simple docstring""" lowercase_ , lowercase_ :Union[str, Any] = random_seed.get_seed(lowercase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowercase_ :Optional[int] = dtypes.as_dtype(lowercase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: lowercase_ :List[str] = 10_000 lowercase_ :int = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' lowercase_ :List[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowercase_ :Optional[int] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowercase_ :Any = images.astype(numpy.floataa ) lowercase_ :Optional[int] = numpy.multiply(lowercase , 1.0 / 2_55.0 ) lowercase_ :Tuple = images lowercase_ :Any = labels lowercase_ :Dict = 0 lowercase_ :Optional[Any] = 0 @property def lowercase__ ( self : Union[str, Any] ): """simple docstring""" return self._images @property def lowercase__ ( self : Tuple ): """simple docstring""" return self._labels @property def lowercase__ ( self : Optional[Any] ): """simple docstring""" return self._num_examples @property def lowercase__ ( self : str ): """simple docstring""" return self._epochs_completed def lowercase__ ( self : List[str] , lowercase : int , lowercase : List[Any]=False , lowercase : int=True ): """simple docstring""" if fake_data: lowercase_ :List[str] = [1] * 784 lowercase_ :Dict = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowercase )], [fake_label for _ in range(lowercase )], ) lowercase_ :Optional[Any] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowercase_ :Dict = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase ) lowercase_ :int = self.images[perma] lowercase_ :Tuple = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowercase_ :Dict = self._num_examples - start lowercase_ :List[str] = self._images[start : self._num_examples] lowercase_ :Optional[Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowercase_ :str = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase ) lowercase_ :Optional[int] = self.images[perm] lowercase_ :List[Any] = self.labels[perm] # Start next epoch lowercase_ :List[str] = 0 lowercase_ :Any = batch_size - rest_num_examples lowercase_ :Optional[int] = self._index_in_epoch lowercase_ :Tuple = self._images[start:end] lowercase_ :Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowercase_ :Any = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowerCamelCase ,"Please write your own downloading logic." ) def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : Any ,__lowerCamelCase : Dict ): if not gfile.Exists(__lowerCamelCase ): gfile.MakeDirs(__lowerCamelCase ) lowercase_ :Dict = os.path.join(__lowerCamelCase ,__lowerCamelCase ) if not gfile.Exists(__lowerCamelCase ): urllib.request.urlretrieve(__lowerCamelCase ,__lowerCamelCase ) # noqa: S310 with gfile.GFile(__lowerCamelCase ) as f: lowercase_ :List[str] = f.size() print("Successfully downloaded" ,__lowerCamelCase ,__lowerCamelCase ,"bytes." ) return filepath @deprecated( __lowerCamelCase ,"Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : int=False ,__lowerCamelCase : Dict=False ,__lowerCamelCase : List[Any]=dtypes.floataa ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : int=50_00 ,__lowerCamelCase : Optional[Any]=None ,__lowerCamelCase : str=DEFAULT_SOURCE_URL ,): if fake_data: def fake(): return _DataSet( [] ,[] ,fake_data=__lowerCamelCase ,one_hot=__lowerCamelCase ,dtype=__lowerCamelCase ,seed=__lowerCamelCase ) lowercase_ :int = fake() lowercase_ :Optional[Any] = fake() lowercase_ :Tuple = fake() return _Datasets(train=__lowerCamelCase ,validation=__lowerCamelCase ,test=__lowerCamelCase ) if not source_url: # empty string check lowercase_ :str = DEFAULT_SOURCE_URL lowercase_ :Optional[int] = "train-images-idx3-ubyte.gz" lowercase_ :Optional[int] = "train-labels-idx1-ubyte.gz" lowercase_ :Optional[Any] = "t10k-images-idx3-ubyte.gz" lowercase_ :int = "t10k-labels-idx1-ubyte.gz" lowercase_ :Tuple = _maybe_download( __lowerCamelCase ,__lowerCamelCase ,source_url + train_images_file ) with gfile.Open(__lowerCamelCase ,"rb" ) as f: lowercase_ :Any = _extract_images(__lowerCamelCase ) lowercase_ :Optional[Any] = _maybe_download( __lowerCamelCase ,__lowerCamelCase ,source_url + train_labels_file ) with gfile.Open(__lowerCamelCase ,"rb" ) as f: lowercase_ :Any = _extract_labels(__lowerCamelCase ,one_hot=__lowerCamelCase ) lowercase_ :Any = _maybe_download( __lowerCamelCase ,__lowerCamelCase ,source_url + test_images_file ) with gfile.Open(__lowerCamelCase ,"rb" ) as f: lowercase_ :Union[str, Any] = _extract_images(__lowerCamelCase ) lowercase_ :int = _maybe_download( __lowerCamelCase ,__lowerCamelCase ,source_url + test_labels_file ) with gfile.Open(__lowerCamelCase ,"rb" ) as f: lowercase_ :Union[str, Any] = _extract_labels(__lowerCamelCase ,one_hot=__lowerCamelCase ) if not 0 <= validation_size <= len(__lowerCamelCase ): lowercase_ :Union[str, Any] = ( "Validation size should be between 0 and " F'{len(__lowerCamelCase )}. Received: {validation_size}.' ) raise ValueError(__lowerCamelCase ) lowercase_ :int = train_images[:validation_size] lowercase_ :Optional[int] = train_labels[:validation_size] lowercase_ :List[str] = train_images[validation_size:] lowercase_ :int = train_labels[validation_size:] lowercase_ :Dict = {"dtype": dtype, "reshape": reshape, "seed": seed} lowercase_ :List[str] = _DataSet(__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) lowercase_ :str = _DataSet(__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) lowercase_ :List[str] = _DataSet(__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) return _Datasets(train=__lowerCamelCase ,validation=__lowerCamelCase ,test=__lowerCamelCase )
223
0
from string import ascii_uppercase UpperCAmelCase_ = {char: i for i, char in enumerate(ascii_uppercase)} UpperCAmelCase_ = dict(enumerate(ascii_uppercase)) def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = len(a__ ) __lowerCamelCase = 0 while True: if x == i: __lowerCamelCase = 0 if len(a__ ) == len(a__ ): break key += key[i] i += 1 return key def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = """""" __lowerCamelCase = 0 for letter in message: if letter == " ": cipher_text += " " else: __lowerCamelCase = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = """""" __lowerCamelCase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __lowerCamelCase = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """THE GERMAN ATTACK""" __lowerCamelCase = """SECRET""" __lowerCamelCase = generate_key(a__ , a__ ) __lowerCamelCase = cipher_text(a__ , a__ ) print(f'Encrypted Text = {s}' ) print(f'Original Text = {original_text(a__ , a__ )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
370
import string import numpy def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , A__ ) class lowerCamelCase__: UpperCAmelCase__ : Optional[int] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase__ : Optional[int] = numpy.vectorize(lambda __lowerCamelCase: x % 36) UpperCAmelCase__ : List[Any] = numpy.vectorize(__lowerCamelCase) def __init__( self: List[Any] , UpperCamelCase_: numpy.ndarray ): __lowerCamelCase = self.modulus(UpperCamelCase_ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __lowerCamelCase = encrypt_key.shape[0] def lowerCAmelCase__ ( self: str , UpperCamelCase_: str ): return self.key_string.index(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int ): return self.key_string[round(UpperCamelCase_ )] def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = len(self.key_string ) if greatest_common_divisor(UpperCamelCase_ , len(self.key_string ) ) != 1: __lowerCamelCase = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str ): __lowerCamelCase = [char for char in text.upper() if char in self.key_string] __lowerCamelCase = chars[-1] while len(UpperCamelCase_ ) % self.break_key != 0: chars.append(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(self.encrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[ 0 ] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __lowerCamelCase = i break __lowerCamelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.make_decrypt_key() __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(decrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[0] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = int(input("""Enter the order of the encryption key: """ ) ) __lowerCamelCase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(A__ ): __lowerCamelCase = [int(A__ ) for x in input().split()] hill_matrix.append(A__ ) __lowerCamelCase = HillCipher(numpy.array(A__ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __lowerCamelCase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __lowerCamelCase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(A__ ) ) elif option == "2": __lowerCamelCase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
29
0
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case__ : """simple docstring""" def __init__( self : Any, _snake_case : Optional[int], _snake_case : List[str]=sys.maxsize ) ->Any: snake_case__ : Any = 'bilinear' snake_case__ : Optional[int] = max_size snake_case__ : Union[str, Any] = short_edge_length def __call__( self : Tuple, _snake_case : int ) ->List[Any]: snake_case__ : List[str] = [] for img in imgs: snake_case__ , snake_case__ : Union[str, Any] = img.shape[:2] # later: provide list and randomly choose index for resize snake_case__ : Dict = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1 ) if size == 0: return img snake_case__ : Any = size * 1.0 / min(_snake_case, _snake_case ) if h < w: snake_case__ , snake_case__ : str = size, scale * w else: snake_case__ , snake_case__ : Optional[int] = scale * h, size if max(_snake_case, _snake_case ) > self.max_size: snake_case__ : Union[str, Any] = self.max_size * 1.0 / max(_snake_case, _snake_case ) snake_case__ : Optional[int] = newh * scale snake_case__ : Dict = neww * scale snake_case__ : List[str] = int(neww + 0.5 ) snake_case__ : Dict = int(newh + 0.5 ) if img.dtype == np.uinta: snake_case__ : str = Image.fromarray(_snake_case ) snake_case__ : List[Any] = pil_image.resize((neww, newh), PILImageResampling.BILINEAR ) snake_case__ : List[Any] = np.asarray(_snake_case ) else: snake_case__ : Dict = img.permute(2, 0, 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw snake_case__ : int = nn.functional.interpolate( _snake_case, (newh, neww), mode=self.interp_method, align_corners=_snake_case ).squeeze(0 ) img_augs.append(_snake_case ) return img_augs class snake_case__ : """simple docstring""" def __init__( self : Dict, _snake_case : List[Any] ) ->Union[str, Any]: snake_case__ : Optional[int] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST ) snake_case__ : Optional[Any] = cfg.INPUT.FORMAT snake_case__ : Optional[Any] = cfg.SIZE_DIVISIBILITY snake_case__ : int = cfg.PAD_VALUE snake_case__ : Optional[int] = cfg.INPUT.MAX_SIZE_TEST snake_case__ : Optional[int] = cfg.MODEL.DEVICE snake_case__ : List[str] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ), 1, 1 ) snake_case__ : Dict = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ), 1, 1 ) snake_case__ : Any = lambda _snake_case : (x - self.pixel_mean) / self.pixel_std def lowercase_ ( self : Union[str, Any], _snake_case : Optional[int] ) ->List[Any]: snake_case__ : str = tuple(max(_snake_case ) for s in zip(*[img.shape for img in images] ) ) snake_case__ : Any = [im.shape[-2:] for im in images] snake_case__ : Any = [ nn.functional.pad( _snake_case, [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]], value=self.pad_value, ) for size, im in zip(_snake_case, _snake_case ) ] return torch.stack(_snake_case ), torch.tensor(_snake_case ) def __call__( self : Dict, _snake_case : int, _snake_case : Dict=False ) ->int: with torch.no_grad(): if not isinstance(_snake_case, _snake_case ): snake_case__ : Optional[Any] = [images] if single_image: assert len(_snake_case ) == 1 for i in range(len(_snake_case ) ): if isinstance(images[i], torch.Tensor ): images.insert(_snake_case, images.pop(_snake_case ).to(self.device ).float() ) elif not isinstance(images[i], torch.Tensor ): images.insert( _snake_case, torch.as_tensor(img_tensorize(images.pop(_snake_case ), input_format=self.input_format ) ) .to(self.device ) .float(), ) # resize smallest edge snake_case__ : Union[str, Any] = torch.tensor([im.shape[:2] for im in images] ) snake_case__ : str = self.aug(_snake_case ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic snake_case__ : str = [self.normalizer(_snake_case ) for x in images] # now pad them to do the following operations snake_case__ , snake_case__ : List[str] = self.pad(_snake_case ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad snake_case__ : Tuple = torch.true_divide(_snake_case, _snake_case ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowercase_ (A : List[str] , A : Any ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowercase_ (A : List[str] , A : Tuple[int, int] ): assert torch.isfinite(A ).all(), "Box tensor contains infinite or NaN!" snake_case__ , snake_case__ : Dict = box_size tensor[:, 0].clamp_(min=0 , max=A ) tensor[:, 1].clamp_(min=0 , max=A ) tensor[:, 2].clamp_(min=0 , max=A ) tensor[:, 3].clamp_(min=0 , max=A )
277
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a_ :Any = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a_ :List[str] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a_ :List[str] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): """simple docstring""" def lowercase_ ( self : str ) ->MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), id='references' ), } ), ) def lowercase_ ( self : str, _snake_case : List[List[List[str]]], _snake_case : List[List[str]], _snake_case : int = 1, _snake_case : int = 4, ) ->Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_snake_case, hypotheses=_snake_case, min_len=_snake_case, max_len=_snake_case ) }
277
1
"""simple docstring""" def snake_case_ ( A_ : int ): '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
175
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class __snake_case ( _lowercase): snake_case__ : List[Any] = "xglm" snake_case__ : Dict = ["past_key_values"] snake_case__ : str = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self : List[str] , __lowerCAmelCase : List[Any]=2_5_6_0_0_8 , __lowerCAmelCase : int=2_0_4_8 , __lowerCAmelCase : Dict=1_0_2_4 , __lowerCAmelCase : List[str]=4_0_9_6 , __lowerCAmelCase : Tuple=2_4 , __lowerCAmelCase : Dict=1_6 , __lowerCAmelCase : Tuple="gelu" , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : List[Any]=0.0 , __lowerCAmelCase : int=0.02 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : str=2 , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : List[Any]=2 , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : int = d_model _lowerCamelCase : Optional[Any] = ffn_dim _lowerCamelCase : Any = num_layers _lowerCamelCase : Union[str, Any] = attention_heads _lowerCamelCase : List[str] = activation_function _lowerCamelCase : Union[str, Any] = dropout _lowerCamelCase : int = attention_dropout _lowerCamelCase : Optional[int] = activation_dropout _lowerCamelCase : Any = layerdrop _lowerCamelCase : List[str] = init_std _lowerCamelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : str = use_cache super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
175
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A : Tuple = 2_5_6_0_4_7 A : Dict = 2_5_6_1_4_5 @require_sentencepiece @require_tokenizers class _UpperCamelCase ( lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict =NllbTokenizer __UpperCAmelCase : str =NllbTokenizerFast __UpperCAmelCase : str =True __UpperCAmelCase : int =True __UpperCAmelCase : List[Any] ={} def snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = NllbTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): __lowerCAmelCase = NllbTokenizer(__a , keep_accents=__a ) __lowerCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def snake_case ( self ): __lowerCAmelCase = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__a , **__a ) __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__a ) __lowerCAmelCase = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) __lowerCAmelCase = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__a ) __lowerCAmelCase = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=True __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__a , legacy_format=__a ) __lowerCAmelCase = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__a ) __lowerCAmelCase = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=False __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__a , legacy_format=__a ) __lowerCAmelCase = tokenizer_p.save_pretrained(__a ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__a ) __lowerCAmelCase = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) @require_torch def snake_case ( self ): if not self.test_seqaseq: return __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Longer text that will definitely require truncation. __lowerCAmelCase = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] __lowerCAmelCase = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" " Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi" " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: __lowerCAmelCase = tokenizer.prepare_seqaseq_batch( src_texts=__a , tgt_texts=__a , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __lowerCAmelCase = tokenizer.prepare_seqaseq_batch( __a , tgt_texts=__a , max_length=3 , return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __lowerCAmelCase = tokenizer.prepare_seqaseq_batch( src_texts=__a , max_length=3 , max_target_length=10 , return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("decoder_input_ids" , __a ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def snake_case ( self ): pass def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowerCAmelCase = [AddedToken("<special>" , lstrip=__a )] __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __a , additional_special_tokens=__a , **__a ) __lowerCAmelCase = tokenizer_r.encode("Hey this is a <special> token" ) __lowerCAmelCase = tokenizer_r.encode("<special>" , add_special_tokens=__a )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __a , additional_special_tokens=__a , **__a , ) __lowerCAmelCase = self.tokenizer_class.from_pretrained( __a , additional_special_tokens=__a , **__a ) __lowerCAmelCase = tokenizer_p.encode("Hey this is a <special> token" ) __lowerCAmelCase = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Tuple ="""facebook/nllb-200-distilled-600M""" __UpperCAmelCase : Any =[ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] __UpperCAmelCase : List[Any] =[ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] __UpperCAmelCase : str =[ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def snake_case ( cls ): __lowerCAmelCase = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" ) __lowerCAmelCase = 1 return cls def snake_case ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 25_60_57 ) def snake_case ( self ): __lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __a ) def snake_case ( self ): self.assertIn(__a , self.tokenizer.all_special_ids ) # fmt: off __lowerCAmelCase = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on __lowerCAmelCase = self.tokenizer.decode(__a , skip_special_tokens=__a ) __lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def snake_case ( self ): __lowerCAmelCase = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , __a ) __lowerCAmelCase = 10 __lowerCAmelCase = self.tokenizer(__a , max_length=__a , truncation=__a ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __a ) self.assertEqual(len(__a ) , __a ) def snake_case ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_62_03, 3] ) def snake_case ( self ): __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__a ) __lowerCAmelCase = NllbTokenizer.from_pretrained(__a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __a ) @require_torch def snake_case ( self ): __lowerCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__a , truncation=__a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) __lowerCAmelCase = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(__a , __a ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __a ) self.assertEqual(__a , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def snake_case ( self ): __lowerCAmelCase = self.tokenizer(self.src_text , padding=__a , truncation=__a , max_length=3 , return_tensors="pt" ) __lowerCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=__a , truncation=__a , max_length=10 , return_tensors="pt" ) __lowerCAmelCase = targets["input_ids"] __lowerCAmelCase = shift_tokens_right( __a , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def snake_case ( self ): __lowerCAmelCase = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(__a ) , { # A, test, EOS, en_XX "input_ids": [[25_60_47, 70, 73_56, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_60_57, } , ) @require_torch def snake_case ( self ): __lowerCAmelCase = True __lowerCAmelCase = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) __lowerCAmelCase = False __lowerCAmelCase = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
57
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowerCamelCase : """simple docstring""" def __init__( self : Union[str, Any], _UpperCAmelCase : Any, _UpperCAmelCase : List[Any]=1_3, _UpperCAmelCase : Union[str, Any]=7, _UpperCAmelCase : Any=True, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : Optional[Any]=True, _UpperCAmelCase : Dict=True, _UpperCAmelCase : Optional[Any]=9_9, _UpperCAmelCase : Tuple=3_2, _UpperCAmelCase : str=2, _UpperCAmelCase : Optional[int]=4, _UpperCAmelCase : Optional[Any]=3_7, _UpperCAmelCase : Optional[int]="gelu", _UpperCAmelCase : Optional[int]=0.1, _UpperCAmelCase : Union[str, Any]=0.1, _UpperCAmelCase : Any=5_1_2, _UpperCAmelCase : Dict=1_6, _UpperCAmelCase : Any=2, _UpperCAmelCase : int=0.02, _UpperCAmelCase : str=3, _UpperCAmelCase : str=4, _UpperCAmelCase : List[Any]=None, _UpperCAmelCase : int=0, ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = seq_length SCREAMING_SNAKE_CASE__ : Dict = is_training SCREAMING_SNAKE_CASE__ : Optional[Any] = use_input_mask SCREAMING_SNAKE_CASE__ : List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE__ : List[Any] = use_labels SCREAMING_SNAKE_CASE__ : int = vocab_size SCREAMING_SNAKE_CASE__ : Dict = hidden_size SCREAMING_SNAKE_CASE__ : str = num_hidden_layers SCREAMING_SNAKE_CASE__ : int = num_attention_heads SCREAMING_SNAKE_CASE__ : Dict = intermediate_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE__ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE__ : str = type_vocab_size SCREAMING_SNAKE_CASE__ : Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Tuple = initializer_range SCREAMING_SNAKE_CASE__ : Dict = num_labels SCREAMING_SNAKE_CASE__ : List[str] = num_choices SCREAMING_SNAKE_CASE__ : List[Any] = scope SCREAMING_SNAKE_CASE__ : List[str] = projection_dim def A_ ( self : Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py SCREAMING_SNAKE_CASE__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : Tuple = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size], self.num_choices ) SCREAMING_SNAKE_CASE__ : Optional[int] = BertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_UpperCAmelCase, initializer_range=self.initializer_range, ) SCREAMING_SNAKE_CASE__ : Tuple = DPRConfig(projection_dim=self.projection_dim, **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : List[str], _UpperCAmelCase : int, _UpperCAmelCase : Tuple, _UpperCAmelCase : Tuple, _UpperCAmelCase : Dict, _UpperCAmelCase : str, _UpperCAmelCase : List[Any], _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = TFDPRContextEncoder(config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_UpperCAmelCase, token_type_ids=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size) ) def A_ ( self : str, _UpperCAmelCase : str, _UpperCAmelCase : List[Any], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Any, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Tuple, _UpperCAmelCase : int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = TFDPRQuestionEncoder(config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = model(_UpperCAmelCase, token_type_ids=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = model(_UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size) ) def A_ ( self : Optional[int], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : int, _UpperCAmelCase : List[Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : Any, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = TFDPRReader(config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape, (self.batch_size,) ) def A_ ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE__ ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : Any = {"input_ids": input_ids} return config, inputs_dict @require_tf class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCAmelCase_ = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = TFDPRModelTester(self ) SCREAMING_SNAKE_CASE__ : List[str] = ConfigTester(self, config_class=_UpperCAmelCase, hidden_size=3_7 ) def A_ ( self : str ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def A_ ( self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*_UpperCAmelCase ) def A_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*_UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*_UpperCAmelCase ) @slow def A_ ( self : Union[str, Any] ) -> Any: """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : List[str] = TFDPRContextEncoder.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Any = TFDPRContextEncoder.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : str = TFDPRQuestionEncoder.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Optional[int] = TFDPRReader.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" @slow def A_ ( self : Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) SCREAMING_SNAKE_CASE__ : int = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_UpperCAmelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy(), expected_slice.numpy(), atol=1E-4 ) )
357
def _a ( SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" SCREAMING_SNAKE_CASE__ : Union[str, Any] = False if num < 0: SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = -num SCREAMING_SNAKE_CASE__ : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(SCREAMING_SNAKE_CASE__ ) for e in binary ) return "0b" + "".join(str(SCREAMING_SNAKE_CASE__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
191
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __A : List[str] = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ['''PerceiverFeatureExtractor'''] __A : List[Any] = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
33
'''simple docstring''' import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def __UpperCAmelCase ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = ort.SessionOptions() __a : Dict = False return options def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) __a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) __a : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default __a : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) __a : Tuple = 'A red cat sitting on a park bench' __a : int = np.random.RandomState(0 ) __a : Tuple = pipe( prompt=__a , image=__a , mask_image=__a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=__a , output_type='np' , ) __a : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
27
0
def _UpperCamelCase ( snake_case__, snake_case__ ) -> str: if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) __UpperCAmelCase : Tuple = str(bin(snake_case__ ) )[2:] # remove the leading "0b" __UpperCAmelCase : int = str(bin(snake_case__ ) )[2:] # remove the leading "0b" __UpperCAmelCase : str = max(len(snake_case__ ), len(snake_case__ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(snake_case__ ), b_binary.zfill(snake_case__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
342
import logging import os from .state import PartialState class _snake_case ( logging.LoggerAdapter ): @staticmethod def _lowerCamelCase ( __lowerCamelCase: Any ) -> int: __UpperCAmelCase : str = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]: if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) __UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase ) if self.isEnabledFor(__lowerCamelCase ): if self._should_log(__lowerCamelCase ): __UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) elif in_order: __UpperCAmelCase : Optional[int] = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) state.wait_for_everyone() def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]: if log_level is None: __UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ ) __UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case__, {} )
342
1
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __UpperCamelCase : Optional[Any] = getLogger(__name__) def A ( _lowercase , _lowercase , _lowercase , _lowercase = 8 , _lowercase = 1_024 , _lowercase="val" , _lowercase=None , _lowercase=False , _lowercase="summarization" , _lowercase=None , _lowercase=1 , _lowercase = None , _lowercase="" , **_lowercase , ): SCREAMING_SNAKE_CASE : List[str] = str(_lowercase ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=_lowercase ) SCREAMING_SNAKE_CASE : List[str] = Path(_lowercase ) SCREAMING_SNAKE_CASE : Dict = save_dir.joinpath(f"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(_lowercase ) SCREAMING_SNAKE_CASE : str = AutoModelForSeqaSeqLM.from_pretrained(_lowercase ).cuda() if fpaa: SCREAMING_SNAKE_CASE : str = model.half() # determine if we need to increase num_beams use_task_specific_params(_lowercase , _lowercase ) # update config with task specific params SCREAMING_SNAKE_CASE : str = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: SCREAMING_SNAKE_CASE : int = num_return_sequences SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained(_lowercase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: SCREAMING_SNAKE_CASE : int = tokenizer.model_max_length if prefix is None: SCREAMING_SNAKE_CASE : int = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' SCREAMING_SNAKE_CASE : Union[str, Any] = SeqaSeqDataset( _lowercase , _lowercase , _lowercase , max_target_length=1_024 , type_path=_lowercase , n_obs=_lowercase , prefix=_lowercase , **_lowercase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. SCREAMING_SNAKE_CASE : List[Any] = ds.make_sortish_sampler(_lowercase , distributed=_lowercase , add_extra_examples=_lowercase , shuffle=_lowercase ) SCREAMING_SNAKE_CASE : List[str] = DataLoader(_lowercase , sampler=_lowercase , batch_size=_lowercase , collate_fn=ds.collate_fn ) SCREAMING_SNAKE_CASE : Optional[Any] = [] for batch in tqdm(_lowercase ): SCREAMING_SNAKE_CASE : List[str] = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=_lowercase , num_beams=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE : Dict = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) SCREAMING_SNAKE_CASE : List[Any] = batch['''ids'''] if num_return_sequences > 1: SCREAMING_SNAKE_CASE : Union[str, Any] = chunks(_lowercase , _lowercase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_lowercase ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(_lowercase , _lowercase ) return results, sampler.num_replicas def A ( ): SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=_lowercase , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=_lowercase , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=_lowercase , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=_lowercase , default=_lowercase ) parser.add_argument( '''--type_path''' , type=_lowercase , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=_lowercase , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=_lowercase , default=8 , required=_lowercase , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=_lowercase , default=-1 , required=_lowercase , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=_lowercase , default=_lowercase , required=_lowercase , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=_lowercase , default=1 , required=_lowercase , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=_lowercase , default=600 , required=_lowercase , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=_lowercase , default=_lowercase , required=_lowercase ) parser.add_argument('''--tgt_lang''' , type=_lowercase , default=_lowercase , required=_lowercase ) parser.add_argument( '''--prefix''' , type=_lowercase , required=_lowercase , default=_lowercase , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) SCREAMING_SNAKE_CASE : Dict = time.time() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = parser.parse_known_args() SCREAMING_SNAKE_CASE : Tuple = parse_numeric_n_bool_cl_kwargs(_lowercase ) if generate_kwargs and args.local_rank <= 0: print(f"""parsed the following generate kwargs: {generate_kwargs}""" ) SCREAMING_SNAKE_CASE : List[str] = Path(args.save_dir + '''_tmp''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) # this handles locking. SCREAMING_SNAKE_CASE : List[Any] = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. SCREAMING_SNAKE_CASE : Dict = {} if args.src_lang is not None: SCREAMING_SNAKE_CASE : str = args.src_lang if args.tgt_lang is not None: SCREAMING_SNAKE_CASE : Optional[Any] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = eval_data_dir( args.data_dir , _lowercase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_lowercase , **_lowercase , ) if args.local_rank <= 0: SCREAMING_SNAKE_CASE : Optional[int] = Path(args.save_dir ) save_dir.mkdir(exist_ok=_lowercase ) SCREAMING_SNAKE_CASE : str = gather_results_from_each_node(_lowercase , _lowercase , args.sync_timeout ) SCREAMING_SNAKE_CASE : Tuple = combine_partial_results(_lowercase ) if args.num_return_sequences > 1: SCREAMING_SNAKE_CASE : Dict = save_dir.joinpath('''pseudolabel_results.json''' ) print(f"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(_lowercase , _lowercase ) return SCREAMING_SNAKE_CASE : List[str] = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(_lowercase ) as f: SCREAMING_SNAKE_CASE : List[str] = [x.rstrip() for x in f.readlines()][: len(_lowercase )] # Calculate metrics, save metrics, and save _generations.txt SCREAMING_SNAKE_CASE : Optional[int] = '''translation''' in args.task SCREAMING_SNAKE_CASE : List[Any] = calculate_bleu if calc_bleu else calculate_rouge SCREAMING_SNAKE_CASE : Optional[Any] = '''bleu''' if calc_bleu else '''rouge''' SCREAMING_SNAKE_CASE : Dict = score_fn(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE : Tuple = len(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = time.time() - start_time SCREAMING_SNAKE_CASE : List[str] = round(runtime / metrics['''n_obs'''] , 4 ) SCREAMING_SNAKE_CASE : Union[str, Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics SCREAMING_SNAKE_CASE : str = save_dir.joinpath(f"""{args.type_path}_{metric_name}.json""" ) save_json(_lowercase , _lowercase , indent=_lowercase ) print(_lowercase ) write_txt_file(_lowercase , save_dir.joinpath(f"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(_lowercase , save_dir.joinpath(f"""{args.type_path}.target""" ) ) else: shutil.rmtree(_lowercase ) def A ( _lowercase ): SCREAMING_SNAKE_CASE : str = [] for partial_result in partial_results: records.extend(_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x["id"] ) SCREAMING_SNAKE_CASE : Tuple = [x['''pred'''] for x in records] return preds def A ( _lowercase , _lowercase , _lowercase ): # WAIT FOR lots of .json files SCREAMING_SNAKE_CASE : Tuple = time.time() logger.info('''waiting for all nodes to finish''' ) SCREAMING_SNAKE_CASE : Dict = None while (time.time() - start_wait) < timeout: SCREAMING_SNAKE_CASE : Tuple = list(save_dir.glob('''rank_*.json''' ) ) if len(_lowercase ) < num_replicas: continue try: # make sure all json files are fully saved SCREAMING_SNAKE_CASE : Optional[int] = lmap(_lowercase , _lowercase ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
182
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase): @slow def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids SCREAMING_SNAKE_CASE : List[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ).loss SCREAMING_SNAKE_CASE : int = -tf.math.reduce_mean(UpperCamelCase__ ).numpy() SCREAMING_SNAKE_CASE : List[str] = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
182
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = SamImageProcessor() __lowerCamelCase = SamProcessor(a ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , **a : int ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a ).image_processor def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(a , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_image_processor(do_normalize=a , padding_value=1.0 ) __lowerCamelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = SamProcessor(image_processor=a ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(a , return_tensors='''np''' ) __lowerCamelCase = processor(images=a , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = SamProcessor(image_processor=a ) __lowerCamelCase = [torch.ones((1, 3, 5, 5) )] __lowerCamelCase = [[17_64, 26_46]] __lowerCamelCase = [[6_83, 10_24]] __lowerCamelCase = processor.post_process_masks(a , a , a ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowerCamelCase = processor.post_process_masks( a , torch.tensor(a ) , torch.tensor(a ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowerCamelCase = [np.ones((1, 3, 5, 5) )] __lowerCamelCase = processor.post_process_masks(a , np.array(a ) , np.array(a ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowerCamelCase = [[1, 0], [0, 1]] with self.assertRaises(a ): __lowerCamelCase = processor.post_process_masks(a , np.array(a ) , np.array(a ) ) @require_vision @require_tf class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = SamImageProcessor() __lowerCamelCase = SamProcessor(a ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , **a : str ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a ).image_processor def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(a , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_image_processor(do_normalize=a , padding_value=1.0 ) __lowerCamelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = SamProcessor(image_processor=a ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(a , return_tensors='''np''' ) __lowerCamelCase = processor(images=a , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = SamProcessor(image_processor=a ) __lowerCamelCase = [tf.ones((1, 3, 5, 5) )] __lowerCamelCase = [[17_64, 26_46]] __lowerCamelCase = [[6_83, 10_24]] __lowerCamelCase = processor.post_process_masks(a , a , a , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowerCamelCase = processor.post_process_masks( a , tf.convert_to_tensor(a ) , tf.convert_to_tensor(a ) , return_tensors='''tf''' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowerCamelCase = [np.ones((1, 3, 5, 5) )] __lowerCamelCase = processor.post_process_masks( a , np.array(a ) , np.array(a ) , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowerCamelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __lowerCamelCase = processor.post_process_masks( a , np.array(a ) , np.array(a ) , return_tensors='''tf''' ) @require_vision @require_torchvision class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = SamImageProcessor() __lowerCamelCase = SamProcessor(a ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : str , **a : Any ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a ).image_processor def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(a , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = SamProcessor(image_processor=a ) __lowerCamelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __lowerCamelCase = [tf.convert_to_tensor(a )] __lowerCamelCase = [torch.tensor(a )] __lowerCamelCase = [[17_64, 26_46]] __lowerCamelCase = [[6_83, 10_24]] __lowerCamelCase = processor.post_process_masks( a , a , a , return_tensors='''tf''' ) __lowerCamelCase = processor.post_process_masks( a , a , a , return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = SamProcessor(image_processor=a ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(a , return_tensors='''pt''' )['''pixel_values'''].numpy() __lowerCamelCase = processor(images=a , return_tensors='''pt''' )['''pixel_values'''].numpy() __lowerCamelCase = image_processor(a , return_tensors='''tf''' )['''pixel_values'''].numpy() __lowerCamelCase = processor(images=a , return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(a , a ) ) self.assertTrue(np.allclose(a , a ) ) self.assertTrue(np.allclose(a , a ) )
362
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class a__ : def __init__( self : List[Any] , a : Tuple , a : int , a : int ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __lowerCamelCase = img __lowerCamelCase = img.shape[1] __lowerCamelCase = img.shape[0] __lowerCamelCase = dst_width __lowerCamelCase = dst_height __lowerCamelCase = self.src_w / self.dst_w __lowerCamelCase = self.src_h / self.dst_h __lowerCamelCase = __lowerCamelCase = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): __lowerCamelCase = self.img[self.get_y(a )][self.get_x(a )] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : int ): """simple docstring""" return int(self.ratio_x * x ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : int ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": __UpperCAmelCase , __UpperCAmelCase =8_0_0, 6_0_0 __UpperCAmelCase =imread("image_data/lena.jpg", 1) __UpperCAmelCase =NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
237
0
from PIL import Image def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Image ) -> Image: '''simple docstring''' A__ , A__ = image.size A__ = 0 A__ = image.load() for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): A__ = pixels[j, i] mean += pixel mean //= width * height for j in range(SCREAMING_SNAKE_CASE_ ): for i in range(SCREAMING_SNAKE_CASE_ ): A__ = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": lowerCAmelCase__ = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
68
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : Dict = {'''configuration_glpn''': ['''GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GLPNConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = ['''GLPNFeatureExtractor'''] _lowerCamelCase : Union[str, Any] = ['''GLPNImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ '''GLPN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GLPNForDepthEstimation''', '''GLPNLayer''', '''GLPNModel''', '''GLPNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
369
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "canine" def __init__( self : int , lowercase : Optional[int]=768 , lowercase : Tuple=12 , lowercase : Union[str, Any]=12 , lowercase : Optional[int]=3_072 , lowercase : Tuple="gelu" , lowercase : Optional[Any]=0.1 , lowercase : Tuple=0.1 , lowercase : int=16_384 , lowercase : Optional[int]=16 , lowercase : Optional[int]=0.02 , lowercase : Optional[Any]=1E-12 , lowercase : Optional[Any]=0 , lowercase : Dict=0xE000 , lowercase : Optional[Any]=0xE001 , lowercase : Union[str, Any]=4 , lowercase : str=4 , lowercase : Optional[int]=8 , lowercase : List[str]=16_384 , lowercase : Union[str, Any]=128 , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = type_vocab_size _snake_case = layer_norm_eps # Character config: _snake_case = downsampling_rate _snake_case = upsampling_kernel_size _snake_case = num_hash_functions _snake_case = num_hash_buckets _snake_case = local_transformer_stride
130
0
import sys import turtle def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Optional[int]: '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_UpperCAmelCase , get_mid(_UpperCAmelCase , _UpperCAmelCase ) , get_mid(_UpperCAmelCase , _UpperCAmelCase ) , depth - 1 ) triangle(_UpperCAmelCase , get_mid(_UpperCAmelCase , _UpperCAmelCase ) , get_mid(_UpperCAmelCase , _UpperCAmelCase ) , depth - 1 ) triangle(_UpperCAmelCase , get_mid(_UpperCAmelCase , _UpperCAmelCase ) , get_mid(_UpperCAmelCase , _UpperCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) __A : str = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") __A : Any = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
273
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A =1_6 __A =3_2 def a ( _UpperCAmelCase : Accelerator , _UpperCAmelCase : int = 16 ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCAmelCase : Any = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_UpperCAmelCase : List[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCAmelCase : Optional[int] = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCAmelCase : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_UpperCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCAmelCase : List[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCAmelCase : Any = 16 elif accelerator.mixed_precision != "no": __UpperCAmelCase : Tuple = 8 else: __UpperCAmelCase : Optional[int] = None return tokenizer.pad( _UpperCAmelCase , padding='''longest''' , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) __UpperCAmelCase : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A =mocked_dataloaders # noqa: F811 def a ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _UpperCAmelCase ) == "1": __UpperCAmelCase : Dict = 2 # Initialize accelerator __UpperCAmelCase : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase : List[Any] = config['''lr'''] __UpperCAmelCase : Optional[Any] = int(config['''num_epochs'''] ) __UpperCAmelCase : Optional[int] = int(config['''seed'''] ) __UpperCAmelCase : Any = int(config['''batch_size'''] ) __UpperCAmelCase : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __UpperCAmelCase : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCAmelCase : Tuple = batch_size // MAX_GPU_BATCH_SIZE __UpperCAmelCase : List[str] = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCAmelCase : Tuple = model.to(accelerator.device ) # Instantiate optimizer __UpperCAmelCase : Any = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler __UpperCAmelCase : str = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCAmelCase : int = model(**_UpperCAmelCase ) __UpperCAmelCase : str = outputs.loss __UpperCAmelCase : str = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __UpperCAmelCase : Tuple = 0 for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase : Dict = model(**_UpperCAmelCase ) __UpperCAmelCase : str = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(_UpperCAmelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __UpperCAmelCase : Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCAmelCase : List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) __UpperCAmelCase : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , _UpperCAmelCase ) def a ( ): '''simple docstring''' __UpperCAmelCase : int = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __UpperCAmelCase : int = parser.parse_args() __UpperCAmelCase : Union[str, Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
226
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCamelCase_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" a_ = {} with open(UpperCAmelCase , "r" ) as file: for line_number, line in enumerate(UpperCAmelCase ): a_ = line.strip() if line: a_ = line.split() a_ = line_number a_ = words[0] a_ = value return result def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" for attribute in key.split("." ): a_ = getattr(UpperCAmelCase , UpperCAmelCase ) a_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase ): a_ = PARAM_MAPPING[full_name.split("." )[-1]] a_ = "param" if weight_type is not None and weight_type != "param": a_ = getattr(UpperCAmelCase , UpperCAmelCase ).shape elif weight_type is not None and weight_type == "param": a_ = hf_pointer for attribute in hf_param_name.split("." ): a_ = getattr(UpperCAmelCase , UpperCAmelCase ) a_ = shape_pointer.shape # let's reduce dimension a_ = value[0] else: a_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": a_ = value elif weight_type == "weight_g": a_ = value elif weight_type == "weight_v": a_ = value elif weight_type == "bias": a_ = value elif weight_type == "param": for attribute in hf_param_name.split("." ): a_ = getattr(UpperCAmelCase , UpperCAmelCase ) a_ = value else: a_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase ): a_ = PARAM_MAPPING[full_name.split("." )[-1]] a_ = "param" if weight_type is not None and weight_type != "param": a_ = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a_ = ".".join([key, hf_param_name] ) else: a_ = key a_ = value if "lm_head" in full_key else value[0] UpperCamelCase_ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) ->Optional[Any]: """simple docstring""" a_ = False for key, mapped_key in MAPPING.items(): a_ = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: a_ = True if "*" in mapped_key: a_ = name.split(UpperCAmelCase )[0].split("." )[-2] a_ = mapped_key.replace("*" , UpperCAmelCase ) if "weight_g" in name: a_ = "weight_g" elif "weight_v" in name: a_ = "weight_v" elif "bias" in name: a_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj a_ = "weight" else: a_ = None if hf_dict is not None: rename_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return is_used return is_used def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" a_ = [] a_ = fairseq_model.state_dict() a_ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) a_ = True else: a_ = load_wavaveca_layer(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = full_name.split("conv_layers." )[-1] a_ = name.split("." ) a_ = int(items[0] ) a_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase ) @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=False ) ->Tuple: """simple docstring""" if config_path is not None: a_ = WavaVecaConfig.from_pretrained(UpperCAmelCase ) else: a_ = WavaVecaConfig() if is_seq_class: a_ = read_txt_into_dict(UpperCAmelCase ) a_ = idalabel a_ = WavaVecaForSequenceClassification(UpperCAmelCase ) a_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) feature_extractor.save_pretrained(UpperCAmelCase ) elif is_finetuned: if dict_path: a_ = Dictionary.load(UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a_ = target_dict.pad_index a_ = target_dict.bos_index a_ = target_dict.eos_index a_ = len(target_dict.symbols ) a_ = os.path.join(UpperCAmelCase , "vocab.json" ) if not os.path.isdir(UpperCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCAmelCase ) ) return os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) a_ = target_dict.indices # fairseq has the <pad> and <s> switched a_ = 0 a_ = 1 with open(UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(UpperCAmelCase , UpperCAmelCase ) a_ = WavaVecaCTCTokenizer( UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCAmelCase , ) a_ = True if config.feat_extract_norm == "layer" else False a_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) a_ = WavaVecaProcessor(feature_extractor=UpperCAmelCase , tokenizer=UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) a_ = WavaVecaForCTC(UpperCAmelCase ) else: a_ = WavaVecaForPreTraining(UpperCAmelCase ) if is_finetuned or is_seq_class: a_ , a_ , a_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: a_ = argparse.Namespace(task="audio_pretraining" ) a_ = fairseq.tasks.setup_task(UpperCAmelCase ) a_ , a_ , a_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase ) a_ = model[0].eval() recursively_load_weights(UpperCAmelCase , UpperCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
351
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCAmelCase , n - 1 , UpperCAmelCase ) * a) % mod else: a_ = binary_exponentiation(UpperCAmelCase , n / 2 , UpperCAmelCase ) return (b * b) % mod # a prime number UpperCamelCase_ = 701 UpperCamelCase_ = 1000000000 UpperCamelCase_ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
303
0
"""simple docstring""" lowerCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowerCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def snake_case_ ( A_ : str ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def snake_case_ ( A_ : str ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = '''Morse code here!''' print(A_ ) _lowerCamelCase : List[str] = encrypt(A_ ) print(A_ ) _lowerCamelCase : Any = decrypt(A_ ) print(A_ ) if __name__ == "__main__": main()
72
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
262
0
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. A : Tuple = 1_0 def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' for i in range(__a , __a ): if array[i] == target: return i return -1 def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = len(__a ) while left <= right: if right - left < precision: return lin_search(__a , __a , __a , __a ) __lowerCAmelCase = (left + right) // 3 + 1 __lowerCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowerCAmelCase = one_third - 1 elif array[two_third] < target: __lowerCAmelCase = two_third + 1 else: __lowerCAmelCase = one_third + 1 __lowerCAmelCase = two_third - 1 else: return -1 def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if left < right: if right - left < precision: return lin_search(__a , __a , __a , __a ) __lowerCAmelCase = (left + right) // 3 + 1 __lowerCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__a , one_third - 1 , __a , __a ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __a , __a , __a ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __a , __a ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() A : Tuple = input("Enter numbers separated by comma:\n").strip() A : List[Any] = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." A : int = int(input("Enter the number to be found in the list:\n").strip()) A : Union[str, Any] = ite_ternary_search(collection, target) A : Any = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("Not found")
355
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset A : Any = "bert-base-cased" A : Any = "google/pegasus-xsum" A : Union[str, Any] = [" Sam ate lunch today.", "Sams lunch ingredients."] A : Union[str, Any] = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] A : Optional[int] = "patrickvonplaten/t5-tiny-random" A : int = "sshleifer/bart-tiny-random" A : Optional[int] = "sshleifer/tiny-mbart" A : Any = "sshleifer/tiny-marian-en-de" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = "\n".join(_UpperCamelCase ) Path(_UpperCamelCase ).open("w" ).writelines(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(_UpperCamelCase , f"{split}.source" ) , _UpperCamelCase ) _dump_articles(os.path.join(_UpperCamelCase , f"{split}.target" ) , _UpperCamelCase ) return tmp_dir class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in ARTICLES ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in SUMMARIES ) __lowerCAmelCase = 4 __lowerCAmelCase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __lowerCAmelCase , __lowerCAmelCase = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=__a , max_target_length=__a , src_lang=__a , tgt_lang=__a , ) __lowerCAmelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__a , __a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __lowerCAmelCase = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in ARTICLES ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in SUMMARIES ) __lowerCAmelCase = 4 __lowerCAmelCase = LegacySeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=20 , max_target_length=__a , ) __lowerCAmelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def snake_case ( self ): __lowerCAmelCase = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) __lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __lowerCAmelCase = tmp_dir.joinpath("train.source" ).open().readlines() __lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__a , __a , 1_28 , __a ) __lowerCAmelCase = {x.name for x in tmp_dir.iterdir()} __lowerCAmelCase = {x.name for x in save_dir.iterdir()} __lowerCAmelCase = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__a ) < len(__a ) assert len(__a ) == 1 assert len(packed_examples[0] ) == sum(len(__a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def snake_case ( self ): if not FAIRSEQ_AVAILABLE: return __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset(max_len=64 ) __lowerCAmelCase = 64 __lowerCAmelCase = ds.make_dynamic_sampler(__a , required_batch_size_multiple=__a ) __lowerCAmelCase = [len(__a ) for x in batch_sampler] assert len(set(__a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__a ) == len(__a ) # no dropped or added examples __lowerCAmelCase = DataLoader(__a , batch_sampler=__a , collate_fn=ds.collate_fn , num_workers=2 ) __lowerCAmelCase = [] __lowerCAmelCase = [] for batch in data_loader: __lowerCAmelCase = batch["input_ids"].shape __lowerCAmelCase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __lowerCAmelCase = np.product(batch["input_ids"].shape ) num_src_per_batch.append(__a ) if num_src_tokens > (max_tokens * 1.1): failures.append(__a ) assert num_src_per_batch[0] == max(__a ) if failures: raise AssertionError(f"too many tokens in {len(__a )} batches" ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset(max_len=5_12 ) __lowerCAmelCase = 2 __lowerCAmelCase = ds.make_sortish_sampler(__a , shuffle=__a ) __lowerCAmelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 ) __lowerCAmelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 , sampler=__a ) __lowerCAmelCase = tokenizer.pad_token_id def count_pad_tokens(__a , __a="input_ids" ): return [batch[k].eq(__a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__a , k="labels" ) ) < sum(count_pad_tokens(__a , k="labels" ) ) assert sum(count_pad_tokens(__a ) ) < sum(count_pad_tokens(__a ) ) assert len(__a ) == len(__a ) def snake_case ( self , __a=10_00 , __a=1_28 ): if os.getenv("USE_REAL_DATA" , __a ): __lowerCAmelCase = "examples/seq2seq/wmt_en_ro" __lowerCAmelCase = max_len * 2 * 64 if not Path(__a ).joinpath("train.len" ).exists(): save_len_file(__a , __a ) else: __lowerCAmelCase = "examples/seq2seq/test_data/wmt_en_ro" __lowerCAmelCase = max_len * 4 save_len_file(__a , __a ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=__a , max_target_length=__a , n_obs=__a , ) return ds, max_tokens, tokenizer def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset() __lowerCAmelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=__a ) ) __lowerCAmelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=__a ) ) assert idsa.intersection(__a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a , use_fast=__a ) if tok_name == MBART_TINY: __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) __lowerCAmelCase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) __lowerCAmelCase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__a ) == 1 if tok_name == BART_TINY else len(__a ) == 0
259
0
from __future__ import annotations def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" __A = len(a_ ) // 2 # choose the middle 3 elements __A = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
15
"""simple docstring""" from __future__ import annotations import math class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = size # approximate the overall size of segment tree with given value lowerCAmelCase : Optional[int] = [0 for i in range(0 , 4 * size )] # create array to store lazy update lowerCAmelCase : List[str] = [0 for i in range(0 , 4 * size )] lowerCAmelCase : Dict = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowercase__ ( self , snake_case__ ): """simple docstring""" return idx * 2 def lowercase__ ( self , snake_case__ ): """simple docstring""" return idx * 2 + 1 def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if left_element == right_element: lowerCAmelCase : List[str] = a[left_element - 1] else: lowerCAmelCase : Tuple = (left_element + right_element) // 2 self.build(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ ) self.build(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = max( self.segment_tree[self.left(snake_case__ )] , self.segment_tree[self.right(snake_case__ )] ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if self.flag[idx] is True: lowerCAmelCase : Optional[int] = self.lazy[idx] lowerCAmelCase : List[str] = False if left_element != right_element: lowerCAmelCase : Optional[Any] = self.lazy[idx] lowerCAmelCase : List[Any] = self.lazy[idx] lowerCAmelCase : List[Any] = True lowerCAmelCase : Optional[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowerCAmelCase : str = val if left_element != right_element: lowerCAmelCase : Optional[Any] = val lowerCAmelCase : Union[str, Any] = val lowerCAmelCase : int = True lowerCAmelCase : int = True return True lowerCAmelCase : List[str] = (left_element + right_element) // 2 self.update(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.update(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Optional[int] = max( self.segment_tree[self.left(snake_case__ )] , self.segment_tree[self.right(snake_case__ )] ) return True def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if self.flag[idx] is True: lowerCAmelCase : List[Any] = self.lazy[idx] lowerCAmelCase : str = False if left_element != right_element: lowerCAmelCase : Tuple = self.lazy[idx] lowerCAmelCase : List[Any] = self.lazy[idx] lowerCAmelCase : Optional[int] = True lowerCAmelCase : str = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowerCAmelCase : Any = (left_element + right_element) // 2 lowerCAmelCase : Optional[int] = self.query(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = self.query(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ , snake_case__ ) return max(snake_case__ , snake_case__ ) def __str__( self ): """simple docstring""" return str([self.query(1 , 1 , self.size , snake_case__ , snake_case__ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": lowerCAmelCase__ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowerCAmelCase__ = 15 lowerCAmelCase__ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
108
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowercase : Any = logging.get_logger() @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" lowercase : nn.Module lowercase : List[nn.Module] = field(default_factory=lowerCamelCase__ ) lowercase : list = field(default_factory=lowerCamelCase__ ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Optional[int] = len(list(m.modules() ) ) == 1 or isinstance(__UpperCamelCase , nn.Convad ) or isinstance(__UpperCamelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(__UpperCamelCase ) def __call__( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__UpperCamelCase ) [x.remove() for x in self.handles] return self @property def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' return list(filter(lambda __UpperCamelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" lowercase : nn.Module lowercase : nn.Module lowercase : int = 0 lowercase : List = field(default_factory=lowerCamelCase__ ) lowercase : List = field(default_factory=lowerCamelCase__ ) def __call__( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' __UpperCamelCase : Optional[Any] = Tracker(self.dest )(__UpperCamelCase ).parametrized __UpperCamelCase : Union[str, Any] = Tracker(self.src )(__UpperCamelCase ).parametrized __UpperCamelCase : Union[str, Any] = list(filter(lambda __UpperCamelCase : type(__UpperCamelCase ) not in self.src_skip , __UpperCamelCase ) ) __UpperCamelCase : Any = list(filter(lambda __UpperCamelCase : type(__UpperCamelCase ) not in self.dest_skip , __UpperCamelCase ) ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise Exception( f'''Numbers of operations are different. Source module has {len(__UpperCamelCase )} operations while''' f''' destination module has {len(__UpperCamelCase )}.''' ) for dest_m, src_m in zip(__UpperCamelCase , __UpperCamelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) def UpperCAmelCase_ (_lowerCAmelCase : str , _lowerCAmelCase : ResNetConfig , _lowerCAmelCase : Path , _lowerCAmelCase : bool = True ): print(F'''Converting {name}...''' ) with torch.no_grad(): __UpperCamelCase : Optional[Any] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ).eval() __UpperCamelCase : Union[str, Any] = ResNetForImageClassification(_lowerCAmelCase ).eval() __UpperCamelCase : Any = ModuleTransfer(src=_lowerCAmelCase , dest=_lowerCAmelCase ) __UpperCamelCase : Optional[int] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(_lowerCAmelCase ) assert torch.allclose(from_model(_lowerCAmelCase ) , our_model(_lowerCAmelCase ).logits ), "The model logits don't match the original one." __UpperCamelCase : Tuple = F'''resnet{"-".join(name.split("resnet" ) )}''' print(_lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=_lowerCAmelCase , ) # we can use the convnext one __UpperCamelCase : List[str] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=_lowerCAmelCase , ) print(F'''Pushed {checkpoint_name}''' ) def UpperCAmelCase_ (_lowerCAmelCase : Path , _lowerCAmelCase : str = None , _lowerCAmelCase : bool = True ): __UpperCamelCase : str = "imagenet-1k-id2label.json" __UpperCamelCase : Dict = 10_00 __UpperCamelCase : Any = (1, num_labels) __UpperCamelCase : Union[str, Any] = "huggingface/label-files" __UpperCamelCase : List[Any] = num_labels __UpperCamelCase : Tuple = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) __UpperCamelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __UpperCamelCase : List[str] = idalabel __UpperCamelCase : str = {v: k for k, v in idalabel.items()} __UpperCamelCase : Dict = partial(_lowerCAmelCase , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase ) __UpperCamelCase : List[str] = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(_lowerCAmelCase , names_to_config[model_name] , _lowerCAmelCase , _lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) lowercase : Union[str, Any] = parser.parse_args() lowercase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
171
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase_ (_lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): # Construct model if openai_config_file == "": __UpperCamelCase : Any = OpenAIGPTConfig() else: __UpperCamelCase : Union[str, Any] = OpenAIGPTConfig.from_json_file(_lowerCAmelCase ) __UpperCamelCase : int = OpenAIGPTModel(_lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model __UpperCamelCase : List[str] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __UpperCamelCase : int = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _lowerCAmelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) lowercase : Tuple = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
171
1
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase__ = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCamelCase__ = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase=False ): __lowerCAmelCase , __lowerCAmelCase : List[str] = create_model( 'HTSAT-tiny' , 'roberta' , _UpperCamelCase , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=_UpperCamelCase , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Optional[int] = {} __lowerCAmelCase : str = r'.*sequential.(\d+).*' __lowerCAmelCase : int = r'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __lowerCAmelCase : Union[str, Any] = key.replace(_UpperCamelCase , _UpperCamelCase ) if re.match(_UpperCamelCase , _UpperCamelCase ): # replace sequential layers with list __lowerCAmelCase : List[str] = re.match(_UpperCamelCase , _UpperCamelCase ).group(1 ) __lowerCAmelCase : Tuple = key.replace(F"sequential.{sequential_layer}." , F"layers.{int(_UpperCamelCase )//3}.linear." ) elif re.match(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Dict = int(re.match(_UpperCamelCase , _UpperCamelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __lowerCAmelCase : Tuple = 1 if projecton_layer == 0 else 2 __lowerCAmelCase : List[str] = key.replace(F"_projection.{projecton_layer}." , F"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value __lowerCAmelCase : int = value __lowerCAmelCase : Union[str, Any] = mixed_qkv.size(0 ) // 3 __lowerCAmelCase : Optional[int] = mixed_qkv[:qkv_dim] __lowerCAmelCase : Optional[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] __lowerCAmelCase : Optional[int] = mixed_qkv[qkv_dim * 2 :] __lowerCAmelCase : Optional[Any] = query_layer __lowerCAmelCase : Dict = key_layer __lowerCAmelCase : str = value_layer else: __lowerCAmelCase : Dict = value return model_state_dict def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): __lowerCAmelCase , __lowerCAmelCase : List[str] = init_clap(_UpperCamelCase , enable_fusion=_UpperCamelCase ) clap_model.eval() __lowerCAmelCase : Optional[int] = clap_model.state_dict() __lowerCAmelCase : Dict = rename_state_dict(_UpperCamelCase ) __lowerCAmelCase : List[str] = ClapConfig() __lowerCAmelCase : List[str] = enable_fusion __lowerCAmelCase : Dict = ClapModel(_UpperCamelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) transformers_config.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCamelCase__ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
86
import os # Precomputes a list of the 100 first triangular numbers __UpperCAmelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Any = os.path.dirname(os.path.realpath(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = os.path.join(__snake_case , 'words.txt' ) UpperCAmelCase_ : Union[str, Any] = '' with open(__snake_case ) as f: UpperCAmelCase_ : List[Any] = f.readline() UpperCAmelCase_ : Optional[int] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] UpperCAmelCase_ : Optional[int] = [ word for word in [sum(ord(__snake_case ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__snake_case ) if __name__ == "__main__": print(solution())
29
0
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__, __magic_name__, __magic_name__ ) -> List[str]: """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) UpperCamelCase__ : str = img UpperCamelCase__ : Optional[Any] = img.shape[1] UpperCamelCase__ : List[Any] = img.shape[0] UpperCamelCase__ : Tuple = dst_width UpperCamelCase__ : List[Any] = dst_height UpperCamelCase__ : str = self.src_w / self.dst_w UpperCamelCase__ : Union[str, Any] = self.src_h / self.dst_h UpperCamelCase__ : List[Any] = ( np.ones((self.dst_h, self.dst_w, 3), np.uinta ) * 255 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): UpperCamelCase__ : Dict = self.img[self.get_y(__magic_name__ )][self.get_x(__magic_name__ )] def UpperCamelCase__ ( self, __magic_name__ ) -> int: """simple docstring""" return int(self.ratio_x * x ) def UpperCamelCase__ ( self, __magic_name__ ) -> int: """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = 800, 600 UpperCAmelCase_ : Tuple = imread('image_data/lena.jpg', 1) UpperCAmelCase_ : Tuple = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
362
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Optional[Any]=False ) -> List[Any]: UpperCamelCase__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCAmelCase_ ( __UpperCAmelCase: Dict , __UpperCAmelCase: Any , __UpperCAmelCase: Dict=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ : Tuple = '''''' else: UpperCamelCase__ : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Dict = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCamelCase__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ : int = in_proj_bias[: config.hidden_size] UpperCamelCase__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : List[Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] ) -> Optional[Any]: UpperCamelCase__ : int = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] , __UpperCAmelCase: str , __UpperCAmelCase: Tuple ) -> Dict: UpperCamelCase__ : List[str] = dct.pop(__UpperCAmelCase ) UpperCamelCase__ : int = val def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase__ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : int = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __UpperCAmelCase: List[str] , __UpperCAmelCase: Dict , __UpperCAmelCase: List[Any]=True ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ViTConfig() # patch_size if model_name[-1] == "8": UpperCamelCase__ : List[str] = 8 # set labels if required if not base_model: UpperCamelCase__ : Union[str, Any] = 1000 UpperCamelCase__ : Optional[Any] = '''huggingface/label-files''' UpperCamelCase__ : Dict = '''imagenet-1k-id2label.json''' UpperCamelCase__ : str = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ : Dict = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ : str = idalabel UpperCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: UpperCamelCase__ : str = 384 UpperCamelCase__ : str = 1536 UpperCamelCase__ : Tuple = 12 UpperCamelCase__ : Optional[int] = 6 # load original model from torch hub UpperCamelCase__ : Any = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase__ : str = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) UpperCamelCase__ : int = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: UpperCamelCase__ : int = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: UpperCamelCase__ : Optional[int] = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor UpperCamelCase__ : Dict = ViTImageProcessor() UpperCamelCase__ : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCamelCase__ : Optional[Any] = encoding['''pixel_values'''] UpperCamelCase__ : Optional[Any] = model(__UpperCAmelCase ) if base_model: UpperCamelCase__ : Union[str, Any] = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: UpperCamelCase__ : Any = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1e-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) UpperCAmelCase_ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
247
0
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = ['''image_processor''', '''tokenizer'''] snake_case = '''OwlViTImageProcessor''' snake_case = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : List[Any] , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , **__UpperCAmelCase : Tuple ): '''simple docstring''' _A = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) _A = kwargs.pop("feature_extractor" ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : Optional[Any] , __UpperCAmelCase : Any=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Any="max_length" , __UpperCAmelCase : List[Any]="np" , **__UpperCAmelCase : str ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): _A = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): _A = [] # Maximum number of queries across batch _A = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: _A = t + [" "] * (max_num_queries - len(__UpperCAmelCase )) _A = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _A = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _A = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _A = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _A = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _A = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _A = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _A = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _A = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _A = BatchEncoding() _A = input_ids _A = attention_mask if query_images is not None: _A = BatchEncoding() _A = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values _A = query_pixel_values if images is not None: _A = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: _A = image_features.pixel_values return encoding elif query_images is not None and images is not None: _A = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def lowerCAmelCase ( self : Tuple , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Dict ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : int , *__UpperCAmelCase : int , **__UpperCAmelCase : int ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : Dict , *__UpperCAmelCase : str , **__UpperCAmelCase : Optional[Any] ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : str , *__UpperCAmelCase : Any , **__UpperCAmelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : int , *__UpperCAmelCase : Any , **__UpperCAmelCase : int ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def lowerCAmelCase ( self : int ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
79
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: """simple docstring""" snake_case__ : Union[str, Any] = [] for part_id in partition_order: snake_case__ : Any = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(__lowerCAmelCase ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Tuple: """simple docstring""" snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Optional[Any] = spark.range(100 ).repartition(1 ) snake_case__ : Optional[int] = Spark(__lowerCAmelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(10 ).repartition(2 ) snake_case__ : Any = [1, 0] snake_case__ : Tuple = _generate_iterable_examples(__lowerCAmelCase , __lowerCAmelCase ) # Reverse the partitions. snake_case__ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , __lowerCAmelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__ , snake_case__ : Union[str, Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Any: """simple docstring""" snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : List[Any] = spark.range(10 ).repartition(1 ) snake_case__ : int = SparkExamplesIterable(__lowerCAmelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case__ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Tuple = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: snake_case__ : Union[str, Any] = lambda __lowerCAmelCase : x.reverse() snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [2, 1, 0] ) snake_case__ : List[str] = SparkExamplesIterable(__lowerCAmelCase ).shuffle_data_sources(__lowerCAmelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : List[str] = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case__ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(100 ).repartition(1 ) snake_case__ : Tuple = Spark(__lowerCAmelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
230
0
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class snake_case_ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Any )->str: '''simple docstring''' super().tearDown() gc.collect() def UpperCAmelCase__ ( self : Any )->List[Any]: '''simple docstring''' __lowerCAmelCase : str = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=__lowercase , dtype=jnp.bfloataa ) __lowerCAmelCase : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=__lowercase , from_pt=__lowercase , dtype=jnp.bfloataa ) __lowerCAmelCase : Optional[Any] = controlnet_params __lowerCAmelCase : List[str] = '''bird''' __lowerCAmelCase : Dict = jax.device_count() __lowerCAmelCase : List[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) __lowerCAmelCase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) __lowerCAmelCase : int = pipe.prepare_image_inputs([canny_image] * num_samples ) __lowerCAmelCase : int = jax.random.PRNGKey(0 ) __lowerCAmelCase : Optional[int] = jax.random.split(__lowercase , jax.device_count() ) __lowerCAmelCase : Tuple = replicate(__lowercase ) __lowerCAmelCase : Optional[int] = shard(__lowercase ) __lowerCAmelCase : str = shard(__lowercase ) __lowerCAmelCase : Tuple = pipe( prompt_ids=__lowercase , image=__lowercase , params=__lowercase , prng_seed=__lowercase , num_inference_steps=50 , jit=__lowercase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __lowerCAmelCase : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowerCAmelCase : List[Any] = images[0, 253:256, 253:256, -1] __lowerCAmelCase : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowerCAmelCase : Union[str, Any] = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Any )->Dict: '''simple docstring''' __lowerCAmelCase : int = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=__lowercase , dtype=jnp.bfloataa ) __lowerCAmelCase : Dict = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=__lowercase , from_pt=__lowercase , dtype=jnp.bfloataa ) __lowerCAmelCase : Optional[int] = controlnet_params __lowerCAmelCase : Dict = '''Chef in the kitchen''' __lowerCAmelCase : Any = jax.device_count() __lowerCAmelCase : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) __lowerCAmelCase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) __lowerCAmelCase : List[Any] = pipe.prepare_image_inputs([pose_image] * num_samples ) __lowerCAmelCase : Any = jax.random.PRNGKey(0 ) __lowerCAmelCase : Dict = jax.random.split(__lowercase , jax.device_count() ) __lowerCAmelCase : Union[str, Any] = replicate(__lowercase ) __lowerCAmelCase : Union[str, Any] = shard(__lowercase ) __lowerCAmelCase : Any = shard(__lowercase ) __lowerCAmelCase : List[Any] = pipe( prompt_ids=__lowercase , image=__lowercase , params=__lowercase , prng_seed=__lowercase , num_inference_steps=50 , jit=__lowercase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __lowerCAmelCase : List[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowerCAmelCase : str = images[0, 253:256, 253:256, -1] __lowerCAmelCase : Any = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowerCAmelCase : str = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
367
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = PegasusTokenizer A_ = PegasusTokenizerFast A_ = True A_ = True def UpperCAmelCase__ ( self : List[str] )->Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : Optional[int] = PegasusTokenizer(_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : str )->Dict: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def UpperCAmelCase__ ( self : Optional[Any] , **_snake_case : Tuple )->PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self : Dict , _snake_case : List[Any] )->Tuple: '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase__ ( self : Union[str, Any] )->Dict: '''simple docstring''' __lowerCAmelCase : Dict = """</s>""" __lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def UpperCAmelCase__ ( self : int )->Tuple: '''simple docstring''' __lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_snake_case ) , 1103 ) def UpperCAmelCase__ ( self : Optional[int] )->Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def UpperCAmelCase__ ( self : Dict )->str: '''simple docstring''' __lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : str = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) __lowerCAmelCase : str = rust_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] __lowerCAmelCase : Tuple = py_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : Optional[int] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : List[str] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __lowerCAmelCase : Tuple = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" __lowerCAmelCase : List[str] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] __lowerCAmelCase : str = tokenizer([raw_input_str] , return_tensors=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : List[str] )->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 __lowerCAmelCase : Tuple = """To ensure a smooth flow of bank resolutions.""" __lowerCAmelCase : Optional[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] __lowerCAmelCase : int = tokenizer([raw_input_str] , return_tensors=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ ( self : Any )->Any: '''simple docstring''' __lowerCAmelCase : List[Any] = ["""This is going to be way too long.""" * 150, """short example"""] __lowerCAmelCase : Union[str, Any] = ["""not super long but more than 5 tokens""", """tiny"""] __lowerCAmelCase : Dict = self._large_tokenizer(_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) __lowerCAmelCase : Tuple = self._large_tokenizer( text_target=_snake_case , max_length=5 , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_snake_case ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' __lowerCAmelCase : Optional[Any] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = PegasusTokenizer A_ = PegasusTokenizerFast A_ = True A_ = True def UpperCAmelCase__ ( self : Tuple )->Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : Any = PegasusTokenizer(_snake_case , offset=0 , mask_token_sent=_snake_case , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : Any )->str: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def UpperCAmelCase__ ( self : Union[str, Any] , **_snake_case : Optional[Any] )->PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self : List[str] , _snake_case : Optional[int] )->Union[str, Any]: '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase__ ( self : List[Any] )->str: '''simple docstring''' __lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : int = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) __lowerCAmelCase : str = rust_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] __lowerCAmelCase : Tuple = py_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) @require_torch def UpperCAmelCase__ ( self : str )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : int = ["""This is going to be way too long.""" * 1000, """short example"""] __lowerCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] __lowerCAmelCase : str = self._large_tokenizer(_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) __lowerCAmelCase : List[Any] = self._large_tokenizer( text_target=_snake_case , max_length=5 , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_snake_case ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' __lowerCAmelCase : Tuple = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) __lowerCAmelCase : Optional[Any] = self._large_tokenizer(_snake_case ).input_ids self.assertListEqual( _snake_case , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
232
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def UpperCamelCase ( *snake_case__ : List[str] , **snake_case__ : int ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): snake_case_ : Any = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCamelCase ( self : Dict , snake_case__ : str , snake_case__ : int , snake_case__ : Optional[int] ): """simple docstring""" _UpperCAmelCase = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) _UpperCAmelCase = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def UpperCamelCase ( self : Any , snake_case__ : int , snake_case__ : Optional[int] ): """simple docstring""" _UpperCAmelCase = object_detector(examples[0] , threshold=0.0 ) _UpperCAmelCase = len(snake_case__ ) self.assertGreater(snake_case__ , 0 ) self.assertEqual( snake_case__ , [ { "score": ANY(snake_case__ ), "label": ANY(snake_case__ ), "box": {"xmin": ANY(snake_case__ ), "ymin": ANY(snake_case__ ), "xmax": ANY(snake_case__ ), "ymax": ANY(snake_case__ )}, } for i in range(snake_case__ ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def UpperCamelCase ( self : int ): """simple docstring""" pass @require_torch def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) _UpperCAmelCase = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.7_235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6_748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6_419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) _UpperCAmelCase = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.7_235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6_748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6_419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = pipeline("zero-shot-object-detection" ) _UpperCAmelCase = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) _UpperCAmelCase = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def UpperCamelCase ( self : str ): """simple docstring""" pass @require_torch @slow def UpperCamelCase ( self : str ): """simple docstring""" _UpperCAmelCase = 0.2 _UpperCAmelCase = pipeline("zero-shot-object-detection" ) _UpperCAmelCase = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case__ , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = 2 _UpperCAmelCase = pipeline("zero-shot-object-detection" ) _UpperCAmelCase = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case__ , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
133
from typing import Any class __lowerCAmelCase : def __init__( self : List[Any] , snake_case__ : Any ): """simple docstring""" _UpperCAmelCase = data _UpperCAmelCase = None class __lowerCAmelCase : def __init__( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = None def UpperCamelCase ( self : List[Any] ): """simple docstring""" _UpperCAmelCase = self.head while temp is not None: print(temp.data , end=" " ) _UpperCAmelCase = temp.next print() def UpperCamelCase ( self : Any , snake_case__ : Any ): """simple docstring""" _UpperCAmelCase = Node(snake_case__ ) _UpperCAmelCase = self.head _UpperCAmelCase = new_node def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Optional[Any] ): """simple docstring""" if node_data_a == node_data_a: return else: _UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase = node_a.next _UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase = node_a.next if node_a is None or node_a is None: return _UpperCAmelCase , _UpperCAmelCase = node_a.data, node_a.data if __name__ == "__main__": lowercase_ : Union[str, Any] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
133
1
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class _a ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Optional[int] = 'autoformer' A : Optional[int] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self, A = None, A = None, A = "student_t", A = "nll", A = 1, A = [1, 2, 3, 4, 5, 6, 7], A = True, A = 0, A = 0, A = 0, A = 0, A = None, A = None, A = 64, A = 2, A = 2, A = 2, A = 2, A = 32, A = 32, A = "gelu", A = 0.1, A = 0.1, A = 0.1, A = 0.1, A = 0.1, A = 100, A = 0.02, A = True, A=True, A = 10, A = 25, A = 3, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = prediction_length SCREAMING_SNAKE_CASE : Union[str, Any] = context_length if context_length is not None else prediction_length SCREAMING_SNAKE_CASE : str = distribution_output SCREAMING_SNAKE_CASE : List[Any] = loss SCREAMING_SNAKE_CASE : Optional[Any] = input_size SCREAMING_SNAKE_CASE : int = num_time_features SCREAMING_SNAKE_CASE : Dict = lags_sequence SCREAMING_SNAKE_CASE : Optional[Any] = scaling SCREAMING_SNAKE_CASE : List[Any] = num_dynamic_real_features SCREAMING_SNAKE_CASE : Union[str, Any] = num_static_real_features SCREAMING_SNAKE_CASE : str = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) SCREAMING_SNAKE_CASE : Dict = cardinality else: SCREAMING_SNAKE_CASE : str = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) SCREAMING_SNAKE_CASE : str = embedding_dimension else: SCREAMING_SNAKE_CASE : str = [min(50, (cat + 1) // 2 ) for cat in self.cardinality] SCREAMING_SNAKE_CASE : Tuple = num_parallel_samples # Transformer architecture configuration SCREAMING_SNAKE_CASE : List[str] = input_size * len(self.lags_sequence ) + self._number_of_features SCREAMING_SNAKE_CASE : Tuple = d_model SCREAMING_SNAKE_CASE : Dict = encoder_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : Tuple = encoder_ffn_dim SCREAMING_SNAKE_CASE : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers SCREAMING_SNAKE_CASE : Dict = decoder_layers SCREAMING_SNAKE_CASE : Tuple = dropout SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : List[str] = activation_dropout SCREAMING_SNAKE_CASE : Tuple = encoder_layerdrop SCREAMING_SNAKE_CASE : int = decoder_layerdrop SCREAMING_SNAKE_CASE : Tuple = activation_function SCREAMING_SNAKE_CASE : Tuple = init_std SCREAMING_SNAKE_CASE : List[Any] = use_cache # Autoformer SCREAMING_SNAKE_CASE : Tuple = label_length SCREAMING_SNAKE_CASE : Optional[int] = moving_average SCREAMING_SNAKE_CASE : List[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
364
'''simple docstring''' import math def lowercase__( __UpperCamelCase: float ,__UpperCamelCase: float ): """simple docstring""" return math.pow(__UpperCamelCase ,2 ) - a def lowercase__( __UpperCamelCase: float ): """simple docstring""" return 2 * x def lowercase__( __UpperCamelCase: float ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 2.0 while start <= a: SCREAMING_SNAKE_CASE : Dict = math.pow(__UpperCamelCase ,2 ) return start def lowercase__( __UpperCamelCase: float ,__UpperCamelCase: int = 99_99 ,__UpperCamelCase: float = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ): """simple docstring""" if a < 0: raise ValueError('math domain error' ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_initial_point(__UpperCamelCase ) for _ in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = value SCREAMING_SNAKE_CASE : Dict = value - fx(__UpperCamelCase ,__UpperCamelCase ) / fx_derivative(__UpperCamelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
246
0
'''simple docstring''' class lowercase_ : def __init__( self , a , a , a ): UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = graph self._normalize_graph(a , a ) UpperCamelCase__ = len(a ) UpperCamelCase__ = None def __a ( self , a , a ): if sources is int: UpperCamelCase__ = [sources] if sinks is int: UpperCamelCase__ = [sinks] if len(a ) == 0 or len(a ) == 0: return UpperCamelCase__ = sources[0] UpperCamelCase__ = sinks[0] # make fake vertex if there are more # than one source or sink if len(a ) > 1 or len(a ) > 1: UpperCamelCase__ = 0 for i in sources: max_input_flow += sum(self.graph[i] ) UpperCamelCase__ = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: UpperCamelCase__ = max_input_flow UpperCamelCase__ = 0 UpperCamelCase__ = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: UpperCamelCase__ = max_input_flow UpperCamelCase__ = size - 1 def __a ( self ): if self.maximum_flow_algorithm is None: raise Exception("You need to set maximum flow algorithm before." ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __a ( self , a ): UpperCamelCase__ = algorithm(self ) class lowercase_ : def __init__( self , a ): UpperCamelCase__ = flow_network UpperCamelCase__ = flow_network.verticesCount UpperCamelCase__ = flow_network.sourceIndex UpperCamelCase__ = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that UpperCamelCase__ = flow_network.graph UpperCamelCase__ = False def __a ( self ): if not self.executed: self._algorithm() UpperCamelCase__ = True def __a ( self ): pass class lowercase_ ( a__ ): def __init__( self , a ): super().__init__(a ) # use this to save your result UpperCamelCase__ = -1 def __a ( self ): if not self.executed: raise Exception("You should execute algorithm before using its result!" ) return self.maximum_flow class lowercase_ ( a__ ): def __init__( self , a ): super().__init__(a ) UpperCamelCase__ = [[0] * self.verticies_count for i in range(self.verticies_count )] UpperCamelCase__ = [0] * self.verticies_count UpperCamelCase__ = [0] * self.verticies_count def __a ( self ): UpperCamelCase__ = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule UpperCamelCase__ = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list UpperCamelCase__ = 0 while i < len(a ): UpperCamelCase__ = vertices_list[i] UpperCamelCase__ = self.heights[vertex_index] self.process_vertex(a ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(a ) ) UpperCamelCase__ = 0 else: i += 1 UpperCamelCase__ = sum(self.preflow[self.source_index] ) def __a ( self , a ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(a , a ) self.relabel(a ) def __a ( self , a , a ): UpperCamelCase__ = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __a ( self , a ): UpperCamelCase__ = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): UpperCamelCase__ = self.heights[to_index] if min_height is not None: UpperCamelCase__ = min_height + 1 if __name__ == "__main__": a__ : List[str] = [0] a__ : Tuple = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] a__ : Optional[int] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network a__ : List[Any] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate a__ : Optional[Any] = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
80
'''simple docstring''' from __future__ import annotations import math def _UpperCamelCase ( __A , __A , __A , __A , __A ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) ) def _UpperCamelCase ( ) -> None: '''simple docstring''' UpperCamelCase__ = [90, 23, 6, 33, 21, 65, 123, 34423] UpperCamelCase__ = math.log(len(__A ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , __A , __A , __A )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
80
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a_ ( a_ ): '''simple docstring''' __a: Optional[Any] = ['''image_processor''', '''tokenizer'''] __a: List[str] = '''LayoutLMv3ImageProcessor''' __a: str = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self , lowercase_=None , lowercase_=None , **lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase_ , ) lowerCAmelCase_ = kwargs.pop('feature_extractor' ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowercase_ , lowercase_ ) def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = True , lowercase_ = None , **lowercase_ , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=lowercase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase_ = features['words'] lowerCAmelCase_ = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel values lowerCAmelCase_ = features.pop('pixel_values' ) if return_overflowing_tokens is True: lowerCAmelCase_ = self.get_overflowing_images(lowercase_ , encoded_inputs['overflow_to_sample_mapping'] ) lowerCAmelCase_ = images return encoded_inputs def _lowercase ( self , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f''' {len(lowercase_ )} and {len(lowercase_ )}''' ) return images_with_overflow def _lowercase ( self , *lowercase_ , **lowercase_ ) -> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def _lowercase ( self , *lowercase_ , **lowercase_ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def _lowercase ( self ) -> Dict: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _lowercase ( self ) -> str: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase_ , ) return self.image_processor_class @property def _lowercase ( self ) -> int: '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase_ , ) return self.image_processor
14
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int: if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : '''simple docstring''' __a: Tuple = OPTConfig __a: Optional[Any] = {} __a: Tuple = '''gelu''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = embed_dim lowerCAmelCase_ = word_embed_proj_dim lowerCAmelCase_ = False def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = TFOPTModel(config=lowercase_ ) lowerCAmelCase_ = inputs_dict['input_ids'] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a: Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a: int = False __a: List[Any] = False __a: Dict = False __a: List[Any] = 1_0 def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = TFOPTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase_ = model_class(config=lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing lowerCAmelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) lowerCAmelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) def lowerCamelCase ( a_ ) -> Any: return tf.constant(a_ , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' __a: Optional[int] = 9_9 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state lowerCAmelCase_ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowercase_ ) lowerCAmelCase_ = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCAmelCase_ = 'facebook/opt-350m' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase_ = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-125m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase_ = 'left' # use different length sentences to test batching lowerCAmelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) lowerCAmelCase_ = inputs['input_ids'] lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] ) lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ ) lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
14
1
'''simple docstring''' lowerCAmelCase :Tuple = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowerCAmelCase :Any = {value: key for key, value in MORSE_CODE_DICT.items()} def lowerCamelCase ( lowerCAmelCase : List[Any] ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def lowerCamelCase ( lowerCAmelCase : List[str] ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = '''Morse code here!''' print(_lowercase ) __magic_name__ : List[str] = encrypt(_lowercase ) print(_lowercase ) __magic_name__ : Tuple = decrypt(_lowercase ) print(_lowercase ) if __name__ == "__main__": main()
331
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = tempfile.mkdtemp() lowerCamelCase_ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ : Tuple = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A , A ) def UpperCAmelCase__ (self , **A ): return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.get_tokenizer() lowerCamelCase_ : List[Any] = self.get_rust_tokenizer() lowerCamelCase_ : List[Any] = self.get_image_processor() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A ) lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = self.prepare_image_inputs() lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' ) lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.get_image_processor() lowerCamelCase_ : Union[str, Any] = self.get_tokenizer() lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : int = processor(text=A ) lowerCamelCase_ : Dict = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : List[Any] = self.prepare_image_inputs() lowerCamelCase_ : Optional[int] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A ) lowerCamelCase_ : Any = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : str = self.prepare_image_inputs() lowerCamelCase_ : int = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
318
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict=13 , SCREAMING_SNAKE_CASE : List[Any]=7 , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Union[str, Any]=99 , SCREAMING_SNAKE_CASE : List[str]=24 , SCREAMING_SNAKE_CASE : str=2 , SCREAMING_SNAKE_CASE : List[str]=6 , SCREAMING_SNAKE_CASE : Optional[int]=37 , SCREAMING_SNAKE_CASE : int="gelu" , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : List[Any]=5_12 , SCREAMING_SNAKE_CASE : Any=16 , SCREAMING_SNAKE_CASE : Any=2 , SCREAMING_SNAKE_CASE : str=0.0_2 , SCREAMING_SNAKE_CASE : List[Any]=3 , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Tuple=10_00 , ): '''simple docstring''' UpperCamelCase__ : Dict = parent UpperCamelCase__ : Tuple = batch_size UpperCamelCase__ : Dict = seq_length UpperCamelCase__ : str = is_training UpperCamelCase__ : int = use_input_mask UpperCamelCase__ : Optional[Any] = use_token_type_ids UpperCamelCase__ : Any = use_labels UpperCamelCase__ : int = vocab_size UpperCamelCase__ : str = hidden_size UpperCamelCase__ : str = num_hidden_layers UpperCamelCase__ : Any = num_attention_heads UpperCamelCase__ : List[str] = intermediate_size UpperCamelCase__ : List[Any] = hidden_act UpperCamelCase__ : int = hidden_dropout_prob UpperCamelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ : Optional[Any] = max_position_embeddings UpperCamelCase__ : List[Any] = type_vocab_size UpperCamelCase__ : Dict = type_sequence_label_size UpperCamelCase__ : List[str] = initializer_range UpperCamelCase__ : List[Any] = num_labels UpperCamelCase__ : List[Any] = scope UpperCamelCase__ : Dict = range_bbox def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ : int = bbox[i, j, 3] UpperCamelCase__ : Optional[Any] = bbox[i, j, 1] UpperCamelCase__ : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ : Any = bbox[i, j, 2] UpperCamelCase__ : List[str] = bbox[i, j, 0] UpperCamelCase__ : Dict = t UpperCamelCase__ : List[Any] = None if self.use_input_mask: UpperCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ : int = None if self.use_token_type_ids: UpperCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ : Dict = None UpperCamelCase__ : Union[str, Any] = None if self.use_labels: UpperCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __lowercase ( self : Tuple ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' UpperCamelCase__ : Tuple = LiltModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ : Dict = model(snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) UpperCamelCase__ : List[str] = model(snake_case_ , bbox=snake_case_ , token_type_ids=snake_case_ ) UpperCamelCase__ : List[str] = model(snake_case_ , bbox=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.num_labels UpperCamelCase__ : Tuple = LiltForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ : Optional[int] = model( snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' UpperCamelCase__ : Tuple = LiltForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ : Union[str, Any] = model( snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : Any = self.prepare_config_and_inputs() ( UpperCamelCase__ ) : int = config_and_inputs UpperCamelCase__ : Optional[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __a ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): _lowerCAmelCase : Any = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _lowerCAmelCase : Optional[Any] = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : Dict = False _lowerCAmelCase : Optional[int] = False def __lowercase ( self : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return True def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Dict = LiltModelTester(self ) UpperCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ : List[str] = type self.model_tester.create_and_check_model(*snake_case_ ) def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) @slow def __lowercase ( self : Dict ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Union[str, Any] = LiltModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @slow class __a ( unittest.TestCase ): def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : int = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(snake_case_ ) UpperCamelCase__ : str = torch.tensor([[1, 2]] , device=snake_case_ ) UpperCamelCase__ : Dict = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=snake_case_ ) # forward pass with torch.no_grad(): UpperCamelCase__ : Tuple = model(input_ids=snake_case_ , bbox=snake_case_ ) UpperCamelCase__ : Tuple = torch.Size([1, 2, 7_68] ) UpperCamelCase__ : Optional[Any] = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=snake_case_ , ) self.assertTrue(outputs.last_hidden_state.shape , snake_case_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , snake_case_ , atol=1e-3 ) )
352
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCamelCase : str =logging.get_logger(__name__) @add_end_docstrings(A__ ) class __a ( A__ ): def __init__( self : List[str] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict , SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : List[Any] = {} if "candidate_labels" in kwargs: UpperCamelCase__ : Optional[Any] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: UpperCamelCase__ : int = kwargs["hypothesis_template"] return preprocess_params, {}, {} def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ): '''simple docstring''' UpperCamelCase__ : Dict = load_image(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = self.image_processor(images=[image] , return_tensors=self.framework ) UpperCamelCase__ : Any = candidate_labels UpperCamelCase__ : Dict = [hypothesis_template.format(SCREAMING_SNAKE_CASE ) for x in candidate_labels] UpperCamelCase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = [text_inputs] return inputs def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Tuple = model_inputs.pop("candidate_labels" ) UpperCamelCase__ : List[str] = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Dict = text_inputs[0] else: # Batching case. UpperCamelCase__ : Union[str, Any] = text_inputs[0][0] UpperCamelCase__ : Any = self.model(**SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = model_outputs.pop("candidate_labels" ) UpperCamelCase__ : int = model_outputs["logits"][0] if self.framework == "pt": UpperCamelCase__ : Dict = logits.softmax(dim=-1 ).squeeze(-1 ) UpperCamelCase__ : Optional[Any] = probs.tolist() if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[Any] = [scores] elif self.framework == "tf": UpperCamelCase__ : Optional[Any] = stable_softmax(SCREAMING_SNAKE_CASE , axis=-1 ) UpperCamelCase__ : Optional[int] = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) UpperCamelCase__ : Optional[int] = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , key=lambda SCREAMING_SNAKE_CASE : -x[0] ) ] return result
196
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['ConvNextFeatureExtractor'] lowerCAmelCase__ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
11
'''simple docstring''' from math import sqrt def snake_case__ ( _A: int = 1000000 ) -> int: '''simple docstring''' lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_A , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'{solution() = }')
272
0
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) __magic_name__ : str = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(_UpperCAmelCase ) DownloadCommand.register_subcommand(_UpperCAmelCase ) EnvironmentCommand.register_subcommand(_UpperCAmelCase ) RunCommand.register_subcommand(_UpperCAmelCase ) ServeCommand.register_subcommand(_UpperCAmelCase ) UserCommands.register_subcommand(_UpperCAmelCase ) AddNewModelCommand.register_subcommand(_UpperCAmelCase ) AddNewModelLikeCommand.register_subcommand(_UpperCAmelCase ) LfsCommands.register_subcommand(_UpperCAmelCase ) PTtoTFCommand.register_subcommand(_UpperCAmelCase ) # Let's go __magic_name__ : List[str] = parser.parse_args() if not hasattr(_UpperCAmelCase , 'func' ): parser.print_help() exit(1 ) # Run __magic_name__ : Dict = args.func(_UpperCAmelCase ) service.run() if __name__ == "__main__": main()
351
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Optional[int] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" __magic_name__ : List[str] = 0 while number > 0: __magic_name__ : str = number % 10 sum_of_digits += last_digit __magic_name__ : Optional[int] = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" __magic_name__ : int = factorial(lowerCAmelCase ) __magic_name__ : Any = split_and_add(lowerCAmelCase ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
275
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ : List[Any] = logging.get_logger(__name__) def UpperCamelCase( __UpperCamelCase : List[str] ): lowerCAmelCase_ : Any = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: lowerCAmelCase_ : Any = 1024 lowerCAmelCase_ : Tuple = 4096 lowerCAmelCase_ : List[Any] = 24 lowerCAmelCase_ : int = 16 lowerCAmelCase_ : Tuple = [5, 11, 17, 23] lowerCAmelCase_ : Optional[Any] = [256, 512, 1024, 1024] lowerCAmelCase_ : str = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCAmelCase_ : Union[str, Any] = 768 lowerCAmelCase_ : int = [1, 1, 1, 0.5] lowerCAmelCase_ : List[str] = [256, 512, 768, 768] lowerCAmelCase_ : int = 150 lowerCAmelCase_ : Any = 16 lowerCAmelCase_ : Any = (1, 384, 384) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Union[str, Any] = '''project''' if "ade" in checkpoint_url: lowerCAmelCase_ : Any = True lowerCAmelCase_ : Any = 768 lowerCAmelCase_ : Optional[int] = [1, 1, 1, 0.5] lowerCAmelCase_ : Union[str, Any] = 150 lowerCAmelCase_ : Any = 16 lowerCAmelCase_ : Any = '''huggingface/label-files''' lowerCAmelCase_ : Any = '''ade20k-id2label.json''' lowerCAmelCase_ : str = json.load(open(cached_download(hf_hub_url(__UpperCamelCase ,__UpperCamelCase ,repo_type='''dataset''' ) ) ,'''r''' ) ) lowerCAmelCase_ : Optional[Any] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = idalabel lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : List[Any] = [1, 150, 480, 480] return config, expected_shape def UpperCamelCase( __UpperCamelCase : Optional[int] ): lowerCAmelCase_ : int = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCamelCase ,__UpperCamelCase ) def UpperCamelCase( __UpperCamelCase : int ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCAmelCase_ : Dict = name.replace('''pretrained.model''' ,'''dpt.encoder''' ) if "pretrained.model" in name: lowerCAmelCase_ : List[Any] = name.replace('''pretrained.model''' ,'''dpt.embeddings''' ) if "patch_embed" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''patch_embed''' ,'''''' ) if "pos_embed" in name: lowerCAmelCase_ : Dict = name.replace('''pos_embed''' ,'''position_embeddings''' ) if "attn.proj" in name: lowerCAmelCase_ : Any = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "proj" in name and "project" not in name: lowerCAmelCase_ : Tuple = name.replace('''proj''' ,'''projection''' ) if "blocks" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''blocks''' ,'''layer''' ) if "mlp.fc1" in name: lowerCAmelCase_ : Optional[int] = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase_ : Union[str, Any] = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "norm1" in name and "backbone" not in name: lowerCAmelCase_ : List[str] = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name and "backbone" not in name: lowerCAmelCase_ : Optional[Any] = name.replace('''norm2''' ,'''layernorm_after''' ) if "scratch.output_conv" in name: lowerCAmelCase_ : Optional[int] = name.replace('''scratch.output_conv''' ,'''head''' ) if "scratch" in name: lowerCAmelCase_ : Dict = name.replace('''scratch''' ,'''neck''' ) if "layer1_rn" in name: lowerCAmelCase_ : Optional[int] = name.replace('''layer1_rn''' ,'''convs.0''' ) if "layer2_rn" in name: lowerCAmelCase_ : Union[str, Any] = name.replace('''layer2_rn''' ,'''convs.1''' ) if "layer3_rn" in name: lowerCAmelCase_ : List[Any] = name.replace('''layer3_rn''' ,'''convs.2''' ) if "layer4_rn" in name: lowerCAmelCase_ : Optional[int] = name.replace('''layer4_rn''' ,'''convs.3''' ) if "refinenet" in name: lowerCAmelCase_ : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCAmelCase_ : Dict = name.replace(f"""refinenet{layer_idx}""" ,f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: lowerCAmelCase_ : int = name.replace('''out_conv''' ,'''projection''' ) if "resConfUnit1" in name: lowerCAmelCase_ : Dict = name.replace('''resConfUnit1''' ,'''residual_layer1''' ) if "resConfUnit2" in name: lowerCAmelCase_ : str = name.replace('''resConfUnit2''' ,'''residual_layer2''' ) if "conv1" in name: lowerCAmelCase_ : str = name.replace('''conv1''' ,'''convolution1''' ) if "conv2" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''conv2''' ,'''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCAmelCase_ : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' ,'''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCAmelCase_ : Optional[int] = name.replace('''pretrained.act_postprocess2.0.project.0''' ,'''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCAmelCase_ : Tuple = name.replace('''pretrained.act_postprocess3.0.project.0''' ,'''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCAmelCase_ : Dict = name.replace('''pretrained.act_postprocess4.0.project.0''' ,'''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCAmelCase_ : List[Any] = name.replace('''pretrained.act_postprocess1.3''' ,'''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: lowerCAmelCase_ : Dict = name.replace('''pretrained.act_postprocess1.4''' ,'''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: lowerCAmelCase_ : List[Any] = name.replace('''pretrained.act_postprocess2.3''' ,'''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: lowerCAmelCase_ : List[str] = name.replace('''pretrained.act_postprocess2.4''' ,'''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''pretrained.act_postprocess3.3''' ,'''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: lowerCAmelCase_ : List[str] = name.replace('''pretrained.act_postprocess4.3''' ,'''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''pretrained.act_postprocess4.4''' ,'''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: lowerCAmelCase_ : Tuple = name.replace('''pretrained''' ,'''dpt''' ) if "bn" in name: lowerCAmelCase_ : Dict = name.replace('''bn''' ,'''batch_norm''' ) if "head" in name: lowerCAmelCase_ : Any = name.replace('''head''' ,'''head.head''' ) if "encoder.norm" in name: lowerCAmelCase_ : Tuple = name.replace('''encoder.norm''' ,'''layernorm''' ) if "auxlayer" in name: lowerCAmelCase_ : Optional[int] = name.replace('''auxlayer''' ,'''auxiliary_head.head''' ) if "backbone" in name: lowerCAmelCase_ : List[Any] = name.replace('''backbone''' ,'''backbone.bit.encoder''' ) if ".." in name: lowerCAmelCase_ : List[Any] = name.replace('''..''' ,'''.''' ) if "stem.conv" in name: lowerCAmelCase_ : str = name.replace('''stem.conv''' ,'''bit.embedder.convolution''' ) if "blocks" in name: lowerCAmelCase_ : List[str] = name.replace('''blocks''' ,'''layers''' ) if "convolution" in name and "backbone" in name: lowerCAmelCase_ : Optional[int] = name.replace('''convolution''' ,'''conv''' ) if "layer" in name and "backbone" in name: lowerCAmelCase_ : Optional[int] = name.replace('''layer''' ,'''layers''' ) if "backbone.bit.encoder.bit" in name: lowerCAmelCase_ : Union[str, Any] = name.replace('''backbone.bit.encoder.bit''' ,'''backbone.bit''' ) if "embedder.conv" in name: lowerCAmelCase_ : str = name.replace('''embedder.conv''' ,'''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: lowerCAmelCase_ : Dict = name.replace('''backbone.bit.encoder.stem.norm''' ,'''backbone.bit.embedder.norm''' ) return name def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : Dict = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) lowerCAmelCase_ : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : str = in_proj_weight[: config.hidden_size, :] lowerCAmelCase_ : str = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Any = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def UpperCamelCase( ): lowerCAmelCase_ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ : Dict = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def UpperCamelCase( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Dict ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : str ): lowerCAmelCase_ , lowerCAmelCase_ : Any = get_dpt_config(__UpperCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCAmelCase_ : List[str] = torch.load(__UpperCamelCase ,map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(__UpperCamelCase ) # rename keys for key in state_dict.copy().keys(): lowerCAmelCase_ : Any = state_dict.pop(__UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = val # read in qkv matrices read_in_q_k_v(__UpperCamelCase ,__UpperCamelCase ) # load HuggingFace model lowerCAmelCase_ : List[Any] = DPTForSemanticSegmentation(__UpperCamelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Check outputs on an image lowerCAmelCase_ : Tuple = 480 if '''ade''' in checkpoint_url else 384 lowerCAmelCase_ : Optional[int] = DPTImageProcessor(size=__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = prepare_img() lowerCAmelCase_ : str = image_processor(__UpperCamelCase ,return_tensors='''pt''' ) # forward pass lowerCAmelCase_ : Tuple = model(**__UpperCamelCase ).logits if '''ade''' in checkpoint_url else model(**__UpperCamelCase ).predicted_depth if show_prediction: lowerCAmelCase_ : Optional[Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) ,size=(image.size[1], image.size[0]) ,mode='''bicubic''' ,align_corners=__UpperCamelCase ,) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) A__ : Union[str, Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
103
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration A__ : str = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] A__ : Dict = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] A__ : int = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) A__ : Tuple = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) A__ : Tuple = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ) -> List[str]: for tf_name, hf_name in patterns: __lowerCamelCase : Optional[int] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) return k def UpperCAmelCase__ ( UpperCAmelCase_ : dict , UpperCAmelCase_ : dict ) -> BigBirdPegasusForConditionalGeneration: __lowerCamelCase : int = BigBirdPegasusConfig(**UpperCAmelCase_ ) __lowerCamelCase : Any = BigBirdPegasusForConditionalGeneration(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = torch_model.state_dict() __lowerCamelCase : Tuple = {} # separating decoder weights __lowerCamelCase : Dict = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} __lowerCamelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): __lowerCamelCase : Tuple = [k.endswith(UpperCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(UpperCAmelCase_ ): continue __lowerCamelCase : Tuple = DECODER_PATTERNS __lowerCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ , UpperCAmelCase_ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __lowerCamelCase : Union[str, Any] = v.T __lowerCamelCase : str = torch.from_numpy(UpperCAmelCase_ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): __lowerCamelCase : Optional[Any] = [k.endswith(UpperCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(UpperCAmelCase_ ): continue __lowerCamelCase : Dict = REMAINING_PATTERNS __lowerCamelCase : List[str] = rename_state_dict_key(UpperCAmelCase_ , UpperCAmelCase_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __lowerCamelCase : List[str] = v.T __lowerCamelCase : List[str] = torch.from_numpy(UpperCAmelCase_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' __lowerCamelCase : Any = mapping['model.embed_positions.weight'] __lowerCamelCase : Union[str, Any] = mapping.pop('model.embed_positions.weight' ) __lowerCamelCase , __lowerCamelCase : List[str] = torch_model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) __lowerCamelCase : Any = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> Dict: __lowerCamelCase : int = tf.train.list_variables(UpperCAmelCase_ ) __lowerCamelCase : List[str] = {} __lowerCamelCase : List[Any] = ['global_step'] for name, shape in tqdm(UpperCAmelCase_ , desc='converting tf checkpoint to dict' ): __lowerCamelCase : Any = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase : Dict = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = array return tf_weights def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : dict ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = get_tf_weights_as_numpy(UpperCAmelCase_ ) __lowerCamelCase : List[str] = convert_bigbird_pegasus(UpperCAmelCase_ , UpperCAmelCase_ ) torch_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") A__ : List[str] = parser.parse_args() A__ : Optional[int] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
185
0
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class __UpperCamelCase ( unittest.TestCase ): def __init__( self , __a , __a=2 , __a=56 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=2 , __a=7 , __a="gelu_new" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , __a="block_sparse" , __a=True , __a=False , __a=2 , __a=3 , ): '''simple docstring''' __a : List[Any] = parent __a : Union[str, Any] = batch_size __a : Optional[int] = seq_length __a : Optional[int] = is_training __a : Optional[Any] = use_attention_mask __a : Dict = use_token_type_ids __a : Any = use_labels __a : List[str] = vocab_size __a : List[Any] = hidden_size __a : Tuple = num_hidden_layers __a : Any = num_attention_heads __a : int = intermediate_size __a : List[Any] = hidden_act __a : Optional[Any] = hidden_dropout_prob __a : int = attention_probs_dropout_prob __a : Optional[Any] = max_position_embeddings __a : Tuple = type_vocab_size __a : Tuple = type_sequence_label_size __a : Any = initializer_range __a : List[Any] = num_choices __a : str = rescale_embeddings __a : Any = attention_type __a : Optional[int] = use_bias __a : Optional[Any] = block_size __a : Any = num_random_blocks def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : List[Any] = None if self.use_attention_mask: __a : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __a : Any = None if self.use_token_type_ids: __a : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : str = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = self.prepare_config_and_inputs() __a : List[str] = config_and_inputs __a : Optional[int] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): A_ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) A_ = False A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCAmelCase ( self ): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCAmelCase ( self ): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCAmelCase ( self ): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCAmelCase ( self ): '''simple docstring''' super().test_hidden_states_output() @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __a : List[str] = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(__A ) def __UpperCAmelCase ( self ): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __a : Any = self._prepare_for_class(__A , __A ) __a : Optional[Any] = model_class(__A ) @jax.jit def model_jitted(__a , __a=None , **__a ): return model(input_ids=__A , attention_mask=__A , **__A ) with self.subTest('JIT Enabled' ): __a : List[Any] = model_jitted(**__A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __a : str = model_jitted(**__A ).to_tuple() self.assertEqual(len(__A ) , len(__A ) ) for jitted_output, output in zip(__A , __A ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCAmelCase ( self , __a , __a , __a , __a=1E-5 , __a="outputs" , __a=None ): '''simple docstring''' if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(__A , __A , __A , __A , __A , __A )
361
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=False , __a=True , __a="None" , __a=3 , __a=4 , __a=None , ): '''simple docstring''' __a : int = parent __a : Union[str, Any] = batch_size __a : Optional[int] = seq_length __a : List[str] = is_training __a : Any = use_input_mask __a : Optional[int] = use_token_type_ids __a : Any = use_labels __a : List[str] = vocab_size __a : str = hidden_size __a : List[str] = num_hidden_layers __a : str = num_attention_heads __a : Optional[int] = intermediate_size __a : Tuple = hidden_act __a : Union[str, Any] = hidden_dropout_prob __a : Dict = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : Dict = type_vocab_size __a : Any = type_sequence_label_size __a : Dict = initializer_range __a : Optional[Any] = num_labels __a : Optional[Any] = num_choices __a : Union[str, Any] = relative_attention __a : List[str] = position_biased_input __a : List[Any] = pos_att_type __a : Tuple = scope def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : List[Any] = None if self.use_input_mask: __a : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __a : Any = None if self.use_token_type_ids: __a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Optional[int] = None __a : int = None __a : Dict = None if self.use_labels: __a : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __a : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self ): '''simple docstring''' return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Dict = DebertaVaModel(config=__a ) model.to(__a ) model.eval() __a : Optional[int] = model(__a , attention_mask=__a , token_type_ids=__a )[0] __a : str = model(__a , token_type_ids=__a )[0] __a : Optional[int] = model(__a )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : int = DebertaVaForMaskedLM(config=__a ) model.to(__a ) model.eval() __a : List[Any] = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Optional[Any] = self.num_labels __a : List[Any] = DebertaVaForSequenceClassification(__a ) model.to(__a ) model.eval() __a : Any = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__a ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Any = self.num_labels __a : Dict = DebertaVaForTokenClassification(config=__a ) model.to(__a ) model.eval() __a : str = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : List[str] = DebertaVaForQuestionAnswering(config=__a ) model.to(__a ) model.eval() __a : str = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Optional[int] = DebertaVaForMultipleChoice(config=__a ) model.to(__a ) model.eval() __a : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : int = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Dict = config_and_inputs __a : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) A_ = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) A_ = True A_ = False A_ = False A_ = False A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = DebertaVaModelTester(self ) __a : List[str] = ConfigTester(self , config_class=__a , hidden_size=37 ) def __UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__a ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : str = DebertaVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_torch @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) __a : Optional[Any] = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) __a : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __a : int = model(__a , attention_mask=__a )[0] # compare the actual values for a slice. __a : str = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
294
0
'''simple docstring''' import math def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = len(__A ) __UpperCamelCase = int(math.floor(math.sqrt(__A ) ) ) __UpperCamelCase = 0 while arr[min(__A ,__A ) - 1] < x: __UpperCamelCase = step step += int(math.floor(math.sqrt(__A ) ) ) if prev >= n: return -1 while arr[prev] < x: __UpperCamelCase = prev + 1 if prev == min(__A ,__A ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": a__ : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() a__ : Dict = [int(item) for item in user_input.split(',')] a__ : Optional[Any] = int(input('Enter the number to be searched:\n')) a__ : List[str] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(f'''Number {x} is at index {res}''')
349
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = PegasusConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = '''gelu''' def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=4_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]: __UpperCamelCase = TFPegasusModel(config=lowercase ).get_decoder() __UpperCamelCase = inputs_dict["""input_ids"""] __UpperCamelCase = input_ids[:1, :] __UpperCamelCase = inputs_dict["""attention_mask"""][:1, :] __UpperCamelCase = inputs_dict["""head_mask"""] __UpperCamelCase = 1 # first forward pass __UpperCamelCase = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) __UpperCamelCase , __UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCamelCase = model(lowercase , attention_mask=lowercase )[0] __UpperCamelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] __UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,__A=None ,__A=None ,__A=None ,): '''simple docstring''' if attention_mask is None: __UpperCamelCase = tf.cast(tf.math.not_equal(__A ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: __UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: __UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFPegasusModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase ) def __lowerCamelCase ( self ) -> str: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase__ ( unittest.TestCase): __SCREAMING_SNAKE_CASE = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __SCREAMING_SNAKE_CASE = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers __SCREAMING_SNAKE_CASE = '''google/pegasus-xsum''' @cached_property def __lowerCamelCase ( self ) -> int: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __lowerCamelCase ( self , **lowercase ) -> Optional[int]: __UpperCamelCase = self.translate_src_text(**lowercase ) assert self.expected_text == generated_words def __lowerCamelCase ( self , **lowercase ) -> Optional[Any]: __UpperCamelCase = self.tokenizer(self.src_text , **lowercase , padding=lowercase , return_tensors="""tf""" ) __UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) __UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase ) return generated_words @slow def __lowerCamelCase ( self ) -> Dict: self._assert_generated_batch_equal_expected()
349
1
"""simple docstring""" from __future__ import annotations import math def __lowercase ( _a , _a ): if len(_a ) != 2 or len(a[0] ) != 2 or len(_a ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) snake_case_ : List[Any] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __lowercase ( _a , _a ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_a ) ) ] def __lowercase ( _a , _a ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_a ) ) ] def __lowercase ( _a ): if len(_a ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) snake_case_ : List[str] = len(_a ) snake_case_ : int = matrix_length // 2 snake_case_ : Any = [[a[i][j] for j in range(_a , _a )] for i in range(_a )] snake_case_ : Dict = [ [a[i][j] for j in range(_a , _a )] for i in range(_a , _a ) ] snake_case_ : int = [[a[i][j] for j in range(_a )] for i in range(_a )] snake_case_ : Union[str, Any] = [[a[i][j] for j in range(_a )] for i in range(_a , _a )] return top_left, top_right, bot_left, bot_right def __lowercase ( _a ): return len(_a ), len(matrix[0] ) def __lowercase ( _a ): print('''\n'''.join(str(_a ) for line in matrix ) ) def __lowercase ( _a , _a ): if matrix_dimensions(_a ) == (2, 2): return default_matrix_multiplication(_a , _a ) snake_case_, snake_case_, snake_case_, snake_case_ : Dict = split_matrix(_a ) snake_case_, snake_case_, snake_case_, snake_case_ : Tuple = split_matrix(_a ) snake_case_ : List[Any] = actual_strassen(_a , matrix_subtraction(_a , _a ) ) snake_case_ : Optional[int] = actual_strassen(matrix_addition(_a , _a ) , _a ) snake_case_ : Tuple = actual_strassen(matrix_addition(_a , _a ) , _a ) snake_case_ : Union[str, Any] = actual_strassen(_a , matrix_subtraction(_a , _a ) ) snake_case_ : Optional[int] = actual_strassen(matrix_addition(_a , _a ) , matrix_addition(_a , _a ) ) snake_case_ : Optional[int] = actual_strassen(matrix_subtraction(_a , _a ) , matrix_addition(_a , _a ) ) snake_case_ : Optional[int] = actual_strassen(matrix_subtraction(_a , _a ) , matrix_addition(_a , _a ) ) snake_case_ : Any = matrix_addition(matrix_subtraction(matrix_addition(_a , _a ) , _a ) , _a ) snake_case_ : Optional[int] = matrix_addition(_a , _a ) snake_case_ : List[Any] = matrix_addition(_a , _a ) snake_case_ : Optional[int] = matrix_subtraction(matrix_subtraction(matrix_addition(_a , _a ) , _a ) , _a ) # construct the new matrix from our 4 quadrants snake_case_ : Union[str, Any] = [] for i in range(len(_a ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(_a ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def __lowercase ( _a , _a ): if matrix_dimensions(_a )[1] != matrix_dimensions(_a )[0]: snake_case_ : Dict = ( '''Unable to multiply these matrices, please check the dimensions.\n''' f"Matrix A: {matrixa}\n" f"Matrix B: {matrixa}" ) raise Exception(_a ) snake_case_ : Optional[int] = matrix_dimensions(_a ) snake_case_ : List[str] = matrix_dimensions(_a ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case_ : str = max(*_a , *_a ) snake_case_ : List[Any] = int(math.pow(2 , math.ceil(math.loga(_a ) ) ) ) snake_case_ : Dict = matrixa snake_case_ : Any = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , _a ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _a ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , _a ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case_ : str = actual_strassen(_a , _a ) # Removing the additional zeros for i in range(0 , _a ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _a ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowercase__ : Dict = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowercase__ : Optional[int] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
155
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase__ : str = get_logger(__name__) lowercase__ : List[str] = Path(__file__).parent / '''model_card_template.md''' lowercase__ : Union[str, Any] = uuida().hex lowercase__ : Tuple = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[int] = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __lowercase ( _a = None ): snake_case_ : List[str] = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_a , _a ): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(_a , _a ): ua += "; " + user_agent return ua def __lowercase ( _a , _a = None , _a = None ): if token is None: snake_case_ : Union[str, Any] = HfFolder.get_token() if organization is None: snake_case_ : int = whoami(_a )['''name'''] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def __lowercase ( _a , _a ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(_a , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ : Union[str, Any] = args.hub_token if hasattr(_a , '''hub_token''' ) else None snake_case_ : Dict = get_full_repo_name(_a , token=_a ) snake_case_ : List[str] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_a , model_name=_a , repo_name=_a , dataset_name=args.dataset_name if hasattr(_a , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_a , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_a , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_a , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_a , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_a , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_a , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(_a , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_a , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ : Tuple = os.path.join(args.output_dir , '''README.md''' ) model_card.save(_a ) def __lowercase ( _a , _a = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ : Tuple = str(Path(_a ).as_posix() ) snake_case_ : int = re.search(r'''snapshots/([^/]+)/''' , _a ) if search is None: return None snake_case_ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase__ : str = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowercase__ : List[Any] = os.path.join(hf_cache_home, '''diffusers''') def __lowercase ( _a = None , _a = None ): if new_cache_dir is None: snake_case_ : Tuple = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ : List[str] = old_diffusers_cache snake_case_ : Union[str, Any] = Path(_a ).expanduser() snake_case_ : str = Path(_a ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ : List[Any] = new_cache_dir / old_blob_path.relative_to(_a ) new_blob_path.parent.mkdir(parents=_a , exist_ok=_a ) os.replace(_a , _a ) try: os.symlink(_a , _a ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase__ : Optional[Any] = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowercase__ : Optional[int] = 0 else: with open(cache_version_file) as f: try: lowercase__ : Optional[Any] = int(f.read()) except ValueError: lowercase__ : Optional[Any] = 0 if cache_version < 1: lowercase__ : Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowercase__ : Optional[Any] = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __lowercase ( _a , _a = None ): if variant is not None: snake_case_ : str = weights_name.split('''.''' ) snake_case_ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] snake_case_ : List[Any] = '''.'''.join(_a ) return weights_name def __lowercase ( _a , *, _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , _a=None , ): snake_case_ : Dict = str(_a ) if os.path.isfile(_a ): return pretrained_model_name_or_path elif os.path.isdir(_a ): if os.path.isfile(os.path.join(_a , _a ) ): # Load from a PyTorch checkpoint snake_case_ : Dict = os.path.join(_a , _a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_a , _a , _a ) ): snake_case_ : List[Any] = os.path.join(_a , _a , _a ) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_a ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ : str = hf_hub_download( _a , filename=_add_variant(_a , _a ) , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , _a , ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_a , _a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(_a , _a )}' so that the correct variant file can be added." , _a , ) try: # 2. Load model file as usual snake_case_ : Tuple = hf_hub_download( _a , filename=_a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " '''this model name. Check the model page at ''' f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" )
155
1