code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter SCREAMING_SNAKE_CASE :Union[str, Any] = 'Create a default config file for Accelerate with only a few flags set.' def UpperCAmelCase ( a_="no" , a_ = default_json_config_file , a_ = False ) -> Optional[int]: """simple docstring""" __A = Path(a_ ) path.parent.mkdir(parents=a_ , exist_ok=a_ ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False __A = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) __A = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): __A = torch.cuda.device_count() __A = num_gpus __A = False if num_gpus > 1: __A = "MULTI_GPU" else: __A = "NO" elif is_xpu_available() and use_xpu: __A = torch.xpu.device_count() __A = num_xpus __A = False if num_xpus > 1: __A = "MULTI_XPU" else: __A = "NO" elif is_npu_available(): __A = torch.npu.device_count() __A = num_npus __A = False if num_npus > 1: __A = "MULTI_NPU" else: __A = "NO" else: __A = 0 __A = True __A = 1 __A = "NO" __A = ClusterConfig(**a_ ) config.to_json_file(a_ ) return path def UpperCAmelCase ( a_ , a_ ) -> List[Any]: """simple docstring""" __A = parser.add_parser("default" , parents=a_ , help=a_ , formatter_class=a_ ) parser.add_argument( "--config_file" , default=a_ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=a_ , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=a_ ) return parser def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" __A = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
15
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __snake_case = parser.parse_args() __snake_case = '''cpu''' __snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __snake_case = '''path-to-your-trained-model''' __snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __snake_case = pipe.to(device) # to channels last __snake_case = pipe.unet.to(memory_format=torch.channels_last) __snake_case = pipe.vae.to(memory_format=torch.channels_last) __snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __snake_case = torch.randn(2, 4, 64, 64) __snake_case = torch.rand(1) * 9_99 __snake_case = torch.randn(2, 77, 7_68) __snake_case = (sample, timestep, encoder_hidden_status) try: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __snake_case = 6_66 __snake_case = torch.Generator(device).manual_seed(seed) __snake_case = {'''generator''': generator} if args.steps is not None: __snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
348
0
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> int: warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.' ,__UpperCAmelCase ,) super().__init__(args=__UpperCAmelCase ,**__UpperCAmelCase )
154
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ = 100 ): """simple docstring""" A__ = (n * (n + 1) // 2) ** 2 A__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
154
1
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> int: while second != 0: __lowerCamelCase = first & second first ^= second __lowerCamelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase =int(input("Enter the first number: ").strip()) __UpperCAmelCase =int(input("Enter the second number: ").strip()) print(f'{add(first, second) = }')
67
'''simple docstring''' import logging import os from .state import PartialState class a__ ( logging.LoggerAdapter ): @staticmethod def SCREAMING_SNAKE_CASE__ ( a : Optional[Any] ): """simple docstring""" __lowerCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def SCREAMING_SNAKE_CASE__ ( self : int , a : Optional[int] , a : str , *a : Optional[int] , **a : List[Any] ): """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) __lowerCamelCase = kwargs.pop('''main_process_only''' , a ) __lowerCamelCase = kwargs.pop('''in_order''' , a ) if self.isEnabledFor(a ): if self._should_log(a ): __lowerCamelCase , __lowerCamelCase = self.process(a , a ) self.logger.log(a , a , *a , **a ) elif in_order: __lowerCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __lowerCamelCase , __lowerCamelCase = self.process(a , a ) self.logger.log(a , a , *a , **a ) state.wait_for_everyone() def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ = None ) -> Optional[int]: if log_level is None: __lowerCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , UpperCamelCase__ ) __lowerCamelCase = logging.getLogger(UpperCamelCase__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(UpperCamelCase__ , {} )
67
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "blip_2_vision_model" def __init__( self : List[str] , __lowerCamelCase : Tuple=1408 , __lowerCamelCase : Union[str, Any]=6144 , __lowerCamelCase : Union[str, Any]=39 , __lowerCamelCase : Any=16 , __lowerCamelCase : List[Any]=224 , __lowerCamelCase : str=14 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Dict=0.00001 , __lowerCamelCase : List[str]=0.0 , __lowerCamelCase : Tuple=1e-10 , __lowerCamelCase : str=True , **__lowerCamelCase : Dict , ) -> List[str]: super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = qkv_bias @classmethod def lowercase_ ( cls : str , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : str ) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": SCREAMING_SNAKE_CASE__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "blip_2_qformer" def __init__( self : List[Any] , __lowerCamelCase : List[str]=3_0522 , __lowerCamelCase : List[str]=768 , __lowerCamelCase : Any=12 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Dict=3072 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : int=0.02 , __lowerCamelCase : int=1e-12 , __lowerCamelCase : Dict=0 , __lowerCamelCase : Optional[int]="absolute" , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : int=1408 , **__lowerCamelCase : Dict , ) -> Any: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = cross_attention_frequency SCREAMING_SNAKE_CASE__ = encoder_hidden_size @classmethod def lowercase_ ( cls : int , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Union[str, Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": SCREAMING_SNAKE_CASE__ = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "blip-2" a = True def __init__( self : List[Any] , __lowerCamelCase : Dict=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=32 , **__lowerCamelCase : Union[str, Any] ) -> Tuple: super().__init__(**__lowerCamelCase ) if vision_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) SCREAMING_SNAKE_CASE__ = BlipaVisionConfig(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BlipaQFormerConfig(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' SCREAMING_SNAKE_CASE__ = CONFIG_MAPPING[text_model_type](**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE__ = self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE__ = num_query_tokens SCREAMING_SNAKE_CASE__ = self.vision_config.hidden_size SCREAMING_SNAKE_CASE__ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE__ = 1.0 SCREAMING_SNAKE_CASE__ = 0.02 @classmethod def lowercase_ ( cls : Tuple , __lowerCamelCase : BlipaVisionConfig , __lowerCamelCase : BlipaQFormerConfig , __lowerCamelCase : PretrainedConfig , **__lowerCamelCase : int , ) -> List[str]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__lowerCamelCase , ) def lowercase_ ( self : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE__ = self.qformer_config.to_dict() SCREAMING_SNAKE_CASE__ = self.text_config.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
218
import comet # From: unbabel-comet import torch import datasets _SCREAMING_SNAKE_CASE : List[str] = datasets.logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Any = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' _SCREAMING_SNAKE_CASE : Optional[Any] = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' _SCREAMING_SNAKE_CASE : str = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowercase_ ( self : List[Any] , __lowerCamelCase : Dict ) -> Tuple: if self.config_name == "default": SCREAMING_SNAKE_CASE__ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: SCREAMING_SNAKE_CASE__ = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowercase_ ( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[int]=False ) -> str: if gpus is None: SCREAMING_SNAKE_CASE__ = 1 if torch.cuda.is_available() else 0 SCREAMING_SNAKE_CASE__ = {'''src''': sources, '''mt''': predictions, '''ref''': references} SCREAMING_SNAKE_CASE__ = [dict(zip(__lowerCamelCase , __lowerCamelCase ) ) for t in zip(*data.values() )] SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.scorer.predict(__lowerCamelCase , gpus=__lowerCamelCase , progress_bar=__lowerCamelCase ) return {"mean_score": mean_score, "scores": scores}
218
1
from __future__ import annotations from math import pow, sqrt def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(UpperCamelCase__ , 2 ) - pow(UpperCamelCase__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCamelCase__ , 2 ) - pow(UpperCamelCase__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCamelCase__ , 2 ) + pow(UpperCamelCase__ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
273
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A_ (a_ ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 def __init__( self , _A , _A ): '''simple docstring''' super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self , _A = 1 , _A = 5_0 , _A = None , _A = "pil" , _A = True , **_A , ): '''simple docstring''' UpperCAmelCase = self.unet.config.sample_size UpperCAmelCase = (batch_size, 3, img_size, img_size) UpperCAmelCase = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) UpperCAmelCase = randn_tensor(_A , generator=_A , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper UpperCAmelCase = self.scheduler.schedule[t] UpperCAmelCase = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat UpperCAmelCase , UpperCAmelCase = self.scheduler.add_noise_to_input(_A , _A , generator=_A ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. UpperCAmelCase = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev UpperCAmelCase = self.scheduler.step(_A , _A , _A , _A ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. UpperCAmelCase = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample UpperCAmelCase = self.scheduler.step_correct( _A , _A , _A , _A , step_output.prev_sample , step_output['''derivative'''] , ) UpperCAmelCase = step_output.prev_sample UpperCAmelCase = (sample / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
273
1
import string def _lowerCAmelCase ( A__: str ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase = '''''' for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase = string.ascii_uppercase.find(A__ ) UpperCAmelCase = num - key if num < 0: UpperCAmelCase = num + len(string.ascii_uppercase ) UpperCAmelCase = translated + string.ascii_uppercase[num] else: UpperCAmelCase = translated + symbol print(F"""Decryption using Key #{key}: {translated}""" ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = input('''Encrypted message: ''' ) UpperCAmelCase = message.upper() decrypt(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
152
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
152
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : List[Any] = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __UpperCAmelCase ( lowerCAmelCase__ ): __lowercase = """time_series_transformer""" __lowercase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = "student_t" , lowerCAmelCase_ = "nll" , lowerCAmelCase_ = 1 , lowerCAmelCase_ = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase_ = "mean" , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 32 , lowerCAmelCase_ = 32 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = True , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 1_00 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_=True , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = prediction_length _snake_case = context_length or prediction_length _snake_case = distribution_output _snake_case = loss _snake_case = input_size _snake_case = num_time_features _snake_case = lags_sequence _snake_case = scaling _snake_case = num_dynamic_real_features _snake_case = num_static_real_features _snake_case = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) _snake_case = cardinality else: _snake_case = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) _snake_case = embedding_dimension else: _snake_case = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _snake_case = num_parallel_samples # Transformer architecture configuration _snake_case = input_size * len(_A ) + self._number_of_features _snake_case = d_model _snake_case = encoder_attention_heads _snake_case = decoder_attention_heads _snake_case = encoder_ffn_dim _snake_case = decoder_ffn_dim _snake_case = encoder_layers _snake_case = decoder_layers _snake_case = dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = encoder_layerdrop _snake_case = decoder_layerdrop _snake_case = activation_function _snake_case = init_std _snake_case = use_cache super().__init__(is_encoder_decoder=_A , **_A ) @property def lowerCamelCase ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
42
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , _A : Dict , _A : List[Any] ): """simple docstring""" super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : List[str] , _A : int = 1 , _A : int = 100 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[float] = None , _A : bool = True , ): """simple docstring""" if audio_length_in_s is None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : List[Any] = audio_length_in_s * self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __SCREAMING_SNAKE_CASE : int = int(_A ) if sample_size % down_scale_factor != 0: __SCREAMING_SNAKE_CASE : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) __SCREAMING_SNAKE_CASE : List[Any] = int(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = next(iter(self.unet.parameters() ) ).dtype __SCREAMING_SNAKE_CASE : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_A )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __SCREAMING_SNAKE_CASE : Dict = randn_tensor(_A , generator=_A , device=self.device , dtype=_A ) # set step values self.scheduler.set_timesteps(_A , device=audio.device ) __SCREAMING_SNAKE_CASE : Dict = self.scheduler.timesteps.to(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __SCREAMING_SNAKE_CASE : List[Any] = self.unet(_A , _A ).sample # 2. compute previous image: x_t -> t_t-1 __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(_A , _A , _A ).prev_sample __SCREAMING_SNAKE_CASE : str = audio.clamp(-1 , 1 ).float().cpu().numpy() __SCREAMING_SNAKE_CASE : str = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_A )
303
0
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowercase : Union[str, Any] = get_tests_dir('fixtures/dummy-config.json') class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Tuple ): __UpperCAmelCase = 0 def a ( self : str ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def a ( self : Dict ): __UpperCAmelCase = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(__A , __A ) def a ( self : List[Any] ): __UpperCAmelCase = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def a ( self : Any ): __UpperCAmelCase = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def a ( self : Optional[Any] ): __UpperCAmelCase = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(__A , __A ) def a ( self : str ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __UpperCAmelCase = os.path.join(__A , '''fake-roberta''' ) os.makedirs(__A , exist_ok=__A ) with open(os.path.join(__A , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) __UpperCAmelCase = AutoConfig.from_pretrained(__A ) self.assertEqual(type(__A ) , __A ) def a ( self : Optional[int] ): try: AutoConfig.register('''custom''' , __A ) # Wrong model type will raise an error with self.assertRaises(__A ): AutoConfig.register('''model''' , __A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__A ): AutoConfig.register('''bert''' , __A ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCAmelCase = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A ) __UpperCAmelCase = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def a ( self : Optional[int] ): with self.assertRaisesRegex( __A , '''bert-base is not a local folder and is not a valid model identifier''' ): __UpperCAmelCase = AutoConfig.from_pretrained('''bert-base''' ) def a ( self : List[Any] ): with self.assertRaisesRegex( __A , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __UpperCAmelCase = AutoConfig.from_pretrained(__A , revision='''aaaaaa''' ) def a ( self : str ): with self.assertRaisesRegex( __A , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): __UpperCAmelCase = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def a ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__A ): __UpperCAmelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__A ): __UpperCAmelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__A ) __UpperCAmelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__A ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A ) __UpperCAmelCase = AutoConfig.from_pretrained(__A , trust_remote_code=__A ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def a ( self : List[Any] ): class _UpperCAmelCase ( A__ ): a__ : int = "new-model" try: AutoConfig.register('''new-model''' , __A ) # If remote code is not set, the default is to use local __UpperCAmelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. __UpperCAmelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__A ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub __UpperCAmelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__A ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
351
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
86
0
snake_case : Dict = "Input must be a string of 8 numbers plus letter" snake_case : Any = "TRWAGMYFPDXBNJZSQVHLCKE" def lowerCAmelCase_ ( _snake_case : str ) -> bool: '''simple docstring''' if not isinstance(_snake_case , _snake_case ): __magic_name__ : List[str] = F'''Expected string as input, found {type(_snake_case ).__name__}''' raise TypeError(_snake_case ) __magic_name__ : int = spanish_id.replace("-" , "" ).upper() if len(_snake_case ) != 9: raise ValueError(_snake_case ) try: __magic_name__ : Optional[int] = int(spanish_id_clean[0:8] ) __magic_name__ : Optional[int] = spanish_id_clean[8] except ValueError as ex: raise ValueError(_snake_case ) from ex if letter.isdigit(): raise ValueError(_snake_case ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
281
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case : int = logging.get_logger(__name__) snake_case : List[str] = {"vocab_file": "spiece.model"} snake_case : List[str] = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } snake_case : Tuple = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } snake_case : List[str] = "▁" class _snake_case ( snake_case ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _a , _a=True , _a=True , _a=False , _a="[CLS]" , _a="[SEP]" , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , _a = None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __magic_name__ : str = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a ) if isinstance(_a , _a ) else mask_token ) __magic_name__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) __magic_name__ : Dict = do_lower_case __magic_name__ : Tuple = remove_space __magic_name__ : Union[str, Any] = keep_accents __magic_name__ : Tuple = vocab_file __magic_name__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def SCREAMING_SNAKE_CASE ( self ): return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __magic_name__ : List[str] = self.__dict__.copy() __magic_name__ : Any = None return state def __setstate__( self , _a ): __magic_name__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __magic_name__ : str = {} __magic_name__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self , _a ): if self.remove_space: __magic_name__ : List[Any] = " ".join(inputs.strip().split() ) else: __magic_name__ : str = inputs __magic_name__ : int = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: __magic_name__ : str = unicodedata.normalize("NFKD" , _a ) __magic_name__ : Tuple = "".join([c for c in outputs if not unicodedata.combining(_a )] ) if self.do_lower_case: __magic_name__ : int = outputs.lower() return outputs def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Optional[Any] = self.preprocess_text(_a ) __magic_name__ : Dict = self.sp_model.encode(_a , out_type=_a ) __magic_name__ : Any = [] for piece in pieces: if len(_a ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): __magic_name__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __magic_name__ : List[str] = cur_pieces[1:] else: __magic_name__ : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_a ) else: new_pieces.append(_a ) return new_pieces def SCREAMING_SNAKE_CASE ( self , _a ): return self.sp_model.PieceToId(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return self.sp_model.IdToPiece(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Any = [] __magic_name__ : Union[str, Any] = "" __magic_name__ : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token __magic_name__ : List[Any] = True __magic_name__ : Optional[int] = [] else: current_sub_tokens.append(_a ) __magic_name__ : Optional[Any] = False out_string += self.sp_model.decode(_a ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : List[str] = [self.sep_token_id] __magic_name__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _a , _a = None , _a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is not None: return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : Optional[int] = [self.sep_token_id] __magic_name__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ : List[str] = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , "wb" ) as fi: __magic_name__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
281
1
'''simple docstring''' from __future__ import annotations from typing import Any def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if not postfix_notation: return 0 A_ = {"""+""", """-""", """*""", """/"""} A_ = [] for token in postfix_notation: if token in operations: A_ , A_ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
101
0
import colorsys from PIL import Image # type: ignore def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: _lowercase : str = x _lowercase : int = y for step in range(lowerCamelCase_ ): # noqa: B007 _lowercase : Optional[Any] = a * a - b * b + x _lowercase : List[str] = 2 * a * b + y _lowercase : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def UpperCamelCase_( lowerCamelCase_ ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def UpperCamelCase_( lowerCamelCase_ ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCamelCase_ , 1 , 1 ) ) def UpperCamelCase_( lowerCamelCase_ = 800 , lowerCamelCase_ = 600 , lowerCamelCase_ = -0.6 , lowerCamelCase_ = 0 , lowerCamelCase_ = 3.2 , lowerCamelCase_ = 50 , lowerCamelCase_ = True , ) -> Image.Image: _lowercase : Optional[Any] = Image.new('RGB' , (image_width, image_height) ) _lowercase : str = img.load() # loop through the image-coordinates for image_x in range(lowerCamelCase_ ): for image_y in range(lowerCamelCase_ ): # determine the figure-coordinates based on the image-coordinates _lowercase : Dict = figure_width / image_width * image_height _lowercase : Union[str, Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width _lowercase : List[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height _lowercase : Any = get_distance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _lowercase : Dict = get_color_coded_rgb(lowerCamelCase_ ) else: _lowercase : Any = get_black_and_white_rgb(lowerCamelCase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure SCREAMING_SNAKE_CASE : int = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCamelCase( _a, unittest.TestCase ): # TODO: is there an appropriate internal test set? lowercase_ : int = """ssube/stable-diffusion-x4-upscaler-onnx""" def UpperCamelCase ( self, lowerCamelCase=0) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = floats_tensor((1, 3, 1_28, 1_28), rng=random.Random(lowerCamelCase)) _lowercase : Union[str, Any] = torch.manual_seed(lowerCamelCase) _lowercase : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images _lowercase : Optional[int] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3]) assert np.abs(image_slice - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : str = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = self.get_dummy_inputs() _lowercase : List[Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : int = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = self.get_dummy_inputs() _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Optional[int] = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[Any] = pipe(**lowerCamelCase).images _lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_dummy_inputs() _lowercase : List[str] = pipe(**lowerCamelCase).images _lowercase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = ort.SessionOptions() _lowercase : str = False return options def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : int = init_image.resize((1_28, 1_28)) # using the PNDM scheduler by default _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : str = pipe( prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=10, generator=lowerCamelCase, output_type='np', ) _lowercase : List[Any] = output.images _lowercase : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowercase : List[Any] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : int = init_image.resize((1_28, 1_28)) _lowercase : str = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', subfolder='scheduler') _lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', scheduler=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : str = pipe( prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=20, generator=lowerCamelCase, output_type='np', ) _lowercase : str = output.images _lowercase : str = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
21
1
from scipy.stats import pearsonr import datasets UpperCamelCase__ = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ UpperCamelCase__ = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ UpperCamelCase__ = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=False ): """simple docstring""" if return_pvalue: __lowerCAmelCase = pearsonr(_A , _A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_A , _A )[0] )}
102
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class a__ ( nn.Module ): def __init__( self , _A , _A , _A , _A=0.0 , _A = None , _A = "geglu" , _A = None , _A = False , _A = False , _A = False , _A = False , _A = True , _A = "layer_norm" , _A = False , ): """simple docstring""" super().__init__() __lowerCAmelCase = only_cross_attention __lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" __lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" f""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __lowerCAmelCase = AdaLayerNorm(_A , _A ) elif self.use_ada_layer_norm_zero: __lowerCAmelCase = AdaLayerNormZero(_A , _A ) else: __lowerCAmelCase = nn.LayerNorm(_A , elementwise_affine=_A ) __lowerCAmelCase = Attention( query_dim=_A , heads=_A , dim_head=_A , dropout=_A , bias=_A , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_A , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __lowerCAmelCase = ( AdaLayerNorm(_A , _A ) if self.use_ada_layer_norm else nn.LayerNorm(_A , elementwise_affine=_A ) ) __lowerCAmelCase = Attention( query_dim=_A , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_A , dim_head=_A , dropout=_A , bias=_A , upcast_attention=_A , ) # is self-attn if encoder_hidden_states is none else: __lowerCAmelCase = None __lowerCAmelCase = None # 3. Feed-forward __lowerCAmelCase = nn.LayerNorm(_A , elementwise_affine=_A ) __lowerCAmelCase = FeedForward(_A , dropout=_A , activation_fn=_A , final_dropout=_A ) # let chunk size default to None __lowerCAmelCase = None __lowerCAmelCase = 0 def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = chunk_size __lowerCAmelCase = dim def __SCREAMING_SNAKE_CASE( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , ): """simple docstring""" if self.use_ada_layer_norm: __lowerCAmelCase = self.norma(_A , _A ) elif self.use_ada_layer_norm_zero: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.norma( _A , _A , _A , hidden_dtype=hidden_states.dtype ) else: __lowerCAmelCase = self.norma(_A ) __lowerCAmelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {} __lowerCAmelCase = self.attna( _A , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_A , **_A , ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = gate_msa.unsqueeze(1 ) * attn_output __lowerCAmelCase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __lowerCAmelCase = ( self.norma(_A , _A ) if self.use_ada_layer_norm else self.norma(_A ) ) __lowerCAmelCase = self.attna( _A , encoder_hidden_states=_A , attention_mask=_A , **_A , ) __lowerCAmelCase = attn_output + hidden_states # 3. Feed-forward __lowerCAmelCase = self.norma(_A ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) __lowerCAmelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __lowerCAmelCase = torch.cat( [self.ff(_A ) for hid_slice in norm_hidden_states.chunk(_A , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __lowerCAmelCase = self.ff(_A ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = gate_mlp.unsqueeze(1 ) * ff_output __lowerCAmelCase = ff_output + hidden_states return hidden_states class a__ ( nn.Module ): def __init__( self , _A , _A = None , _A = 4 , _A = 0.0 , _A = "geglu" , _A = False , ): """simple docstring""" super().__init__() __lowerCAmelCase = int(dim * mult ) __lowerCAmelCase = dim_out if dim_out is not None else dim if activation_fn == "gelu": __lowerCAmelCase = GELU(_A , _A ) if activation_fn == "gelu-approximate": __lowerCAmelCase = GELU(_A , _A , approximate="tanh" ) elif activation_fn == "geglu": __lowerCAmelCase = GEGLU(_A , _A ) elif activation_fn == "geglu-approximate": __lowerCAmelCase = ApproximateGELU(_A , _A ) __lowerCAmelCase = nn.ModuleList([] ) # project in self.net.append(_A ) # project dropout self.net.append(nn.Dropout(_A ) ) # project out self.net.append(nn.Linear(_A , _A ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_A ) ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" for module in self.net: __lowerCAmelCase = module(_A ) return hidden_states class a__ ( nn.Module ): def __init__( self , _A , _A , _A = "none" ): """simple docstring""" super().__init__() __lowerCAmelCase = nn.Linear(_A , _A ) __lowerCAmelCase = approximate def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if gate.device.type != "mps": return F.gelu(_A , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = self.proj(_A ) __lowerCAmelCase = self.gelu(_A ) return hidden_states class a__ ( nn.Module ): def __init__( self , _A , _A ): """simple docstring""" super().__init__() __lowerCAmelCase = nn.Linear(_A , dim_out * 2 ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if gate.device.type != "mps": return F.gelu(_A ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.proj(_A ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_A ) class a__ ( nn.Module ): def __init__( self , _A , _A ): """simple docstring""" super().__init__() __lowerCAmelCase = nn.Linear(_A , _A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = self.proj(_A ) return x * torch.sigmoid(1.7_02 * x ) class a__ ( nn.Module ): def __init__( self , _A , _A ): """simple docstring""" super().__init__() __lowerCAmelCase = nn.Embedding(_A , _A ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Linear(_A , embedding_dim * 2 ) __lowerCAmelCase = nn.LayerNorm(_A , elementwise_affine=_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = self.linear(self.silu(self.emb(_A ) ) ) __lowerCAmelCase , __lowerCAmelCase = torch.chunk(_A , 2 ) __lowerCAmelCase = self.norm(_A ) * (1 + scale) + shift return x class a__ ( nn.Module ): def __init__( self , _A , _A ): """simple docstring""" super().__init__() __lowerCAmelCase = CombinedTimestepLabelEmbeddings(_A , _A ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Linear(_A , 6 * embedding_dim , bias=_A ) __lowerCAmelCase = nn.LayerNorm(_A , elementwise_affine=_A , eps=1E-6 ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A=None ): """simple docstring""" __lowerCAmelCase = self.linear(self.silu(self.emb(_A , _A , hidden_dtype=_A ) ) ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = emb.chunk(6 , dim=1 ) __lowerCAmelCase = self.norm(_A ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class a__ ( nn.Module ): def __init__( self , _A , _A , _A , _A = None , _A = 1E-5 ): """simple docstring""" super().__init__() __lowerCAmelCase = num_groups __lowerCAmelCase = eps if act_fn is None: __lowerCAmelCase = None else: __lowerCAmelCase = get_activation(_A ) __lowerCAmelCase = nn.Linear(_A , out_dim * 2 ) def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" if self.act: __lowerCAmelCase = self.act(_A ) __lowerCAmelCase = self.linear(_A ) __lowerCAmelCase = emb[:, :, None, None] __lowerCAmelCase , __lowerCAmelCase = emb.chunk(2 , dim=1 ) __lowerCAmelCase = F.group_norm(_A , self.num_groups , eps=self.eps ) __lowerCAmelCase = x * (1 + scale) + shift return x
102
1
from __future__ import annotations def a__ ( snake_case , snake_case ): """simple docstring""" if b == 0: return (1, 0) ((__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE)) : str = extended_euclid(snake_case , a % b ) __SCREAMING_SNAKE_CASE : List[str] = a // b return (y, x - k * y) def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" ((__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE)) : Union[str, Any] = extended_euclid(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Any = na * na __SCREAMING_SNAKE_CASE : int = ra * x * na + ra * y * na return (n % m + m) % m def a__ ( snake_case , snake_case ): """simple docstring""" ((__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE)) : Optional[int] = extended_euclid(snake_case , snake_case ) if b < 0: __SCREAMING_SNAKE_CASE : Any = (b % n + n) % n return b def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = invert_modulo(snake_case , snake_case ), invert_modulo(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = na * na __SCREAMING_SNAKE_CASE : int = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
303
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
303
1
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase ='\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' lowercase ='\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' lowercase ='\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : Tuple ): '''simple docstring''' _UpperCAmelCase : int =simple_accuracy(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase : Optional[int] =float(fa_score(y_true=__lowerCamelCase , y_pred=__lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Dict ): '''simple docstring''' _UpperCAmelCase : List[str] =float(pearsonr(__lowerCamelCase , __lowerCamelCase )[0] ) _UpperCAmelCase : Optional[Any] =float(spearmanr(__lowerCamelCase , __lowerCamelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def lowerCAmelCase ( self) -> Any: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32'), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32'), }) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def lowerCAmelCase ( self , snake_case , snake_case) -> Any: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(snake_case , snake_case)} elif self.config_name == "stsb": return pearson_and_spearman(snake_case , snake_case) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(snake_case , snake_case) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(snake_case , snake_case)} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]')
242
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase =logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCAmelCase ,lowerCAmelCase ): @register_to_config def __init__( self , snake_case , snake_case = None , snake_case = None) -> Union[str, Any]: '''simple docstring''' super().__init__() _UpperCAmelCase : List[Any] =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _UpperCAmelCase : str =torch.zeros(snake_case , snake_case) else: _UpperCAmelCase : Tuple =None _UpperCAmelCase : int =torch.nn.Parameter(snake_case) class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =42 UpperCAmelCase =42 UpperCAmelCase =42 UpperCAmelCase =42 UpperCAmelCase =42 UpperCAmelCase =42 def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules( vqvae=snake_case , transformer=snake_case , text_encoder=snake_case , tokenizer=snake_case , scheduler=snake_case , learned_classifier_free_sampling_embeddings=snake_case , ) def lowerCAmelCase ( self , snake_case , snake_case , snake_case) -> List[str]: '''simple docstring''' _UpperCAmelCase : int =len(snake_case) if isinstance(snake_case , snake_case) else 1 # get prompt text embeddings _UpperCAmelCase : Optional[Any] =self.tokenizer( snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _UpperCAmelCase : Union[str, Any] =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _UpperCAmelCase : str =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}") _UpperCAmelCase : Union[str, Any] =text_input_ids[:, : self.tokenizer.model_max_length] _UpperCAmelCase : Optional[int] =self.text_encoder(text_input_ids.to(self.device))[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _UpperCAmelCase : List[str] =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case) # duplicate text embeddings for each generation per prompt _UpperCAmelCase : Optional[Any] =prompt_embeds.repeat_interleave(snake_case , dim=0) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _UpperCAmelCase : Dict =self.learned_classifier_free_sampling_embeddings.embeddings _UpperCAmelCase : Any =negative_prompt_embeds.unsqueeze(0).repeat(snake_case , 1 , 1) else: _UpperCAmelCase : str =[''] * batch_size _UpperCAmelCase : Dict =text_input_ids.shape[-1] _UpperCAmelCase : str =self.tokenizer( snake_case , padding='max_length' , max_length=snake_case , truncation=snake_case , return_tensors='pt' , ) _UpperCAmelCase : str =self.text_encoder(uncond_input.input_ids.to(self.device))[0] # See comment for normalizing text embeddings _UpperCAmelCase : Tuple =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCAmelCase : int =negative_prompt_embeds.shape[1] _UpperCAmelCase : List[str] =negative_prompt_embeds.repeat(1 , snake_case , 1) _UpperCAmelCase : Optional[int] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase : str =torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds @torch.no_grad() def __call__( self , snake_case , snake_case = 1_0_0 , snake_case = 5.0 , snake_case = 1.0 , snake_case = 1 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(snake_case , snake_case): _UpperCAmelCase : Tuple =1 elif isinstance(snake_case , snake_case): _UpperCAmelCase : int =len(snake_case) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case)}") _UpperCAmelCase : Optional[Any] =batch_size * num_images_per_prompt _UpperCAmelCase : Union[str, Any] =guidance_scale > 1.0 _UpperCAmelCase : Any =self._encode_prompt(snake_case , snake_case , snake_case) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case)}.") # get the initial completely masked latents unless the user supplied it _UpperCAmelCase : List[Any] =(batch_size, self.transformer.num_latent_pixels) if latents is None: _UpperCAmelCase : Optional[Any] =self.transformer.num_vector_embeds - 1 _UpperCAmelCase : Optional[int] =torch.full(snake_case , snake_case).to(self.device) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' f" {self.transformer.num_vector_embeds - 1} (inclusive).") _UpperCAmelCase : Optional[Any] =latents.to(self.device) # set timesteps self.scheduler.set_timesteps(snake_case , device=self.device) _UpperCAmelCase : int =self.scheduler.timesteps.to(self.device) _UpperCAmelCase : Dict =latents for i, t in enumerate(self.progress_bar(snake_case)): # expand the sample if we are doing classifier free guidance _UpperCAmelCase : Union[str, Any] =torch.cat([sample] * 2) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _UpperCAmelCase : Optional[Any] =self.transformer(snake_case , encoder_hidden_states=snake_case , timestep=snake_case).sample if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : Dict =model_output.chunk(2) _UpperCAmelCase : Dict =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case , dim=1 , keepdim=snake_case) _UpperCAmelCase : Any =self.truncate(snake_case , snake_case) # remove `log(0)`'s (`-inf`s) _UpperCAmelCase : int =model_output.clamp(-7_0) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : List[Any] =self.scheduler.step(snake_case , timestep=snake_case , sample=snake_case , generator=snake_case).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case) _UpperCAmelCase : List[str] =self.vqvae.config.vq_embed_dim _UpperCAmelCase : Optional[int] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) _UpperCAmelCase : int =self.vqvae.quantize.get_codebook_entry(snake_case , shape=snake_case) _UpperCAmelCase : str =self.vqvae.decode(snake_case , force_not_quantize=snake_case).sample _UpperCAmelCase : str =(image / 2 + 0.5).clamp(0 , 1) _UpperCAmelCase : Tuple =image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCAmelCase : Optional[int] =self.numpy_to_pil(snake_case) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case) def lowerCAmelCase ( self , snake_case , snake_case) -> torch.FloatTensor: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict =torch.sort(snake_case , 1 , descending=snake_case) _UpperCAmelCase : Dict =torch.exp(snake_case) _UpperCAmelCase : str =sorted_p_x_0.cumsum(dim=1) < truncation_rate # Ensure that at least the largest probability is not zeroed out _UpperCAmelCase : Optional[int] =torch.full_like(keep_mask[:, 0:1, :] , snake_case) _UpperCAmelCase : Any =torch.cat((all_true, keep_mask) , dim=1) _UpperCAmelCase : Dict =keep_mask[:, :-1, :] _UpperCAmelCase : Any =keep_mask.gather(1 , indices.argsort(1)) _UpperCAmelCase : str =log_p_x_0.clone() _UpperCAmelCase : Any =-torch.inf # -inf = log(0) return rv
242
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Checks if the entire collection has been sorted if len(SCREAMING_SNAKE_CASE__ ) <= 1 or n <= 1: return insert_next(SCREAMING_SNAKE_CASE__ , n - 1 ) rec_insertion_sort(SCREAMING_SNAKE_CASE__ , n - 1 ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Checks order between adjacent elements if index >= len(SCREAMING_SNAKE_CASE__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order snake_case_, snake_case_ = ( collection[index], collection[index - 1], ) insert_next(SCREAMING_SNAKE_CASE__ , index + 1 ) if __name__ == "__main__": lowerCAmelCase_ = input('''Enter integers separated by spaces: ''') lowerCAmelCase_ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
8
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase_ = '''Enter the base and the power separated by a comma: ''' lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase_ = res(xa, ya) lowerCAmelCase_ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
8
1
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowerCamelCase_ : List[str] = get_logger() lowerCamelCase_ : Optional[dict] = None class __A ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self , __A=None , __A=None , **__A ) -> Any: super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) a =device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: a =self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) a =str(jax.devices()[0] ) a =jnp_array_kwargs @staticmethod def SCREAMING_SNAKE_CASE ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(__A ): device for device in jax.devices()} def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[Any]: import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[int]: import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() a ={} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: a ={'''dtype''': jnp.intaa} else: a ={'''dtype''': jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): a ={'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): a =np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: a =self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def SCREAMING_SNAKE_CASE ( self , __A ) -> int: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , '''__array__''' ) and not isinstance(__A , jax.Array ): a =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Union[str, Any]: return map_nested(self._recursive_tensorize , __A , map_list=__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Mapping: a =self.numpy_arrow_extractor().extract_row(__A ) a =self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> "jax.Array": a =self.numpy_arrow_extractor().extract_column(__A ) a =self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) a =self.recursive_tensorize(__A ) a =self._consolidate(__A ) return column def SCREAMING_SNAKE_CASE ( self , __A ) -> Mapping: a =self.numpy_arrow_extractor().extract_batch(__A ) a =self.python_features_decoder.decode_batch(__A ) a =self.recursive_tensorize(__A ) for column_name in batch: a =self._consolidate(batch[column_name] ) return batch
215
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase_ : Any = random.Random() def _A ( lowercase , lowercase=1.0 , lowercase=None , lowercase=None ): """simple docstring""" if rng is None: a =global_rng a =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __A ( unittest.TestCase ): """simple docstring""" def __init__( self , __A , __A=7 , __A=400 , __A=2000 , __A=10 , __A=160 , __A=8 , __A=0.0 , __A=4000 , __A=False , __A=True , ) -> Optional[Any]: a =parent a =batch_size a =min_seq_length a =max_seq_length a =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a =padding_value a =sampling_rate a =return_attention_mask a =do_normalize a =feature_size a =chunk_length a =hop_length def SCREAMING_SNAKE_CASE ( self ) -> str: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE ( self , __A=False , __A=False ) -> str: def _flatten(__A ): return list(itertools.chain(*__A ) ) if equal_length: a =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a =[np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = WhisperFeatureExtractor if is_speech_available() else None def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =WhisperFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =feat_extract_first.save_pretrained(__A )[0] check_json_file_has_correct_format(__A ) a =self.feature_extraction_class.from_pretrained(__A ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =feat_extract_first.mel_filters a =feat_extract_second.mel_filters self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =os.path.join(__A , '''feat_extract.json''' ) feat_extract_first.to_json_file(__A ) a =self.feature_extraction_class.from_json_file(__A ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =feat_extract_first.mel_filters a =feat_extract_second.mel_filters self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a =[np.asarray(__A ) for speech_input in speech_inputs] # Test feature size a =feature_extractor(__A , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input a =feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features a =feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test batched a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a =[floats_list((1, x) )[0] for x in (800, 800, 800)] a =np.asarray(__A ) a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test truncation required a =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] a =[np.asarray(__A ) for speech_input in speech_inputs] a =[x[: feature_extractor.n_samples] for x in speech_inputs] a =[np.asarray(__A ) for speech_input in speech_inputs_truncated] a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: import torch a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a =np.random.rand(100 , 32 ).astype(np.floataa ) a =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a =feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a =feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Dict: a =load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech a =ds.sort('''id''' ).select(range(__A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE ( self ) -> Any: # fmt: off a =torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on a =self._load_datasamples(1 ) a =WhisperFeatureExtractor() a =feature_extractor(__A , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __A , atol=1E-4 ) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a =self._load_datasamples(1 )[0] a =((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue a =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__A )[0] self.assertTrue(np.all(np.mean(__A ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__A ) - 1 ) < 1E-3 ) )
215
1
'''simple docstring''' import math def snake_case_ (_a : float , _a : float ): return math.pow(_a , 2 ) - a def snake_case_ (_a : float ): return 2 * x def snake_case_ (_a : float ): UpperCAmelCase = 2.0 while start <= a: UpperCAmelCase = math.pow(_a , 2 ) return start def snake_case_ (_a : float , _a : int = 9_9_9_9 , _a : float = 0.00_0000_0000_0001 ): if a < 0: raise ValueError('''math domain error''' ) UpperCAmelCase = get_initial_point(_a ) for _ in range(_a ): UpperCAmelCase = value UpperCAmelCase = value - fx(_a , _a ) / fx_derivative(_a ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
34
'''simple docstring''' from __future__ import annotations def snake_case_ (_a : Dict , _a : str , _a : Optional[Any] , _a : List[str] ): # noqa: E741 while r - l > 1: UpperCAmelCase = (l + r) // 2 if v[m] >= key: UpperCAmelCase = m else: UpperCAmelCase = m # noqa: E741 return r def snake_case_ (_a : list[int] ): if len(_a ) == 0: return 0 UpperCAmelCase = [0] * len(_a ) UpperCAmelCase = 1 UpperCAmelCase = v[0] for i in range(1 , len(_a ) ): if v[i] < tail[0]: UpperCAmelCase = v[i] elif v[i] > tail[length - 1]: UpperCAmelCase = v[i] length += 1 else: UpperCAmelCase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
34
1
import pytest import datasets # Import fixture modules as plugins __A = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Any: """simple docstring""" config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=lowerCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ) -> Optional[int]: """simple docstring""" __lowerCamelCase = tmp_path_factory.getbasetemp() / """cache""" __lowerCamelCase = test_hf_cache_home / """datasets""" __lowerCamelCase = test_hf_cache_home / """metrics""" __lowerCamelCase = test_hf_cache_home / """modules""" monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(lowerCamelCase_ ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(lowerCamelCase_ ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(lowerCamelCase_ ) ) __lowerCamelCase = test_hf_datasets_cache / """downloads""" monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(lowerCamelCase_ ) ) __lowerCamelCase = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(lowerCamelCase_ ) ) @pytest.fixture(autouse=lowerCamelCase_ , scope='session' ) def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Tuple: """simple docstring""" monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , lowerCamelCase_ ) @pytest.fixture def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Dict: """simple docstring""" monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , lowerCamelCase_ )
358
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) snake_case_ = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def lowercase_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
348
0
def a__ ( A_ = 600851475143 ): '''simple docstring''' try: __magic_name__ = int(A_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) __magic_name__ = 2 __magic_name__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __magic_name__ = i while n % i == 0: __magic_name__ = n // i i += 1 return int(A_ ) if __name__ == "__main__": print(F'''{solution() = }''')
88
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowercase__ =True except ImportError: lowercase__ =False lowercase__ =logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCamelCase ( lowerCAmelCase__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCamelCase__ ( __lowercase ): @staticmethod def lowerCAmelCase (snake_case_ : ArgumentParser ): __a : List[Any] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=snake_case_ , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=snake_case_ , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=snake_case_ ) def __init__(self : Dict , snake_case_ : bool , snake_case_ : str , snake_case_ : Dict=None , *snake_case_ : Optional[Any] ): __a : Union[str, Any] = testing __a : List[Any] = testing_file __a : Any = path def lowerCAmelCase (self : int ): warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __a : Union[str, Any] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:2_2]] if len(snake_case_ ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) __a : Union[str, Any] = ( Path(snake_case_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) __a : Union[str, Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(snake_case_ ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: __a : List[Any] = json.load(snake_case_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=snake_case_ , extra_context=snake_case_ , ) __a : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:2_2]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: __a : Optional[Any] = json.load(snake_case_ ) __a : str = configuration['''lowercase_modelname'''] __a : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"{directory}/configuration.json" ) __a : Any = '''PyTorch''' in generate_tensorflow_pytorch_and_flax __a : Dict = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax __a : Optional[int] = '''Flax''' in generate_tensorflow_pytorch_and_flax __a : Dict = f"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}" os.makedirs(snake_case_ , exist_ok=snake_case_ ) os.makedirs(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}" , exist_ok=snake_case_ ) # Tests require submodules as they have parent imports with open(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py" , '''w''' ): pass shutil.move( f"{directory}/__init__.py" , f"{model_dir}/__init__.py" , ) shutil.move( f"{directory}/configuration_{lowercase_model_name}.py" , f"{model_dir}/configuration_{lowercase_model_name}.py" , ) def remove_copy_lines(snake_case_ : Union[str, Any] ): with open(snake_case_ , '''r''' ) as f: __a : Union[str, Any] = f.readlines() with open(snake_case_ , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(snake_case_ ) if output_pytorch: if not self._testing: remove_copy_lines(f"{directory}/modeling_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_{lowercase_model_name}.py" , f"{model_dir}/modeling_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_{lowercase_model_name}.py" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"{directory}/modeling_tf_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_tf_{lowercase_model_name}.py" , f"{model_dir}/modeling_tf_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_tf_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_tf_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_tf_{lowercase_model_name}.py" ) if output_flax: if not self._testing: remove_copy_lines(f"{directory}/modeling_flax_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_flax_{lowercase_model_name}.py" , f"{model_dir}/modeling_flax_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_flax_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_flax_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_flax_{lowercase_model_name}.py" ) shutil.move( f"{directory}/{lowercase_model_name}.md" , f"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md" , ) shutil.move( f"{directory}/tokenization_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/tokenization_fast_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}_fast.py" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(snake_case_ : str , snake_case_ : str , snake_case_ : List[str] ): # Create temp file __a , __a : Tuple = mkstemp() __a : Optional[Any] = False with fdopen(snake_case_ , '''w''' ) as new_file: with open(snake_case_ ) as old_file: for line in old_file: new_file.write(snake_case_ ) if line_to_copy_below in line: __a : Tuple = True for line_to_copy in lines_to_copy: new_file.write(snake_case_ ) if not line_found: raise ValueError(f"Line {line_to_copy_below} was not found in file." ) # Copy the file permissions from the old file to the new file copymode(snake_case_ , snake_case_ ) # Remove original file remove(snake_case_ ) # Move new file move(snake_case_ , snake_case_ ) def skip_units(snake_case_ : Any ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(snake_case_ : int ): with open(snake_case_ ) as datafile: __a : List[Any] = [] __a : int = False __a : Tuple = False for line in datafile: if "# To replace in: " in line and "##" not in line: __a : Optional[Any] = line.split('''"''' )[1] __a : Dict = skip_units(snake_case_ ) elif "# Below: " in line and "##" not in line: __a : str = line.split('''"''' )[1] __a : Any = skip_units(snake_case_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(snake_case_ , snake_case_ , snake_case_ ) __a : str = [] elif "# Replace with" in line and "##" not in line: __a : Optional[int] = [] elif "##" not in line: lines_to_copy.append(snake_case_ ) remove(snake_case_ ) replace_in_files(f"{directory}/to_replace_{lowercase_model_name}.py" ) os.rmdir(snake_case_ )
216
0
'''simple docstring''' from collections import namedtuple lowercase__ = namedtuple("from_to", "from_ to") lowercase__ = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1000), "kilolitre": from_to(1, 1), "gallon": from_to(0.00454, 264.172), "cubicyard": from_to(0.76455, 1.30795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.000236588, 4226.75), } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ', '.join(UpperCAmelCase_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ', '.join(UpperCAmelCase_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ = logging.get_logger(__name__) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = b.T UpperCAmelCase : Optional[int] = np.sum(np.square(UpperCAmelCase_ ) , axis=1 ) UpperCAmelCase : List[Any] = np.sum(np.square(UpperCAmelCase_ ) , axis=0 ) UpperCAmelCase : List[str] = np.matmul(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = x.reshape(-1 , 3 ) UpperCAmelCase : Optional[int] = squared_euclidean_distance(UpperCAmelCase_ , UpperCAmelCase_ ) return np.argmin(UpperCAmelCase_ , axis=1 ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ["""pixel_values"""] def __init__( self : List[Any] , lowercase_ : Optional[Union[List[List[int]], np.ndarray]] = None , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : bool = True , **lowercase_ : Optional[Any] , ) -> None: super().__init__(**lowercase_ ) UpperCAmelCase : Any = size if size is not None else {'height': 256, 'width': 256} UpperCAmelCase : List[Any] = get_size_dict(lowercase_ ) UpperCAmelCase : str = np.array(lowercase_ ) if clusters is not None else None UpperCAmelCase : Any = do_resize UpperCAmelCase : List[Any] = size UpperCAmelCase : Any = resample UpperCAmelCase : Dict = do_normalize UpperCAmelCase : List[Any] = do_color_quantize def UpperCAmelCase_ ( self : int , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Any , ) -> np.ndarray: UpperCAmelCase : Dict = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dictionary must contain both height and width keys. Got {size.keys()}""" ) return resize( lowercase_ , size=(size['height'], size['width']) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : Optional[Union[str, ChannelDimension]] = None , ) -> np.ndarray: UpperCAmelCase : int = rescale(image=lowercase_ , scale=1 / 127.5 , data_format=lowercase_ ) UpperCAmelCase : Dict = image - 1 return image def UpperCAmelCase_ ( self : str , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[Union[List[List[int]], np.ndarray]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **lowercase_ : List[str] , ) -> PIL.Image.Image: UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : Optional[Any] = size if size is not None else self.size UpperCAmelCase : Optional[int] = get_size_dict(lowercase_ ) UpperCAmelCase : Any = resample if resample is not None else self.resample UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCAmelCase : Optional[int] = clusters if clusters is not None else self.clusters UpperCAmelCase : List[str] = np.array(lowercase_ ) UpperCAmelCase : int = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. UpperCAmelCase : Dict = [to_numpy_array(lowercase_ ) for image in images] if do_resize: UpperCAmelCase : List[Any] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_normalize: UpperCAmelCase : Tuple = [self.normalize(image=lowercase_ ) for image in images] if do_color_quantize: UpperCAmelCase : List[str] = [to_channel_dimension_format(lowercase_ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCAmelCase : int = np.array(lowercase_ ) UpperCAmelCase : str = color_quantize(lowercase_ , lowercase_ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) UpperCAmelCase : Optional[int] = images.shape[0] UpperCAmelCase : Union[str, Any] = images.reshape(lowercase_ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCAmelCase : int = list(lowercase_ ) else: UpperCAmelCase : Dict = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase : Any = {'input_ids': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
280
0
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a__ ( a__ ): """simple docstring""" return EnvironmentCommand() class lowerCAmelCase__ ( __UpperCAmelCase ): """simple docstring""" @staticmethod def UpperCAmelCase__ ( __SCREAMING_SNAKE_CASE : ArgumentParser ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = parser.add_parser("""env""" ) download_parser.set_defaults(func=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = huggingface_hub.__version__ __SCREAMING_SNAKE_CASE = """not installed""" __SCREAMING_SNAKE_CASE = """NA""" if is_torch_available(): import torch __SCREAMING_SNAKE_CASE = torch.__version__ __SCREAMING_SNAKE_CASE = torch.cuda.is_available() __SCREAMING_SNAKE_CASE = """not installed""" if is_transformers_available(): import transformers __SCREAMING_SNAKE_CASE = transformers.__version__ __SCREAMING_SNAKE_CASE = """not installed""" if is_accelerate_available(): import accelerate __SCREAMING_SNAKE_CASE = accelerate.__version__ __SCREAMING_SNAKE_CASE = """not installed""" if is_xformers_available(): import xformers __SCREAMING_SNAKE_CASE = xformers.__version__ __SCREAMING_SNAKE_CASE = { """`diffusers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """PyTorch version (GPU?)""": f'{pt_version} ({pt_cuda_available})', """Huggingface_hub version""": hub_version, """Transformers version""": transformers_version, """Accelerate version""": accelerate_version, """xFormers version""": xformers_version, """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(lowerCamelCase__ ) ) return info @staticmethod def UpperCAmelCase__ ( __SCREAMING_SNAKE_CASE : Any ) -> Any: """simple docstring""" return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
267
"""simple docstring""" def a_ ( lowerCamelCase , lowerCamelCase ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = max(len(lowerCamelCase ) , len(lowerCamelCase ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase ) , b_binary.zfill(lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
98
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
167
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class A ( unittest.TestCase ): def __init__( self, UpperCamelCase__, UpperCamelCase__=7, UpperCamelCase__=3, UpperCamelCase__=30, UpperCamelCase__=400, UpperCamelCase__=True, UpperCamelCase__=None, UpperCamelCase__=True, UpperCamelCase__=[0.5, 0.5, 0.5], UpperCamelCase__=[0.5, 0.5, 0.5], UpperCamelCase__=True, UpperCamelCase__=1 / 255, UpperCamelCase__=True, ): """simple docstring""" lowerCAmelCase_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = min_resolution lowerCAmelCase_ = max_resolution lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean lowerCAmelCase_ = image_std lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_pad def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=False ): """simple docstring""" if not batched: lowerCAmelCase_ = image_inputs[0] if isinstance(UpperCamelCase__, Image.Image ): lowerCAmelCase_ , lowerCAmelCase_ = image.size else: lowerCAmelCase_ , lowerCAmelCase_ = image.shape[1], image.shape[2] if w < h: lowerCAmelCase_ = int(self.size['''shortest_edge'''] * h / w ) lowerCAmelCase_ = self.size['''shortest_edge'''] elif w > h: lowerCAmelCase_ = self.size['''shortest_edge'''] lowerCAmelCase_ = int(self.size['''shortest_edge'''] * w / h ) else: lowerCAmelCase_ = self.size['''shortest_edge'''] lowerCAmelCase_ = self.size['''shortest_edge'''] else: lowerCAmelCase_ = [] for image in image_inputs: lowerCAmelCase_ , lowerCAmelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase_ = max(UpperCamelCase__, key=lambda UpperCamelCase__ : item[0] )[0] lowerCAmelCase_ = max(UpperCamelCase__, key=lambda UpperCamelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A ( __UpperCAmelCase , unittest.TestCase ): __snake_case = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = DeformableDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__, '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_rescale''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_pad''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''size''' ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad, UpperCamelCase__ ) lowerCAmelCase_ = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=UpperCamelCase__ ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, Image.Image ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__, batched=UpperCamelCase__ ) lowerCAmelCase_ = image_processing(UpperCamelCase__, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, np.ndarray ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCAmelCase_ = image_processing(UpperCamelCase__, return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__, batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, torch.Tensor ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCAmelCase_ = image_processing(UpperCamelCase__, return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__, batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''', '''r''' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'''image_id''': 3_9769, '''annotations''': target} # encode them lowerCAmelCase_ = DeformableDetrImageProcessor() lowerCAmelCase_ = image_processing(images=UpperCamelCase__, annotations=UpperCamelCase__, return_tensors='''pt''' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], UpperCamelCase__, atol=1E-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], UpperCamelCase__ ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], UpperCamelCase__, atol=1E-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], UpperCamelCase__ ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], UpperCamelCase__ ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], UpperCamelCase__ ) ) # verify orig_size lowerCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], UpperCamelCase__ ) ) # verify size lowerCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], UpperCamelCase__ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''', '''r''' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} lowerCAmelCase_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCAmelCase_ = DeformableDetrImageProcessor(format='''coco_panoptic''' ) lowerCAmelCase_ = image_processing(images=UpperCamelCase__, annotations=UpperCamelCase__, masks_path=UpperCamelCase__, return_tensors='''pt''' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], UpperCamelCase__, atol=1E-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], UpperCamelCase__ ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], UpperCamelCase__, atol=1E-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], UpperCamelCase__ ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], UpperCamelCase__ ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], UpperCamelCase__ ) ) # verify masks lowerCAmelCase_ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item(), UpperCamelCase__ ) # verify orig_size lowerCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], UpperCamelCase__ ) ) # verify size lowerCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], UpperCamelCase__ ) )
167
1
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[str] , __a : List[Any] , __a : str=13 , __a : Dict=10 , __a : Tuple=3 , __a : Dict=2 , __a : Any=2 , __a : Union[str, Any]=True , __a : str=True , __a : Optional[int]=32 , __a : List[str]=5 , __a : int=4 , __a : Any=37 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : List[str]=0.1 , __a : Tuple=10 , __a : Union[str, Any]=0.02 , __a : Union[str, Any]="divided_space_time" , __a : Dict=None , ): _a = parent _a = batch_size _a = image_size _a = num_channels _a = patch_size _a = num_frames _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = attention_type _a = initializer_range _a = scope _a = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _a = (image_size // patch_size) ** 2 _a = (num_frames) * self.num_patches_per_frame + 1 def UpperCamelCase__ ( self : Union[str, Any] ): _a = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.num_labels ) _a = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self : int ): _a = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _a = self.num_labels return config def UpperCamelCase__ ( self : List[Any] , __a : str , __a : Union[str, Any] , __a : List[str] ): _a = TimesformerModel(config=__a ) model.to(__a ) model.eval() _a = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : Any , __a : Union[str, Any] , __a : str , __a : List[Any] ): _a = TimesformerForVideoClassification(__a ) model.to(__a ) model.eval() _a = model(__a ) # verify the logits shape _a = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __a ) def UpperCamelCase__ ( self : Any ): _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =(TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __a =( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) __a =False __a =False __a =False __a =False def UpperCamelCase__ ( self : Dict ): _a = TimesformerModelTester(self ) _a = ConfigTester( self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def UpperCamelCase__ ( self : int , __a : List[Any] , __a : List[Any] , __a : Any=False ): _a = copy.deepcopy(__a ) if return_labels: if model_class in get_values(__a ): _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) return inputs_dict def UpperCamelCase__ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def UpperCamelCase__ ( self : List[Any] ): pass def UpperCamelCase__ ( self : Optional[int] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ ( self : Dict ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__a ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ ( self : List[str] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__a ) @slow def UpperCamelCase__ ( self : Tuple ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TimesformerModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase__ ( self : Optional[Any] ): if not self.has_attentions: pass else: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True for model_class in self.all_model_classes: _a = self.model_tester.seq_length _a = self.model_tester.num_frames _a = True _a = False _a = True _a = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__a , __a ) ) _a = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__a , __a ) ) _a = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _a = len(__a ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 1 , len(__a ) ) _a = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def UpperCamelCase__ ( self : str ): def check_hidden_states_output(__a : Union[str, Any] , __a : Optional[Any] , __a : Any ): _a = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__a , __a ) ) _a = outputs.hidden_states _a = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__a ) , __a ) _a = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(__a , __a , __a ) def _lowerCamelCase ( ) -> int: _a = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) _a = np.load(lowercase ) return list(lowercase ) @require_torch @require_vision class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase__ ( self : List[str] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self : str ): _a = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( __a ) _a = self.default_image_processor _a = prepare_video() _a = image_processor(video[:8] , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _a = model(**__a ) # verify the logits _a = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __a ) _a = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
63
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : Tuple = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='big_bird' def __init__( self : Optional[int] , __a : Dict=5_03_58 , __a : str=7_68 , __a : List[Any]=12 , __a : List[str]=12 , __a : Union[str, Any]=30_72 , __a : str="gelu_new" , __a : Dict=0.1 , __a : Union[str, Any]=0.1 , __a : Any=40_96 , __a : int=2 , __a : Tuple=0.02 , __a : List[Any]=1e-1_2 , __a : int=True , __a : List[str]=0 , __a : Tuple=1 , __a : Optional[Any]=2 , __a : Tuple=66 , __a : str="block_sparse" , __a : Tuple=True , __a : Optional[int]=False , __a : str=64 , __a : Tuple=3 , __a : Any=None , **__a : Dict , ): super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , sep_token_id=__a , **__a , ) _a = vocab_size _a = max_position_embeddings _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = type_vocab_size _a = layer_norm_eps _a = use_cache _a = rescale_embeddings _a = attention_type _a = use_bias _a = block_size _a = num_random_blocks _a = classifier_dropout class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" @property def UpperCamelCase__ ( self : Optional[int] ): if self.task == "multiple-choice": _a = {0: "batch", 1: "choice", 2: "sequence"} else: _a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
63
1
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # Construct model if openai_config_file == "": UpperCAmelCase_ = OpenAIGPTConfig() else: UpperCAmelCase_ = OpenAIGPTConfig.from_json_file(lowerCAmelCase__ ) UpperCAmelCase_ = OpenAIGPTModel(lowerCAmelCase__ ) # Load weights from numpy load_tf_weights_in_openai_gpt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model UpperCAmelCase_ = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase_ = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--openai_checkpoint_folder_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--openai_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) lowerCamelCase = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
241
"""simple docstring""" from maths.prime_check import is_prime def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase__ ) if is_prime(lowerCAmelCase__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
241
1
'''simple docstring''' import math def snake_case_ (_a : float , _a : float ): return math.pow(_a , 2 ) - a def snake_case_ (_a : float ): return 2 * x def snake_case_ (_a : float ): UpperCAmelCase = 2.0 while start <= a: UpperCAmelCase = math.pow(_a , 2 ) return start def snake_case_ (_a : float , _a : int = 9_9_9_9 , _a : float = 0.00_0000_0000_0001 ): if a < 0: raise ValueError('''math domain error''' ) UpperCAmelCase = get_initial_point(_a ) for _ in range(_a ): UpperCAmelCase = value UpperCAmelCase = value - fx(_a , _a ) / fx_derivative(_a ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
34
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : int ={ '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any =[ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys lowerCAmelCase : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
223
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __a = logging.getLogger() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class __a( _a ): """simple docstring""" def a__ ( self ) -> None: UpperCAmelCase_ : int = logging.StreamHandler(sys.stdout ) logger.addHandler(_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ : int = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 ,'''run_glue_deebert.py''' ) with patch.object(_SCREAMING_SNAKE_CASE ,'''argv''' ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_SCREAMING_SNAKE_CASE ,0.6_66 ) @slow @require_torch_non_multi_gpu def a__ ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(_SCREAMING_SNAKE_CASE )
235
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = tempfile.mkdtemp() UpperCAmelCase_ : str = BlipImageProcessor() UpperCAmelCase_ : Dict = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) UpperCAmelCase_ : Optional[Any] = BlipaProcessor(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ).tokenizer def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ).image_processor def a__ ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Tuple = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] UpperCAmelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE ,0 ,-1 ) ) for x in image_inputs] return image_inputs def a__ ( self ) -> List[str]: UpperCAmelCase_ : Dict = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : str = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) UpperCAmelCase_ : int = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE ,padding_value=1.0 ) UpperCAmelCase_ : Union[str, Any] = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=_SCREAMING_SNAKE_CASE ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: UpperCAmelCase_ : Dict = self.get_image_processor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : str = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = self.prepare_image_inputs() UpperCAmelCase_ : Optional[Any] = image_processor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) UpperCAmelCase_ : int = processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def a__ ( self ) -> int: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Any = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = '''lower newer''' UpperCAmelCase_ : Optional[int] = processor(text=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = tokenizer(_SCREAMING_SNAKE_CASE ,return_token_type_ids=_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = '''lower newer''' UpperCAmelCase_ : int = self.prepare_image_inputs() UpperCAmelCase_ : List[str] = processor(text=_SCREAMING_SNAKE_CASE ,images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.get_image_processor() UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : List[str] = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ : List[str] = processor.batch_decode(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: UpperCAmelCase_ : Union[str, Any] = self.get_image_processor() UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Any = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = '''lower newer''' UpperCAmelCase_ : Union[str, Any] = self.prepare_image_inputs() UpperCAmelCase_ : Any = processor(text=_SCREAMING_SNAKE_CASE ,images=_SCREAMING_SNAKE_CASE ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] )
235
1
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , lowercase_ : Optional[Any] , lowercase_ : Any=13 , lowercase_ : str=7 , lowercase_ : Union[str, Any]=True , lowercase_ : Any=True , lowercase_ : List[Any]=True , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=99 , lowercase_ : str=32 , lowercase_ : List[Any]=5 , lowercase_ : Dict=4 , lowercase_ : Tuple=37 , lowercase_ : Optional[int]="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : Dict=16 , lowercase_ : List[str]=2 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : List[Any]=4 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = parent SCREAMING_SNAKE_CASE_ : str = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : int = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_attention_mask SCREAMING_SNAKE_CASE_ : Optional[int] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : str = num_hidden_layers SCREAMING_SNAKE_CASE_ : int = num_attention_heads SCREAMING_SNAKE_CASE_ : Dict = intermediate_size SCREAMING_SNAKE_CASE_ : str = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE_ : int = type_vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Dict = num_choices def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ : Tuple = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_ : str = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCamelCase__ , ) return config, input_ids, attention_mask def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : str = config_and_inputs SCREAMING_SNAKE_CASE_ : int = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( __snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = FlaxDistilBertModelTester(self) @slow def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Tuple = model_class_name.from_pretrained('''distilbert-base-uncased''') SCREAMING_SNAKE_CASE_ : str = model(np.ones((1, 1))) self.assertIsNotNone(UpperCamelCase__) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) SCREAMING_SNAKE_CASE_ : List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) SCREAMING_SNAKE_CASE_ : Tuple = model(UpperCamelCase__ , attention_mask=UpperCamelCase__)[0] SCREAMING_SNAKE_CASE_ : List[str] = (1, 11, 768) self.assertEqual(output.shape , UpperCamelCase__) SCREAMING_SNAKE_CASE_ : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1e-4))
91
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class snake_case : SCREAMING_SNAKE_CASE_ : Optional[Union[str, Path]] = None SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : Optional[Dict] = None SCREAMING_SNAKE_CASE_ : Optional[str] = None SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = True SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : Optional[Union[str, bool]] = None SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : Optional[Dict] = None SCREAMING_SNAKE_CASE_ : Optional[str] = None def lowercase_ ( self : str)-> "DownloadConfig": '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase__) for k, v in self.__dict__.items()})
217
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[Any] = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys lowerCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
210
def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
210
1
def lowerCamelCase__ ( snake_case_ : List[str] , snake_case_ : Optional[int] ) -> Any: if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) __snake_case = str(bin(UpperCamelCase_ ) ) binary_number += "0" * shift_amount return binary_number def lowerCamelCase__ ( snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] ) -> Union[str, Any]: if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) __snake_case = str(bin(UpperCamelCase_ ) )[2:] if shift_amount >= len(UpperCamelCase_ ): return "0b0" __snake_case = binary_number[: len(UpperCamelCase_ ) - shift_amount] return "0b" + shifted_binary_number def lowerCamelCase__ ( snake_case_ : Tuple , snake_case_ : List[Any] ) -> Tuple: if number >= 0: # Get binary representation of positive number __snake_case = '''0''' + str(bin(UpperCamelCase_ ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number __snake_case = len(bin(UpperCamelCase_ )[3:] ) # Find 2's complement of number __snake_case = bin(abs(UpperCamelCase_ ) - (1 << binary_number_length) )[3:] __snake_case = ( '''1''' + '''0''' * (binary_number_length - len(UpperCamelCase_ )) + binary_number ) if shift_amount >= len(UpperCamelCase_ ): return "0b" + binary_number[0] * len(UpperCamelCase_ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(UpperCamelCase_ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
24
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ = 100 ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
100
0
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 a : Tuple = data_utils.TransfoXLTokenizer a : Optional[Any] = data_utils.TransfoXLCorpus a : List[Any] = data_utils a : Optional[int] = data_utils def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_lowercase , """rb""" ) as fp: UpperCAmelCase : Dict = pickle.load(_lowercase , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCAmelCase : List[Any] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) UpperCAmelCase : Optional[int] = corpus.vocab.__dict__ torch.save(_lowercase , _lowercase ) UpperCAmelCase : List[Any] = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , _lowercase ) UpperCAmelCase : Union[str, Any] = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(_lowercase , _lowercase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCAmelCase : int = os.path.abspath(_lowercase ) UpperCAmelCase : Dict = os.path.abspath(_lowercase ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCAmelCase : Any = TransfoXLConfig() else: UpperCAmelCase : Optional[Any] = TransfoXLConfig.from_json_file(_lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase : int = TransfoXLLMHeadModel(_lowercase ) UpperCAmelCase : Any = load_tf_weights_in_transfo_xl(_lowercase , _lowercase , _lowercase ) # Save pytorch-model UpperCAmelCase : List[str] = os.path.join(_lowercase , _lowercase ) UpperCAmelCase : Dict = os.path.join(_lowercase , _lowercase ) print(F'''Save PyTorch model to {os.path.abspath(_lowercase )}''' ) torch.save(model.state_dict() , _lowercase ) print(F'''Save configuration file to {os.path.abspath(_lowercase )}''' ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) a : Optional[Any] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
338
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
1
from __future__ import annotations def A ( lowercase , lowercase ) -> int: '''simple docstring''' if len(lowercase ) < k or k < 0: raise ValueError('Invalid Input' ) UpperCamelCase = UpperCamelCase = sum(array[:k] ) for i in range(len(lowercase ) - k ): UpperCamelCase = current_sum - array[i] + array[i + k] UpperCamelCase = max(lowercase , lowercase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() _UpperCAmelCase : List[str] = [randint(-1_000, 1_000) for i in range(100)] _UpperCAmelCase : str = randint(0, 110) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
222
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _UpperCAmelCase : List[Any] = get_logger(__name__) _UpperCAmelCase : Tuple = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class lowercase : @add_start_docstrings(A_ ) def __call__( self , A_ , A_ ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase : @add_start_docstrings(A_ ) def __call__( self , A_ , A_ ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( _SCREAMING_SNAKE_CASE ): @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , A_ , **A_ ) -> jnp.ndarray: """simple docstring""" for processor in self: UpperCamelCase = inspect.signature(processor.__call__ ).parameters if len(A_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) UpperCamelCase = processor(A_ , A_ , A_ , **A_ ) else: UpperCamelCase = processor(A_ , A_ , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> Tuple: """simple docstring""" if not isinstance(A_ , A_ ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) UpperCamelCase = temperature def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = scores / self.temperature return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> List[Any]: """simple docstring""" if not isinstance(A_ , A_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(A_ , A_ ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) UpperCamelCase = top_p UpperCamelCase = filter_value UpperCamelCase = min_tokens_to_keep def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase , UpperCamelCase = lax.top_k(A_ , scores.shape[-1] ) UpperCamelCase = jnp.full_like(A_ , self.filter_value ) UpperCamelCase = jax.nn.softmax(A_ , axis=-1 ).cumsum(axis=-1 ) UpperCamelCase = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCamelCase = jnp.roll(A_ , 1 ) score_mask |= score_mask.at[:, 0].set(A_ ) # min tokens to keep UpperCamelCase = score_mask.at[:, : self.min_tokens_to_keep].set(A_ ) UpperCamelCase = jnp.where(A_ , A_ , A_ ) UpperCamelCase = jax.lax.sort_key_val(A_ , A_ )[-1] return next_scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> List[str]: """simple docstring""" if not isinstance(A_ , A_ ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) UpperCamelCase = max(A_ , A_ ) UpperCamelCase = filter_value def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase , UpperCamelCase = scores.shape UpperCamelCase = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCamelCase = min(self.top_k , scores.shape[-1] ) # Safety check UpperCamelCase , UpperCamelCase = lax.top_k(A_ , A_ ) UpperCamelCase = jnp.broadcast_to((jnp.arange(A_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCamelCase = topk_scores.flatten() UpperCamelCase = topk_indices.flatten() + shift UpperCamelCase = next_scores_flat.at[topk_indices_flat].set(A_ ) UpperCamelCase = next_scores_flat.reshape(A_ , A_ ) return next_scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = bos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = jnp.full(scores.shape , -float('inf' ) ) UpperCamelCase = 1 - jnp.bool_(cur_len - 1 ) UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.bos_token_id].set(0 ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = max_length UpperCamelCase = eos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = jnp.full(scores.shape , -float('inf' ) ) UpperCamelCase = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.eos_token_id].set(0 ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(A_ , A_ ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) UpperCamelCase = min_length UpperCamelCase = eos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" # create boolean flag to decide if min length penalty should be applied UpperCamelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCamelCase = jnp.where(A_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = list(A_ ) UpperCamelCase = begin_index def __call__( self , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCamelCase = jnp.where(A_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = list(A_ ) def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> str: """simple docstring""" UpperCamelCase = dict(A_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCamelCase = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCamelCase = force_token_array.at[index].set(A_ ) UpperCamelCase = jnp.intaa(A_ ) def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" def _force_token(A_ ): UpperCamelCase = scores.shape[0] UpperCamelCase = self.force_token_array[generation_idx] UpperCamelCase = jnp.ones_like(A_ , dtype=scores.dtype ) * -float('inf' ) UpperCamelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCamelCase = lax.dynamic_update_slice(A_ , A_ , (0, current_token) ) return new_scores UpperCamelCase = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(A_ ) , lambda: scores , ) , ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = generate_config.eos_token_id UpperCamelCase = generate_config.no_timestamps_token_id UpperCamelCase = generate_config.no_timestamps_token_id + 1 UpperCamelCase = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(A_ , 'max_initial_timestamp_index' ): UpperCamelCase = generate_config.max_initial_timestamp_index else: UpperCamelCase = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCamelCase = model_config.vocab_size def __call__( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" # suppress <|notimestamps|> which is handled by without_timestamps UpperCamelCase = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(A_ , A_ ): UpperCamelCase = jnp.where((cur_len - self.begin_index) >= 1 , A_ , A_ ) UpperCamelCase = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , A_ , ) UpperCamelCase = jnp.where((cur_len - self.begin_index) < 2 , A_ , A_ ) UpperCamelCase = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , A_ , A_ , ) return jnp.where( A_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , A_ , ) UpperCamelCase = jax.vmap(A_ )(A_ , A_ ) UpperCamelCase = jnp.where(cur_len == self.begin_index , A_ , A_ ) UpperCamelCase = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , A_ , ) UpperCamelCase = self.timestamp_begin + self.max_initial_timestamp_index UpperCamelCase = jnp.where( A_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , A_ , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCamelCase = jax.nn.log_softmax(A_ , axis=-1 ) def handle_cumulative_probs(A_ , A_ ): UpperCamelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCamelCase = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , A_ , ) UpperCamelCase = jax.vmap(A_ )(A_ , A_ ) return scores
222
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __UpperCAmelCase : def __init__( self : Optional[Any], __A : Dict = "cpu", __A : Optional[int] = "openai/clip-vit-large-patch14" ): UpperCAmelCase : Any = device UpperCAmelCase : Union[str, Any] = CLIPTokenizerFast.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase : int = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] UpperCAmelCase : Tuple = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] UpperCAmelCase : List[Any] = torchvision.transforms.Normalize(self.image_mean, self.image_std ) UpperCAmelCase : Any = torchvision.transforms.Resize(2_2_4 ) UpperCAmelCase : Tuple = torchvision.transforms.CenterCrop(2_2_4 ) def __magic_name__ ( self : List[str], __A : int ): UpperCAmelCase : Optional[int] = self.resize(lowerCAmelCase_ ) UpperCAmelCase : Dict = self.center_crop(lowerCAmelCase_ ) UpperCAmelCase : Dict = self.normalize(lowerCAmelCase_ ) return images def __call__( self : Optional[Any], __A : Union[str, Any]=None, __A : Any=None, **__A : List[str] ): UpperCAmelCase : Optional[Any] = self.tokenizer(text=lowerCAmelCase_, **lowerCAmelCase_ ) UpperCAmelCase : List[str] = self.preprocess_img(lowerCAmelCase_ ) UpperCAmelCase : Dict = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class __UpperCAmelCase ( nn.Module ): def __init__( self : Optional[int], __A : Any=1_0, __A : Tuple=0.0_1, __A : str=None, __A : str=None, __A : Union[str, Any]=None, __A : Any=None, __A : Optional[int]=None, __A : int=None, __A : Tuple=False, __A : Any=True, __A : Optional[Any]="image", __A : Tuple=True, __A : Optional[int]=False, __A : Union[str, Any]=False, __A : Any=False, ): super().__init__() UpperCAmelCase : Tuple = None UpperCAmelCase : Any = device if device else get_device() if vqgan: UpperCAmelCase : Any = vqgan else: UpperCAmelCase : Dict = load_vqgan(self.device, conf_path=lowerCAmelCase_, ckpt_path=lowerCAmelCase_ ) self.vqgan.eval() if clip: UpperCAmelCase : Optional[int] = clip else: UpperCAmelCase : Union[str, Any] = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) UpperCAmelCase : Dict = ProcessorGradientFlow(device=self.device ) UpperCAmelCase : Optional[Any] = iterations UpperCAmelCase : str = lr UpperCAmelCase : Any = log UpperCAmelCase : Any = make_grid UpperCAmelCase : Optional[int] = return_val UpperCAmelCase : Dict = quantize UpperCAmelCase : Optional[Any] = self.vqgan.decoder.z_shape def __magic_name__ ( self : Dict, __A : str=None, __A : Union[str, Any]=None, __A : Any=5, __A : Union[str, Any]=True ): UpperCAmelCase : List[Any] = [] if output_path is None: UpperCAmelCase : str = '''./animation.gif''' if input_path is None: UpperCAmelCase : Any = self.save_path UpperCAmelCase : Optional[Any] = sorted(glob(input_path + '''/*''' ) ) if not len(lowerCAmelCase_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(lowerCAmelCase_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) UpperCAmelCase : int = total_duration / len(lowerCAmelCase_ ) UpperCAmelCase : int = [frame_duration] * len(lowerCAmelCase_ ) if extend_frames: UpperCAmelCase : int = 1.5 UpperCAmelCase : List[str] = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(lowerCAmelCase_ ) ) imageio.mimsave(lowerCAmelCase_, lowerCAmelCase_, duration=lowerCAmelCase_ ) print(F'''gif saved to {output_path}''' ) def __magic_name__ ( self : Optional[int], __A : List[str]=None, __A : str=None ): if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError UpperCAmelCase : Dict = preprocess(Image.open(lowerCAmelCase_ ), target_image_size=2_5_6 ).to(self.device ) UpperCAmelCase : Dict = preprocess_vqgan(lowerCAmelCase_ ) UpperCAmelCase , *UpperCAmelCase : Dict = self.vqgan.encode(lowerCAmelCase_ ) return z def __magic_name__ ( self : Optional[Any], __A : Dict ): UpperCAmelCase : Optional[Any] = self.latent.detach().requires_grad_() UpperCAmelCase : Optional[Any] = base_latent + transform_vector if self.quantize: UpperCAmelCase , *UpperCAmelCase : Optional[Any] = self.vqgan.quantize(lowerCAmelCase_ ) else: UpperCAmelCase : List[Any] = trans_latent return self.vqgan.decode(lowerCAmelCase_ ) def __magic_name__ ( self : Dict, __A : List[str], __A : Optional[int], __A : Optional[Any]=None ): UpperCAmelCase : List[str] = self.clip_preprocessor(text=lowerCAmelCase_, images=lowerCAmelCase_, return_tensors='''pt''', padding=lowerCAmelCase_ ) UpperCAmelCase : List[Any] = self.clip(**lowerCAmelCase_ ) UpperCAmelCase : str = clip_outputs.logits_per_image if weights is not None: UpperCAmelCase : Optional[Any] = similarity_logits * weights return similarity_logits.sum() def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : List[Any], __A : Union[str, Any] ): UpperCAmelCase : int = self._get_clip_similarity(pos_prompts['''prompts'''], lowerCAmelCase_, weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: UpperCAmelCase : Dict = self._get_clip_similarity(neg_prompts['''prompts'''], lowerCAmelCase_, weights=neg_prompts['''weights'''] ) else: UpperCAmelCase : Union[str, Any] = torch.tensor([1], device=self.device ) UpperCAmelCase : Optional[Any] = -torch.log(lowerCAmelCase_ ) + torch.log(lowerCAmelCase_ ) return loss def __magic_name__ ( self : Dict, __A : Optional[int], __A : Union[str, Any], __A : Dict ): UpperCAmelCase : str = torch.randn_like(self.latent, requires_grad=lowerCAmelCase_, device=self.device ) UpperCAmelCase : str = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCAmelCase : List[str] = self._add_vector(lowerCAmelCase_ ) UpperCAmelCase : int = loop_post_process(lowerCAmelCase_ ) UpperCAmelCase : Optional[Any] = self._get_CLIP_loss(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) print('''CLIP loss''', lowerCAmelCase_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=lowerCAmelCase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def __magic_name__ ( self : Optional[Any], __A : Union[str, Any], __A : Optional[Any], __A : Union[str, Any] ): wandb.init(reinit=lowerCAmelCase_, project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: UpperCAmelCase : int = Image.open(lowerCAmelCase_ ) UpperCAmelCase : Optional[int] = image.resize((2_5_6, 2_5_6) ) wandb.log('''Original Image''', wandb.Image(lowerCAmelCase_ ) ) def __magic_name__ ( self : Optional[Any], __A : List[Any] ): if not prompts: return [] UpperCAmelCase : int = [] UpperCAmelCase : str = [] if isinstance(lowerCAmelCase_, lowerCAmelCase_ ): UpperCAmelCase : str = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(lowerCAmelCase_, (tuple, list) ): UpperCAmelCase : List[str] = prompt[0] UpperCAmelCase : str = float(prompt[1] ) elif ":" in prompt: UpperCAmelCase , UpperCAmelCase : Dict = prompt.split(''':''' ) UpperCAmelCase : List[str] = float(lowerCAmelCase_ ) else: UpperCAmelCase : Dict = prompt UpperCAmelCase : Any = 1.0 processed_prompts.append(lowerCAmelCase_ ) weights.append(lowerCAmelCase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowerCAmelCase_, device=self.device ), } def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int=None, __A : int=None, __A : Tuple=True, __A : Tuple=False, __A : Optional[Any]=True, __A : Any=True, __A : int=None, ): if image_path: UpperCAmelCase : Optional[Any] = self._get_latent(lowerCAmelCase_ ) else: UpperCAmelCase : Tuple = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCAmelCase : Optional[int] = self.process_prompts(lowerCAmelCase_ ) UpperCAmelCase : Dict = self.process_prompts(lowerCAmelCase_ ) if save_final and save_path is None: UpperCAmelCase : Dict = os.path.join('''./outputs/''', '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) else: UpperCAmelCase : Any = save_path + '''_''' + get_timestamp() os.makedirs(lowerCAmelCase_ ) UpperCAmelCase : int = save_path UpperCAmelCase : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(lowerCAmelCase_ ) ) UpperCAmelCase : Any = loop_post_process(lowerCAmelCase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) ): if show_intermediate: show_pil(lowerCAmelCase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'''Image''': wandb.Image(lowerCAmelCase_ )} ) if show_final: show_pil(lowerCAmelCase_ ) if save_final: transformed_img.save(os.path.join(self.save_path, F'''iter_{iter:03d}_final.png''' ) )
365
import logging import os from .state import PartialState class __UpperCAmelCase ( logging.LoggerAdapter ): @staticmethod def __magic_name__ ( __A : str ): UpperCAmelCase : Dict = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __magic_name__ ( self : Union[str, Any], __A : Union[str, Any], __A : Union[str, Any], *__A : Optional[int], **__A : Tuple ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) UpperCAmelCase : List[str] = kwargs.pop('''main_process_only''', __A ) UpperCAmelCase : int = kwargs.pop('''in_order''', __A ) if self.isEnabledFor(__A ): if self._should_log(__A ): UpperCAmelCase , UpperCAmelCase : Dict = self.process(__A, __A ) self.logger.log(__A, __A, *__A, **__A ) elif in_order: UpperCAmelCase : Dict = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.process(__A, __A ) self.logger.log(__A, __A, *__A, **__A ) state.wait_for_everyone() def a__ ( UpperCAmelCase : str , UpperCAmelCase : str = None ) -> Dict: if log_level is None: UpperCAmelCase : Union[str, Any] = os.environ.get('''ACCELERATE_LOG_LEVEL''' , UpperCAmelCase ) UpperCAmelCase : Tuple = logging.getLogger(UpperCAmelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(UpperCAmelCase , {} )
99
0
lowercase_ : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } lowercase_ : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: _UpperCAmelCase = ( f"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" f"""Valid values are: {", ".join(snake_case_ )}""" ) raise ValueError(snake_case_ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
133
from typing import Any import numpy as np def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' return np.array_equal(snake_case_ , matrix.conjugate().T ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = v.conjugate().T _UpperCAmelCase = v_star.dot(snake_case_ ) assert isinstance(snake_case_ , np.ndarray ) return (v_star_dot.dot(snake_case_ )) / (v_star.dot(snake_case_ )) def __SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _UpperCAmelCase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) _UpperCAmelCase = np.array([[1], [2], [3]] ) assert is_hermitian(snake_case_ ), f"""{a} is not hermitian.""" print(rayleigh_quotient(snake_case_ , snake_case_ ) ) _UpperCAmelCase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(snake_case_ ), f"""{a} is not hermitian.""" assert rayleigh_quotient(snake_case_ , snake_case_ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
133
1
import math def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> float: return math.pow(__lowerCAmelCase , 2 ) - a def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> float: return 2 * x def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> float: UpperCamelCase__ : List[Any] = 2.0 while start <= a: UpperCamelCase__ : int = math.pow(__lowerCAmelCase , 2 ) return start def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = 9999 , __lowerCAmelCase = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ) -> float: if a < 0: raise ValueError("math domain error" ) UpperCamelCase__ : Any = get_initial_point(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ): UpperCamelCase__ : Dict = value UpperCamelCase__ : Tuple = value - fx(__lowerCAmelCase , __lowerCAmelCase ) / fx_derivative(__lowerCAmelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
196
import re def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> bool: UpperCamelCase__ : Union[str, Any] = re.compile( R"^(?:0|94|\+94|0{2}94)" R"7(0|1|2|4|5|6|7|8)" R"(-| |)" R"\d{7}$" ) return bool(re.search(__lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] ='''0094702343221''' print(is_sri_lankan_phone_number(phone))
196
1
from typing import Union import fire import torch from tqdm import tqdm def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = "cpu" , SCREAMING_SNAKE_CASE : Union[str, None] = None ): """simple docstring""" a__ : int =torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE ) for k, v in tqdm(state_dict.items() ): if not isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) a__ : Tuple =v.half() if save_path is None: # overwrite src_path a__ : Optional[int] =src_path torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": fire.Fire(convert)
95
from math import factorial def lowerCamelCase__ (_UpperCAmelCase = 100): return sum(int(_UpperCAmelCase) for x in str(factorial(_UpperCAmelCase))) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
137
0
from collections.abc import Iterable from typing import Any class a_ : '''simple docstring''' def __init__( self , lowercase_ = None ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = value lowerCAmelCase_ = None # Added in order to delete a node easier lowerCAmelCase_ = None lowerCAmelCase_ = None def __repr__( self ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} , indent=1 ) class a_ : '''simple docstring''' def __init__( self , lowercase_ = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = root def __str__( self ) -> str: '''simple docstring''' return str(self.root ) def _lowercase ( self , lowercase_ , lowercase_ ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ = node.parent if node.parent is not None: # reset its parent if self.is_right(lowercase_ ): # If it is the right children lowerCAmelCase_ = new_children else: lowerCAmelCase_ = new_children else: lowerCAmelCase_ = new_children def _lowercase ( self , lowercase_ ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def _lowercase ( self ) -> bool: '''simple docstring''' return self.root is None def _lowercase ( self , lowercase_ ) -> None: '''simple docstring''' lowerCAmelCase_ = Node(lowercase_ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ = new_node # set its root else: # Tree is not empty lowerCAmelCase_ = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ = new_node break else: lowerCAmelCase_ = parent_node.right lowerCAmelCase_ = parent_node def _lowercase ( self , *lowercase_ ) -> None: '''simple docstring''' for value in values: self.__insert(lowercase_ ) def _lowercase ( self , lowercase_ ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: lowerCAmelCase_ = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ = node.left if value < node.value else node.right return node def _lowercase ( self , lowercase_ = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ = node.right return node def _lowercase ( self , lowercase_ = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ = self.root while node.left is not None: lowerCAmelCase_ = node.left return node def _lowercase ( self , lowercase_ ) -> None: '''simple docstring''' lowerCAmelCase_ = self.search(lowercase_ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowercase_ , lowercase_ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowercase_ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowercase_ , node.left ) else: lowerCAmelCase_ = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def _lowercase ( self , lowercase_ ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def _lowercase ( self , lowercase_=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def _lowercase ( self , lowercase_ , lowercase_ ) -> None: '''simple docstring''' if node: self.inorder(lowercase_ , node.left ) arr.append(node.value ) self.inorder(lowercase_ , node.right ) def _lowercase ( self , lowercase_ , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = [] self.inorder(lowercase_ , lowercase_ ) # append all values to list using inorder traversal return arr[k - 1] def lowerCamelCase ( a_ ) -> list[Node]: lowerCAmelCase_ = [] if curr_node is not None: lowerCAmelCase_ = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCamelCase ( ) -> None: lowerCAmelCase_ = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ = BinarySearchTree() for i in testlist: t.insert(a_ ) # Prints all the elements of the list in order traversal print(a_ ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(a_ ) print(a_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
14
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int: if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : '''simple docstring''' __a: Tuple = OPTConfig __a: Optional[Any] = {} __a: Tuple = '''gelu''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = embed_dim lowerCAmelCase_ = word_embed_proj_dim lowerCAmelCase_ = False def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = TFOPTModel(config=lowercase_ ) lowerCAmelCase_ = inputs_dict['input_ids'] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a: Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a: int = False __a: List[Any] = False __a: Dict = False __a: List[Any] = 1_0 def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = TFOPTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase_ = model_class(config=lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing lowerCAmelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) lowerCAmelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) def lowerCamelCase ( a_ ) -> Any: return tf.constant(a_ , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' __a: Optional[int] = 9_9 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state lowerCAmelCase_ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowercase_ ) lowerCAmelCase_ = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCAmelCase_ = 'facebook/opt-350m' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase_ = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-125m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase_ = 'left' # use different length sentences to test batching lowerCAmelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) lowerCAmelCase_ = inputs['input_ids'] lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] ) lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ ) lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
14
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ = logging.get_logger(__name__) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: a__: int = b.T a__: List[Any] = np.sum(np.square(_SCREAMING_SNAKE_CASE ) , axis=1 ) a__: int = np.sum(np.square(_SCREAMING_SNAKE_CASE ) , axis=0 ) a__: Any = np.matmul(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Optional[Any] = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Any: a__: Tuple = x.reshape(-1 , 3 ) a__: Any = squared_euclidean_distance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return np.argmin(_SCREAMING_SNAKE_CASE , axis=1 ) class __snake_case ( snake_case__ ): a__ = ['''pixel_values'''] def __init__( self , lowercase = None , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = True , lowercase = True , **lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_A) a__: Optional[Any] = size if size is not None else {'height': 2_56, 'width': 2_56} a__: Any = get_size_dict(_A) a__: List[str] = np.array(_A) if clusters is not None else None a__: int = do_resize a__: Union[str, Any] = size a__: Dict = resample a__: List[Any] = do_normalize a__: str = do_color_quantize def lowerCamelCase_ ( self , lowercase , lowercase , lowercase = PILImageResampling.BILINEAR , lowercase = None , **lowercase , ) -> int: '''simple docstring''' a__: Optional[Any] = get_size_dict(_A) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}') return resize( _A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A) def lowerCamelCase_ ( self , lowercase , lowercase = None , ) -> Dict: '''simple docstring''' a__: Dict = rescale(image=_A , scale=1 / 1_27.5 , data_format=_A) a__: str = image - 1 return image def lowerCamelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> Union[str, Any]: '''simple docstring''' a__: Any = do_resize if do_resize is not None else self.do_resize a__: Dict = size if size is not None else self.size a__: Union[str, Any] = get_size_dict(_A) a__: Optional[Any] = resample if resample is not None else self.resample a__: Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize a__: Optional[int] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize a__: List[str] = clusters if clusters is not None else self.clusters a__: str = np.array(_A) a__: int = make_list_of_images(_A) if not valid_images(_A): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.') # All transformations expect numpy arrays. a__: str = [to_numpy_array(_A) for image in images] if do_resize: a__: int = [self.resize(image=_A , size=_A , resample=_A) for image in images] if do_normalize: a__: List[Any] = [self.normalize(image=_A) for image in images] if do_color_quantize: a__: List[Any] = [to_channel_dimension_format(_A , ChannelDimension.LAST) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) a__: List[Any] = np.array(_A) a__: str = color_quantize(_A , _A).reshape(images.shape[:-1]) # flatten to (batch_size, height*width) a__: Dict = images.shape[0] a__: List[Any] = images.reshape(_A , -1) # We need to convert back to a list of images to keep consistent behaviour across processors. a__: Union[str, Any] = list(_A) else: a__: Any = [to_channel_dimension_format(_A , _A) for image in images] a__: List[Any] = {'input_ids': images} return BatchFeature(data=_A , tensor_type=_A)
290
import argparse import json from tqdm import tqdm def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: __A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=a , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=a , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=a , help='where to store parsed gold_data_path file' , ) __A : Optional[int] = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: __A : List[Any] = json.load(a ) for dpr_record in tqdm(a ): __A : Dict = dpr_record['question'] __A : Any = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(a ) + '\n' ) if __name__ == "__main__": main()
280
0
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING A_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase ) class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,**a_ ) -> Optional[Any]: super().__init__(**a_ ) requires_backends(self ,"""vision""" ) requires_backends(self ,"""torch""" ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(a_ ) def _snake_case ( self ,**a_ ) -> Tuple: _UpperCAmelCase : Dict = {} _UpperCAmelCase : Dict = {} _UpperCAmelCase : int = {} # preprocess args if "points_per_batch" in kwargs: _UpperCAmelCase : List[str] = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _UpperCAmelCase : List[str] = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _UpperCAmelCase : Optional[int] = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _UpperCAmelCase : Union[str, Any] = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _UpperCAmelCase : int = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _UpperCAmelCase : Dict = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _UpperCAmelCase : Union[str, Any] = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _UpperCAmelCase : List[Any] = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _UpperCAmelCase : Union[str, Any] = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _UpperCAmelCase : Union[str, Any] = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self ,a_ ,*a_ ,a_=None ,a_=None ,**a_ ) -> Union[str, Any]: return super().__call__(a_ ,*a_ ,num_workers=a_ ,batch_size=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_=64 ,a_ = 0 ,a_ = 512 / 1_500 ,a_ = 32 ,a_ = 1 ,) -> int: _UpperCAmelCase : Any = load_image(a_ ) _UpperCAmelCase : Dict = self.image_processor.size["""longest_edge"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Tuple = self.image_processor.generate_crop_boxes( a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) _UpperCAmelCase : Union[str, Any] = self.image_processor(images=a_ ,return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _UpperCAmelCase : Optional[Any] = self.get_inference_context() with inference_context(): _UpperCAmelCase : int = self._ensure_tensor_on_device(a_ ,device=self.device ) _UpperCAmelCase : Dict = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _UpperCAmelCase : str = image_embeddings _UpperCAmelCase : Optional[int] = grid_points.shape[1] _UpperCAmelCase : Any = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 ,a_ ,a_ ): _UpperCAmelCase : Any = grid_points[:, i : i + points_per_batch, :, :] _UpperCAmelCase : List[str] = input_labels[:, i : i + points_per_batch] _UpperCAmelCase : str = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _snake_case ( self ,a_ ,a_=0.88 ,a_=0.95 ,a_=0 ,a_=1 ,) -> Any: _UpperCAmelCase : Optional[int] = model_inputs.pop("""input_boxes""" ) _UpperCAmelCase : Union[str, Any] = model_inputs.pop("""is_last""" ) _UpperCAmelCase : List[Any] = model_inputs.pop("""original_sizes""" ).tolist() _UpperCAmelCase : Tuple = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _UpperCAmelCase : Optional[Any] = self.model(**a_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _UpperCAmelCase : Union[str, Any] = model_outputs["""pred_masks"""] _UpperCAmelCase : List[Any] = self.image_processor.post_process_masks( a_ ,a_ ,a_ ,a_ ,binarize=a_ ) _UpperCAmelCase : Any = model_outputs["""iou_scores"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = self.image_processor.filter_masks( masks[0] ,iou_scores[0] ,original_sizes[0] ,input_boxes[0] ,a_ ,a_ ,a_ ,a_ ,) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _snake_case ( self ,a_ ,a_=False ,a_=False ,a_=0.7 ,) -> Dict: _UpperCAmelCase : str = [] _UpperCAmelCase : Any = [] _UpperCAmelCase : str = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _UpperCAmelCase : Any = torch.cat(a_ ) _UpperCAmelCase : int = torch.cat(a_ ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : List[Any] = self.image_processor.post_process_for_mask_generation( a_ ,a_ ,a_ ,a_ ) _UpperCAmelCase : List[Any] = defaultdict(a_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(a_ ) _UpperCAmelCase : Optional[int] = {} if output_rle_mask: _UpperCAmelCase : Tuple = rle_mask if output_bboxes_mask: _UpperCAmelCase : Dict = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
1
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __lowerCamelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" for attribute in key.split('.' ): A__ = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: A__ = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: A__ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": A__ = value elif weight_type == "weight_g": A__ = value elif weight_type == "weight_v": A__ = value elif weight_type == "bias": A__ = value else: A__ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = [] A__ = fairseq_model.state_dict() A__ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight A__ = None for name, value in fairseq_dict.items(): A__ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) A__ = True elif name.split('.' )[0] == "proj": A__ = fairseq_model.proj A__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: A__ = True if "*" in mapped_key: A__ = name.split(UpperCamelCase__ )[0].split('.' )[-2] A__ = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: A__ = 'weight_g' elif "weight_v" in name: A__ = 'weight_v' elif "bias" in name: A__ = 'bias' elif "weight" in name: A__ = 'weight' else: A__ = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = full_name.split('conv_layers.' )[-1] A__ = name.split('.' ) A__ = int(items[0] ) A__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) A__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ , A__ = emb.weight.shape A__ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A__ = emb.weight.data return lin_layer def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" with open(UpperCamelCase__ , 'r' , encoding='utf-8' ) as f: A__ = f.readlines() A__ = [line.split(' ' )[0] for line in lines] A__ = len(UpperCamelCase__ ) A__ = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(UpperCamelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): """simple docstring""" A__ = WavaVecaConfig.from_pretrained(UpperCamelCase__ ) A__ = SpeechaTextaConfig.from_pretrained( UpperCamelCase__ , vocab_size=UpperCamelCase__ , decoder_layers=UpperCamelCase__ , do_stable_layer_norm=UpperCamelCase__ ) A__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) A__ , A__ , A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) A__ = model[0].eval() # set weights for wav2vec2 encoder A__ = WavaVecaModel(UpperCamelCase__ ) A__ = recursively_load_weights_wavaveca(model.encoder , UpperCamelCase__ ) A__ = SpeechaTextaForCausalLM(UpperCamelCase__ ) A__ , A__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase__ ) # set output linear layer unexpected_keys.remove('embed_out' ) A__ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) A__ = SpeechEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) A__ = False # add projection layer A__ = nn.Parameter(projection_layer.weight ) A__ = nn.Parameter(projection_layer.bias ) A__ = create_vocab_dict(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , 'vocab.json' ) , 'w' ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) A__ = SpeechaTextaTokenizer(os.path.join(UpperCamelCase__ , 'vocab.json' ) ) tokenizer.save_pretrained(UpperCamelCase__ ) A__ = hf_wavavec.config.to_dict() A__ = tokenizer.pad_token_id A__ = tokenizer.bos_token_id A__ = tokenizer.eos_token_id A__ = 'speech_to_text_2' A__ = 'wav2vec2' A__ = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase__ ) hf_wavavec.save_pretrained(UpperCamelCase__ ) feature_extractor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_02_24, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __lowerCamelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
221
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __lowerCamelCase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __lowerCamelCase = "main" # Default branch name __lowerCamelCase = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) __lowerCamelCase = "aaaaaaa" # This commit does not exist, so we should 404. __lowerCamelCase = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes __lowerCamelCase = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def UpperCAmelCase ( ): """simple docstring""" print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def UpperCAmelCase ( ): """simple docstring""" print('Bonjour!' ) yield print('Au revoir!' ) class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> List[str]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class UpperCamelCase__( unittest.TestCase ): @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> Dict: with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() ,'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]: with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> Any: with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def snake_case__ ( self ) -> Union[str, Any]: self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['start_positions', 'end_positions'] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) @require_tf def snake_case__ ( self ) -> str: self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['start_positions', 'end_positions'] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) @require_flax def snake_case__ ( self ) -> List[Any]: # Flax models don't have labels self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,[] )
221
1
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( __a): def _UpperCamelCase ( self : Dict , __UpperCamelCase : str ) -> Union[str, Any]: with open(UpperCamelCase__ , encoding='''utf-8''' ) as input_file: _UpperCamelCase = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) _UpperCamelCase = input_file.read() _UpperCamelCase = regexp.search(UpperCamelCase__ ) return match def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : str ) -> int: with open(UpperCamelCase__ , encoding='''utf-8''' ) as input_file: _UpperCamelCase = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) _UpperCamelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _UpperCamelCase = regexp.finditer(UpperCamelCase__ ) _UpperCamelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCamelCase ( self : Any ) -> Optional[int]: _UpperCamelCase = Path('''./datasets''' ) _UpperCamelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCamelCase__ ) ): raise AssertionError(F'''open(...) must use utf-8 encoding in {dataset}''' ) def _UpperCamelCase ( self : Tuple ) -> Any: _UpperCamelCase = Path('''./datasets''' ) _UpperCamelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(UpperCamelCase__ ) ): raise AssertionError(F'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
368
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( _lowercase): snake_case__ = ['''image_processor''', '''tokenizer'''] snake_case__ = '''BlipImageProcessor''' snake_case__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ) -> int: _UpperCamelCase = False super().__init__(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = self.image_processor def __call__( self : Any , __UpperCamelCase : ImageInput = None , __UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[bool, str, PaddingStrategy] = False , __UpperCamelCase : Union[bool, str, TruncationStrategy] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 0 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[str, TensorType]] = None , **__UpperCamelCase : List[str] , ) -> BatchEncoding: if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _UpperCamelCase = self.tokenizer _UpperCamelCase = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) return text_encoding # add pixel_values _UpperCamelCase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase ) if text is not None: _UpperCamelCase = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) else: _UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(__UpperCamelCase ) return encoding_image_processor def _UpperCamelCase ( self : Union[str, Any] , *__UpperCamelCase : str , **__UpperCamelCase : Any ) -> List[Any]: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] , *__UpperCamelCase : List[Any] , **__UpperCamelCase : str ) -> str: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def _UpperCamelCase ( self : List[str] ) -> Dict: _UpperCamelCase = self.tokenizer.model_input_names _UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
54
0
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=10_24 , _UpperCAmelCase=10_24 , _UpperCAmelCase=False , **_UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase : str = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) lowercase : List[Any] = SeqaSeqDataset(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , type_path='train' , **lowerCAmelCase_ ) lowercase : List[str] = tok.pad_token_id def get_lens(_UpperCAmelCase ): lowercase : Dict = tqdm( DataLoader(lowerCAmelCase_ , batch_size=5_12 , num_workers=8 , shuffle=lowerCAmelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowercase : Union[str, Any] = [] for batch in dl: lowercase : Optional[Any] = batch['input_ids'].ne(lowerCAmelCase_ ).sum(1 ).tolist() lowercase : Optional[Any] = batch['labels'].ne(lowerCAmelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCAmelCase_ , lowerCAmelCase_ ): max_lens.append(max(lowerCAmelCase_ , lowerCAmelCase_ ) ) else: max_lens.extend(lowerCAmelCase_ ) return max_lens lowercase : str = get_lens(lowerCAmelCase_ ) lowercase : Optional[int] = SeqaSeqDataset(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , type_path='val' , **lowerCAmelCase_ ) lowercase : Dict = get_lens(lowerCAmelCase_ ) pickle_save(lowerCAmelCase_ , train_ds.len_file ) pickle_save(lowerCAmelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
255
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Any = 'conditional_detr' lowerCAmelCase : List[str] = ['past_key_values'] lowerCAmelCase : Optional[int] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Optional[int] ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : Union[str, Any]=None ,_UpperCAmelCase : List[Any]=3 ,_UpperCAmelCase : List[Any]=300 ,_UpperCAmelCase : Dict=6 ,_UpperCAmelCase : List[str]=2048 ,_UpperCAmelCase : Optional[int]=8 ,_UpperCAmelCase : List[Any]=6 ,_UpperCAmelCase : Optional[int]=2048 ,_UpperCAmelCase : Dict=8 ,_UpperCAmelCase : int=0.0 ,_UpperCAmelCase : Optional[Any]=0.0 ,_UpperCAmelCase : Optional[Any]=True ,_UpperCAmelCase : str="relu" ,_UpperCAmelCase : Tuple=256 ,_UpperCAmelCase : Optional[int]=0.1 ,_UpperCAmelCase : str=0.0 ,_UpperCAmelCase : Optional[int]=0.0 ,_UpperCAmelCase : Union[str, Any]=0.02 ,_UpperCAmelCase : List[str]=1.0 ,_UpperCAmelCase : Any=False ,_UpperCAmelCase : int="sine" ,_UpperCAmelCase : List[str]="resnet50" ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : str=False ,_UpperCAmelCase : str=2 ,_UpperCAmelCase : int=5 ,_UpperCAmelCase : Optional[int]=2 ,_UpperCAmelCase : str=1 ,_UpperCAmelCase : Union[str, Any]=1 ,_UpperCAmelCase : List[str]=2 ,_UpperCAmelCase : Union[str, Any]=5 ,_UpperCAmelCase : List[Any]=2 ,_UpperCAmelCase : Optional[int]=0.25 ,**_UpperCAmelCase : Tuple ,): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _a : Optional[Any] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : str = backbone_config.get('model_type' ) _a : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] _a : List[Any] = config_class.from_dict(_UpperCAmelCase ) _a : Tuple = use_timm_backbone _a : Union[str, Any] = backbone_config _a : List[Any] = num_channels _a : Union[str, Any] = num_queries _a : Optional[Any] = d_model _a : Tuple = encoder_ffn_dim _a : Dict = encoder_layers _a : List[str] = encoder_attention_heads _a : Union[str, Any] = decoder_ffn_dim _a : Optional[int] = decoder_layers _a : int = decoder_attention_heads _a : Optional[int] = dropout _a : Tuple = attention_dropout _a : List[Any] = activation_dropout _a : str = activation_function _a : Optional[Any] = init_std _a : Union[str, Any] = init_xavier_std _a : List[Any] = encoder_layerdrop _a : List[Any] = decoder_layerdrop _a : Dict = encoder_layers _a : List[Any] = auxiliary_loss _a : Optional[int] = position_embedding_type _a : List[Any] = backbone _a : Optional[int] = use_pretrained_backbone _a : Optional[int] = dilation # Hungarian matcher _a : Tuple = class_cost _a : str = bbox_cost _a : Any = giou_cost # Loss coefficients _a : Tuple = mask_loss_coefficient _a : Dict = dice_loss_coefficient _a : Tuple = cls_loss_coefficient _a : Any = bbox_loss_coefficient _a : Dict = giou_loss_coefficient _a : Union[str, Any] = focal_alpha super().__init__(is_encoder_decoder=_UpperCAmelCase ,**_UpperCAmelCase ) @property def __lowercase ( self : Dict ): return self.encoder_attention_heads @property def __lowercase ( self : str ): return self.d_model def __lowercase ( self : int ): _a : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _a : Dict = self.backbone_config.to_dict() _a : Union[str, Any] = self.__class__.model_type return output class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : str = version.parse('1.11' ) @property def __lowercase ( self : Dict ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def __lowercase ( self : Any ): return 1E-5 @property def __lowercase ( self : List[Any] ): return 12
89
0
'''simple docstring''' from __future__ import annotations class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(snake_case__ ) != 0: _lowerCAmelCase : int = len(rows[0] ) if cols == 0: raise error for row in rows: if len(snake_case__ ) != cols: raise error for value in row: if not isinstance(snake_case__ , (int, float) ): raise error _lowerCAmelCase : Tuple = rows else: _lowerCAmelCase : Dict = [] def a ( self ): '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def a ( self ): '''simple docstring''' return len(self.rows ) @property def a ( self ): '''simple docstring''' return len(self.rows[0] ) @property def a ( self ): '''simple docstring''' return (self.num_rows, self.num_columns) @property def a ( self ): '''simple docstring''' return self.order[0] == self.order[1] def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(snake_case__ ) def a ( self ): '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def a ( self ): '''simple docstring''' return bool(self.determinant() ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(snake_case__ ).determinant() def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(snake_case__ , snake_case__ ) return -1 * self.get_minor(snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' return Matrix( [ [self.get_minor(snake_case__ , snake_case__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def a ( self ): '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self ): '''simple docstring''' return str(self.rows ) def __str__( self ): '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(snake_case__ ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(snake_case__ , snake_case__ ): raise type_error for value in row: if not isinstance(snake_case__ , (int, float) ): raise type_error if len(snake_case__ ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(snake_case__ ) else: _lowerCAmelCase : Optional[Any] = self.rows[0:position] + [row] + self.rows[position:] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(snake_case__ , snake_case__ ): raise type_error for value in column: if not isinstance(snake_case__ , (int, float) ): raise type_error if len(snake_case__ ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: _lowerCAmelCase : List[Any] = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: _lowerCAmelCase : Union[str, Any] = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): return NotImplemented return self.rows == other.rows def __ne__( self , snake_case__ ): '''simple docstring''' return not self == other def __neg__( self ): '''simple docstring''' return self * -1 def __add__( self , snake_case__ ): '''simple docstring''' if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , snake_case__ ): '''simple docstring''' if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , snake_case__ ): '''simple docstring''' if isinstance(snake_case__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(snake_case__ , snake_case__ ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(snake_case__ , snake_case__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) _lowerCAmelCase : List[Any] = self for _ in range(other - 1 ): result *= self return result @classmethod def a ( cls , snake_case__ , snake_case__ ): '''simple docstring''' return sum(row[i] * column[i] for i in range(len(snake_case__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
'''simple docstring''' def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] _lowerCAmelCase : int = 6 _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Optional[int] = 1_9_0_1 _lowerCAmelCase : Optional[Any] = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 _lowerCAmelCase : List[str] = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] if month > 1_2: year += 1 _lowerCAmelCase : Optional[int] = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
25
1
"""simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 2, 4, 6, 8] _SCREAMING_SNAKE_CASE : Dict = [1, 3, 5, 7, 9] def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[int] , _lowerCamelCase : int ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowerCamelCase_ = 0 for digit in range(10 ): lowerCamelCase_ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _lowerCamelCase , _lowerCamelCase ) return result lowerCamelCase_ = 0 for digita in range(10 ): lowerCamelCase_ = digita if (remainder + digita) % 2 == 0: lowerCamelCase_ = ODD_DIGITS else: lowerCamelCase_ = EVEN_DIGITS for digita in other_parity_digits: lowerCamelCase_ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _lowerCamelCase , _lowerCamelCase , ) return result def lowerCamelCase__ ( _lowerCamelCase : int = 9 ) -> int: lowerCamelCase_ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(_lowerCamelCase , 0 , [0] * length , _lowerCamelCase ) return result if __name__ == "__main__": print(F'''{solution() = }''')
183
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : int ) -> int: lowerCamelCase_ = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowerCamelCase_ = n - k # Calculate C(n,k) for i in range(_lowerCamelCase ): result *= n - i result //= i + 1 return result def lowerCamelCase__ ( _lowerCamelCase : int ) -> int: return binomial_coefficient(2 * node_count , _lowerCamelCase ) // (node_count + 1) def lowerCamelCase__ ( _lowerCamelCase : int ) -> int: if n < 0: raise ValueError('factorial() not defined for negative values' ) lowerCamelCase_ = 1 for i in range(1 , n + 1 ): result *= i return result def lowerCamelCase__ ( _lowerCamelCase : int ) -> int: return catalan_number(_lowerCamelCase ) * factorial(_lowerCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
183
1
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def UpperCAmelCase ( *_lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase=True , _lowerCamelCase=2 ): from .. import __version__ A : Union[str, Any] = take_from A : Union[str, Any] = () if not isinstance(args[0] , _lowerCamelCase ): A : Union[str, Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_lowerCamelCase ).base_version ) >= version.parse(_lowerCamelCase ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) A : List[str] = None if isinstance(_lowerCamelCase , _lowerCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_lowerCamelCase ),) A : str = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(_lowerCamelCase , _lowerCamelCase ): values += (getattr(_lowerCamelCase , _lowerCamelCase ),) A : Any = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: A : Optional[int] = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: A : Tuple = warning + " " if standard_warn else "" warnings.warn(warning + message , _lowerCamelCase , stacklevel=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) > 0: A : Optional[Any] = inspect.getouterframes(inspect.currentframe() )[1] A : Union[str, Any] = call_frame.filename A : List[Any] = call_frame.lineno A : int = call_frame.function A , A : Any = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(_lowerCamelCase ) == 0: return elif len(_lowerCamelCase ) == 1: return values[0] return values
256
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __SCREAMING_SNAKE_CASE = 3 def UpperCAmelCase ( _lowerCamelCase ): print("Generating primitive root of p" ) while True: A : str = random.randrange(3 , _lowerCamelCase ) if pow(_lowerCamelCase , 2 , _lowerCamelCase ) == 1: continue if pow(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) == 1: continue return g def UpperCAmelCase ( _lowerCamelCase ): print("Generating prime p..." ) A : int = rabin_miller.generate_large_prime(_lowerCamelCase ) # select large prime number. A : List[str] = primitive_root(_lowerCamelCase ) # one primitive root on modulo p. A : int = random.randrange(3 , _lowerCamelCase ) # private_key -> have to be greater than 2 for safety. A : Tuple = cryptomath.find_mod_inverse(pow(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) A : int = (key_size, e_a, e_a, p) A : str = (key_size, d) return public_key, private_key def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() A , A : Any = generate_key(_lowerCamelCase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , "w" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , "w" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def UpperCAmelCase ( ): print("Making key files..." ) make_key_files("elgamal" , 2048 ) print("Key files generation successful" ) if __name__ == "__main__": main()
256
1
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = "tiny-wmt19-en-ru" # Build # borrowed from a test SCREAMING_SNAKE_CASE = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] SCREAMING_SNAKE_CASE = dict(zip(vocab, range(len(vocab)))) SCREAMING_SNAKE_CASE = ["l o 123", "lo w 1456", "e r</w> 1789", ""] with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = Path(tmpdirname) SCREAMING_SNAKE_CASE = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] SCREAMING_SNAKE_CASE = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] SCREAMING_SNAKE_CASE = build_dir / VOCAB_FILES_NAMES["merges_file"] with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, "w") as fp: fp.write("\n".join(merges)) SCREAMING_SNAKE_CASE = FSMTTokenizer( langs=["en", "ru"], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) SCREAMING_SNAKE_CASE = FSMTConfig( langs=["ru", "en"], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(config) print(f'num of params {tiny_model.num_parameters()}') # Test SCREAMING_SNAKE_CASE = tokenizer(["Making tiny model"], return_tensors="pt") SCREAMING_SNAKE_CASE = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
247
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
247
1
import numpy as np def _UpperCamelCase ( UpperCamelCase_ : np.array ) -> np.array: """simple docstring""" return 1 / (1 + np.exp(-vector )) def _UpperCamelCase ( UpperCamelCase_ : np.array ) -> np.array: """simple docstring""" return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
122
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __snake_case : Optional[int] = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __snake_case : List[str] = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ __snake_case : Dict = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): def UpperCamelCase__ ( self ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , ): """simple docstring""" lowerCAmelCase__ = len(references[0] ) if any(len(_UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase__ = [[refs[i] for refs in references] for i in range(_UpperCamelCase )] lowerCAmelCase__ = TER( normalized=_UpperCamelCase , no_punct=_UpperCamelCase , asian_support=_UpperCamelCase , case_sensitive=_UpperCamelCase , ) lowerCAmelCase__ = sb_ter.corpus_score(_UpperCamelCase , _UpperCamelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
122
1
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase__ : Union[str, Any] = data_utils.TransfoXLTokenizer lowercase__ : Tuple = data_utils.TransfoXLCorpus lowercase__ : Union[str, Any] = data_utils lowercase__ : Union[str, Any] = data_utils def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case__ , '''rb''' ) as fp: lowerCAmelCase = pickle.load(snake_case__ , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) lowerCAmelCase = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(f"Save vocabulary to {pytorch_vocab_dump_path}" ) lowerCAmelCase = corpus.vocab.__dict__ torch.save(snake_case__ , snake_case__ ) lowerCAmelCase = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , snake_case__ ) lowerCAmelCase = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(f"Save dataset to {pytorch_dataset_dump_path}" ) torch.save(snake_case__ , snake_case__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model lowerCAmelCase = os.path.abspath(snake_case__ ) lowerCAmelCase = os.path.abspath(snake_case__ ) print(f"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}." ) # Initialise PyTorch model if transfo_xl_config_file == "": lowerCAmelCase = TransfoXLConfig() else: lowerCAmelCase = TransfoXLConfig.from_json_file(snake_case__ ) print(f"Building PyTorch model from configuration: {config}" ) lowerCAmelCase = TransfoXLLMHeadModel(snake_case__ ) lowerCAmelCase = load_tf_weights_in_transfo_xl(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model lowerCAmelCase = os.path.join(snake_case__ , snake_case__ ) lowerCAmelCase = os.path.join(snake_case__ , snake_case__ ) print(f"Save PyTorch model to {os.path.abspath(snake_case__ )}" ) torch.save(model.state_dict() , snake_case__ ) print(f"Save configuration file to {os.path.abspath(snake_case__ )}" ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) lowercase__ : Optional[int] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
338
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = ["""image_processor""", """tokenizer"""] UpperCAmelCase_ : int = """OwlViTImageProcessor""" UpperCAmelCase_ : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Any: lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __SCREAMING_SNAKE_CASE , ) lowerCAmelCase = kwargs.pop('''feature_extractor''' ) lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="max_length" , __SCREAMING_SNAKE_CASE="np" , **__SCREAMING_SNAKE_CASE ) ->int: if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or (isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(text[0] , __SCREAMING_SNAKE_CASE )): lowerCAmelCase = [self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )] elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(text[0] , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = [] # Maximum number of queries across batch lowerCAmelCase = max([len(__SCREAMING_SNAKE_CASE ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__SCREAMING_SNAKE_CASE ) != max_num_queries: lowerCAmelCase = t + [''' '''] * (max_num_queries - len(__SCREAMING_SNAKE_CASE )) lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) encodings.append(__SCREAMING_SNAKE_CASE ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": lowerCAmelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowerCAmelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCAmelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowerCAmelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCAmelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) lowerCAmelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCAmelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowerCAmelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) lowerCAmelCase = BatchEncoding() lowerCAmelCase = input_ids lowerCAmelCase = attention_mask if query_images is not None: lowerCAmelCase = BatchEncoding() lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).pixel_values lowerCAmelCase = query_pixel_values if images is not None: lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text is not None and images is not None: lowerCAmelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCAmelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__SCREAMING_SNAKE_CASE ) , tensor_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Optional[int]: return self.image_processor.post_process(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Any: return self.image_processor.post_process_object_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Tuple: return self.image_processor.post_process_image_guided_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->str: return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]: return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE_ ( self ) ->int: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __SCREAMING_SNAKE_CASE , ) return self.image_processor
338
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
206
from random import randint, random def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : int = 5 , ): SCREAMING_SNAKE_CASE = [[-1] * number_of_cells] # Create a highway without any car SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = max(UpperCAmelCase__ , 0 ) while i < number_of_cells: SCREAMING_SNAKE_CASE = ( randint(0 , UpperCAmelCase__ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def __lowerCamelCase (UpperCAmelCase__ : list , UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = highway_now[car_index + 1 :] for cell in range(len(UpperCAmelCase__ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(UpperCAmelCase__ , -1 ) def __lowerCamelCase (UpperCAmelCase__ : list , UpperCAmelCase__ : float , UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) # Beforce calculations, the highway is empty SCREAMING_SNAKE_CASE = [-1] * number_of_cells for car_index in range(UpperCAmelCase__ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed SCREAMING_SNAKE_CASE = min(highway_now[car_index] + 1 , UpperCAmelCase__ ) # Number of empty cell before the next car SCREAMING_SNAKE_CASE = get_distance(UpperCAmelCase__ , UpperCAmelCase__ ) - 1 # We can't have the car causing an accident SCREAMING_SNAKE_CASE = min(next_highway[car_index] , UpperCAmelCase__ ) if random() < probability: # Randomly, a driver will slow down SCREAMING_SNAKE_CASE = max(next_highway[car_index] - 1 , 0 ) return next_highway def __lowerCamelCase (UpperCAmelCase__ : list , UpperCAmelCase__ : int , UpperCAmelCase__ : float , UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = len(highway[0] ) for i in range(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = update(highway[i] , UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = [-1] * number_of_cells for car_index in range(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) SCREAMING_SNAKE_CASE = (car_index + speed) % number_of_cells # Commit the change of position SCREAMING_SNAKE_CASE = speed highway.append(UpperCAmelCase__ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
206
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __lowercase ( _A , _A , _A ) -> Any: # Initialise PyTorch model SCREAMING_SNAKE_CASE : Any = AlbertConfig.from_json_file(_A ) print(F"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE : str = AlbertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_albert(_A , _A , _A ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
245
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : str = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : List[Any] ="""table-transformer""" UpperCAmelCase__ : Union[str, Any] =["""past_key_values"""] UpperCAmelCase__ : Any ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Tuple , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Any=1_0_0 , UpperCAmelCase__ : Optional[Any]=6 , UpperCAmelCase__ : Dict=2_0_4_8 , UpperCAmelCase__ : Any=8 , UpperCAmelCase__ : List[str]=6 , UpperCAmelCase__ : Union[str, Any]=2_0_4_8 , UpperCAmelCase__ : int=8 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Dict="relu" , UpperCAmelCase__ : List[Any]=2_5_6 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Optional[int]=0.0 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : List[str]=1.0 , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : int="sine" , UpperCAmelCase__ : Dict="resnet50" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Union[str, Any]=1 , UpperCAmelCase__ : List[Any]=5 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : int=5 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : int=0.1 , **UpperCAmelCase__ : Union[str, Any] , ) ->Dict: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) SCREAMING_SNAKE_CASE : str = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : Optional[int] = backbone_config.get("""model_type""" ) SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : Optional[Any] = config_class.from_dict(UpperCAmelCase__ ) # set timm attributes to None SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = None, None, None SCREAMING_SNAKE_CASE : List[Any] = use_timm_backbone SCREAMING_SNAKE_CASE : List[Any] = backbone_config SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = num_queries SCREAMING_SNAKE_CASE : Optional[Any] = d_model SCREAMING_SNAKE_CASE : Any = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : List[str] = encoder_attention_heads SCREAMING_SNAKE_CASE : Tuple = decoder_ffn_dim SCREAMING_SNAKE_CASE : Optional[Any] = decoder_layers SCREAMING_SNAKE_CASE : str = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : List[Any] = attention_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_dropout SCREAMING_SNAKE_CASE : Tuple = activation_function SCREAMING_SNAKE_CASE : int = init_std SCREAMING_SNAKE_CASE : str = init_xavier_std SCREAMING_SNAKE_CASE : Tuple = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layers SCREAMING_SNAKE_CASE : Any = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : List[Any] = backbone SCREAMING_SNAKE_CASE : Optional[Any] = use_pretrained_backbone SCREAMING_SNAKE_CASE : Optional[Any] = dilation # Hungarian matcher SCREAMING_SNAKE_CASE : List[Any] = class_cost SCREAMING_SNAKE_CASE : Tuple = bbox_cost SCREAMING_SNAKE_CASE : Dict = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Optional[Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = bbox_loss_coefficient SCREAMING_SNAKE_CASE : List[Any] = giou_loss_coefficient SCREAMING_SNAKE_CASE : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__ ) @property def _lowercase ( self : List[str] ) ->int: """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self : Any ) ->int: """simple docstring""" return self.d_model class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : List[str] =version.parse("""1.11""" ) @property def _lowercase ( self : Union[str, Any] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase ( self : Optional[Any] ) ->float: """simple docstring""" return 1e-5 @property def _lowercase ( self : Tuple ) ->int: """simple docstring""" return 1_2
245
1
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase_ : __magic_name__ = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_ : Any = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: UpperCAmelCase_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : str = os.path.join(lowerCAmelCase_ , "feat_extract.json" ) feat_extract_first.to_json_file(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = self.feature_extraction_class.from_json_file(lowerCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _SCREAMING_SNAKE_CASE ( self : int ) -> str: UpperCAmelCase_ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Optional[Any] = feat_extract_first.save_pretrained(lowerCAmelCase_ )[0] check_json_file_has_correct_format(lowerCAmelCase_ ) UpperCAmelCase_ : str = self.feature_extraction_class.from_pretrained(lowerCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = self.feature_extraction_class() self.assertIsNotNone(lowerCAmelCase_ )
370
"""simple docstring""" def snake_case ( A__ = 10_00 ): UpperCAmelCase_ : Optional[Any] = 2**power UpperCAmelCase_ : Optional[int] = str(A__ ) UpperCAmelCase_ : Tuple = list(A__ ) UpperCAmelCase_ : Any = 0 for i in list_num: sum_of_num += int(A__ ) return sum_of_num if __name__ == "__main__": lowerCamelCase_ = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) lowerCamelCase_ = solution(power) print('''Sum of the digits is: ''', result)
253
0
from __future__ import annotations import os from collections.abc import Mapping __lowerCAmelCase = tuple[int, int] class __a : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: '''simple docstring''' lowercase__: set[int] = vertices lowercase__: dict[EdgeT, int] = { (min(lowerCAmelCase__ ), max(lowerCAmelCase__ )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowercase__: Optional[int] = weight def SCREAMING_SNAKE_CASE__ ( self ) -> Graph: '''simple docstring''' lowercase__: Graph = Graph({min(self.vertices )} , {} ) lowercase__: EdgeT lowercase__: int lowercase__: EdgeT lowercase__: int while len(subgraph.vertices ) < len(self.vertices ): lowercase__: Dict = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowercase__: Dict = edge lowercase__: List[str] = weight subgraph.add_edge(lowerCAmelCase__ , lowerCAmelCase__ ) return subgraph def snake_case_ ( snake_case = "p107_network.txt" ) -> int: lowercase__: str = os.path.abspath(os.path.dirname(snake_case ) ) lowercase__: str = os.path.join(snake_case , snake_case ) lowercase__: dict[EdgeT, int] = {} lowercase__: list[str] lowercase__: int lowercase__: int with open(snake_case ) as f: lowercase__: List[Any] = f.read().strip().split('\n' ) lowercase__: Any = [line.split(',' ) for line in data] for edgea in range(1 , len(snake_case ) ): for edgea in range(snake_case ): if adjaceny_matrix[edgea][edgea] != "-": lowercase__: Tuple = int(adjaceny_matrix[edgea][edgea] ) lowercase__: Graph = Graph(set(range(len(snake_case ) ) ) , snake_case ) lowercase__: Graph = graph.prims_algorithm() lowercase__: int = sum(graph.edges.values() ) lowercase__: int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
196
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : str = CpmAntTokenizer __lowercase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' super().setUp() lowercase__: Any = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] lowercase__: List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Optional[int] = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) lowercase__: Optional[Any] = '今天天气真好!' lowercase__: str = ['今天', '天气', '真', '好', '!'] lowercase__: Optional[Any] = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: List[str] = '今天天气真好!' lowercase__: List[str] = [tokenizer.bos_token] + tokens lowercase__: Tuple = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) lowercase__: Any = tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
196
1
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = DistilBertTokenizer UpperCamelCase = DistilBertTokenizerFast UpperCamelCase = True @slow def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
241
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase__ : '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=False , _UpperCAmelCase : str=10 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[int]=32 * 8 , _UpperCAmelCase : str=32 * 8 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=64 , ) -> str: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = is_training UpperCAmelCase_ = use_auxiliary_loss UpperCAmelCase_ = num_queries UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_size UpperCAmelCase_ = max_size UpperCAmelCase_ = num_labels UpperCAmelCase_ = hidden_dim UpperCAmelCase_ = hidden_dim def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCAmelCase ) UpperCAmelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase ) UpperCAmelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5 ).float() UpperCAmelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long() UpperCAmelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCAmelCase_ = self.num_queries UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = [1, 1, 1, 1] UpperCAmelCase_ = self.num_channels UpperCAmelCase_ = 64 UpperCAmelCase_ = 128 UpperCAmelCase_ = self.hidden_dim UpperCAmelCase_ = self.hidden_dim UpperCAmelCase_ = self.hidden_dim return config def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = output.encoder_hidden_states UpperCAmelCase_ = output.pixel_decoder_hidden_states UpperCAmelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_layers ) def lowercase__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=False ) -> str: '''simple docstring''' with torch.no_grad(): UpperCAmelCase_ = MaskaFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = MaskaFormerForUniversalSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() def comm_check_on_output(_UpperCAmelCase : List[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) UpperCAmelCase_ = model( pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MaskaFormerModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Dict ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_UpperCAmelCase ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="Mask2Former is not a generative model" ) def lowercase__ ( self : str ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' pass def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @slow def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCAmelCase_ = MaskaFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = (self.model_tester.min_size,) * 2 UpperCAmelCase_ = { "pixel_values": torch.randn((2, 3, *size) , device=_UpperCAmelCase ), "mask_labels": torch.randn((2, 10, *size) , device=_UpperCAmelCase ), "class_labels": torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(), } UpperCAmelCase_ = self.model_tester.get_config() UpperCAmelCase_ = MaskaFormerForUniversalSegmentation(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase_ = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss loss.backward() def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) UpperCAmelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCAmelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase = 1e-4 def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) UpperCAmelCase_ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCAmelCase_ = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCAmelCase_ = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) UpperCAmelCase_ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # masks_queries_logits UpperCAmelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCAmelCase_ = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] UpperCAmelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits UpperCAmelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase_ = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) UpperCAmelCase_ = inputs["pixel_values"].to(_UpperCAmelCase ) UpperCAmelCase_ = [el.to(_UpperCAmelCase ) for el in inputs["mask_labels"]] UpperCAmelCase_ = [el.to(_UpperCAmelCase ) for el in inputs["class_labels"]] with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
241
1
from collections.abc import Iterable from typing import Any class UpperCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase__ : int | None = None) ->Union[str, Any]: '''simple docstring''' A__ = value A__ = None # Added in order to delete a node easier A__ = None A__ = None def __repr__( self : Optional[Any]) ->str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1) class UpperCamelCase_ : '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase__ : Node | None = None) ->Optional[Any]: '''simple docstring''' A__ = root def __str__( self : List[str]) ->str: '''simple docstring''' return str(self.root) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node | None) ->None: '''simple docstring''' if new_children is not None: # reset its kids A__ = node.parent if node.parent is not None: # reset its parent if self.is_right(UpperCAmelCase__): # If it is the right children A__ = new_children else: A__ = new_children else: A__ = new_children def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Node) ->bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->bool: '''simple docstring''' return self.root is None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->None: '''simple docstring''' A__ = Node(UpperCAmelCase__) # create a new Node if self.empty(): # if Tree is empty A__ = new_node # set its root else: # Tree is not empty A__ = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: A__ = new_node # We insert the new node in a leaf break else: A__ = parent_node.left else: if parent_node.right is None: A__ = new_node break else: A__ = parent_node.right A__ = parent_node def SCREAMING_SNAKE_CASE ( self : Optional[int] , *UpperCAmelCase__ : Optional[Any]) ->None: '''simple docstring''' for value in values: self.__insert(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : List[str]) ->Node | None: '''simple docstring''' if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''') else: A__ = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: A__ = node.left if value < node.value else node.right return node def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Node | None = None) ->Node | None: '''simple docstring''' if node is None: if self.root is None: return None A__ = self.root if not self.empty(): while node.right is not None: A__ = node.right return node def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Node | None = None) ->Node | None: '''simple docstring''' if node is None: A__ = self.root if self.root is None: return None if not self.empty(): A__ = self.root while node.left is not None: A__ = node.left return node def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : int) ->None: '''simple docstring''' A__ = self.search(UpperCAmelCase__) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(UpperCAmelCase__ , UpperCAmelCase__) elif node.left is None: # Has only right children self.__reassign_nodes(UpperCAmelCase__ , node.right) elif node.right is None: # Has only left children self.__reassign_nodes(UpperCAmelCase__ , node.left) else: A__ = self.get_max( node.left) # Gets the max value of the left branch self.remove(tmp_node.value) # type: ignore A__ = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Node | None) ->Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left) yield from self.preorder_traverse(node.right) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Any=None) ->Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root) else: return traversal_function(self.root) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : list , UpperCAmelCase__ : Node | None) ->None: '''simple docstring''' if node: self.inorder(UpperCAmelCase__ , node.left) arr.append(node.value) self.inorder(UpperCAmelCase__ , node.right) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Node) ->int: '''simple docstring''' A__ = [] self.inorder(UpperCAmelCase__ , UpperCAmelCase__) # append all values to list using inorder traversal return arr[k - 1] def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[Node]: """simple docstring""" A__ = [] if curr_node is not None: A__ = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" A__ = (8, 3, 6, 1, 10, 14, 13, 4, 7) A__ = BinarySearchTree() for i in testlist: t.insert(lowercase_ ) # Prints all the elements of the list in order traversal print(lowercase_ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowercase_ ) print(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
14
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = [0] * len(lowercase_ ) A__ = [] A__ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph _lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
1
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Union[str, Any] = XGLMTokenizer __lowercase : int = XGLMTokenizerFast __lowercase : Optional[Any] = True __lowercase : str = True def snake_case_ ( self): super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """<pad>""" __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(len(lowerCAmelCase__) , 1_0_0_8) def snake_case_ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""This is a test""") self.assertListEqual(lowerCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def snake_case_ ( self): return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""") def snake_case_ ( self): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) __SCREAMING_SNAKE_CASE = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def snake_case_ ( self): if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """Hello World!""" __SCREAMING_SNAKE_CASE = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off __SCREAMING_SNAKE_CASE = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def snake_case_ ( self): # fmt: off __SCREAMING_SNAKE_CASE = { """input_ids""": [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="""facebook/xglm-564M""" , padding=lowerCAmelCase__ , )
255
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
255
1
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING a__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , **lowercase ) -> Union[str, Any]: super().__init__(**lowercase ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) self.check_model_type(lowercase ) def __lowerCamelCase ( self , **lowercase ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = {} __UpperCamelCase = {} # preprocess args if "points_per_batch" in kwargs: __UpperCamelCase = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: __UpperCamelCase = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: __UpperCamelCase = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: __UpperCamelCase = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: __UpperCamelCase = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: __UpperCamelCase = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: __UpperCamelCase = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: __UpperCamelCase = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: __UpperCamelCase = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: __UpperCamelCase = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: __UpperCamelCase = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: __UpperCamelCase = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , lowercase , *lowercase , lowercase=None , lowercase=None , **lowercase ) -> Union[str, Any]: return super().__call__(lowercase , *lowercase , num_workers=lowercase , batch_size=lowercase , **lowercase ) def __lowerCamelCase ( self , lowercase , lowercase=6_4 , lowercase = 0 , lowercase = 5_1_2 / 1_5_0_0 , lowercase = 3_2 , lowercase = 1 , ) -> Union[str, Any]: __UpperCamelCase = load_image(lowercase ) __UpperCamelCase = self.image_processor.size["""longest_edge"""] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.image_processor.generate_crop_boxes( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) __UpperCamelCase = self.image_processor(images=lowercase , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": __UpperCamelCase = self.get_inference_context() with inference_context(): __UpperCamelCase = self._ensure_tensor_on_device(lowercase , device=self.device ) __UpperCamelCase = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) __UpperCamelCase = image_embeddings __UpperCamelCase = grid_points.shape[1] __UpperCamelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , lowercase , lowercase ): __UpperCamelCase = grid_points[:, i : i + points_per_batch, :, :] __UpperCamelCase = input_labels[:, i : i + points_per_batch] __UpperCamelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def __lowerCamelCase ( self , lowercase , lowercase=0.88 , lowercase=0.95 , lowercase=0 , lowercase=1 , ) -> Dict: __UpperCamelCase = model_inputs.pop("""input_boxes""" ) __UpperCamelCase = model_inputs.pop("""is_last""" ) __UpperCamelCase = model_inputs.pop("""original_sizes""" ).tolist() __UpperCamelCase = model_inputs.pop("""reshaped_input_sizes""" ).tolist() __UpperCamelCase = self.model(**lowercase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __UpperCamelCase = model_outputs["""pred_masks"""] __UpperCamelCase = self.image_processor.post_process_masks( lowercase , lowercase , lowercase , lowercase , binarize=lowercase ) __UpperCamelCase = model_outputs["""iou_scores"""] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowercase , lowercase , lowercase , lowercase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def __lowerCamelCase ( self , lowercase , lowercase=False , lowercase=False , lowercase=0.7 , ) -> List[Any]: __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) __UpperCamelCase = torch.cat(lowercase ) __UpperCamelCase = torch.cat(lowercase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.image_processor.post_process_for_mask_generation( lowercase , lowercase , lowercase , lowercase ) __UpperCamelCase = defaultdict(lowercase ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowercase ) __UpperCamelCase = {} if output_rle_mask: __UpperCamelCase = rle_mask if output_bboxes_mask: __UpperCamelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
349
'''simple docstring''' import logging import os from .state import PartialState class UpperCAmelCase__ ( logging.LoggerAdapter): @staticmethod def __lowerCamelCase ( lowercase ) -> Dict: __UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self , lowercase , lowercase , *lowercase , **lowercase ) -> List[str]: if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) __UpperCamelCase = kwargs.pop("""main_process_only""" , lowercase ) __UpperCamelCase = kwargs.pop("""in_order""" , lowercase ) if self.isEnabledFor(lowercase ): if self._should_log(lowercase ): __UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase ) self.logger.log(lowercase , lowercase , *lowercase , **lowercase ) elif in_order: __UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase ) self.logger.log(lowercase , lowercase , *lowercase , **lowercase ) state.wait_for_everyone() def _lowercase ( __A ,__A = None ): '''simple docstring''' if log_level is None: __UpperCamelCase = os.environ.get("""ACCELERATE_LOG_LEVEL""" ,__A ) __UpperCamelCase = logging.getLogger(__A ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__A ,{} )
349
1
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A ( UpperCAmelCase_ ): __UpperCAmelCase : Dict = 'openai/whisper-base' __UpperCAmelCase : Tuple = ( 'This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ' 'transcribed text.' ) __UpperCAmelCase : Tuple = 'transcriber' __UpperCAmelCase : Optional[Any] = WhisperProcessor __UpperCAmelCase : Dict = WhisperForConditionalGeneration __UpperCAmelCase : List[str] = ['audio'] __UpperCAmelCase : List[str] = ['text'] def lowercase_ (self : Tuple , __UpperCAmelCase : List[str] ) -> int: """simple docstring""" return self.pre_processor(lowerCamelCase_ , return_tensors="pt" ).input_features def lowercase_ (self : Any , __UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" return self.model.generate(inputs=lowerCamelCase_ ) def lowercase_ (self : List[str] , __UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" return self.pre_processor.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ )[0]
361
from __future__ import annotations def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' UpperCAmelCase__ = str(__A ) return n == n[::-1] def lowerCAmelCase_ ( __A = 1_000_000 ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = 0 for i in range(1, __A ): if is_palindrome(__A ) and is_palindrome(bin(__A ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
143
0
from collections.abc import Sequence from queue import Queue class A__ : """simple docstring""" def __init__( self , lowercase , lowercase , lowercase , lowercase=None , lowercase=None) -> Dict: '''simple docstring''' a__ : Tuple = start a__ : Any = end a__ : Optional[Any] = val a__ : Optional[Any] = (start + end) // 2 a__ : Optional[Any] = left a__ : Any = right def __repr__( self) -> int: '''simple docstring''' return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class A__ : """simple docstring""" def __init__( self , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' a__ : Tuple = collection a__ : Tuple = function if self.collection: a__ : str = self._build_tree(0 , len(lowercase) - 1) def __lowercase ( self , lowercase , lowercase) -> str: '''simple docstring''' self._update_tree(self.root , lowercase , lowercase) def __lowercase ( self , lowercase , lowercase) -> List[str]: '''simple docstring''' return self._query_range(self.root , lowercase , lowercase) def __lowercase ( self , lowercase , lowercase) -> Any: '''simple docstring''' if start == end: return SegmentTreeNode(lowercase , lowercase , self.collection[start]) a__ : Union[str, Any] = (start + end) // 2 a__ : Any = self._build_tree(lowercase , lowercase) a__ : str = self._build_tree(mid + 1 , lowercase) return SegmentTreeNode(lowercase , lowercase , self.fn(left.val , right.val) , lowercase , lowercase) def __lowercase ( self , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' if node.start == i and node.end == i: a__ : Tuple = val return if i <= node.mid: self._update_tree(node.left , lowercase , lowercase) else: self._update_tree(node.right , lowercase , lowercase) a__ : Union[str, Any] = self.fn(node.left.val , node.right.val) def __lowercase ( self , lowercase , lowercase , lowercase) -> Tuple: '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , lowercase , lowercase) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , lowercase , node.mid) , self._query_range(node.right , node.mid + 1 , lowercase) , ) else: # range in right child tree return self._query_range(node.right , lowercase , lowercase) def __lowercase ( self) -> str: '''simple docstring''' if self.root is not None: a__ : List[str] = Queue() queue.put(self.root) while not queue.empty(): a__ : int = queue.get() yield node if node.left is not None: queue.put(node.left) if node.right is not None: queue.put(node.right) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 5_0) lowercase : str = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
99
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __SCREAMING_SNAKE_CASE = [[1, 2, 4], [1, 2, 3, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ ) self.assertTrue(isinstance(dc.token_ids , UpperCAmelCase__ ) ) with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase_ ( self : Any ) -> int: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __SCREAMING_SNAKE_CASE = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint(UpperCAmelCase__ ) # fails here def UpperCAmelCase_ ( self : List[Any] ) -> Any: __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(3 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is True and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase_ ( self : str ) -> List[str]: __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
54
0
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _UpperCAmelCase ( nn.Module ): a : int a : int a : float =0.0 a : int =1 a : int =1 a : bool =True a : bool =False a : bool =False a : bool =False a : jnp.dtype =jnp.floataa def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = [] for i in range(self.num_layers ): __lowerCAmelCase = self.in_channels if i == 0 else self.out_channels __lowerCAmelCase = FlaxResnetBlockaD( in_channels=__SCREAMING_SNAKE_CASE,out_channels=self.out_channels,dropout_prob=self.dropout,dtype=self.dtype,) resnets.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FlaxTransformeraDModel( in_channels=self.out_channels,n_heads=self.num_attention_heads,d_head=self.out_channels // self.num_attention_heads,depth=1,use_linear_projection=self.use_linear_projection,only_cross_attention=self.only_cross_attention,use_memory_efficient_attention=self.use_memory_efficient_attention,dtype=self.dtype,) attentions.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = resnets __lowerCAmelCase = attentions if self.add_downsample: __lowerCAmelCase = FlaxDownsampleaD(self.out_channels,dtype=self.dtype ) def __call__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' __lowerCAmelCase = () for resnet, attn in zip(self.resnets,self.attentions ): __lowerCAmelCase = resnet(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = attn(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: __lowerCAmelCase = self.downsamplers_a(__SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class _UpperCAmelCase ( nn.Module ): a : int a : int a : float =0.0 a : int =1 a : bool =True a : jnp.dtype =jnp.floataa def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [] for i in range(self.num_layers ): __lowerCAmelCase = self.in_channels if i == 0 else self.out_channels __lowerCAmelCase = FlaxResnetBlockaD( in_channels=__SCREAMING_SNAKE_CASE,out_channels=self.out_channels,dropout_prob=self.dropout,dtype=self.dtype,) resnets.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = resnets if self.add_downsample: __lowerCAmelCase = FlaxDownsampleaD(self.out_channels,dtype=self.dtype ) def __call__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' __lowerCAmelCase = () for resnet in self.resnets: __lowerCAmelCase = resnet(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: __lowerCAmelCase = self.downsamplers_a(__SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class _UpperCAmelCase ( nn.Module ): a : int a : int a : int a : float =0.0 a : int =1 a : int =1 a : bool =True a : bool =False a : bool =False a : bool =False a : jnp.dtype =jnp.floataa def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = [] for i in range(self.num_layers ): __lowerCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCAmelCase = self.prev_output_channel if i == 0 else self.out_channels __lowerCAmelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels,out_channels=self.out_channels,dropout_prob=self.dropout,dtype=self.dtype,) resnets.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FlaxTransformeraDModel( in_channels=self.out_channels,n_heads=self.num_attention_heads,d_head=self.out_channels // self.num_attention_heads,depth=1,use_linear_projection=self.use_linear_projection,only_cross_attention=self.only_cross_attention,use_memory_efficient_attention=self.use_memory_efficient_attention,dtype=self.dtype,) attentions.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = resnets __lowerCAmelCase = attentions if self.add_upsample: __lowerCAmelCase = FlaxUpsampleaD(self.out_channels,dtype=self.dtype ) def __call__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' for resnet, attn in zip(self.resnets,self.attentions ): # pop res hidden states __lowerCAmelCase = res_hidden_states_tuple[-1] __lowerCAmelCase = res_hidden_states_tuple[:-1] __lowerCAmelCase = jnp.concatenate((hidden_states, res_hidden_states),axis=-1 ) __lowerCAmelCase = resnet(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = attn(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) if self.add_upsample: __lowerCAmelCase = self.upsamplers_a(__SCREAMING_SNAKE_CASE ) return hidden_states class _UpperCAmelCase ( nn.Module ): a : int a : int a : int a : float =0.0 a : int =1 a : bool =True a : jnp.dtype =jnp.floataa def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [] for i in range(self.num_layers ): __lowerCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCAmelCase = self.prev_output_channel if i == 0 else self.out_channels __lowerCAmelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels,out_channels=self.out_channels,dropout_prob=self.dropout,dtype=self.dtype,) resnets.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = resnets if self.add_upsample: __lowerCAmelCase = FlaxUpsampleaD(self.out_channels,dtype=self.dtype ) def __call__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' for resnet in self.resnets: # pop res hidden states __lowerCAmelCase = res_hidden_states_tuple[-1] __lowerCAmelCase = res_hidden_states_tuple[:-1] __lowerCAmelCase = jnp.concatenate((hidden_states, res_hidden_states),axis=-1 ) __lowerCAmelCase = resnet(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) if self.add_upsample: __lowerCAmelCase = self.upsamplers_a(__SCREAMING_SNAKE_CASE ) return hidden_states class _UpperCAmelCase ( nn.Module ): a : int a : float =0.0 a : int =1 a : int =1 a : bool =False a : bool =False a : jnp.dtype =jnp.floataa def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [ FlaxResnetBlockaD( in_channels=self.in_channels,out_channels=self.in_channels,dropout_prob=self.dropout,dtype=self.dtype,) ] __lowerCAmelCase = [] for _ in range(self.num_layers ): __lowerCAmelCase = FlaxTransformeraDModel( in_channels=self.in_channels,n_heads=self.num_attention_heads,d_head=self.in_channels // self.num_attention_heads,depth=1,use_linear_projection=self.use_linear_projection,use_memory_efficient_attention=self.use_memory_efficient_attention,dtype=self.dtype,) attentions.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FlaxResnetBlockaD( in_channels=self.in_channels,out_channels=self.in_channels,dropout_prob=self.dropout,dtype=self.dtype,) resnets.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = resnets __lowerCAmelCase = attentions def __call__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' __lowerCAmelCase = self.resnets[0](__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for attn, resnet in zip(self.attentions,self.resnets[1:] ): __lowerCAmelCase = attn(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = resnet(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,deterministic=__SCREAMING_SNAKE_CASE ) return hidden_states
46
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _UpperCAmelCase ( lowerCAmelCase_ ): def lowerCamelCase__ ( self ): '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self._create_example_records() __lowerCAmelCase = Dataset.from_list(__SCREAMING_SNAKE_CASE ) self.assertListEqual(dset.column_names,["""col_1""", """col_2"""] ) for i, r in enumerate(__SCREAMING_SNAKE_CASE ): self.assertDictEqual(__SCREAMING_SNAKE_CASE,example_records[i] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self._create_example_records() __lowerCAmelCase = Dataset.from_list(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info,dset_from_dict.info ) def lowerCamelCase__ ( self ): # checks what happens with missing columns '''simple docstring''' __lowerCAmelCase = [{"""col_1""": 1}, {"""col_2""": """x"""}] __lowerCAmelCase = Dataset.from_list(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset[0],{"""col_1""": 1} ) self.assertDictEqual(dset[1],{"""col_1""": None} ) # NB: first record is used for columns def lowerCamelCase__ ( self ): # checks if the type can be inferred from the second record '''simple docstring''' __lowerCAmelCase = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __lowerCAmelCase = Dataset.from_list(__SCREAMING_SNAKE_CASE ) self.assertEqual(dset.info.features["""col_1"""],Sequence(Value("""int64""" ) ) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = Dataset.from_list([] ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ),0 ) self.assertListEqual(dset.column_names,[] )
46
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Tuple = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : int = '''luke''' def __init__(self , SCREAMING_SNAKE_CASE__=5_02_67 , SCREAMING_SNAKE_CASE__=50_00_00 , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=2_56 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , **SCREAMING_SNAKE_CASE__ , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = entity_vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : int = entity_emb_size SCREAMING_SNAKE_CASE__ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE__ : int = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE__ : Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE__ : int = initializer_range SCREAMING_SNAKE_CASE__ : str = layer_norm_eps SCREAMING_SNAKE_CASE__ : Any = use_entity_aware_attention SCREAMING_SNAKE_CASE__ : Union[str, Any] = classifier_dropout
25
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=_snake_case ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=_snake_case ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=_snake_case ) return parser.parse_args() def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : int = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE__ : Dict = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE__ : int = script_fpath.stem SCREAMING_SNAKE_CASE__ : Optional[Any] = importlib.import_module(_snake_case ) # Patch sys.argv SCREAMING_SNAKE_CASE__ : str = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
25
1
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _snake_case ( lowercase__ : int ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :Dict = filter(lambda lowercase__ : p.requires_grad , model.parameters() ) lowerCAmelCase_ :Any = sum([np.prod(p.size() ) for p in model_parameters] ) return params __UpperCAmelCase = logging.getLogger(__name__) def _snake_case ( lowercase__ : int , lowercase__ : Dict ) -> int: '''simple docstring''' if metric == "rouge2": lowerCAmelCase_ :Any = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": lowerCAmelCase_ :Tuple = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": lowerCAmelCase_ :Dict = """{val_avg_em:.4f}-{step_count}""" elif metric == "loss": lowerCAmelCase_ :Optional[int] = """{val_avg_loss:.4f}-{step_count}""" else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" """ function.""" ) lowerCAmelCase_ :List[Any] = ModelCheckpoint( dirpath=lowercase__ , filename=lowercase__ , monitor=f"""val_{metric}""" , mode="""max""" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _snake_case ( lowercase__ : List[str] , lowercase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' return EarlyStopping( monitor=f"""val_{metric}""" , mode="""min""" if """loss""" in metric else """max""" , patience=lowercase__ , verbose=lowercase__ , ) class _SCREAMING_SNAKE_CASE ( pl.Callback ): def __lowerCAmelCase ( self , __A , __A ) -> Optional[Any]: lowerCAmelCase_ :Any = {f"""lr_group_{i}""": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__A ) @rank_zero_only def __lowerCAmelCase ( self , __A , __A , __A , __A=True ) -> None: logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) lowerCAmelCase_ :Tuple = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results lowerCAmelCase_ :Optional[int] = Path(pl_module.hparams.output_dir ) if type_path == "test": lowerCAmelCase_ :int = od / """test_results.txt""" lowerCAmelCase_ :Any = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowerCAmelCase_ :int = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" lowerCAmelCase_ :List[str] = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__A ) generations_file.parent.mkdir(exist_ok=__A ) with open(__A , """a+""" ) as writer: for key in sorted(__A ): if key in ["log", "progress_bar", "preds"]: continue lowerCAmelCase_ :Optional[int] = metrics[key] if isinstance(__A , torch.Tensor ): lowerCAmelCase_ :Dict = val.item() lowerCAmelCase_ :int = f"""{key}: {val:.6f}\n""" writer.write(__A ) if not save_generations: return if "preds" in metrics: lowerCAmelCase_ :List[Any] = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(__A ) @rank_zero_only def __lowerCAmelCase ( self , __A , __A ) -> Union[str, Any]: try: lowerCAmelCase_ :Optional[int] = pl_module.model.model.num_parameters() except AttributeError: lowerCAmelCase_ :Any = pl_module.model.num_parameters() lowerCAmelCase_ :int = count_trainable_parameters(__A ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self , __A , __A ) -> Any: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__A , __A , """test""" ) @rank_zero_only def __lowerCAmelCase ( self , __A , __A ) -> List[str]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
1
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase = 16 __UpperCAmelCase = 32 def _snake_case ( lowercase__ : Accelerator , lowercase__ : int = 1_6 , lowercase__ : str = "bert-base-cased" ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :List[str] = AutoTokenizer.from_pretrained(lowercase__ ) lowerCAmelCase_ :Optional[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase__ : List[str] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ :str = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase_ :str = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ :List[str] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase__ , padding="""max_length""" , max_length=1_2_8 , return_tensors="""pt""" ) return tokenizer.pad(lowercase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase_ :Optional[int] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) lowerCAmelCase_ :Any = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader def _snake_case ( lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : int ) -> List[str]: '''simple docstring''' model.eval() lowerCAmelCase_ :Dict = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ :Optional[int] = model(**lowercase__ ) lowerCAmelCase_ :Optional[int] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase__ ) - 1: lowerCAmelCase_ :Optional[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase_ :Any = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) lowerCAmelCase_ :Tuple = metric.compute() return eval_metric["accuracy"] def _snake_case ( lowercase__ : str , lowercase__ : List[str] ) -> Any: '''simple docstring''' lowerCAmelCase_ :Optional[int] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ :int = config["""lr"""] lowerCAmelCase_ :Union[str, Any] = int(config["""num_epochs"""] ) lowerCAmelCase_ :Optional[int] = int(config["""seed"""] ) lowerCAmelCase_ :Union[str, Any] = int(config["""batch_size"""] ) lowerCAmelCase_ :Optional[Any] = args.model_name_or_path set_seed(lowercase__ ) lowerCAmelCase_ , lowerCAmelCase_ :Dict = get_dataloaders(lowercase__ , lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ :str = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ ) # Instantiate optimizer lowerCAmelCase_ :List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase_ :str = optimizer_cls(params=model.parameters() , lr=lowercase__ ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase_ :Union[str, Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: lowerCAmelCase_ :Any = 1 lowerCAmelCase_ :str = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase_ :List[str] = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , ) else: lowerCAmelCase_ :int = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase_ :List[str] = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase_ :List[Any] = 0 lowerCAmelCase_ :str = evaluate.load("""glue""" , """mrpc""" ) lowerCAmelCase_ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: lowerCAmelCase_ :Dict = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCAmelCase_ :Optional[Any] = args.resume_from_checkpoint.split("""epoch_""" )[1] lowerCAmelCase_ :int = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCAmelCase_ :Union[str, Any] = int(lowercase__ ) + 1 lowerCAmelCase_ :Optional[int] = evaluation_loop(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) accelerator.print("""resumed checkpoint performance:""" , lowercase__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , """r""" ) as f: lowerCAmelCase_ :List[str] = json.load(lowercase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCAmelCase_ :List[Any] = {} for epoch in range(lowercase__ , lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): lowerCAmelCase_ :Optional[int] = model(**lowercase__ ) lowerCAmelCase_ :Dict = outputs.loss lowerCAmelCase_ :int = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCAmelCase_ :List[str] = f"""epoch_{epoch}""" lowerCAmelCase_ :Any = os.path.join(args.output_dir , lowercase__ ) accelerator.save_state(lowercase__ ) lowerCAmelCase_ :List[Any] = evaluation_loop(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) lowerCAmelCase_ :Union[str, Any] = accuracy lowerCAmelCase_ :Any = lr_scheduler.get_lr()[0] lowerCAmelCase_ :str = optimizer.param_groups[0]["""lr"""] lowerCAmelCase_ :List[Any] = epoch lowerCAmelCase_ :Tuple = overall_step accelerator.print(f"""epoch {epoch}:""" , lowercase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def _snake_case ( ) -> int: '''simple docstring''' lowerCAmelCase_ :List[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase__ , ) parser.add_argument( """--output_dir""" , type=lowercase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=lowercase__ , default=lowercase__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=lowercase__ , default=lowercase__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase__ , default=2 , help="""Number of train epochs.""" , ) lowerCAmelCase_ :Optional[int] = parser.parse_args() lowerCAmelCase_ :List[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 4_2, """batch_size""": 1_6} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
1
1
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class UpperCAmelCase_ ( _lowercase): snake_case__ = '''''' snake_case__ = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self : Tuple , __UpperCamelCase : Optional[DatasetInfo] = None , __UpperCamelCase : Optional[str] = None , **__UpperCamelCase : Union[str, Any] , ) -> Optional[int]: super().__init__(self , **__UpperCamelCase ) _UpperCamelCase = repo_info _UpperCamelCase = token _UpperCamelCase = None def _UpperCamelCase ( self : List[str] ) -> Union[str, Any]: if self.dir_cache is None: _UpperCamelCase = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _UpperCamelCase = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(__UpperCamelCase ): {'''name''': str(__UpperCamelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : str = "rb" , **__UpperCamelCase : Union[str, Any] , ) -> List[Any]: if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) _UpperCamelCase = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Any , **__UpperCamelCase : List[Any] ) -> int: self._get_dirs() _UpperCamelCase = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def _UpperCamelCase ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : int=False , **__UpperCamelCase : int ) -> int: self._get_dirs() _UpperCamelCase = PurePosixPath(path.strip('''/''' ) ) _UpperCamelCase = {} for p, f in self.dir_cache.items(): _UpperCamelCase = PurePosixPath(p.strip('''/''' ) ) _UpperCamelCase = p.parent if root == path: _UpperCamelCase = f _UpperCamelCase = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
256
"""simple docstring""" def lowercase ( a__ : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase = len(a__ ) while cur > 1: # Find the maximum number in arr _UpperCamelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _UpperCamelCase = arr[mi::-1] + arr[mi + 1 : len(a__ )] # Reverse whole list _UpperCamelCase = arr[cur - 1 :: -1] + arr[cur : len(a__ )] cur -= 1 return arr if __name__ == "__main__": UpperCAmelCase = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
256
1
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict=13 , lowerCAmelCase : int=7 , lowerCAmelCase : Any=True , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : int=64 , lowerCAmelCase : Any=32 , lowerCAmelCase : str=5 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : str=37 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=5_12 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : str=2 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : Dict=3 , lowerCAmelCase : int=4 , lowerCAmelCase : Union[str, Any]=None , ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = parent __lowerCAmelCase : Tuple = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : List[str] = is_training __lowerCAmelCase : Dict = use_input_mask __lowerCAmelCase : Optional[int] = use_token_type_ids __lowerCAmelCase : List[str] = use_labels __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : List[str] = hidden_size __lowerCAmelCase : Optional[int] = embedding_size __lowerCAmelCase : Optional[int] = num_hidden_layers __lowerCAmelCase : Optional[Any] = num_attention_heads __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : Optional[int] = hidden_act __lowerCAmelCase : Any = hidden_dropout_prob __lowerCAmelCase : Optional[int] = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : Optional[Any] = type_vocab_size __lowerCAmelCase : Optional[Any] = type_sequence_label_size __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : Optional[Any] = num_labels __lowerCAmelCase : Union[str, Any] = num_choices __lowerCAmelCase : Union[str, Any] = scope def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Dict = None if self.use_input_mask: __lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : List[str] = None if self.use_token_type_ids: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : List[Any] = None __lowerCAmelCase : Tuple = None __lowerCAmelCase : int = None if self.use_labels: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Any = MobileBertModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase ) __lowerCAmelCase : List[Any] = model(lowerCAmelCase , token_type_ids=lowerCAmelCase ) __lowerCAmelCase : Tuple = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = MobileBertForMaskedLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = MobileBertForNextSentencePrediction(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[Any] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = MobileBertForPreTraining(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[int] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , next_sentence_label=lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = MobileBertForQuestionAnswering(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : int = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.num_labels __lowerCAmelCase : int = MobileBertForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[int] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.num_labels __lowerCAmelCase : Dict = MobileBertForTokenClassification(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Tuple = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = self.num_choices __lowerCAmelCase : List[Any] = MobileBertForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) , ) : List[Any] = config_and_inputs __lowerCAmelCase : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : str =( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase : Optional[int] =( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : Union[str, Any] =True def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=False ) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class in get_values(lowerCAmelCase ): __lowerCAmelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = MobileBertModelTester(self ) __lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase ) def snake_case_ (__A : Any ) -> Optional[Any]: return torch.tensor( __A , dtype=torch.long , device=__A , ) __UpperCAmelCase = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCAmelCase ) __lowerCAmelCase : int = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __lowerCAmelCase : List[str] = model(lowerCAmelCase )[0] __lowerCAmelCase : List[Any] = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , lowerCAmelCase ) __lowerCAmelCase : int = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] , device=lowerCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
139
__UpperCAmelCase = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ __UpperCAmelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] __UpperCAmelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
139
1
'''simple docstring''' import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def lowerCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Any=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Union[str, Any]=None , ) ->Any: if attention_mask is None: _SCREAMING_SNAKE_CASE = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _SCREAMING_SNAKE_CASE = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__lowerCamelCase ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__lowerCamelCase ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__lowerCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class a_ : '''simple docstring''' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=16 , A=2 , A=4 , A=4 , A="relu" , A=0.1 , A=0.1 , A=0.0 , A=0.0 , A=20 , A=2 , A=1 , A=0 , ) -> str: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = encoder_layerdrop _SCREAMING_SNAKE_CASE = decoder_layerdrop _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = bos_token_id def snake_case_( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = self.eos_token_id # Eos Token _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _SCREAMING_SNAKE_CASE = input_ids.clamp(self.pad_token_id + 1 ) _SCREAMING_SNAKE_CASE = decoder_input_ids.clamp(self.pad_token_id + 1 ) _SCREAMING_SNAKE_CASE = self.get_config() _SCREAMING_SNAKE_CASE = prepare_mam_aaa_inputs_dict(A , A , A ) return config, inputs_dict def snake_case_( self ) -> Any: return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def snake_case_( self ) -> Tuple: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() return config, inputs_dict def snake_case_( self , A , A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = MaMaaaModel(config=A ).get_decoder().to(A ).eval() _SCREAMING_SNAKE_CASE = inputs_dict["""input_ids"""] _SCREAMING_SNAKE_CASE = inputs_dict["""attention_mask"""] _SCREAMING_SNAKE_CASE = inputs_dict["""head_mask"""] # first forward pass _SCREAMING_SNAKE_CASE = model(A , attention_mask=A , head_mask=A , use_cache=A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) _SCREAMING_SNAKE_CASE = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _SCREAMING_SNAKE_CASE = model(A , attention_mask=A )["""last_hidden_state"""] _SCREAMING_SNAKE_CASE = model(A , attention_mask=A , past_key_values=A )[ """last_hidden_state""" ] # select random slice _SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() _SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() _SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-2 ) ) def snake_case_( self , A , A ) -> str: _SCREAMING_SNAKE_CASE = MaMaaaModel(config=A ).to(A ).eval() _SCREAMING_SNAKE_CASE = model(**A ) _SCREAMING_SNAKE_CASE = outputs.encoder_last_hidden_state _SCREAMING_SNAKE_CASE = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE = model.get_encoder() encoder.save_pretrained(A ) _SCREAMING_SNAKE_CASE = MaMaaaEncoder.from_pretrained(A ).to(A ) _SCREAMING_SNAKE_CASE = encoder(inputs_dict["""input_ids"""] , attention_mask=inputs_dict["""attention_mask"""] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE = model.get_decoder() decoder.save_pretrained(A ) _SCREAMING_SNAKE_CASE = MaMaaaDecoder.from_pretrained(A ).to(A ) _SCREAMING_SNAKE_CASE = decoder( input_ids=inputs_dict["""decoder_input_ids"""] , attention_mask=inputs_dict["""decoder_attention_mask"""] , encoder_hidden_states=A , encoder_attention_mask=inputs_dict["""attention_mask"""] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) UpperCamelCase = (MaMaaaForConditionalGeneration,) if is_torch_available() else () UpperCamelCase = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) UpperCamelCase = True UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False def snake_case_( self , A , A , A , A , A ) -> List[Any]: if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = MaMaaaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A ) def snake_case_( self ) -> List[str]: self.config_tester.run_common_tests() def snake_case_( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model_class.from_pretrained(A , output_loading_info=A ) self.assertEqual(info["""missing_keys"""] , [] ) def snake_case_( self ) -> int: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*A ) def snake_case_( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): _SCREAMING_SNAKE_CASE = model_class(A ) model.to(A ) model.eval() _SCREAMING_SNAKE_CASE = copy.deepcopy(self._prepare_for_class(A , A ) ) if not self.is_encoder_decoder: _SCREAMING_SNAKE_CASE = inputs["""input_ids"""] del inputs["input_ids"] else: _SCREAMING_SNAKE_CASE = inputs["""input_ids"""] _SCREAMING_SNAKE_CASE = inputs.get("""decoder_input_ids""" , A ) del inputs["input_ids"] inputs.pop("""decoder_input_ids""" , A ) _SCREAMING_SNAKE_CASE = model.get_input_embeddings() if not self.is_encoder_decoder: _SCREAMING_SNAKE_CASE = wte(A ) else: _SCREAMING_SNAKE_CASE = wte(A ) _SCREAMING_SNAKE_CASE = wte(A ) with torch.no_grad(): model(**A )[0] def snake_case_( self ) -> Tuple: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = input_dict["""input_ids"""] _SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(A ) _SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(A ).eval().to(A ) if torch_device == "cuda": model.half() model.generate(A , attention_mask=A ) model.generate(num_beams=4 , do_sample=A , early_stopping=A , num_return_sequences=3 ) def lowerCamelCase ( __lowerCamelCase : Any ) ->Tuple: return torch.tensor(__lowerCamelCase , dtype=torch.long , device=__lowerCamelCase ) lowercase_ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case_( self ) -> Any: return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ) def snake_case_( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(A ) _SCREAMING_SNAKE_CASE = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) _SCREAMING_SNAKE_CASE = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) _SCREAMING_SNAKE_CASE = prepare_mam_aaa_inputs_dict(model.config , A , A ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**A )[0] _SCREAMING_SNAKE_CASE = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , A ) # change to expected output here _SCREAMING_SNAKE_CASE = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=A ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=A ) ) def snake_case_( self ) -> int: _SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(A ) # change to intended input _SCREAMING_SNAKE_CASE = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) _SCREAMING_SNAKE_CASE = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) _SCREAMING_SNAKE_CASE = prepare_mam_aaa_inputs_dict(model.config , A , A ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**A )[0] _SCREAMING_SNAKE_CASE = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , A ) # change to expected output here _SCREAMING_SNAKE_CASE = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=A ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=A ) ) def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(A ) _SCREAMING_SNAKE_CASE = MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" , src_lang="""fr""" , tgt_lang="""en""" ) _SCREAMING_SNAKE_CASE = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams _SCREAMING_SNAKE_CASE = tokenizer(A , padding=A , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = model.generate( input_ids=dct["""input_ids"""].to(A ) , attention_mask=dct["""attention_mask"""].to(A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("""en""" ) , ) _SCREAMING_SNAKE_CASE = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] _SCREAMING_SNAKE_CASE = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=A , skip_special_tokens=A ) assert generated == expected_en
58
'''simple docstring''' from collections.abc import Sequence def lowerCamelCase ( __lowerCamelCase : Sequence[float] , __lowerCamelCase : bool = False ) ->float: if not arr: return 0 _SCREAMING_SNAKE_CASE = 0 if allow_empty_subarrays else float("""-inf""" ) _SCREAMING_SNAKE_CASE = 0.0 for num in arr: _SCREAMING_SNAKE_CASE = max(0 if allow_empty_subarrays else num , curr_sum + num ) _SCREAMING_SNAKE_CASE = max(__lowerCamelCase , __lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowercase_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
58
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _snake_case = logging.get_logger(__name__) # General docstring _snake_case = """RegNetConfig""" # Base docstring _snake_case = """facebook/regnet-y-040""" _snake_case = [1, 1088, 7, 7] # Image classification docstring _snake_case = """facebook/regnet-y-040""" _snake_case = """tabby, tabby cat""" _snake_case = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase ( nn.Module ): def __init__( self :Dict , _lowercase :int , _lowercase :int , _lowercase :int = 3 , _lowercase :int = 1 , _lowercase :int = 1 , _lowercase :Optional[str] = "relu" , ): '''simple docstring''' super().__init__() lowercase__ = nn.Convad( _lowercase , _lowercase , kernel_size=_lowercase , stride=_lowercase , padding=kernel_size // 2 , groups=_lowercase , bias=_lowercase , ) lowercase__ = nn.BatchNormad(_lowercase ) lowercase__ = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self :str , _lowercase :Optional[int] ): '''simple docstring''' lowercase__ = self.convolution(_lowercase ) lowercase__ = self.normalization(_lowercase ) lowercase__ = self.activation(_lowercase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self :Union[str, Any] , _lowercase :RegNetConfig ): '''simple docstring''' super().__init__() lowercase__ = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) lowercase__ = config.num_channels def UpperCAmelCase ( self :Tuple , _lowercase :Optional[int] ): '''simple docstring''' lowercase__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) lowercase__ = self.embedder(_lowercase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self :Union[str, Any] , _lowercase :int , _lowercase :int , _lowercase :int = 2 ): '''simple docstring''' super().__init__() lowercase__ = nn.Convad(_lowercase , _lowercase , kernel_size=1 , stride=_lowercase , bias=_lowercase ) lowercase__ = nn.BatchNormad(_lowercase ) def UpperCAmelCase ( self :str , _lowercase :Tensor ): '''simple docstring''' lowercase__ = self.convolution(_lowercase ) lowercase__ = self.normalization(_lowercase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self :List[str] , _lowercase :int , _lowercase :int ): '''simple docstring''' super().__init__() lowercase__ = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ = nn.Sequential( nn.Convad(_lowercase , _lowercase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_lowercase , _lowercase , kernel_size=1 ) , nn.Sigmoid() , ) def UpperCAmelCase ( self :Any , _lowercase :Tuple ): '''simple docstring''' lowercase__ = self.pooler(_lowercase ) lowercase__ = self.attention(_lowercase ) lowercase__ = hidden_state * attention return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self :Tuple , _lowercase :RegNetConfig , _lowercase :int , _lowercase :int , _lowercase :int = 1 ): '''simple docstring''' super().__init__() lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = max(1 , out_channels // config.groups_width ) lowercase__ = ( RegNetShortCut(_lowercase , _lowercase , stride=_lowercase ) if should_apply_shortcut else nn.Identity() ) lowercase__ = nn.Sequential( RegNetConvLayer(_lowercase , _lowercase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_lowercase , _lowercase , stride=_lowercase , groups=_lowercase , activation=config.hidden_act ) , RegNetConvLayer(_lowercase , _lowercase , kernel_size=1 , activation=_lowercase ) , ) lowercase__ = ACTaFN[config.hidden_act] def UpperCAmelCase ( self :int , _lowercase :Optional[int] ): '''simple docstring''' lowercase__ = hidden_state lowercase__ = self.layer(_lowercase ) lowercase__ = self.shortcut(_lowercase ) hidden_state += residual lowercase__ = self.activation(_lowercase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self :int , _lowercase :RegNetConfig , _lowercase :int , _lowercase :int , _lowercase :int = 1 ): '''simple docstring''' super().__init__() lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = max(1 , out_channels // config.groups_width ) lowercase__ = ( RegNetShortCut(_lowercase , _lowercase , stride=_lowercase ) if should_apply_shortcut else nn.Identity() ) lowercase__ = nn.Sequential( RegNetConvLayer(_lowercase , _lowercase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_lowercase , _lowercase , stride=_lowercase , groups=_lowercase , activation=config.hidden_act ) , RegNetSELayer(_lowercase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_lowercase , _lowercase , kernel_size=1 , activation=_lowercase ) , ) lowercase__ = ACTaFN[config.hidden_act] def UpperCAmelCase ( self :List[str] , _lowercase :List[Any] ): '''simple docstring''' lowercase__ = hidden_state lowercase__ = self.layer(_lowercase ) lowercase__ = self.shortcut(_lowercase ) hidden_state += residual lowercase__ = self.activation(_lowercase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self :Tuple , _lowercase :RegNetConfig , _lowercase :int , _lowercase :int , _lowercase :int = 2 , _lowercase :int = 2 , ): '''simple docstring''' super().__init__() lowercase__ = RegNetXLayer if config.layer_type == "x" else RegNetYLayer lowercase__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _lowercase , _lowercase , _lowercase , stride=_lowercase , ) , *[layer(_lowercase , _lowercase , _lowercase ) for _ in range(depth - 1 )] , ) def UpperCAmelCase ( self :int , _lowercase :Dict ): '''simple docstring''' lowercase__ = self.layers(_lowercase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self :List[str] , _lowercase :RegNetConfig ): '''simple docstring''' super().__init__() lowercase__ = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowercase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_lowercase , config.depths[1:] ): self.stages.append(RegNetStage(_lowercase , _lowercase , _lowercase , depth=_lowercase ) ) def UpperCAmelCase ( self :Optional[int] , _lowercase :Tensor , _lowercase :bool = False , _lowercase :bool = True ): '''simple docstring''' lowercase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) lowercase__ = stage_module(_lowercase ) if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_lowercase , hidden_states=_lowercase ) class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = RegNetConfig __lowerCamelCase = 'regnet' __lowerCamelCase = 'pixel_values' __lowerCamelCase = True def UpperCAmelCase ( self :Any , _lowercase :Optional[int] ): '''simple docstring''' if isinstance(_lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(_lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def UpperCAmelCase ( self :Union[str, Any] , _lowercase :Optional[Any] , _lowercase :List[str]=False ): '''simple docstring''' if isinstance(_lowercase , _lowercase ): lowercase__ = value _snake_case = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _snake_case = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , lowercase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class lowerCAmelCase ( lowercase_ ): def __init__( self :List[Any] , _lowercase :Any ): '''simple docstring''' super().__init__(_lowercase ) lowercase__ = config lowercase__ = RegNetEmbeddings(_lowercase ) lowercase__ = RegNetEncoder(_lowercase ) lowercase__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowercase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase ( self :Tuple , _lowercase :Tensor , _lowercase :Optional[bool] = None , _lowercase :Optional[bool] = None ): '''simple docstring''' lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.embedder(_lowercase ) lowercase__ = self.encoder( _lowercase , output_hidden_states=_lowercase , return_dict=_lowercase ) lowercase__ = encoder_outputs[0] lowercase__ = self.pooler(_lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowercase , pooler_output=_lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , lowercase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class lowerCAmelCase ( lowercase_ ): def __init__( self :List[Any] , _lowercase :List[Any] ): '''simple docstring''' super().__init__(_lowercase ) lowercase__ = config.num_labels lowercase__ = RegNetModel(_lowercase ) # classification head lowercase__ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase ( self :int , _lowercase :Optional[torch.FloatTensor] = None , _lowercase :Optional[torch.LongTensor] = None , _lowercase :Optional[bool] = None , _lowercase :Optional[bool] = None , ): '''simple docstring''' lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.regnet(_lowercase , output_hidden_states=_lowercase , return_dict=_lowercase ) lowercase__ = outputs.pooler_output if return_dict else outputs[1] lowercase__ = self.classifier(_lowercase ) lowercase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ = "single_label_classification" else: lowercase__ = "multi_label_classification" if self.config.problem_type == "regression": lowercase__ = MSELoss() if self.num_labels == 1: lowercase__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase__ = loss_fct(_lowercase , _lowercase ) elif self.config.problem_type == "single_label_classification": lowercase__ = CrossEntropyLoss() lowercase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ = BCEWithLogitsLoss() lowercase__ = loss_fct(_lowercase , _lowercase ) if not return_dict: lowercase__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowercase , logits=_lowercase , hidden_states=outputs.hidden_states )
201
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _snake_case = logging.getLogger(__name__) @dataclass class lowerCAmelCase : __lowerCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': 'Whether tp freeze the encoder.'} ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class lowerCAmelCase : __lowerCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __lowerCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __lowerCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __lowerCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __lowerCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __lowerCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': 'Source language id for translation.'} ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': 'Target language id for translation.'} ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': '# num_beams to use for evaluation.'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(__magic_name__ , os.path.join(__magic_name__ , f'''{split}_results.json''' ) ) def _A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() check_output_dir(__magic_name__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , __magic_name__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(__magic_name__ , __magic_name__ , __magic_name__ ): assert hasattr(__magic_name__ , __magic_name__ ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(__magic_name__ , __magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) lowercase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=__magic_name__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__magic_name__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase__ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__magic_name__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__magic_name__ , __magic_name__ ): lowercase__ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase__ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__magic_name__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase__ = SeqaSeqDataset # Get datasets lowercase__ = ( dataset_class( __magic_name__ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) lowercase__ = ( dataset_class( __magic_name__ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase__ = ( dataset_class( __magic_name__ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase__ = ( build_compute_metrics_fn(data_args.task , __magic_name__ ) if training_args.predict_with_generate else None ) lowercase__ = SeqaSeqTrainer( model=__magic_name__ , args=__magic_name__ , data_args=__magic_name__ , train_dataset=__magic_name__ , eval_dataset=__magic_name__ , data_collator=SeqaSeqDataCollator( __magic_name__ , __magic_name__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__magic_name__ , tokenizer=__magic_name__ , ) lowercase__ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) lowercase__ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase__ = train_result.metrics lowercase__ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , __magic_name__ , training_args.output_dir ) all_metrics.update(__magic_name__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowercase__ = trainer.evaluate(metric_key_prefix="val" ) lowercase__ = data_args.n_val lowercase__ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , __magic_name__ , training_args.output_dir ) all_metrics.update(__magic_name__ ) if training_args.do_predict: logger.info("*** Predict ***" ) lowercase__ = trainer.predict(test_dataset=__magic_name__ , metric_key_prefix="test" ) lowercase__ = test_output.metrics lowercase__ = data_args.n_test if trainer.is_world_process_zero(): lowercase__ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , __magic_name__ , training_args.output_dir ) all_metrics.update(__magic_name__ ) if training_args.predict_with_generate: lowercase__ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) lowercase__ = lmap(str.strip , __magic_name__ ) write_txt_file(__magic_name__ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(__magic_name__ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def _A ( __magic_name__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
201
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : List[str] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'realm' def __init__( self : Union[str, Any] , lowerCAmelCase_ : int=3_05_22 , lowerCAmelCase_ : Any=7_68 , lowerCAmelCase_ : int=1_28 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Any=30_72 , lowerCAmelCase_ : Union[str, Any]="gelu_new" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : str=1e-12 , lowerCAmelCase_ : int=2_56 , lowerCAmelCase_ : str=10 , lowerCAmelCase_ : Union[str, Any]=1e-3 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : int=3_20 , lowerCAmelCase_ : Dict=13_35_37_18 , lowerCAmelCase_ : Dict=50_00 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : str=2 , **lowerCAmelCase_ : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) # Common config A__ : int =vocab_size A__ : Optional[Any] =max_position_embeddings A__ : Optional[int] =hidden_size A__ : int =retriever_proj_size A__ : Dict =num_hidden_layers A__ : Tuple =num_attention_heads A__ : List[Any] =num_candidates A__ : int =intermediate_size A__ : Optional[int] =hidden_act A__ : Dict =hidden_dropout_prob A__ : List[Any] =attention_probs_dropout_prob A__ : Optional[Any] =initializer_range A__ : Optional[int] =type_vocab_size A__ : Tuple =layer_norm_eps # Reader config A__ : Any =span_hidden_size A__ : Union[str, Any] =max_span_width A__ : Dict =reader_layer_norm_eps A__ : str =reader_beam_size A__ : List[str] =reader_seq_len # Retrieval config A__ : int =num_block_records A__ : Any =searcher_beam_size
134
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = StableDiffusionInpaintPipeline __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case = frozenset([] ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) A__ : Optional[Any] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase_ , ) A__ : Dict =PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) A__ : int =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) A__ : str =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) A__ : Optional[int] =CLIPTextModel(lowerCAmelCase_ ) A__ : Dict =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : str ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]=0 ) -> List[str]: '''simple docstring''' # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched A__ : List[str] =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) A__ : List[str] =image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : List[str] =Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) A__ : int =Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(lowerCAmelCase_ ).startswith("""mps""" ): A__ : str =torch.manual_seed(lowerCAmelCase_ ) else: A__ : Tuple =torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) A__ : Optional[Any] ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : str ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Tuple =self.get_dummy_components() A__ : str =StableDiffusionInpaintPipeline(**lowerCAmelCase_ ) A__ : Any =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Optional[Any] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Dict =sd_pipe(**lowerCAmelCase_ ).images A__ : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ : Optional[Any] =np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Union[str, Any] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) A__ : Optional[Any] ="""stabilityai/stable-diffusion-2-inpainting""" A__ : int =StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Dict ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : str =torch.manual_seed(0 ) A__ : Dict =pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type="""np""" , ) A__ : Tuple =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9e-3 def lowercase__ ( self : str ) -> int: '''simple docstring''' A__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : List[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : List[Any] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) A__ : int ="""stabilityai/stable-diffusion-2-inpainting""" A__ : List[Any] =StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCAmelCase_ , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Union[str, Any] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Union[str, Any] =torch.manual_seed(0 ) A__ : Dict =pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type="""np""" , ) A__ : str =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ : Union[str, Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : List[str] ="""stabilityai/stable-diffusion-2-inpainting""" A__ : Any =PNDMScheduler.from_pretrained(lowerCAmelCase_ , subfolder="""scheduler""" ) A__ : Optional[int] =StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ : Dict ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Any =torch.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=2 , output_type="""np""" , ) A__ : Dict =torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
134
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self : Tuple ): _UpperCAmelCase : int = "laion/clap-htsat-unfused" _UpperCAmelCase : Optional[int] = tempfile.mkdtemp() def snake_case_ ( self : Tuple , **A : Tuple ): return RobertaTokenizer.from_pretrained(self.checkpoint , **A ) def snake_case_ ( self : Tuple , **A : Optional[int] ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A ) def snake_case_ ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : Tuple = self.get_feature_extractor() _UpperCAmelCase : Optional[int] = ClapProcessor(tokenizer=A , feature_extractor=A ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : List[Any] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A ) def snake_case_ ( self : List[Any] ): _UpperCAmelCase : Optional[int] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase : str = self.get_feature_extractor(do_normalize=A , padding_value=1.0 ) _UpperCAmelCase : Tuple = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : Tuple = self.get_feature_extractor() _UpperCAmelCase : Union[str, Any] = self.get_tokenizer() _UpperCAmelCase : str = ClapProcessor(tokenizer=A , feature_extractor=A ) _UpperCAmelCase : Any = floats_list((3, 1_0_0_0) ) _UpperCAmelCase : List[Any] = feature_extractor(A , return_tensors="np" ) _UpperCAmelCase : Optional[int] = processor(audios=A , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case_ ( self : List[Any] ): _UpperCAmelCase : List[Any] = self.get_feature_extractor() _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : Dict = ClapProcessor(tokenizer=A , feature_extractor=A ) _UpperCAmelCase : Union[str, Any] = "This is a test string" _UpperCAmelCase : Union[str, Any] = processor(text=A ) _UpperCAmelCase : int = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : Tuple ): _UpperCAmelCase : Any = self.get_feature_extractor() _UpperCAmelCase : List[Any] = self.get_tokenizer() _UpperCAmelCase : Dict = ClapProcessor(tokenizer=A , feature_extractor=A ) _UpperCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase : int = processor.batch_decode(A ) _UpperCAmelCase : Optional[Any] = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def snake_case_ ( self : Any ): _UpperCAmelCase : Optional[Any] = self.get_feature_extractor() _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : Any = ClapProcessor(tokenizer=A , feature_extractor=A ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
202
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , A : bool = True , A : Dict[str, int] = None , A : PILImageResampling = PILImageResampling.BICUBIC , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_5_5 , A : bool = True , A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A : List[Any] , ): super().__init__(**A ) _UpperCAmelCase : int = size if size is not None else {"shortest_edge": 2_2_4} _UpperCAmelCase : Tuple = get_size_dict(A , default_to_square=A ) _UpperCAmelCase : int = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _UpperCAmelCase : Union[str, Any] = get_size_dict(A , param_name="crop_size" ) _UpperCAmelCase : str = do_resize _UpperCAmelCase : Union[str, Any] = size _UpperCAmelCase : Tuple = resample _UpperCAmelCase : List[Any] = do_center_crop _UpperCAmelCase : List[Any] = crop_size _UpperCAmelCase : Tuple = do_rescale _UpperCAmelCase : List[Any] = rescale_factor _UpperCAmelCase : Dict = do_normalize _UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase : Any = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case_ ( self : Optional[int] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ): _UpperCAmelCase : Tuple = get_size_dict(A , default_to_square=A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _UpperCAmelCase : Any = int((2_5_6 / 2_2_4) * size["shortest_edge"] ) _UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(A , size=A , default_to_square=A ) _UpperCAmelCase : str = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( A , size=(size_dict["height"], size_dict["width"]) , resample=A , data_format=A , **A ) def snake_case_ ( self : int , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Optional[Any] , ): _UpperCAmelCase : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(A , size=(size["height"], size["width"]) , data_format=A , **A ) def snake_case_ ( self : List[str] , A : np.ndarray , A : Union[int, float] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ): return rescale(A , scale=A , data_format=A , **A ) def snake_case_ ( self : List[str] , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : str , ): return normalize(A , mean=A , std=A , data_format=A , **A ) def snake_case_ ( self : Tuple , A : ImageInput , A : Optional[bool] = None , A : Optional[Dict[str, int]] = None , A : PILImageResampling = None , A : Optional[bool] = None , A : Optional[Dict[str, int]] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, Iterable[float]]] = None , A : Optional[Union[float, Iterable[float]]] = None , A : Optional[TensorType] = None , A : ChannelDimension = ChannelDimension.FIRST , **A : Dict , ): _UpperCAmelCase : Dict = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : List[str] = resample if resample is not None else self.resample _UpperCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCAmelCase : Any = size if size is not None else self.size _UpperCAmelCase : Optional[int] = get_size_dict(A , default_to_square=A ) _UpperCAmelCase : List[str] = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : List[str] = get_size_dict(A , param_name="crop_size" ) _UpperCAmelCase : List[Any] = make_list_of_images(A ) if not valid_images(A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase : Any = [to_numpy_array(A ) for image in images] if do_resize: _UpperCAmelCase : str = [self.resize(A , A , A ) for image in images] if do_center_crop: _UpperCAmelCase : Dict = [self.center_crop(A , A ) for image in images] if do_rescale: _UpperCAmelCase : Dict = [self.rescale(A , A ) for image in images] if do_normalize: _UpperCAmelCase : Optional[int] = [self.normalize(A , A , A ) for image in images] _UpperCAmelCase : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] _UpperCAmelCase : List[Any] = {"pixel_values": images} return BatchFeature(data=A , tensor_type=A )
202
1
'''simple docstring''' import operator def __snake_case( _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = None ) -> list: snake_case__ : int = operator.lt if reverse else operator.gt snake_case__ : Any = solution or [] if not arr: return solution snake_case__ : int = [arr.pop(0 )] for i, item in enumerate(_lowerCAmelCase ): if _operator(_lowerCAmelCase , sublist[-1] ): sublist.append(_lowerCAmelCase ) arr.pop(_lowerCAmelCase ) # merging sublist into solution list if not solution: solution.extend(_lowerCAmelCase ) else: while sublist: snake_case__ : Optional[int] = sublist.pop(0 ) for i, xx in enumerate(_lowerCAmelCase ): if not _operator(_lowerCAmelCase , _lowerCAmelCase ): solution.insert(_lowerCAmelCase , _lowerCAmelCase ) break else: solution.append(_lowerCAmelCase ) strand_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
35
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 def __init__( self : int , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : List[str]=False , UpperCAmelCase : bool = False , ) -> List[str]: lowerCamelCase__ : int = hans_processors[task]() lowerCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , ) lowerCamelCase__ : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = label_list[2], label_list[1] lowerCamelCase__ : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : str = cached_features_file + '.lock' with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowerCamelCase__ : int = torch.load(UpperCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowerCamelCase__ : str = ( processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) ) logger.info('Training examples: %s' , len(UpperCAmelCase ) ) lowerCamelCase__ : Dict = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) logger.info('Saving features into cached file %s' , UpperCAmelCase ) torch.save(self.features , UpperCAmelCase ) def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.features ) def __getitem__( self : Tuple , UpperCAmelCase : Dict ) -> InputFeatures: return self.features[i] def A_ ( self : int ) -> int: return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase : UpperCAmelCase__ = 42 def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = 128 , UpperCAmelCase : Any=False , UpperCAmelCase : bool = False , ) -> Union[str, Any]: lowerCamelCase__ : Any = hans_processors[task]() lowerCamelCase__ : Optional[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : str = label_list[2], label_list[1] lowerCamelCase__ : Optional[int] = label_list lowerCamelCase__ : int = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCamelCase__ : Optional[int] = tf.data.Dataset.from_generator( UpperCAmelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A_ ( self : Any ) -> Any: return self.dataset def __len__( self : Tuple ) -> int: return len(self.features ) def __getitem__( self : List[str] , UpperCAmelCase : Any ) -> InputFeatures: return self.features[i] def A_ ( self : Dict ) -> str: return self.label_list class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : int , UpperCAmelCase : List[Any] ) -> int: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def A_ ( self : Any , UpperCAmelCase : int ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def A_ ( self : Any ) -> List[Any]: return ["contradiction", "entailment", "neutral"] def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> List[str]: lowerCamelCase__ : List[str] = [] for i, line in enumerate(UpperCAmelCase ): if i == 0: continue lowerCamelCase__ : Tuple = '%s-%s' % (set_type, line[0]) lowerCamelCase__ : str = line[5] lowerCamelCase__ : Dict = line[6] lowerCamelCase__ : int = line[7][2:] if line[7].startswith('ex' ) else line[7] lowerCamelCase__ : Dict = line[0] examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) return examples def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[int]: lowerCamelCase__ : int = {label: i for i, label in enumerate(_UpperCAmelCase )} lowerCamelCase__ : List[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ) , desc='convert examples to features' ): if ex_index % 1_0000 == 0: logger.info('Writing example %d' % (ex_index) ) lowerCamelCase__ : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , ) lowerCamelCase__ : List[str] = label_map[example.label] if example.label in label_map else 0 lowerCamelCase__ : Optional[int] = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features _UpperCAmelCase : str = { """hans""": 3, } _UpperCAmelCase : List[Any] = { """hans""": HansProcessor, }
50
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __UpperCAmelCase = logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : UpperCAmelCase_ :str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase_ :Optional[str] = field( default=A__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase_ :Optional[str] = field( default=A__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase_ :Optional[str] = field( default=A__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCAmelCase_ :bool = field(default=A__ , metadata={"help": "Whether tp freeze the encoder."} ) UpperCAmelCase_ :bool = field(default=A__ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class _SCREAMING_SNAKE_CASE : UpperCAmelCase_ :str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) UpperCAmelCase_ :Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) UpperCAmelCase_ :Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase_ :Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase_ :Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) UpperCAmelCase_ :Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase_ :Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) UpperCAmelCase_ :Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) UpperCAmelCase_ :Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) UpperCAmelCase_ :Optional[str] = field(default=A__ , metadata={"help": "Source language id for translation."} ) UpperCAmelCase_ :Optional[str] = field(default=A__ , metadata={"help": "Target language id for translation."} ) UpperCAmelCase_ :Optional[int] = field(default=A__ , metadata={"help": "# num_beams to use for evaluation."} ) UpperCAmelCase_ :bool = field( default=A__ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def _snake_case ( lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(lowercase__ , os.path.join(lowercase__ , f"""{split}_results.json""" ) ) def _snake_case ( ) -> Tuple: '''simple docstring''' lowerCAmelCase_ :Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Any = parser.parse_args_into_dataclasses() check_output_dir(lowercase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowercase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase_ :Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase_ :Union[str, Any] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowercase__ , lowercase__ , lowercase__ ): assert hasattr(lowercase__ , lowercase__ ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowercase__ , lowercase__ , getattr(lowercase__ , lowercase__ ) ) lowerCAmelCase_ :Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase_ :Tuple = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowercase__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowercase__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowerCAmelCase_ :Dict = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowercase__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowercase__ , lowercase__ ): lowerCAmelCase_ :List[str] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowerCAmelCase_ :List[str] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowercase__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowerCAmelCase_ :Dict = SeqaSeqDataset # Get datasets lowerCAmelCase_ :Tuple = ( dataset_class( lowercase__ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) lowerCAmelCase_ :List[str] = ( dataset_class( lowercase__ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowerCAmelCase_ :Any = ( dataset_class( lowercase__ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer lowerCAmelCase_ :Any = ( build_compute_metrics_fn(data_args.task , lowercase__ ) if training_args.predict_with_generate else None ) lowerCAmelCase_ :Tuple = SeqaSeqTrainer( model=lowercase__ , args=lowercase__ , data_args=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , data_collator=SeqaSeqDataCollator( lowercase__ , lowercase__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase__ , tokenizer=lowercase__ , ) lowerCAmelCase_ :Union[str, Any] = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowerCAmelCase_ :Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowerCAmelCase_ :Any = train_result.metrics lowerCAmelCase_ :Union[str, Any] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowercase__ , training_args.output_dir ) all_metrics.update(lowercase__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCAmelCase_ :Any = trainer.evaluate(metric_key_prefix="""val""" ) lowerCAmelCase_ :List[Any] = data_args.n_val lowerCAmelCase_ :Tuple = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowercase__ , training_args.output_dir ) all_metrics.update(lowercase__ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowerCAmelCase_ :Optional[int] = trainer.predict(test_dataset=lowercase__ , metric_key_prefix="""test""" ) lowerCAmelCase_ :Union[str, Any] = test_output.metrics lowerCAmelCase_ :Dict = data_args.n_test if trainer.is_world_process_zero(): lowerCAmelCase_ :List[str] = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowercase__ , training_args.output_dir ) all_metrics.update(lowercase__ ) if training_args.predict_with_generate: lowerCAmelCase_ :Union[str, Any] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowercase__ , clean_up_tokenization_spaces=lowercase__ ) lowerCAmelCase_ :str = lmap(str.strip , lowercase__ ) write_txt_file(lowercase__ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowercase__ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def _snake_case ( lowercase__ : Tuple ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
1
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _SCREAMING_SNAKE_CASE ( A__ , A__ , A__ ): UpperCAmelCase_ :List[str] = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self , __A , __A , __A = None , __A = 5_0257 , __A = 1024 , __A = 768 , __A = 12 , __A = 12 , __A = None , __A = "gelu_new" , __A = 0.1 , __A = 0.1 , __A = 0.1 , __A = 1E-5 , __A = 0.0_2 , __A = True , __A = True , __A = False , __A = False , ) -> Optional[Any]: super().__init__() lowerCAmelCase_ :List[str] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" f""" `n_embd`: {n_embd} are not equal.""" ) lowerCAmelCase_ :Union[str, Any] = prefix_inner_dim lowerCAmelCase_ :str = prefix_hidden_dim lowerCAmelCase_ :str = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase_ :List[Any] = ( nn.Linear(self.prefix_hidden_dim , __A ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase_ :Any = GPTaConfig( vocab_size=__A , n_positions=__A , n_embd=__A , n_layer=__A , n_head=__A , n_inner=__A , activation_function=__A , resid_pdrop=__A , embd_pdrop=__A , attn_pdrop=__A , layer_norm_epsilon=__A , initializer_range=__A , scale_attn_weights=__A , use_cache=__A , scale_attn_by_inverse_layer_idx=__A , reorder_and_upcast_attn=__A , ) lowerCAmelCase_ :Any = GPTaLMHeadModel(__A ) def __lowerCAmelCase ( self , __A , __A , __A = None , __A = None , ) -> List[str]: lowerCAmelCase_ :str = self.transformer.transformer.wte(__A ) lowerCAmelCase_ :Any = self.encode_prefix(__A ) lowerCAmelCase_ :Optional[Any] = self.decode_prefix(__A ) lowerCAmelCase_ :Optional[int] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowerCAmelCase_ :int = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowerCAmelCase_ :Optional[Any] = torch.cat((dummy_token, input_ids) , dim=1 ) lowerCAmelCase_ :Tuple = self.transformer(inputs_embeds=__A , labels=__A , attention_mask=__A ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __lowerCAmelCase ( self , __A , __A ) -> torch.Tensor: return torch.zeros(__A , self.prefix_length , dtype=torch.intaa , device=__A ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: return self.encode_prefix(__A ) @torch.no_grad() def __lowerCAmelCase ( self , __A , __A , __A ) -> Optional[int]: lowerCAmelCase_ :Tuple = torch.split(__A , 1 , dim=0 ) lowerCAmelCase_ :Optional[int] = [] lowerCAmelCase_ :List[str] = [] for feature in features: lowerCAmelCase_ :Tuple = self.decode_prefix(feature.to(__A ) ) # back to the clip feature # Only support beam search for now lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = self.generate_beam( input_embeds=__A , device=__A , eos_token_id=__A ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowerCAmelCase_ :Tuple = torch.stack(__A ) lowerCAmelCase_ :int = torch.stack(__A ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __lowerCAmelCase ( self , __A=None , __A=None , __A=None , __A = 5 , __A = 67 , __A = 1.0 , __A = None , ) -> Union[str, Any]: lowerCAmelCase_ :Optional[int] = eos_token_id lowerCAmelCase_ :Optional[int] = None lowerCAmelCase_ :Any = None lowerCAmelCase_ :int = torch.ones(__A , device=__A , dtype=torch.int ) lowerCAmelCase_ :Optional[int] = torch.zeros(__A , device=__A , dtype=torch.bool ) if input_embeds is not None: lowerCAmelCase_ :List[str] = input_embeds else: lowerCAmelCase_ :Union[str, Any] = self.transformer.transformer.wte(__A ) for i in range(__A ): lowerCAmelCase_ :Optional[int] = self.transformer(inputs_embeds=__A ) lowerCAmelCase_ :str = outputs.logits lowerCAmelCase_ :str = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowerCAmelCase_ :Dict = logits.softmax(-1 ).log() if scores is None: lowerCAmelCase_ , lowerCAmelCase_ :Any = logits.topk(__A , -1 ) lowerCAmelCase_ :Union[str, Any] = generated.expand(__A , *generated.shape[1:] ) lowerCAmelCase_ , lowerCAmelCase_ :List[str] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowerCAmelCase_ :List[str] = next_tokens else: lowerCAmelCase_ :List[Any] = tokens.expand(__A , *tokens.shape[1:] ) lowerCAmelCase_ :Any = torch.cat((tokens, next_tokens) , dim=1 ) else: lowerCAmelCase_ :List[Any] = -float(np.inf ) lowerCAmelCase_ :int = 0 lowerCAmelCase_ :Optional[int] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowerCAmelCase_ :List[Any] = scores_sum / seq_lengths[:, None] lowerCAmelCase_ , lowerCAmelCase_ :Tuple = scores_sum_average.view(-1 ).topk(__A , -1 ) lowerCAmelCase_ :Optional[Any] = next_tokens // scores_sum.shape[1] lowerCAmelCase_ :Dict = seq_lengths[next_tokens_source] lowerCAmelCase_ :Tuple = next_tokens % scores_sum.shape[1] lowerCAmelCase_ :Optional[Any] = next_tokens.unsqueeze(1 ) lowerCAmelCase_ :str = tokens[next_tokens_source] lowerCAmelCase_ :List[Any] = torch.cat((tokens, next_tokens) , dim=1 ) lowerCAmelCase_ :Dict = generated[next_tokens_source] lowerCAmelCase_ :Dict = scores_sum_average * seq_lengths lowerCAmelCase_ :Tuple = is_stopped[next_tokens_source] lowerCAmelCase_ :str = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowerCAmelCase_ :List[Any] = torch.cat((generated, next_token_embed) , dim=1 ) lowerCAmelCase_ :Optional[int] = is_stopped + next_tokens.eq(__A ).squeeze() if is_stopped.all(): break lowerCAmelCase_ :str = scores / seq_lengths lowerCAmelCase_ :Optional[int] = scores.argsort(descending=__A ) # tokens tensors are already padded to max_seq_length lowerCAmelCase_ :Optional[Any] = [tokens[i] for i in order] lowerCAmelCase_ :Dict = torch.stack(__A , dim=0 ) lowerCAmelCase_ :Tuple = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
1
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class __magic_name__ ( snake_case__ ): """simple docstring""" __UpperCamelCase = '''fnet''' def __init__( self :Any , snake_case :Optional[int]=32_000 , snake_case :Union[str, Any]=768 , snake_case :List[str]=12 , snake_case :Dict=3_072 , snake_case :List[str]="gelu_new" , snake_case :int=0.1 , snake_case :str=512 , snake_case :List[Any]=4 , snake_case :Dict=0.02 , snake_case :str=1e-12 , snake_case :Optional[Any]=False , snake_case :Optional[int]=512 , snake_case :Union[str, Any]=3 , snake_case :List[Any]=1 , snake_case :Dict=2 , **snake_case :List[str] , ): '''simple docstring''' super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) A_ : Dict = vocab_size A_ : Optional[Any] = max_position_embeddings A_ : Dict = hidden_size A_ : Any = num_hidden_layers A_ : Optional[int] = intermediate_size A_ : Optional[int] = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Optional[Any] = initializer_range A_ : Optional[int] = type_vocab_size A_ : Tuple = layer_norm_eps A_ : Tuple = use_tpu_fourier_optimizations A_ : str = tpu_short_seq_length
300
def _SCREAMING_SNAKE_CASE ( a ) -> str: if number > 0: raise ValueError('input must be a negative integer' ) __A : Optional[int] = len(bin(a )[3:] ) __A : Dict = bin(abs(a ) - (1 << binary_number_length) )[3:] __A : int = ( ( '1' + '0' * (binary_number_length - len(a )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
280
0
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor a_ = logging.get_logger(__name__) class _lowercase ( snake_case_ ): def __init__( self : int , *snake_case : int , **snake_case : Tuple ) -> None: """simple docstring""" warnings.warn( 'The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DeiTImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
50
import numpy # List of input, output pairs a_ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) a_ = (((515, 22, 13), 555), ((61, 35, 49), 150)) a_ = [2, 4, 1, 5] a_ = len(train_data) a_ = 0.009 def __lowercase ( lowerCamelCase : Optional[int] , lowerCamelCase : Any="train" ): return calculate_hypothesis_value(lowerCamelCase , lowerCamelCase ) - output( lowerCamelCase , lowerCamelCase ) def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : List[str] = 0 for i in range(len(lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __lowercase ( lowerCamelCase : int , lowerCamelCase : Any ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict=m ): UpperCamelCase_ : str = 0 for i in range(lowerCamelCase ): if index == -1: summation_value += _error(lowerCamelCase ) else: summation_value += _error(lowerCamelCase ) * train_data[i][0][index] return summation_value def __lowercase ( lowerCamelCase : int ): UpperCamelCase_ : List[str] = summation_of_cost_derivative(lowerCamelCase , lowerCamelCase ) / m return cost_derivative_value def __lowercase ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCamelCase_ : Optional[int] = 0.0_0_0_0_0_2 UpperCamelCase_ : Optional[int] = 0 UpperCamelCase_ : Union[str, Any] = 0 while True: j += 1 UpperCamelCase_ : Dict = [0, 0, 0, 0] for i in range(0 , len(lowerCamelCase ) ): UpperCamelCase_ : Any = get_cost_derivative(i - 1 ) UpperCamelCase_ : List[str] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCamelCase , lowerCamelCase , atol=lowerCamelCase , rtol=lowerCamelCase , ): break UpperCamelCase_ : Optional[Any] = temp_parameter_vector print(('Number of iterations:', j) ) def __lowercase ( ): for i in range(len(lowerCamelCase ) ): print(('Actual output value:', output(lowerCamelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(lowerCamelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
50
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A : def __init__(self : Any , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple=1_3 , __UpperCAmelCase : int=7 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : str=True , __UpperCAmelCase : Union[str, Any]=9_9 , __UpperCAmelCase : Tuple=3_2 , __UpperCAmelCase : List[Any]=2 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : str=3_7 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : Optional[Any]=5_1_2 , __UpperCAmelCase : Tuple=1_6 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : Optional[int]=3 , __UpperCAmelCase : str=4 , __UpperCAmelCase : str=None , ) -> Any: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 1_3 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 9_9 UpperCAmelCase__ = 3_8_4 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 3_7 UpperCAmelCase__ = "gelu" UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 5_1_2 UpperCAmelCase__ = 1_6 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = 1_2_8 UpperCAmelCase__ = 2 UpperCAmelCase__ = 9 UpperCAmelCase__ = 1 UpperCAmelCase__ = None def lowercase_ (self : Any ) -> str: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ (self : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertModel(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__UpperCAmelCase ) UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertForMaskedLM(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ (self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__UpperCAmelCase ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ (self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : int ) -> int: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForTokenClassification(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ (self : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ (self : Tuple ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Tuple = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __UpperCAmelCase : Optional[Any] = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : str = False def lowercase_ (self : Tuple ) -> str: """simple docstring""" UpperCAmelCase__ = TFConvBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def lowercase_ (self : str ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ (self : Optional[int] ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowercase_ (self : str ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowercase_ (self : int ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowercase_ (self : Tuple ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowercase_ (self : Optional[Any] ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowercase_ (self : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowercase_ (self : Union[str, Any] ) -> Any: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = True if hasattr(__UpperCAmelCase , "use_cache" ): UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , "key_length" , __UpperCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase__ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = model_class(__UpperCAmelCase ) UpperCAmelCase__ = len(model(__UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase , saved_model=__UpperCAmelCase ) UpperCAmelCase__ = os.path.join(__UpperCAmelCase , "saved_model" , "1" ) UpperCAmelCase__ = tf.keras.models.load_model(__UpperCAmelCase ) UpperCAmelCase__ = model(__UpperCAmelCase ) if self.is_encoder_decoder: UpperCAmelCase__ = outputs["encoder_hidden_states"] UpperCAmelCase__ = outputs["encoder_attentions"] else: UpperCAmelCase__ = outputs["hidden_states"] UpperCAmelCase__ = outputs["attentions"] self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) UpperCAmelCase__ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowercase_ (self : Any ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__UpperCAmelCase ) def lowercase_ (self : int ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , "key_length" , __UpperCAmelCase ) UpperCAmelCase__ = getattr(self.model_tester , "key_length" , __UpperCAmelCase ) def check_decoder_attentions_output(__UpperCAmelCase : List[str] ): UpperCAmelCase__ = len(__UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__UpperCAmelCase : List[str] ): UpperCAmelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = model_class(__UpperCAmelCase ) UpperCAmelCase__ = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) UpperCAmelCase__ = len(__UpperCAmelCase ) self.assertEqual(config.output_hidden_states , __UpperCAmelCase ) check_encoder_attentions_output(__UpperCAmelCase ) if self.is_encoder_decoder: UpperCAmelCase__ = model_class(__UpperCAmelCase ) UpperCAmelCase__ = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCAmelCase ) check_decoder_attentions_output(__UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__UpperCAmelCase ) UpperCAmelCase__ = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCAmelCase ) check_encoder_attentions_output(__UpperCAmelCase ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__UpperCAmelCase ) UpperCAmelCase__ = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , __UpperCAmelCase ) check_encoder_attentions_output(__UpperCAmelCase ) @require_tf class A ( unittest.TestCase ): @slow def lowercase_ (self : Dict ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__UpperCAmelCase )[0] UpperCAmelCase__ = [1, 6, 7_6_8] self.assertEqual(output.shape , __UpperCAmelCase ) UpperCAmelCase__ = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 )
65
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path", type=__A, default="data/dump.txt", help="The path to the data." ) parser.add_argument("--tokenizer_type", type=__A, default="bert", choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name", type=__A, default="bert-base-uncased", help="The tokenizer to use." ) parser.add_argument("--dump_file", type=__A, default="data/dump", help="The dump file prefix." ) UpperCAmelCase__ = parser.parse_args() logger.info(f"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": UpperCAmelCase__ = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `[CLS]` UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `<s>` UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` UpperCAmelCase__ = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(f"""Loading text from {args.file_path}""" ) with open(args.file_path, "r", encoding="utf8" ) as fp: UpperCAmelCase__ = fp.readlines() logger.info("Start encoding" ) logger.info(f"""{len(__A )} examples to process.""" ) UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 10_000 UpperCAmelCase__ = time.time() for text in data: UpperCAmelCase__ = f"""{bos} {text.strip()} {sep}""" UpperCAmelCase__ = tokenizer.encode(__A, add_special_tokens=__A ) rslt.append(__A ) iter += 1 if iter % interval == 0: UpperCAmelCase__ = time.time() logger.info(f"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) UpperCAmelCase__ = time.time() logger.info("Finished binarization" ) logger.info(f"""{len(__A )} examples processed.""" ) UpperCAmelCase__ = f"""{args.dump_file}.{args.tokenizer_name}.pickle""" UpperCAmelCase__ = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCAmelCase__ = [np.uintaa(__A ) for d in rslt] else: UpperCAmelCase__ = [np.intaa(__A ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"""Dump to {dp_file}""" ) with open(__A, "wb" ) as handle: pickle.dump(rslt_, __A, protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
65
1
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowercase__() ->List[Any]: """simple docstring""" lowercase__ : Union[str, Any]= ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) lowercase__ : Tuple= parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(A ) DownloadCommand.register_subcommand(A ) EnvironmentCommand.register_subcommand(A ) RunCommand.register_subcommand(A ) ServeCommand.register_subcommand(A ) UserCommands.register_subcommand(A ) AddNewModelCommand.register_subcommand(A ) AddNewModelLikeCommand.register_subcommand(A ) LfsCommands.register_subcommand(A ) PTtoTFCommand.register_subcommand(A ) # Let's go lowercase__ : List[Any]= parser.parse_args() if not hasattr(A , "func" ): parser.print_help() exit(1 ) # Run lowercase__ : Union[str, Any]= args.func(A ) service.run() if __name__ == "__main__": main()
150
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) a : List[Any] = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] a : Dict = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowercase__(A ) ->Optional[int]: """simple docstring""" lowercase__ : Any= torch.load(A , map_location="cpu" ) return sd def lowercase__(A , A , A=rename_keys_prefix ) ->List[str]: """simple docstring""" lowercase__ : int= OrderedDict() lowercase__ : Optional[Any]= torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowercase__ : Union[str, Any]= key for name_pair in rename_keys_prefix: lowercase__ : str= new_key.replace(name_pair[0] , name_pair[1] ) lowercase__ : Union[str, Any]= d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowercase__ : Optional[int]= new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowercase__(A , A ) ->str: """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: lowercase__ : Union[str, Any]= "pretraining" if "vcr" in checkpoint_path: lowercase__ : str= {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: lowercase__ : Optional[Any]= {"visual_embedding_dim": 2_048} elif "vqa" in checkpoint_path: lowercase__ : int= {"visual_embedding_dim": 2_048} elif "nlvr" in checkpoint_path: lowercase__ : Tuple= {"visual_embedding_dim": 1_024} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: lowercase__ : int= {"visual_embedding_dim": 512} lowercase__ : int= "multichoice" elif "vqa_advanced" in checkpoint_path: lowercase__ : Dict= {"visual_embedding_dim": 2_048} lowercase__ : Optional[Any]= "vqa_advanced" elif "vqa" in checkpoint_path: lowercase__ : Optional[int]= {"visual_embedding_dim": 2_048, "num_labels": 3_129} lowercase__ : List[str]= "vqa" elif "nlvr" in checkpoint_path: lowercase__ : Dict= { "visual_embedding_dim": 1_024, "num_labels": 2, } lowercase__ : Any= "nlvr" lowercase__ : List[Any]= VisualBertConfig(**A ) # Load State Dict lowercase__ : Union[str, Any]= load_state_dict(A ) lowercase__ : List[str]= get_new_dict(A , A ) if model_type == "pretraining": lowercase__ : Optional[Any]= VisualBertForPreTraining(A ) elif model_type == "vqa": lowercase__ : Any= VisualBertForQuestionAnswering(A ) elif model_type == "nlvr": lowercase__ : Union[str, Any]= VisualBertForVisualReasoning(A ) elif model_type == "multichoice": lowercase__ : str= VisualBertForMultipleChoice(A ) model.load_state_dict(A ) # Save Checkpoints Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) if __name__ == "__main__": a : int = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") a : Dict = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
150
1
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase__ : List[str] = logging.getLogger(__name__) def __lowercase ( _A , _A ) -> Any: # save results if os.path.exists(_A ): if os.path.exists(os.path.join(_A , """config.json""" ) ) and os.path.isfile( os.path.join(_A , """config.json""" ) ): os.remove(os.path.join(_A , """config.json""" ) ) if os.path.exists(os.path.join(_A , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(_A , """pytorch_model.bin""" ) ): os.remove(os.path.join(_A , """pytorch_model.bin""" ) ) else: os.makedirs(_A ) model.save_pretrained(_A ) def __lowercase ( _A , _A=False ) -> Any: SCREAMING_SNAKE_CASE : str = 2 if unlogit: SCREAMING_SNAKE_CASE : str = torch.pow(_A , _A ) SCREAMING_SNAKE_CASE : Optional[Any] = p * torch.log(_A ) SCREAMING_SNAKE_CASE : Any = 0 return -plogp.sum(dim=-1 ) def __lowercase ( _A ) -> List[Any]: logger.info("""lv, h >\t""" + """\t""".join(F"{x + 1}" for x in range(len(_A ) ) ) ) for row in range(len(_A ) ): if tensor.dtype != torch.long: logger.info(F"layer {row + 1}:\t" + """\t""".join(F"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(F"layer {row + 1}:\t" + """\t""".join(F"{x:d}" for x in tensor[row].cpu().data ) ) def __lowercase ( _A , _A , _A , _A=True , _A=True , _A=None , _A=False ) -> int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = model.config.num_hidden_layers, model.config.num_attention_heads SCREAMING_SNAKE_CASE : Dict = torch.zeros(_A , _A ).to(args.device ) SCREAMING_SNAKE_CASE : List[str] = torch.zeros(_A , _A ).to(args.device ) if head_mask is None: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(_A , _A ).to(args.device ) head_mask.requires_grad_(requires_grad=_A ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0 for step, inputs in enumerate(tqdm(_A , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): SCREAMING_SNAKE_CASE : Dict = tuple(t.to(args.device ) for t in inputs ) ((SCREAMING_SNAKE_CASE) , ) : Optional[int] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) SCREAMING_SNAKE_CASE : Optional[int] = model(_A , labels=_A , head_mask=_A ) # (loss), lm_logits, presents, (all hidden_states), (attentions) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_A ): SCREAMING_SNAKE_CASE : Tuple = entropy(attn.detach() , _A ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_A ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: SCREAMING_SNAKE_CASE : Tuple = 2 SCREAMING_SNAKE_CASE : Optional[int] = torch.pow(torch.pow(_A , _A ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: SCREAMING_SNAKE_CASE : str = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(_A ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(_A ) logger.info("""Head ranked by importance scores""" ) SCREAMING_SNAKE_CASE : List[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) SCREAMING_SNAKE_CASE : Any = torch.arange( head_importance.numel() , device=args.device ) SCREAMING_SNAKE_CASE : str = head_ranks.view_as(_A ) print_ad_tensor(_A ) return attn_entropy, head_importance, total_loss def __lowercase ( _A , _A , _A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = compute_heads_importance(_A , _A , _A , compute_entropy=_A ) SCREAMING_SNAKE_CASE : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , _A , original_score * args.masking_threshold ) SCREAMING_SNAKE_CASE : Tuple = torch.ones_like(_A ) SCREAMING_SNAKE_CASE : str = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = original_score while current_score >= original_score * args.masking_threshold: SCREAMING_SNAKE_CASE : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads SCREAMING_SNAKE_CASE : List[Any] = float("""Inf""" ) SCREAMING_SNAKE_CASE : Tuple = head_importance.view(-1 ).sort()[1] if len(_A ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads SCREAMING_SNAKE_CASE : Optional[int] = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) SCREAMING_SNAKE_CASE : List[str] = new_head_mask.view(-1 ) SCREAMING_SNAKE_CASE : int = 0.0 SCREAMING_SNAKE_CASE : Optional[int] = new_head_mask.view_as(_A ) SCREAMING_SNAKE_CASE : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(_A ) # Compute metric and head importance again SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = compute_heads_importance( _A , _A , _A , compute_entropy=_A , head_mask=_A ) SCREAMING_SNAKE_CASE : Tuple = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , _A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("""Final head mask""" ) print_ad_tensor(_A ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def __lowercase ( _A , _A , _A , _A ) -> List[str]: SCREAMING_SNAKE_CASE : int = datetime.now() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = compute_heads_importance( _A , _A , _A , compute_entropy=_A , compute_importance=_A , head_mask=_A ) SCREAMING_SNAKE_CASE : str = 1 / loss SCREAMING_SNAKE_CASE : Optional[Any] = datetime.now() - before_time SCREAMING_SNAKE_CASE : Optional[Any] = sum(p.numel() for p in model.parameters() ) SCREAMING_SNAKE_CASE : List[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_A ) ) } for k, v in heads_to_prune.items(): if isinstance(_A , _A ): SCREAMING_SNAKE_CASE : Dict = [ v, ] assert sum(len(_A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_A ) SCREAMING_SNAKE_CASE : Union[str, Any] = sum(p.numel() for p in model.parameters() ) SCREAMING_SNAKE_CASE : Optional[Any] = datetime.now() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = compute_heads_importance( _A , _A , _A , compute_entropy=_A , compute_importance=_A , head_mask=_A , actually_pruned=_A , ) SCREAMING_SNAKE_CASE : List[str] = 1 / loss SCREAMING_SNAKE_CASE : Optional[Any] = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , _A , _A , pruned_num_params / original_num_params * 100 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , _A , _A ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 ) save_model(_A , args.output_dir ) def __lowercase ( ) -> Tuple: SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=_A , type=_A , required=_A , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=_A , type=_A , required=_A , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=_A , type=_A , required=_A , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=_A , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=_A , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=_A , type=_A , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=_A , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=_A , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=_A , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=_A , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=_A , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=_A , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=_A , default=42 ) parser.add_argument("""--local_rank""" , type=_A , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=_A , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=_A , default="""""" , help="""Can be used for distant debugging.""" ) SCREAMING_SNAKE_CASE : str = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_A ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: SCREAMING_SNAKE_CASE : Optional[int] = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) SCREAMING_SNAKE_CASE : str = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.device("""cuda""" , args.local_rank ) SCREAMING_SNAKE_CASE : Any = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) SCREAMING_SNAKE_CASE : Dict = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: SCREAMING_SNAKE_CASE : int = nn.parallel.DistributedDataParallel( _A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_A ) elif args.n_gpu > 1: SCREAMING_SNAKE_CASE : List[Any] = nn.DataParallel(_A ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_A ) torch.save(_A , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , _A ) # Prepare dataset SCREAMING_SNAKE_CASE : List[str] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) SCREAMING_SNAKE_CASE : List[str] = (torch.from_numpy(_A ),) SCREAMING_SNAKE_CASE : int = TensorDataset(*_A ) SCREAMING_SNAKE_CASE : Union[str, Any] = RandomSampler(_A ) SCREAMING_SNAKE_CASE : Optional[Any] = DataLoader(_A , sampler=_A , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_A , _A , _A ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: SCREAMING_SNAKE_CASE : str = mask_heads(_A , _A , _A ) prune_heads(_A , _A , _A , _A ) if __name__ == "__main__": main()
245
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class a__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int ) ->Dict: """simple docstring""" return f"gaussian_noise_s={seed}_shape={'_'.join([str(UpperCAmelCase__ ) for s in shape] )}.npy" def _lowercase ( self : Any ) ->Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() def _lowercase ( self : str , UpperCAmelCase__ : str=0 , UpperCAmelCase__ : Tuple=(4, 4, 6_4, 6_4) , UpperCAmelCase__ : Optional[int]=False ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = jnp.bfloataa if fpaa else jnp.floataa SCREAMING_SNAKE_CASE : Tuple = jnp.array(load_hf_numpy(self.get_file_format(UpperCAmelCase__ , UpperCAmelCase__ ) ) , dtype=UpperCAmelCase__ ) return image def _lowercase ( self : Tuple , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : Tuple="CompVis/stable-diffusion-v1-4" ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa SCREAMING_SNAKE_CASE : Dict = """bf16""" if fpaa else None SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = FlaxUNetaDConditionModel.from_pretrained( UpperCAmelCase__ , subfolder="""unet""" , dtype=UpperCAmelCase__ , revision=UpperCAmelCase__ ) return model, params def _lowercase ( self : Optional[int] , UpperCAmelCase__ : int=0 , UpperCAmelCase__ : List[str]=(4, 7_7, 7_6_8) , UpperCAmelCase__ : Optional[Any]=False ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : str = jnp.bfloataa if fpaa else jnp.floataa SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(UpperCAmelCase__ , UpperCAmelCase__ ) ) , dtype=UpperCAmelCase__ ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [1_7, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 1_0_0_0, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_latents(UpperCAmelCase__ , fpaa=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = self.get_encoder_hidden_states(UpperCAmelCase__ , fpaa=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = model.apply( {"""params""": params} , UpperCAmelCase__ , jnp.array(UpperCAmelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=UpperCAmelCase__ , ).sample assert sample.shape == latents.shape SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : str = jnp.array(UpperCAmelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [1_7, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 1_0_0_0, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def _lowercase ( self : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = self.get_latents(UpperCAmelCase__ , shape=(4, 4, 9_6, 9_6) , fpaa=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_encoder_hidden_states(UpperCAmelCase__ , shape=(4, 7_7, 1_0_2_4) , fpaa=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : str = model.apply( {"""params""": params} , UpperCAmelCase__ , jnp.array(UpperCAmelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=UpperCAmelCase__ , ).sample assert sample.shape == latents.shape SCREAMING_SNAKE_CASE : str = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Dict = jnp.array(UpperCAmelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-2 )
245
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self : Optional[int] , __lowerCAmelCase : Union[str, Any] , ): _UpperCAmelCase = parent _UpperCAmelCase = 13 _UpperCAmelCase = 7 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 99 _UpperCAmelCase = 32 _UpperCAmelCase = 2 _UpperCAmelCase = 4 _UpperCAmelCase = 37 _UpperCAmelCase = """gelu""" _UpperCAmelCase = 0.1 _UpperCAmelCase = 0.1 _UpperCAmelCase = 512 _UpperCAmelCase = 16 _UpperCAmelCase = 2 _UpperCAmelCase = 0.02 _UpperCAmelCase = 3 _UpperCAmelCase = 4 _UpperCAmelCase = None def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Dict ): ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ): _UpperCAmelCase = TFEsmModel(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : int , ): _UpperCAmelCase = True _UpperCAmelCase = TFEsmModel(config=__lowerCAmelCase ) _UpperCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ) # Also check the case where encoder outputs are not passed _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ): _UpperCAmelCase = TFEsmForMaskedLM(config=__lowerCAmelCase ) _UpperCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFEsmForTokenClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : List[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _snake_case : List[str] = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _snake_case : str = False _snake_case : Optional[int] = False def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = TFEsmModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : int ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[int] ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFEsmModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def lowerCAmelCase_ ( self : List[Any] ): pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__lowerCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _UpperCAmelCase = model.get_bias() assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) for k, v in name.items(): assert isinstance(__lowerCAmelCase , tf.Variable ) else: _UpperCAmelCase = model.get_output_embeddings() assert x is None _UpperCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , __lowerCAmelCase ) # compare the actual values for a slice. _UpperCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _UpperCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] # compare the actual values for a slice. _UpperCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
356
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = tokenizer(example["""content"""] ,truncation=lowercase )["""input_ids"""] _UpperCAmelCase = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCAmelCase__ = HfArgumentParser(PretokenizationArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
30
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) _a = logging.getLogger(__name__) class __lowerCamelCase ( snake_case__): """simple docstring""" def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ): """simple docstring""" _UpperCAmelCase = self.layer[current_layer](UpperCAmelCase , UpperCAmelCase , head_mask[current_layer] ) _UpperCAmelCase = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , snake_case__ , ) class __lowerCamelCase ( snake_case__): """simple docstring""" def __init__( self , UpperCAmelCase ): """simple docstring""" super().__init__(UpperCAmelCase ) _UpperCAmelCase = BertEncoderWithPabee(UpperCAmelCase ) self.init_weights() _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = threshold def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = patience def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 0 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.inference_layers_num / self.inference_instances_num _UpperCAmelCase = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(UpperCAmelCase ) @add_start_docstrings_to_model_forward(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _UpperCAmelCase = input_ids.size() elif inputs_embeds is not None: _UpperCAmelCase = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _UpperCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _UpperCAmelCase = torch.ones(UpperCAmelCase , device=UpperCAmelCase ) if token_type_ids is None: _UpperCAmelCase = torch.zeros(UpperCAmelCase , dtype=torch.long , device=UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _UpperCAmelCase = self.get_extended_attention_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = encoder_hidden_states.size() _UpperCAmelCase = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _UpperCAmelCase = torch.ones(UpperCAmelCase , device=UpperCAmelCase ) _UpperCAmelCase = self.invert_attention_mask(UpperCAmelCase ) else: _UpperCAmelCase = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _UpperCAmelCase = self.get_head_mask(UpperCAmelCase , self.config.num_hidden_layers ) _UpperCAmelCase = self.embeddings( input_ids=UpperCAmelCase , position_ids=UpperCAmelCase , token_type_ids=UpperCAmelCase , inputs_embeds=UpperCAmelCase ) _UpperCAmelCase = embedding_output if self.training: _UpperCAmelCase = [] for i in range(self.config.num_hidden_layers ): _UpperCAmelCase = self.encoder.adaptive_forward( UpperCAmelCase , current_layer=UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase ) _UpperCAmelCase = self.pooler(UpperCAmelCase ) _UpperCAmelCase = output_layers[i](output_dropout(UpperCAmelCase ) ) res.append(UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference _UpperCAmelCase = self.encoder( UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , ) _UpperCAmelCase = self.pooler(encoder_outputs[0] ) _UpperCAmelCase = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase )] else: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _UpperCAmelCase = self.encoder.adaptive_forward( UpperCAmelCase , current_layer=UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase ) _UpperCAmelCase = self.pooler(UpperCAmelCase ) _UpperCAmelCase = output_layers[i](UpperCAmelCase ) if regression: _UpperCAmelCase = logits.detach() if patient_result is not None: _UpperCAmelCase = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _UpperCAmelCase = 0 else: _UpperCAmelCase = logits.detach().argmax(dim=1 ) if patient_result is not None: _UpperCAmelCase = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase ) ): patient_counter += 1 else: _UpperCAmelCase = 0 _UpperCAmelCase = logits if patient_counter == self.patience: break _UpperCAmelCase = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , snake_case__ , ) class __lowerCamelCase ( snake_case__): """simple docstring""" def __init__( self , UpperCAmelCase ): """simple docstring""" super().__init__(UpperCAmelCase ) _UpperCAmelCase = config.num_labels _UpperCAmelCase = BertModelWithPabee(UpperCAmelCase ) _UpperCAmelCase = nn.Dropout(config.hidden_dropout_prob ) _UpperCAmelCase = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase = self.bert( input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , position_ids=UpperCAmelCase , head_mask=UpperCAmelCase , inputs_embeds=UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _UpperCAmelCase = (logits[-1],) if labels is not None: _UpperCAmelCase = None _UpperCAmelCase = 0 for ix, logits_item in enumerate(UpperCAmelCase ): if self.num_labels == 1: # We are doing regression _UpperCAmelCase = MSELoss() _UpperCAmelCase = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _UpperCAmelCase = CrossEntropyLoss() _UpperCAmelCase = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _UpperCAmelCase = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _UpperCAmelCase = (total_loss / total_weights,) + outputs return outputs
39
from __future__ import annotations import collections import pprint from pathlib import Path def __A ( __lowerCAmelCase )-> str: """simple docstring""" return "".join(sorted(__lowerCAmelCase ) ) def __A ( __lowerCAmelCase )-> list[str]: """simple docstring""" return word_by_signature[signature(__lowerCAmelCase )] _a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') _a = sorted({word.strip().lower() for word in data.splitlines()}) _a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
39
1
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class UpperCamelCase__( __A , __A ): lowerCAmelCase__ : Any = 1 @register_to_config def __init__( self ,__UpperCAmelCase = 10_00 ,__UpperCAmelCase = None ) -> Tuple: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__UpperCAmelCase ) # standard deviation of the initial noise distribution A__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. A__ = 4 # running values A__ = [] def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> int: A__ = num_inference_steps A__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] A__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: A__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: A__ = torch.sin(steps * math.pi / 2 ) ** 2 A__ = (1.0 - self.betas**2) ** 0.5 A__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] A__ = timesteps.to(__UpperCAmelCase ) A__ = [] def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) A__ = (self.timesteps == timestep).nonzero().item() A__ = timestep_index + 1 A__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__UpperCAmelCase ) if len(self.ets ) == 1: A__ = self.ets[-1] elif len(self.ets ) == 2: A__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: A__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: A__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) A__ = self._get_prev_sample(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> torch.FloatTensor: return sample def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: A__ = self.alphas[timestep_index] A__ = self.betas[timestep_index] A__ = self.alphas[prev_timestep_index] A__ = self.betas[prev_timestep_index] A__ = (sample - sigma * ets) / max(__UpperCAmelCase ,1e-8 ) A__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> Tuple: return self.config.num_train_timesteps
154
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
154
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase_ ( snake_case_ : str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = filter(lambda snake_case_ : p.requires_grad , model.parameters() ) UpperCAmelCase_ = sum([np.prod(p.size() ) for p in model_parameters] ) return params SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.getLogger(__name__) def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : List[str] ) -> List[str]: '''simple docstring''' if metric == "rouge2": UpperCAmelCase_ = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": UpperCAmelCase_ = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": UpperCAmelCase_ = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": UpperCAmelCase_ = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) UpperCAmelCase_ = ModelCheckpoint( dirpath=snake_case_ , filename=snake_case_ , monitor=f"""val_{metric}""" , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Tuple ) -> int: '''simple docstring''' return EarlyStopping( monitor=f"""val_{metric}""" , mode="min" if "loss" in metric else "max" , patience=snake_case_ , verbose=snake_case_ , ) class __A ( pl.Callback ): def _lowercase (self : Optional[int] , __a : Tuple , __a : Optional[Any] ): UpperCAmelCase_ = {f"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def _lowercase (self : int , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : List[Any]=True ): logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) UpperCAmelCase_ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results UpperCAmelCase_ = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase_ = od / "test_results.txt" UpperCAmelCase_ = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase_ = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" UpperCAmelCase_ = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase_ = metrics[key] if isinstance(__a , torch.Tensor ): UpperCAmelCase_ = val.item() UpperCAmelCase_ = f"""{key}: {val:.6f}\n""" writer.write(__a ) if not save_generations: return if "preds" in metrics: UpperCAmelCase_ = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def _lowercase (self : Optional[Any] , __a : Optional[Any] , __a : Union[str, Any] ): try: UpperCAmelCase_ = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase_ = pl_module.model.num_parameters() UpperCAmelCase_ = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def _lowercase (self : List[str] , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def _lowercase (self : List[Any] , __a : pl.Trainer , __a : Dict ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(snake_case_ , x % y ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int = 20 ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 for i in range(1 , n + 1 ): UpperCAmelCase_ = lcm(snake_case_ , snake_case_ ) return g if __name__ == "__main__": print(f"{solution() = }")
1
1
import torch def __UpperCamelCase ( ) ->Optional[Any]: """simple docstring""" if torch.cuda.is_available(): lowerCamelCase_ =torch.cuda.device_count() else: lowerCamelCase_ =0 print(f'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
49
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def __UpperCamelCase ( _A : Optional[int] ) ->List[str]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowerCamelCase_ =k.replace(_A , _A ) if k.startswith("""encoder""" ): lowerCamelCase_ =k.replace(""".attn""" , """.self_attn""" ) lowerCamelCase_ =k.replace("""norm1""" , """self_attn_layer_norm""" ) lowerCamelCase_ =k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): lowerCamelCase_ =k.replace("""norm1""" , """self_attn_layer_norm""" ) lowerCamelCase_ =k.replace("""norm2""" , """encoder_attn_layer_norm""" ) lowerCamelCase_ =k.replace("""norm3""" , """final_layer_norm""" ) return k def __UpperCamelCase ( _A : Union[str, Any] ) ->Optional[int]: """simple docstring""" lowerCamelCase_ =[ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: lowerCamelCase_ =sd.pop(_A ) lowerCamelCase_ =k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd lowerCamelCase_ =v __A : Any = ['START'] @torch.no_grad() def __UpperCamelCase ( _A : List[Any] , _A : Union[str, Any] , _A : List[str] ) ->List[str]: """simple docstring""" lowerCamelCase_ =torch.load(_A , map_location="""cpu""" ) lowerCamelCase_ =model["""model"""] lowerCamelCase_ =BlenderbotConfig.from_json_file(_A ) lowerCamelCase_ =BlenderbotForConditionalGeneration(_A ) lowerCamelCase_ =m.model.state_dict().keys() lowerCamelCase_ =[] lowerCamelCase_ ={} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowerCamelCase_ =rename_state_dict_key(_A ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowerCamelCase_ =v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_A ) m.model.load_state_dict(_A , strict=_A ) m.half() m.save_pretrained(_A ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) __A : str = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
49
1
'''simple docstring''' def A_ ( snake_case ): if not isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE:int = F'''Input value of [number={number}] must be an integer''' raise TypeError(snake_case ) if number < 0: return False SCREAMING_SNAKE_CASE:int = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
139
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class _snake_case ( _a ): _A : Optional[int] = '''t5''' _A : Union[str, Any] = ['''past_key_values'''] _A : Dict = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any]=32_128 ,SCREAMING_SNAKE_CASE__ : List[str]=512 ,SCREAMING_SNAKE_CASE__ : Any=64 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_048 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=6 ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : Dict=8 ,SCREAMING_SNAKE_CASE__ : Optional[int]=32 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=128 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Tuple=1e-6 ,SCREAMING_SNAKE_CASE__ : str=1.0 ,SCREAMING_SNAKE_CASE__ : int="relu" ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : Dict=0 ,SCREAMING_SNAKE_CASE__ : Tuple=1 ,**SCREAMING_SNAKE_CASE__ : Tuple ,): SCREAMING_SNAKE_CASE:int = vocab_size SCREAMING_SNAKE_CASE:Any = d_model SCREAMING_SNAKE_CASE:Union[str, Any] = d_kv SCREAMING_SNAKE_CASE:Optional[int] = d_ff SCREAMING_SNAKE_CASE:Tuple = num_layers SCREAMING_SNAKE_CASE:str = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE:Union[str, Any] = num_heads SCREAMING_SNAKE_CASE:int = relative_attention_num_buckets SCREAMING_SNAKE_CASE:Tuple = relative_attention_max_distance SCREAMING_SNAKE_CASE:Dict = dropout_rate SCREAMING_SNAKE_CASE:List[Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE:List[str] = initializer_factor SCREAMING_SNAKE_CASE:Tuple = feed_forward_proj SCREAMING_SNAKE_CASE:str = use_cache SCREAMING_SNAKE_CASE:Optional[Any] = self.feed_forward_proj.split("-" ) SCREAMING_SNAKE_CASE:Any = act_info[-1] SCREAMING_SNAKE_CASE:Tuple = act_info[0] == "gated" if len(SCREAMING_SNAKE_CASE__ ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE__ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE:int = "gelu_new" super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) class _snake_case ( _a ): @property def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:int = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: SCREAMING_SNAKE_CASE:Optional[int] = "past_encoder_sequence + sequence" SCREAMING_SNAKE_CASE:str = {0: "batch"} SCREAMING_SNAKE_CASE:List[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE:Tuple = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE:List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ ,direction="inputs" ) return common_inputs @property def __UpperCamelCase ( self : Optional[int] ): return 13
139
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = """ctrl""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["""past_key_values"""] SCREAMING_SNAKE_CASE_ : Dict = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase__=246_534 , lowerCAmelCase__=256 , lowerCAmelCase__=1_280 , lowerCAmelCase__=8_192 , lowerCAmelCase__=48 , lowerCAmelCase__=16 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1e-6 , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = dff SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache super().__init__(**lowerCAmelCase__ )
38
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = XGLMConfig SCREAMING_SNAKE_CASE_ : List[str] = {} SCREAMING_SNAKE_CASE_ : Optional[Any] = """gelu""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=14 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=0.02 , ) -> str: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = ffn_dim SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 1 def __A ( self ) -> Optional[int]: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = self.get_config() SCREAMING_SNAKE_CASE = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __A ( self ) -> int: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : int = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = False def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = TFXGLMModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() @slow def __A ( self ) -> Tuple: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def __A ( self ) -> Tuple: super().test_resize_token_embeddings() @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __A ( self , lowerCAmelCase__=True ) -> Optional[Any]: SCREAMING_SNAKE_CASE = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off SCREAMING_SNAKE_CASE = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on SCREAMING_SNAKE_CASE = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE = tokenizer('Today is a nice day and' , return_tensors='tf' ) SCREAMING_SNAKE_CASE = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): SCREAMING_SNAKE_CASE = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) SCREAMING_SNAKE_CASE = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = 'left' # use different length sentences to test batching SCREAMING_SNAKE_CASE = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors='tf' , padding=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = inputs['input_ids'] SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) SCREAMING_SNAKE_CASE = tokenizer(sentences[0] , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=12 ) SCREAMING_SNAKE_CASE = tokenizer(sentences[1] , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=12 ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
38
1
def lowerCamelCase__ ( a ) -> str: _A: Any = [0] * len(_UpperCamelCase ) _A: int = [] _A: Tuple = [] _A: Union[str, Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCamelCase ) ): if indegree[i] == 0: queue.append(_UpperCamelCase ) while queue: _A: List[str] = queue.pop(0 ) cnt += 1 topo.append(_UpperCamelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCamelCase ) if cnt != len(_UpperCamelCase ): print('''Cycle exists''' ) else: print(_UpperCamelCase ) # Adjacency List of Graph UpperCAmelCase__ : Optional[int] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
121
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : Any ) -> Dict: """simple docstring""" snake_case = XCLIPTextConfig() # derive patch size from model name snake_case = model_name.find('patch' ) snake_case = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) snake_case = XCLIPVisionConfig(patch_size=_UpperCamelCase , num_frames=_UpperCamelCase ) if "large" in model_name: snake_case = 7_6_8 snake_case = 3_0_7_2 snake_case = 1_2 snake_case = 1_0_2_4 snake_case = 4_0_9_6 snake_case = 1_6 snake_case = 2_4 snake_case = 7_6_8 snake_case = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": snake_case = 3_3_6 snake_case = XCLIPConfig.from_text_vision_configs(_UpperCamelCase , _UpperCamelCase ) if "large" in model_name: snake_case = 7_6_8 return config def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> List[Any]: """simple docstring""" if name == "token_embedding.weight": snake_case = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": snake_case = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: snake_case = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): snake_case = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: snake_case = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: snake_case = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": snake_case = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": snake_case = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): snake_case = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: snake_case = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: snake_case = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: snake_case = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: snake_case = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: snake_case = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: snake_case = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: snake_case = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": snake_case = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): snake_case = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): snake_case = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): snake_case = orig_state_dict.pop(_UpperCamelCase ) if "attn.in_proj" in key: snake_case = key.split('.' ) if key.startswith('visual' ): snake_case = key_split[3] snake_case = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: snake_case = val[ :dim, : ] snake_case = val[ dim : dim * 2, : ] snake_case = val[ -dim:, : ] else: snake_case = val[ :dim ] snake_case = val[ dim : dim * 2 ] snake_case = val[ -dim: ] else: if "weight" in key: snake_case = val[ :dim, : ] snake_case = val[ dim : dim * 2, : ] snake_case = val[ -dim:, : ] else: snake_case = val[:dim] snake_case = val[ dim : dim * 2 ] snake_case = val[-dim:] elif key.startswith('mit' ): snake_case = key_split[2] snake_case = config.vision_config.mit_hidden_size if "weight" in key: snake_case = val[:dim, :] snake_case = val[dim : dim * 2, :] snake_case = val[-dim:, :] else: snake_case = val[:dim] snake_case = val[dim : dim * 2] snake_case = val[-dim:] else: snake_case = key_split[2] snake_case = config.text_config.hidden_size if "weight" in key: snake_case = val[:dim, :] snake_case = val[ dim : dim * 2, : ] snake_case = val[-dim:, :] else: snake_case = val[:dim] snake_case = val[ dim : dim * 2 ] snake_case = val[-dim:] else: snake_case = rename_key(_UpperCamelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: snake_case = val.T snake_case = val return orig_state_dict def lowerCAmelCase__ ( _UpperCamelCase : List[str] ) -> Optional[Any]: """simple docstring""" if num_frames == 8: snake_case = 'eating_spaghetti_8_frames.npy' elif num_frames == 1_6: snake_case = 'eating_spaghetti.npy' elif num_frames == 3_2: snake_case = 'eating_spaghetti_32_frames.npy' snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=_UpperCamelCase , repo_type='dataset' , ) snake_case = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : Tuple=None , _UpperCamelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" snake_case = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } snake_case = model_to_url[model_name] snake_case = 8 if "16-frames" in model_name: snake_case = 1_6 elif "shot" in model_name: snake_case = 3_2 snake_case = get_xclip_config(_UpperCamelCase , _UpperCamelCase ) snake_case = XCLIPModel(_UpperCamelCase ) model.eval() if "drive" in checkpoint_url: snake_case = 'pytorch_model.bin' gdown.cached_download(_UpperCamelCase , _UpperCamelCase , quiet=_UpperCamelCase ) snake_case = torch.load(_UpperCamelCase , map_location='cpu' )['model'] else: snake_case = torch.hub.load_state_dict_from_url(_UpperCamelCase )['model'] snake_case = convert_state_dict(_UpperCamelCase , _UpperCamelCase ) snake_case = XCLIPModel(_UpperCamelCase ) snake_case ,snake_case = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() snake_case = 3_3_6 if model_name == 'xclip-large-patch14-16-frames' else 2_2_4 snake_case = VideoMAEImageProcessor(size=_UpperCamelCase ) snake_case = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) snake_case = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) snake_case = XCLIPProcessor(image_processor=_UpperCamelCase , tokenizer=_UpperCamelCase ) snake_case = prepare_video(_UpperCamelCase ) snake_case = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=_UpperCamelCase , return_tensors='pt' , padding=_UpperCamelCase ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): snake_case = model(**_UpperCamelCase ) # Verify outputs snake_case = outputs.logits_per_video snake_case = logits_per_video.softmax(dim=1 ) print('Probs:' , _UpperCamelCase ) # kinetics-400 if model_name == "xclip-base-patch32": snake_case = torch.tensor([[0.00_19, 0.99_51, 0.00_30]] ) elif model_name == "xclip-base-patch32-16-frames": snake_case = torch.tensor([[7.0_9_9_9e-0_4, 9.9_8_8_3e-0_1, 4.5_5_8_0e-0_4]] ) elif model_name == "xclip-base-patch16": snake_case = torch.tensor([[0.00_83, 0.96_81, 0.02_36]] ) elif model_name == "xclip-base-patch16-16-frames": snake_case = torch.tensor([[7.6_9_3_7e-0_4, 9.9_7_2_8e-0_1, 1.9_4_7_3e-0_3]] ) elif model_name == "xclip-large-patch14": snake_case = torch.tensor([[0.00_62, 0.98_64, 0.00_75]] ) elif model_name == "xclip-large-patch14-16-frames": snake_case = torch.tensor([[3.3_8_7_7e-0_4, 9.9_9_3_7e-0_1, 2.8_8_8_8e-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": snake_case = torch.tensor([[0.05_55, 0.89_14, 0.05_31]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": snake_case = torch.tensor([[3.8_5_5_4e-0_4, 9.9_9_2_9e-0_1, 3.2_7_5_4e-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": snake_case = torch.tensor([[0.00_36, 0.99_20, 0.00_45]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": snake_case = torch.tensor([[7.1_8_9_0e-0_6, 9.9_9_9_4e-0_1, 5.6_5_5_9e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": snake_case = torch.tensor([[1.0_3_2_0e-0_5, 9.9_9_9_3e-0_1, 6.2_4_3_5e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": snake_case = torch.tensor([[4.1_3_7_7e-0_6, 9.9_9_9_0e-0_1, 9.8_3_8_6e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": snake_case = torch.tensor([[4.1_3_4_7e-0_5, 9.9_9_6_2e-0_1, 3.3_4_1_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": snake_case = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": snake_case = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": snake_case = torch.tensor([[0.00_27, 0.99_04, 0.00_70]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": snake_case = torch.tensor([[9.8_2_1_9e-0_4, 9.9_5_9_3e-0_1, 3.0_8_6_3e-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": snake_case = torch.tensor([[3.5_0_8_2e-0_4, 9.9_7_8_5e-0_1, 1.7_9_6_6e-0_3]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(_UpperCamelCase , organization='nielsr' ) processor.push_to_hub(_UpperCamelCase , organization='nielsr' ) slow_tokenizer.push_to_hub(_UpperCamelCase , organization='nielsr' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
150
0
import argparse import os import re import packaging.version UpperCAmelCase_ = """examples/""" UpperCAmelCase_ = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } UpperCAmelCase_ = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } UpperCAmelCase_ = """README.md""" def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(UpperCamelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _snake_case = f.read() _snake_case , _snake_case = REPLACE_PATTERNS[pattern] _snake_case = replace.replace('VERSION' , UpperCamelCase__ ) _snake_case = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Optional[Any]: '''simple docstring''' for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='examples' ) def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : Dict=False ) -> List[str]: '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' _snake_case = '🤗 Transformers currently provides the following architectures' _snake_case = '1. Want to contribute a new model?' with open(UpperCamelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _snake_case = f.readlines() # Find the start of the list. _snake_case = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _snake_case = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): _snake_case = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(UpperCamelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCamelCase__ ) def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' with open(REPLACE_FILES['init'] , 'r' ) as f: _snake_case = f.read() _snake_case = REPLACE_PATTERNS['init'][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : List[str]=False ) -> int: '''simple docstring''' _snake_case = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: _snake_case = default_version.base_version elif patch: _snake_case = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: _snake_case = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. _snake_case = input(F'''Which version are you releasing? [{default_version}]''' ) if len(UpperCamelCase__ ) == 0: _snake_case = default_version print(F'''Updating version to {version}.''' ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ) -> Any: '''simple docstring''' _snake_case = get_version() _snake_case = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' _snake_case = current_version.base_version # Check with the user we got that right. _snake_case = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(UpperCamelCase__ ) == 0: _snake_case = dev_version print(F'''Updating version to {version}.''' ) global_version_update(UpperCamelCase__ ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") UpperCAmelCase_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
295
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase_ = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _snake_case = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) else: _snake_case = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = ProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) _snake_case = ['key_proj', 'value_proj', 'query_proj'] _snake_case = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _snake_case = key.split('.' ) if attributes[0] == "lm_head": _snake_case = prophet _snake_case = prophet_old else: _snake_case = prophet.prophetnet _snake_case = prophet_old.model _snake_case = False for attribute in attributes: if attribute in mapping: _snake_case = mapping[attribute] if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0: _snake_case = attribute elif hasattr(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _snake_case = old_model.weight logger.info(F'''{attribute} is initialized.''' ) _snake_case = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _snake_case = old_model.bias logger.info(F'''{attribute} is initialized''' ) _snake_case = True break elif attribute in special_keys and hasattr(UpperCamelCase__ , 'in_proj_weight' ): _snake_case = old_model.in_proj_weight.shape[0] // 3 _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _snake_case = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _snake_case = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _snake_case = True break if attribute.isdigit(): _snake_case = model[int(UpperCamelCase__ )] _snake_case = old_model[int(UpperCamelCase__ )] else: _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_attribute == "": _snake_case = old_model else: if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
295
1
from ..utils import DummyObject, requires_backends class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Union[str, Any] = ['''torch''', '''torchsde'''] def __init__( self : Union[str, Any] ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Optional[int]): requires_backends(self ,['torch', 'torchsde']) @classmethod def lowerCAmelCase ( cls : Dict ,*SCREAMING_SNAKE_CASE__ : Optional[Any] ,**SCREAMING_SNAKE_CASE__ : Optional[int]): requires_backends(cls ,['torch', 'torchsde']) @classmethod def lowerCAmelCase ( cls : Any ,*SCREAMING_SNAKE_CASE__ : str ,**SCREAMING_SNAKE_CASE__ : List[Any]): requires_backends(cls ,['torch', 'torchsde'])
73
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Optional[Any] =logging.get_logger(__name__) _UpperCAmelCase : str ={ """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = """vit_mae""" def __init__( self , __lowercase=7_6_8 , __lowercase=1_2 , __lowercase=1_2 , __lowercase=3_0_7_2 , __lowercase="gelu" , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.02 , __lowercase=1e-12 , __lowercase=2_2_4 , __lowercase=1_6 , __lowercase=3 , __lowercase=True , __lowercase=1_6 , __lowercase=5_1_2 , __lowercase=8 , __lowercase=2_0_4_8 , __lowercase=0.75 , __lowercase=False , **__lowercase , ) -> str: super().__init__(**__lowercase ) lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Any = num_hidden_layers lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : int = hidden_dropout_prob lowerCAmelCase_ : str = attention_probs_dropout_prob lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : Dict = layer_norm_eps lowerCAmelCase_ : Union[str, Any] = image_size lowerCAmelCase_ : Optional[int] = patch_size lowerCAmelCase_ : Tuple = num_channels lowerCAmelCase_ : List[str] = qkv_bias lowerCAmelCase_ : List[Any] = decoder_num_attention_heads lowerCAmelCase_ : int = decoder_hidden_size lowerCAmelCase_ : Optional[int] = decoder_num_hidden_layers lowerCAmelCase_ : Tuple = decoder_intermediate_size lowerCAmelCase_ : Tuple = mask_ratio lowerCAmelCase_ : Any = norm_pix_loss
262
0
"""simple docstring""" def _snake_case ( UpperCamelCase : list , UpperCamelCase : int = 0 ): UpperCAmelCase : List[Any] = length or len(_UpperCamelCase ) UpperCAmelCase : Dict = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: UpperCAmelCase , UpperCAmelCase : Tuple = list_data[i + 1], list_data[i] UpperCAmelCase : Union[str, Any] = True return list_data if not swapped else bubble_sort(_UpperCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" def _snake_case ( UpperCamelCase : list , UpperCamelCase : list ): _validate_point(UpperCamelCase ) _validate_point(UpperCamelCase ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCamelCase , UpperCamelCase ) ) ) def _snake_case ( UpperCamelCase : list[float] ): if point: if isinstance(UpperCamelCase , UpperCamelCase ): for item in point: if not isinstance(UpperCamelCase , (int, float) ): UpperCAmelCase : Any = ( """Expected a list of numbers as input, found """ F"{type(UpperCamelCase ).__name__}" ) raise TypeError(UpperCamelCase ) else: UpperCAmelCase : int = F"Expected a list of numbers as input, found {type(UpperCamelCase ).__name__}" raise TypeError(UpperCamelCase ) else: raise ValueError("""Missing an input""" ) def _snake_case ( UpperCamelCase : list , UpperCamelCase : list ): _validate_point(UpperCamelCase ) _validate_point(UpperCamelCase ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCamelCase , UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
76
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE_: str =logging.getLogger(__name__) @dataclass class __A : a__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a__ : bool = field(default=UpperCamelCase__ , metadata={"""help""": """Whether tp freeze the encoder."""} ) a__ : bool = field(default=UpperCamelCase__ , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class __A : a__ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) a__ : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) a__ : Optional[int] = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) a__ : Optional[str] = field(default=UpperCamelCase__ , metadata={"""help""": """Source language id for translation."""} ) a__ : Optional[str] = field(default=UpperCamelCase__ , metadata={"""help""": """Target language id for translation."""} ) a__ : Optional[int] = field(default=UpperCamelCase__ , metadata={"""help""": """# num_beams to use for evaluation."""} ) a__ : bool = field( default=UpperCamelCase__ , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : List[Any] ) -> str: '''simple docstring''' logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , f"""{split}_results.json""" ) ) def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) UpperCAmelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCAmelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCAmelCase_ = SeqaSeqDataset # Get datasets UpperCAmelCase_ = ( dataset_class( snake_case_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCAmelCase_ = ( dataset_class( snake_case_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCAmelCase_ = ( dataset_class( snake_case_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCAmelCase_ = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) UpperCAmelCase_ = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) UpperCAmelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCAmelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCAmelCase_ = train_result.metrics UpperCAmelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCAmelCase_ = data_args.n_val UpperCAmelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCAmelCase_ = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="test" ) UpperCAmelCase_ = test_output.metrics UpperCAmelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCAmelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: UpperCAmelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) UpperCAmelCase_ = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( snake_case_ : str ) -> List[str]: '''simple docstring''' main() if __name__ == "__main__": main()
1
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_: str =logging.getLogger(__name__) @dataclass(frozen=UpperCamelCase__ ) class __A : a__ : str a__ : str a__ : Optional[str] = None a__ : Optional[str] = None a__ : Optional[str] = None @dataclass(frozen=UpperCamelCase__ ) class __A : a__ : List[int] a__ : Optional[List[int]] = None a__ : Optional[List[int]] = None a__ : Optional[Union[int, float]] = None a__ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __A ( UpperCamelCase__ ): a__ : List[InputFeatures] def __init__(self : Any , __a : str , __a : PreTrainedTokenizer , __a : str , __a : Optional[int] = None , __a : Dict=False , __a : bool = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = os.path.join( __a , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(__a ) , __a , ) , ) UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ = cached_features_file + ".lock" with FileLock(__a ): if os.path.exists(__a ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase_ = torch.load(__a ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase_ = ( processor.get_dev_examples(__a ) if evaluate else processor.get_train_examples(__a ) ) logger.info("Training examples: %s" , len(__a ) ) UpperCAmelCase_ = hans_convert_examples_to_features(__a , __a , __a , __a ) logger.info("Saving features into cached file %s" , __a ) torch.save(self.features , __a ) def __len__(self : List[Any] ): return len(self.features ) def __getitem__(self : Any , __a : Optional[Any] ): return self.features[i] def _lowercase (self : Union[str, Any] ): return self.label_list if is_tf_available(): import tensorflow as tf class __A : a__ : List[InputFeatures] def __init__(self : Union[str, Any] , __a : str , __a : PreTrainedTokenizer , __a : str , __a : Optional[int] = 128 , __a : Any=False , __a : bool = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list UpperCAmelCase_ = processor.get_dev_examples(__a ) if evaluate else processor.get_train_examples(__a ) UpperCAmelCase_ = hans_convert_examples_to_features(__a , __a , __a , __a ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(__a )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase_ = tf.data.Dataset.from_generator( __a , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _lowercase (self : int ): return self.dataset def __len__(self : Any ): return len(self.features ) def __getitem__(self : int , __a : Union[str, Any] ): return self.features[i] def _lowercase (self : int ): return self.label_list class __A ( UpperCamelCase__ ): def _lowercase (self : List[Any] , __a : Dict ): return self._create_examples(self._read_tsv(os.path.join(__a , "heuristics_train_set.txt" ) ) , "train" ) def _lowercase (self : Any , __a : List[Any] ): return self._create_examples(self._read_tsv(os.path.join(__a , "heuristics_evaluation_set.txt" ) ) , "dev" ) def _lowercase (self : Any ): return ["contradiction", "entailment", "neutral"] def _lowercase (self : Union[str, Any] , __a : Optional[int] , __a : Union[str, Any] ): UpperCAmelCase_ = [] for i, line in enumerate(__a ): if i == 0: continue UpperCAmelCase_ = "%s-%s" % (set_type, line[0]) UpperCAmelCase_ = line[5] UpperCAmelCase_ = line[6] UpperCAmelCase_ = line[7][2:] if line[7].startswith("ex" ) else line[7] UpperCAmelCase_ = line[0] examples.append(InputExample(guid=__a , text_a=__a , text_b=__a , label=__a , pairID=__a ) ) return examples def lowerCAmelCase_ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = {label: i for i, label in enumerate(snake_case_ )} UpperCAmelCase_ = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc="convert examples to features" ): if ex_index % 1_00_00 == 0: logger.info("Writing example %d" % (ex_index) ) UpperCAmelCase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding="max_length" , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) UpperCAmelCase_ = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase_ = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE_: int ={ 'hans': 3, } SCREAMING_SNAKE_CASE_: Any ={ 'hans': HansProcessor, }
1
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase__ = """true""" def _a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str]=82 , SCREAMING_SNAKE_CASE_ : str=16 ): set_seed(42 ) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = RegressionDataset(length=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = DataLoader(SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) model.to(accelerator.device ) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return model, ddp_model, dataloader def _a ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : Optional[int]=False ): __lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) __lowerCAmelCase = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(SCREAMING_SNAKE_CASE_ : List[Any] ): __lowerCAmelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , ) __lowerCAmelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="longest" , return_tensors="pt" ) return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=16 ) def _a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int ): __lowerCAmelCase = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = get_dataloader(SCREAMING_SNAKE_CASE_ , not dispatch_batches ) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] ): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE_ ) targs.append(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase , __lowerCAmelCase = torch.cat(SCREAMING_SNAKE_CASE_ ), torch.cat(SCREAMING_SNAKE_CASE_ ) return logits, targs def _a ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : Union[str, Any]=82 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : Optional[int]=16 ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert ( len(SCREAMING_SNAKE_CASE_ ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE_ )}""" def _a ( SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False ): __lowerCAmelCase = evaluate.load("glue" , "mrpc" ) __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup["no"] model.to(SCREAMING_SNAKE_CASE_ ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE_ ) with torch.inference_mode(): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=batch["labels"] ) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase = batch["labels"] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def _a ( ): __lowerCAmelCase = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(SCREAMING_SNAKE_CASE_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) __lowerCAmelCase = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE_ , 5_12 ) accelerator.state._reset_state() def _a ( SCREAMING_SNAKE_CASE_ : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
102
def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): __lowerCAmelCase , __lowerCAmelCase = [], [] while len(SCREAMING_SNAKE_CASE_ ) > 1: __lowerCAmelCase , __lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) start.append(SCREAMING_SNAKE_CASE_ ) end.append(SCREAMING_SNAKE_CASE_ ) collection.remove(SCREAMING_SNAKE_CASE_ ) collection.remove(SCREAMING_SNAKE_CASE_ ) end.reverse() return start + collection + end if __name__ == "__main__": UpperCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
102
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __A : Optional[int] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""input_features"""] def __init__( self : Dict , __UpperCamelCase : int=8_0 , __UpperCamelCase : List[str]=1_6_0_0_0 , __UpperCamelCase : Optional[Any]=1_6_0 , __UpperCamelCase : Optional[Any]=3_0 , __UpperCamelCase : Optional[Any]=4_0_0 , __UpperCamelCase : Union[str, Any]=0.0 , __UpperCamelCase : Optional[int]=False , **__UpperCamelCase : Any , )->Tuple: super().__init__( feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = n_fft _UpperCAmelCase = hop_length _UpperCAmelCase = chunk_length _UpperCAmelCase = chunk_length * sampling_rate _UpperCAmelCase = self.n_samples // hop_length _UpperCAmelCase = sampling_rate _UpperCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__UpperCamelCase , min_frequency=0.0 , max_frequency=8_0_0_0.0 , sampling_rate=__UpperCamelCase , norm='''slaney''' , mel_scale='''slaney''' , ) def lowercase__ ( self : int , __UpperCamelCase : np.array )->np.ndarray: _UpperCAmelCase = spectrogram( __UpperCamelCase , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) _UpperCAmelCase = log_spec[:, :-1] _UpperCAmelCase = np.maximum(__UpperCamelCase , log_spec.max() - 8.0 ) _UpperCAmelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowercase__ ( __UpperCamelCase : List[np.ndarray] , __UpperCamelCase : List[np.ndarray] , __UpperCamelCase : float = 0.0 )->List[np.ndarray]: if attention_mask is not None: _UpperCAmelCase = np.array(__UpperCamelCase , np.intaa ) _UpperCAmelCase = [] for vector, length in zip(__UpperCamelCase , attention_mask.sum(-1 ) ): _UpperCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: _UpperCAmelCase = padding_value normed_input_values.append(__UpperCamelCase ) else: _UpperCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : Tuple , __UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[str] = "max_length" , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[bool] = None , **__UpperCamelCase : Any , )->BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) _UpperCAmelCase = isinstance(__UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) _UpperCAmelCase = is_batched_numpy or ( isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ): _UpperCAmelCase = np.asarray(__UpperCamelCase , dtype=np.floataa ) elif isinstance(__UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase = [np.asarray([raw_speech] ).T] _UpperCAmelCase = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding _UpperCAmelCase = self.pad( __UpperCamelCase , padding=__UpperCamelCase , max_length=max_length if max_length else self.n_samples , truncation=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: _UpperCAmelCase = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) _UpperCAmelCase = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format _UpperCAmelCase = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) _UpperCAmelCase = [self._np_extract_fbank_features(__UpperCamelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , __UpperCamelCase ): _UpperCAmelCase = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for feature in input_features] else: _UpperCAmelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _UpperCAmelCase = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: _UpperCAmelCase = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs def lowercase__ ( self : Optional[Any] )->Dict[str, Any]: _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
260
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _UpperCAmelCase = True for i in range(_SCREAMING_SNAKE_CASE ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _UpperCAmelCase = True if a[i].islower(): _UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
260
1
import pytest import datasets # Import fixture modules as plugins _UpperCAmelCase : int = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.getbasetemp() / 'cache' snake_case_ = test_hf_cache_home / 'datasets' snake_case_ = test_hf_cache_home / 'metrics' snake_case_ = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(UpperCamelCase__ ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(UpperCamelCase__ ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(UpperCamelCase__ ) ) snake_case_ = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(UpperCamelCase__ ) ) snake_case_ = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(UpperCamelCase__ ) ) @pytest.fixture(autouse=UpperCamelCase__ , scope='session' ) def __lowerCamelCase ( ): '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , UpperCamelCase__ ) @pytest.fixture def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , UpperCamelCase__ )
200
from __future__ import annotations def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = [] create_all_state(1 , UpperCamelCase__ , UpperCamelCase__ , [] , UpperCamelCase__ ) return result def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(UpperCamelCase__ , total_number - level + 2 ): current_list.append(UpperCamelCase__ ) create_all_state(i + 1 , UpperCamelCase__ , level - 1 , UpperCamelCase__ , UpperCamelCase__ ) current_list.pop() def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' for i in total_list: print(*UpperCamelCase__ ) if __name__ == "__main__": _UpperCAmelCase : str = 4 _UpperCAmelCase : Tuple = 2 _UpperCAmelCase : Optional[int] = generate_all_combinations(n, k) print_all_state(total_list)
200
1
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A__(a_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase ) -> Dict: super().__init__() self.register_modules(vqvae=_lowercase , unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self , _lowercase = 1 , _lowercase = None , _lowercase = 0.0 , _lowercase = 50 , _lowercase = "pil" , _lowercase = True , **_lowercase , ) -> Union[Tuple, ImagePipelineOutput]: a_ : Optional[int] = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_lowercase , ) a_ : List[Any] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler a_ : int = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_lowercase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature a_ : List[str] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a_ : Any = {} if accepts_eta: a_ : Optional[int] = eta for t in self.progress_bar(self.scheduler.timesteps ): a_ : int = self.scheduler.scale_model_input(_lowercase , _lowercase ) # predict the noise residual a_ : Any = self.unet(_lowercase , _lowercase ).sample # compute the previous noisy sample x_t -> x_t-1 a_ : Tuple = self.scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample # decode the image latents with the VAE a_ : Optional[int] = self.vqvae.decode(_lowercase ).sample a_ : int = (image / 2 + 0.5).clamp(0 , 1 ) a_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a_ : Tuple = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
248
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase__ ( self ) -> List[Any]: a_ , a_ : Any = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=_lowercase , dtype=jnp.bfloataa ) a_ , a_ : Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=_lowercase , from_pt=_lowercase , dtype=jnp.bfloataa ) a_ : Union[str, Any] = controlnet_params a_ : int = """bird""" a_ : Tuple = jax.device_count() a_ : List[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) a_ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) a_ : Optional[Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) a_ : int = jax.random.PRNGKey(0 ) a_ : Union[str, Any] = jax.random.split(_lowercase , jax.device_count() ) a_ : Any = replicate(_lowercase ) a_ : Optional[int] = shard(_lowercase ) a_ : List[Any] = shard(_lowercase ) a_ : int = pipe( prompt_ids=_lowercase , image=_lowercase , params=_lowercase , prng_seed=_lowercase , num_inference_steps=50 , jit=_lowercase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) a_ : Optional[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a_ : str = images[0, 253:256, 253:256, -1] a_ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a_ : List[Any] = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self ) -> str: a_ , a_ : str = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=_lowercase , dtype=jnp.bfloataa ) a_ , a_ : Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=_lowercase , from_pt=_lowercase , dtype=jnp.bfloataa ) a_ : Tuple = controlnet_params a_ : str = """Chef in the kitchen""" a_ : Optional[Any] = jax.device_count() a_ : Any = pipe.prepare_text_inputs([prompts] * num_samples ) a_ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) a_ : Any = pipe.prepare_image_inputs([pose_image] * num_samples ) a_ : str = jax.random.PRNGKey(0 ) a_ : int = jax.random.split(_lowercase , jax.device_count() ) a_ : Optional[int] = replicate(_lowercase ) a_ : Tuple = shard(_lowercase ) a_ : List[Any] = shard(_lowercase ) a_ : str = pipe( prompt_ids=_lowercase , image=_lowercase , params=_lowercase , prng_seed=_lowercase , num_inference_steps=50 , jit=_lowercase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) a_ : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a_ : List[str] = images[0, 253:256, 253:256, -1] a_ : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a_ : Optional[int] = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
248
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) a :str = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house a :Optional[Any] = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim a :Union[str, Any] = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): a :Optional[int] = model(_lowerCamelCase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCamelCase , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) a :Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house a :List[Any] = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim a :Tuple = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): a :Dict = model(_lowerCamelCase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCamelCase , atol=1e-3 ) )
281
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
281
1
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : List[str] = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> str: UpperCAmelCase : Any = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''encoder.deit.blocks.{i}.norm1.weight''', f'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm1.bias''', f'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.weight''', f'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.bias''', f'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.norm2.weight''', f'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm2.bias''', f'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.weight''', f'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.bias''', f'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc2.weight''', f'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.mlp.fc2.bias''', f'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def a__ ( UpperCAmelCase : int , UpperCAmelCase : Dict ) -> Any: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) UpperCAmelCase : int = state_dict.pop(f'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Dict = in_proj_weight[ : encoder_config.hidden_size, : ] UpperCAmelCase : Dict = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] UpperCAmelCase : Dict = in_proj_weight[ -encoder_config.hidden_size :, : ] def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] ) -> int: UpperCAmelCase : List[str] = dct.pop(snake_case__ ) UpperCAmelCase : str = val def a__ ( UpperCAmelCase : Optional[int] ) -> Optional[Any]: if "handwritten" in checkpoint_url: UpperCAmelCase : Dict = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase : Any = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' UpperCAmelCase : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ) -> str: UpperCAmelCase : List[Any] = ViTConfig(image_size=384 , qkv_bias=snake_case__ ) UpperCAmelCase : List[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: UpperCAmelCase : str = 768 elif "large" in checkpoint_url: # use ViT-large encoder UpperCAmelCase : Dict = 1_024 UpperCAmelCase : Optional[Any] = 4_096 UpperCAmelCase : Any = 24 UpperCAmelCase : Any = 16 UpperCAmelCase : Any = 1_024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase : Optional[int] = False UpperCAmelCase : str = '''relu''' UpperCAmelCase : Optional[Any] = 1_024 UpperCAmelCase : List[str] = True UpperCAmelCase : int = False UpperCAmelCase : List[Any] = False # load HuggingFace model UpperCAmelCase : int = ViTModel(snake_case__ , add_pooling_layer=snake_case__ ) UpperCAmelCase : int = TrOCRForCausalLM(snake_case__ ) UpperCAmelCase : int = VisionEncoderDecoderModel(encoder=snake_case__ , decoder=snake_case__ ) model.eval() # load state_dict of original model, rename some keys UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(snake_case__ , map_location='''cpu''' , check_hash=snake_case__ )['''model'''] UpperCAmelCase : Tuple = create_rename_keys(snake_case__ , snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_q_k_v(snake_case__ , snake_case__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): UpperCAmelCase : Optional[int] = state_dict.pop(snake_case__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: UpperCAmelCase : Tuple = val else: UpperCAmelCase : Union[str, Any] = val # load state dict model.load_state_dict(snake_case__ ) # Check outputs on an image UpperCAmelCase : Union[str, Any] = ViTImageProcessor(size=encoder_config.image_size ) UpperCAmelCase : List[Any] = RobertaTokenizer.from_pretrained('''roberta-large''' ) UpperCAmelCase : Any = TrOCRProcessor(snake_case__ , snake_case__ ) UpperCAmelCase : List[Any] = processor(images=prepare_img(snake_case__ ) , return_tensors='''pt''' ).pixel_values # verify logits UpperCAmelCase : int = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) UpperCAmelCase : str = model(pixel_values=snake_case__ , decoder_input_ids=snake_case__ ) UpperCAmelCase : List[Any] = outputs.logits UpperCAmelCase : Optional[Any] = torch.Size([1, 1, 50_265] ) if "trocr-base-handwritten" in checkpoint_url: UpperCAmelCase : Optional[Any] = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: UpperCAmelCase : List[Any] = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: UpperCAmelCase : Optional[Any] = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: UpperCAmelCase : int = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , snake_case__ , atol=1E-3 ), "First elements of logits not as expected" Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
336
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __a = logging.get_logger(__name__) __a = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[str]: super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if config is None: assert isinstance(self.model , SCREAMING_SNAKE_CASE_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) lowercase_ = self.model.config else: lowercase_ = config lowercase_ = data_args lowercase_ = self.config.tgt_vocab_size if isinstance(self.config , SCREAMING_SNAKE_CASE_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ''' padding..''' ) if self.args.label_smoothing == 0: lowercase_ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowercase_ = label_smoothed_nll_loss def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: if self.optimizer is None: lowercase_ = ['''bias''', '''LayerNorm.weight'''] lowercase_ = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] lowercase_ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowercase_ = Adafactor lowercase_ = {'''scale_parameter''': False, '''relative_step''': False} else: lowercase_ = AdamW lowercase_ = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } lowercase_ = self.args.learning_rate if self.sharded_ddp: lowercase_ = OSS( params=SCREAMING_SNAKE_CASE_ , optim=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) else: lowercase_ = optimizer_cls(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.lr_scheduler is None: lowercase_ = self._get_lr_scheduler(SCREAMING_SNAKE_CASE_ ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: lowercase_ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowercase_ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowercase_ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowercase_ = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) return scheduler def _lowercase ( self : Tuple ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Any: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowercase_ = model(**SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[0] lowercase_ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowercase_ , lowercase_ = model(**SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[:2] else: # compute label smoothed loss lowercase_ = model(**SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[0] lowercase_ = torch.nn.functional.log_softmax(SCREAMING_SNAKE_CASE_ , dim=-1 ) lowercase_ , lowercase_ = self.loss_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[Any]: lowercase_ = inputs.pop('''labels''' ) lowercase_ , lowercase_ = self._compute_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return loss def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : Dict[str, Union[torch.Tensor, Any]] , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: lowercase_ = self._prepare_inputs(SCREAMING_SNAKE_CASE_ ) lowercase_ = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowercase_ = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **SCREAMING_SNAKE_CASE_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowercase_ = self._pad_tensors_to_max_len(SCREAMING_SNAKE_CASE_ , gen_kwargs['''max_length'''] ) lowercase_ = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data lowercase_ , lowercase_ = self._compute_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowercase_ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowercase_ = self._pad_tensors_to_max_len(SCREAMING_SNAKE_CASE_ , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: # If PAD token is not defined at least EOS token has to be defined lowercase_ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f''' padded to `max_length`={max_length}''' ) lowercase_ = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowercase_ = tensor return padded_tensor
30
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """facebook/timesformer""": """https://huggingface.co/facebook/timesformer/resolve/main/config.json""", } class _UpperCamelCase ( A_ ): '''simple docstring''' lowerCAmelCase__ = """timesformer""" def __init__( self : Tuple , _lowerCAmelCase : Any=2_2_4 , _lowerCAmelCase : str=1_6 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : List[str]=8 , _lowerCAmelCase : Union[str, Any]=7_6_8 , _lowerCAmelCase : Dict=1_2 , _lowerCAmelCase : List[Any]=1_2 , _lowerCAmelCase : Optional[int]=3_0_7_2 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : Any=1e-6 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Tuple="divided_space_time" , _lowerCAmelCase : Optional[Any]=0 , **_lowerCAmelCase : List[Any] , ): '''simple docstring''' super().__init__(**_lowerCamelCase) __lowercase =image_size __lowercase =patch_size __lowercase =num_channels __lowercase =num_frames __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =intermediate_size __lowercase =hidden_act __lowercase =hidden_dropout_prob __lowercase =attention_probs_dropout_prob __lowercase =initializer_range __lowercase =layer_norm_eps __lowercase =qkv_bias __lowercase =attention_type __lowercase =drop_path_rate
368
'''simple docstring''' from sklearn.metrics import fa_score import datasets lowerCamelCase = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ lowerCamelCase = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ lowerCamelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def __lowerCamelCase ( self : Any): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32')), 'references': datasets.Sequence(datasets.Value('int32')), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32'), 'references': datasets.Value('int32'), }) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def __lowerCamelCase ( self : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=1 , _lowerCAmelCase : List[Any]="binary" , _lowerCAmelCase : Tuple=None): '''simple docstring''' __lowercase =fa_score( _lowerCAmelCase , _lowerCAmelCase , labels=_lowerCAmelCase , pos_label=_lowerCAmelCase , average=_lowerCAmelCase , sample_weight=_lowerCAmelCase) return {"f1": float(_lowerCAmelCase) if score.size == 1 else score}
48
0
def __lowercase ( lowerCamelCase : int ): if num < 0: return False UpperCamelCase_ : int = num UpperCamelCase_ : Any = 0 while num > 0: UpperCamelCase_ : Union[str, Any] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
175
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any], _lowerCamelCase : Tuple, _lowerCamelCase : List[str]=13, _lowerCamelCase : Optional[Any]=7, _lowerCamelCase : Optional[int]=True, _lowerCamelCase : int=True, _lowerCamelCase : List[str]=True, _lowerCamelCase : Optional[Any]=True, _lowerCamelCase : int=99, _lowerCamelCase : Optional[int]=32, _lowerCamelCase : Tuple=5, _lowerCamelCase : Tuple=4, _lowerCamelCase : str=37, _lowerCamelCase : Union[str, Any]="gelu", _lowerCamelCase : int=0.1, _lowerCamelCase : List[Any]=0.1, _lowerCamelCase : Dict=5_12, _lowerCamelCase : List[Any]=16, _lowerCamelCase : Any=2, _lowerCamelCase : Any=0.02, _lowerCamelCase : Dict=4, ): '''simple docstring''' __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_attention_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_choices def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __A = None if self.use_attention_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) __A = RoFormerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_lowerCamelCase, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : Dict = True A_ : Tuple = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = FlaxRoFormerModelTester(self ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' for model_class_name in self.all_model_classes: __A = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''', from_pt=_lowerCamelCase ) __A = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase ) @require_flax class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) __A = jnp.array([[0, 1, 2, 3, 4, 5]] ) __A = model(_lowerCamelCase )[0] __A = 5_00_00 __A = (1, 6, vocab_size) self.assertEqual(output.shape, _lowerCamelCase ) __A = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3], _lowerCamelCase, atol=1e-4 ) )
266
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : str = { 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = ['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _lowercase : List[Any] = logging.get_logger(__name__) @add_end_docstrings(_lowerCAmelCase ) class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : str , *_lowercase : Tuple , **_lowercase : List[Any] ): super().__init__(*_lowercase , **_lowercase ) self.check_model_type(_lowercase ) def a ( self : int , _lowercase : Dict=None , _lowercase : List[Any]=None , _lowercase : int=None , **_lowercase : Dict ): __UpperCAmelCase , __UpperCAmelCase = {}, {} if padding is not None: __UpperCAmelCase = padding if truncation is not None: __UpperCAmelCase = truncation if top_k is not None: __UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[str] , _lowercase : Union["Image.Image", str] , _lowercase : str = None , **_lowercase : Optional[Any] ): if isinstance(_lowercase , (Image.Image, str) ) and isinstance(_lowercase , _lowercase ): __UpperCAmelCase = {'''image''': image, '''question''': question} else: __UpperCAmelCase = image __UpperCAmelCase = super().__call__(_lowercase , **_lowercase ) return results def a ( self : Union[str, Any] , _lowercase : List[str] , _lowercase : Any=False , _lowercase : Union[str, Any]=False ): __UpperCAmelCase = load_image(inputs['''image'''] ) __UpperCAmelCase = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_lowercase , truncation=_lowercase ) __UpperCAmelCase = self.image_processor(images=_lowercase , return_tensors=self.framework ) model_inputs.update(_lowercase ) return model_inputs def a ( self : Optional[Any] , _lowercase : str ): __UpperCAmelCase = self.model(**_lowercase ) return model_outputs def a ( self : str , _lowercase : Optional[int] , _lowercase : Any=5 ): if top_k > self.model.config.num_labels: __UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": __UpperCAmelCase = model_outputs.logits.sigmoid()[0] __UpperCAmelCase , __UpperCAmelCase = probs.topk(_lowercase ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) __UpperCAmelCase = scores.tolist() __UpperCAmelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_lowercase , _lowercase )]
86
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Dict = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : Dict , UpperCamelCase : str=8 ): UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase : str = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : List[Any]=512 , UpperCamelCase : int=512 ): UpperCAmelCase : Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) UpperCAmelCase : Tuple = np.array(pil_image.convert("""RGB""" ) ) UpperCAmelCase : List[str] = arr.astype(np.floataa ) / 127.5 - 1 UpperCAmelCase : Tuple = np.transpose(UpperCamelCase , [2, 0, 1] ) UpperCAmelCase : Any = torch.from_numpy(UpperCamelCase ).unsqueeze(0 ) return image class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' super().__init__() self.register_modules( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , movq=lowerCAmelCase_ , ) UpperCAmelCase : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = min(int(num_inference_steps * strength ) , lowerCAmelCase_ ) UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]: '''simple docstring''' if not isinstance(lowerCAmelCase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase_ )}" ) UpperCAmelCase : Optional[int] = image.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) UpperCAmelCase : Union[str, Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCAmelCase : Optional[int] = image else: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(lowerCAmelCase_ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase_ ) ] UpperCAmelCase : Optional[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) else: UpperCAmelCase : Optional[int] = self.movq.encode(lowerCAmelCase_ ).latent_dist.sample(lowerCAmelCase_ ) UpperCAmelCase : int = self.movq.config.scaling_factor * init_latents UpperCAmelCase : Optional[Any] = torch.cat([init_latents] , dim=0 ) UpperCAmelCase : Any = init_latents.shape UpperCAmelCase : Optional[Any] = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) # get latents UpperCAmelCase : Union[str, Any] = self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase : List[str] = init_latents return latents def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 ) -> Optional[int]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase : Any = torch.device(F"cuda:{gpu_id}" ) UpperCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ , lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 ) -> List[Any]: '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) UpperCAmelCase : Any = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowerCAmelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase : int = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase : List[Any] = cpu_offload_with_hook(lowerCAmelCase_ , lowerCAmelCase_ , prev_module_hook=lowerCAmelCase_ ) # We'll offload the last model manually. UpperCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase_ ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 4.0 , _SCREAMING_SNAKE_CASE = 0.3 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ) -> List[str]: '''simple docstring''' UpperCAmelCase : Any = self._execution_device UpperCAmelCase : Any = guidance_scale > 1.0 if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase : Any = torch.cat(lowerCAmelCase_ , dim=0 ) UpperCAmelCase : int = image_embeds.shape[0] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase : Dict = torch.cat(lowerCAmelCase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase : Any = image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) UpperCAmelCase : str = negative_image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) UpperCAmelCase : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCAmelCase_ ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase : List[str] = [image] if not all(isinstance(lowerCAmelCase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(lowerCAmelCase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) UpperCAmelCase : List[str] = torch.cat([prepare_image(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for i in image] , dim=0 ) UpperCAmelCase : Tuple = image.to(dtype=image_embeds.dtype , device=lowerCAmelCase_ ) UpperCAmelCase : Optional[Any] = self.movq.encode(lowerCAmelCase_ )['''latents'''] UpperCAmelCase : Optional[int] = latents.repeat_interleave(lowerCAmelCase_ , dim=0 ) self.scheduler.set_timesteps(lowerCAmelCase_ , device=lowerCAmelCase_ ) UpperCAmelCase : List[Any] = self.get_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase : Dict = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCAmelCase : Optional[int] = downscale_height_and_width(lowerCAmelCase_ , lowerCAmelCase_ , self.movq_scale_factor ) UpperCAmelCase : Any = self.prepare_latents( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , image_embeds.dtype , lowerCAmelCase_ , lowerCAmelCase_ ) for i, t in enumerate(self.progress_bar(lowerCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : str = {'''image_embeds''': image_embeds} UpperCAmelCase : Optional[int] = self.unet( sample=lowerCAmelCase_ , timestep=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , added_cond_kwargs=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase : str = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase : int = noise_pred.chunk(2 ) UpperCAmelCase : int = variance_pred.chunk(2 ) UpperCAmelCase : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Any = self.scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ , )[0] # post-processing UpperCAmelCase : Tuple = self.movq.decode(lowerCAmelCase_ , force_not_quantize=lowerCAmelCase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase : int = image * 0.5 + 0.5 UpperCAmelCase : Any = image.clamp(0 , 1 ) UpperCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase : Union[str, Any] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
109
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Dict = {'vocab_file': 'vocab.txt'} UpperCAmelCase__ : List[Any] = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } UpperCAmelCase__ : Union[str, Any] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } UpperCAmelCase__ : Dict = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = ConvBertTokenizer def __init__( self : Tuple , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : Optional[Any]="[PAD]" , lowerCAmelCase_ : List[Any]="[CLS]" , lowerCAmelCase_ : Optional[int]="[MASK]" , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _A: List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _A: List[str] = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) ) _A: List[Any] = do_lower_case _A: Optional[Any] = strip_accents _A: Union[str, Any] = tokenize_chinese_chars _A: Optional[int] = normalizer_class(**lowerCAmelCase_ ) _A: Optional[Any] = do_lower_case def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any]=None ): """simple docstring""" _A: Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" _A: Any = [self.sep_token_id] _A: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" _A: str = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
121
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase : Any = "\nHuman: <<task>>\n\nAssistant: " _lowerCAmelCase : str = "huggingface-tools/default-prompts" _lowerCAmelCase : Union[str, Any] = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __snake_case ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int="run" ) -> int: '''simple docstring''' if prompt_or_repo_id is None: _UpperCAmelCase : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , SCREAMING_SNAKE_CASE__ ) is not None: return prompt_or_repo_id _UpperCAmelCase : Dict = cached_file( SCREAMING_SNAKE_CASE__ , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(SCREAMING_SNAKE_CASE__ , "r" , encoding="utf-8" ) as f: return f.read()
202
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowerCAmelCase : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) _lowerCAmelCase : Tuple = spec.loader.load_module() _lowerCAmelCase : Tuple = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _lowerCAmelCase : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") _lowerCAmelCase : Optional[int] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def __snake_case ( ) -> Dict: '''simple docstring''' _UpperCAmelCase : List[str] = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase : Union[str, Any] = False # source code of `config_class` _UpperCAmelCase : Optional[int] = inspect.getsource(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[Any] = _re_checkpoint.findall(SCREAMING_SNAKE_CASE__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase : List[Any] = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase : Optional[Any] = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase : Optional[Any] = True break _UpperCAmelCase : int = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: _UpperCAmelCase : List[str] = "\n".join(sorted(SCREAMING_SNAKE_CASE__ ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
202
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=3 , lowercase=32 , lowercase=3 , lowercase=10 , lowercase=[10, 20, 30, 40] , lowercase=[1, 1, 2, 1] , lowercase=True , lowercase=True , lowercase="relu" , lowercase=3 , lowercase=None , ): _lowerCamelCase : List[str] = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : Optional[Any] = image_size _lowerCamelCase : int = num_channels _lowerCamelCase : int = embeddings_size _lowerCamelCase : Optional[Any] = hidden_sizes _lowerCamelCase : Tuple = depths _lowerCamelCase : Optional[Any] = is_training _lowerCamelCase : Optional[Any] = use_labels _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Tuple = num_labels _lowerCamelCase : List[str] = scope _lowerCamelCase : Union[str, Any] = len(lowercase ) def A_ ( self ): _lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : Dict = None if self.use_labels: _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _lowerCamelCase : Any = self.get_config() return config, pixel_values, labels def A_ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = TFRegNetModel(config=lowercase ) _lowerCamelCase : Any = model(lowercase , training=lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : str = self.num_labels _lowerCamelCase : int = TFRegNetForImageClassification(lowercase ) _lowerCamelCase : List[str] = model(lowercase , labels=lowercase , training=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = config_and_inputs _lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A_ ( self ): _lowerCamelCase : Union[str, Any] = TFRegNetModelTester(self ) _lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase ) def A_ ( self ): return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def A_ ( self ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def A_ ( self ): super().test_keras_fit() @unittest.skip(reason='RegNet does not support input and output embeddings' ) def A_ ( self ): pass def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class(lowercase ) _lowerCamelCase : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Dict = [*signature.parameters.keys()] _lowerCamelCase : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase ) def A_ ( self ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A_ ( self ): def check_hidden_states_output(lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = model_class(lowercase ) _lowerCamelCase : List[Any] = model(**self._prepare_for_class(lowercase , lowercase ) , training=lowercase ) _lowerCamelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase : str = self.model_tester.num_stages self.assertEqual(len(lowercase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCamelCase : Tuple = layer_type _lowerCamelCase : int = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : str = True check_hidden_states_output(lowercase , lowercase , lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(lowercase , lowercase , lowercase , lowercase={} ): _lowerCamelCase : Optional[Any] = model(lowercase , return_dict=lowercase , **lowercase ) _lowerCamelCase : int = model(lowercase , return_dict=lowercase , **lowercase ).to_tuple() def recursive_check(lowercase , lowercase ): if isinstance(lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowercase , lowercase ): recursive_check(lowercase , lowercase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(lowercase , lowercase ) ) , msg=( 'Tuple and dict output are not equal. Difference:' F''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(lowercase , lowercase ) for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(lowercase ) _lowerCamelCase : Any = self._prepare_for_class(lowercase , lowercase ) _lowerCamelCase : List[Any] = self._prepare_for_class(lowercase , lowercase ) check_equivalence(lowercase , lowercase , lowercase ) _lowerCamelCase : Any = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) _lowerCamelCase : int = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) check_equivalence(lowercase , lowercase , lowercase ) _lowerCamelCase : int = self._prepare_for_class(lowercase , lowercase ) _lowerCamelCase : Union[str, Any] = self._prepare_for_class(lowercase , lowercase ) check_equivalence(lowercase , lowercase , lowercase , {'output_hidden_states': True} ) _lowerCamelCase : Optional[Any] = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) _lowerCamelCase : List[str] = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) check_equivalence(lowercase , lowercase , lowercase , {'output_hidden_states': True} ) def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def A_ ( self ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = TFRegNetModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def _snake_case ( ): _lowerCamelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def A_ ( self ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A_ ( self ): _lowerCamelCase : Optional[Any] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCamelCase : Optional[int] = self.default_image_processor _lowerCamelCase : Optional[int] = prepare_img() _lowerCamelCase : Optional[Any] = image_processor(images=lowercase , return_tensors='tf' ) # forward pass _lowerCamelCase : Dict = model(**lowercase , training=lowercase ) # verify the logits _lowerCamelCase : Any = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase ) _lowerCamelCase : str = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowercase , atol=1E-4 )
96
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = "deta" _UpperCAmelCase :Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=900 , _UpperCAmelCase=2048 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=8 , _UpperCAmelCase=6 , _UpperCAmelCase=1024 , _UpperCAmelCase=8 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase="sine" , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=True , _UpperCAmelCase=300 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.25 , **_UpperCAmelCase , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase__: str = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = backbone_config.pop('''model_type''' ) lowercase__: str = CONFIG_MAPPING[backbone_model_type] lowercase__: Optional[int] = config_class.from_dict(_UpperCAmelCase ) lowercase__: int = backbone_config lowercase__: Any = num_queries lowercase__: List[str] = max_position_embeddings lowercase__: Optional[Any] = d_model lowercase__: List[Any] = encoder_ffn_dim lowercase__: Tuple = encoder_layers lowercase__: Dict = encoder_attention_heads lowercase__: Any = decoder_ffn_dim lowercase__: Union[str, Any] = decoder_layers lowercase__: List[Any] = decoder_attention_heads lowercase__: int = dropout lowercase__: List[str] = attention_dropout lowercase__: Tuple = activation_dropout lowercase__: Tuple = activation_function lowercase__: int = init_std lowercase__: Optional[Any] = init_xavier_std lowercase__: Optional[Any] = encoder_layerdrop lowercase__: Optional[int] = auxiliary_loss lowercase__: Union[str, Any] = position_embedding_type # deformable attributes lowercase__: List[str] = num_feature_levels lowercase__: Optional[Any] = encoder_n_points lowercase__: int = decoder_n_points lowercase__: str = two_stage lowercase__: Optional[int] = two_stage_num_proposals lowercase__: Tuple = with_box_refine lowercase__: str = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher lowercase__: Union[str, Any] = class_cost lowercase__: Optional[int] = bbox_cost lowercase__: int = giou_cost # Loss coefficients lowercase__: Optional[int] = mask_loss_coefficient lowercase__: List[str] = dice_loss_coefficient lowercase__: str = bbox_loss_coefficient lowercase__: Union[str, Any] = giou_loss_coefficient lowercase__: Optional[int] = eos_coefficient lowercase__: str = focal_alpha super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def _snake_case ( self ): return self.encoder_attention_heads @property def _snake_case ( self ): return self.d_model def _snake_case ( self ): lowercase__: Union[str, Any] = copy.deepcopy(self.__dict__ ) lowercase__: Dict = self.backbone_config.to_dict() lowercase__: Union[str, Any] = self.__class__.model_type return output
177
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Tuple = logging.get_logger(__name__) A_ : Optional[int] = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Dict = '''time_series_transformer''' UpperCAmelCase__: Union[str, Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , A__ = None , A__ = None , A__ = "student_t" , A__ = "nll" , A__ = 1 , A__ = [1, 2, 3, 4, 5, 6, 7] , A__ = "mean" , A__ = 0 , A__ = 0 , A__ = 0 , A__ = 0 , A__ = None , A__ = None , A__ = 32 , A__ = 32 , A__ = 2 , A__ = 2 , A__ = 2 , A__ = 2 , A__ = True , A__ = "gelu" , A__ = 64 , A__ = 0.1 , A__ = 0.1 , A__ = 0.1 , A__ = 0.1 , A__ = 0.1 , A__ = 100 , A__ = 0.0_2 , A__=True , **A__ , ): # time series specific configuration A__ : str = prediction_length A__ : Optional[Any] = context_length or prediction_length A__ : Any = distribution_output A__ : Union[str, Any] = loss A__ : Optional[Any] = input_size A__ : List[str] = num_time_features A__ : int = lags_sequence A__ : Optional[Any] = scaling A__ : str = num_dynamic_real_features A__ : Tuple = num_static_real_features A__ : int = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(A__ ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) A__ : Tuple = cardinality else: A__ : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(A__ ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) A__ : Optional[Any] = embedding_dimension else: A__ : Union[str, Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A__ : str = num_parallel_samples # Transformer architecture configuration A__ : Union[str, Any] = input_size * len(A__ ) + self._number_of_features A__ : Tuple = d_model A__ : Optional[Any] = encoder_attention_heads A__ : Dict = decoder_attention_heads A__ : int = encoder_ffn_dim A__ : Optional[Any] = decoder_ffn_dim A__ : Tuple = encoder_layers A__ : List[str] = decoder_layers A__ : int = dropout A__ : Optional[int] = attention_dropout A__ : List[Any] = activation_dropout A__ : str = encoder_layerdrop A__ : str = decoder_layerdrop A__ : List[Any] = activation_function A__ : Optional[Any] = init_std A__ : Any = use_cache super().__init__(is_encoder_decoder=A__ , **A__ ) @property def __A ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
141
import argparse from collections import defaultdict def UpperCamelCase (lowercase_: List[str] , lowercase_: Optional[int] , lowercase_: Optional[Any] , lowercase_: Union[str, Any] , lowercase_: Any ) -> int: A__ : Optional[Any] = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(lowercase_ , """r""" ) as f: A__ : Union[str, Any] = f.readlines() A__ : str = f"""class {class_name}(""" A__ : Optional[Any] = f"""{4 * ' '}def {test_name}(""" A__ : Union[str, Any] = f"""{8 * ' '}{correct_line.split()[0]}""" A__ : Optional[int] = f"""{16 * ' '}{correct_line.split()[0]}""" A__ : int = False A__ : str = False A__ : Tuple = False A__ : Optional[int] = False A__ : Optional[Any] = 0 A__ : Dict = 0 A__ : List[str] = [] for line in lines: if line.startswith(lowercase_ ): A__ : Dict = True elif in_class and line.startswith(lowercase_ ): A__ : Optional[Any] = True elif in_class and in_func and (line.startswith(lowercase_ ) or line.startswith(lowercase_ )): A__ : Tuple = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: A__ : Any = True if in_class and in_func and in_line: if ")" not in line: continue else: A__ : Dict = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * ' '}{correct_line}""" ) A__ : List[str] = False else: new_lines.append(lowercase_ ) with open(lowercase_ , """w""" ) as f: for line in new_lines: f.write(lowercase_ ) def UpperCamelCase (lowercase_: List[str] , lowercase_: Optional[Any]=None ) -> Any: if fail is not None: with open(lowercase_ , """r""" ) as f: A__ : Dict = {l.strip() for l in f.readlines()} else: A__ : List[str] = None with open(lowercase_ , """r""" ) as f: A__ : int = f.readlines() A__ : Union[str, Any] = defaultdict(lowercase_ ) for line in correct_lines: A__ , A__ , A__ , A__ : Optional[int] = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) A_ : Optional[Any] = parser.parse_args() main(args.correct_filename, args.fail_filename)
141
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = KandinskyVaaPriorPipeline SCREAMING_SNAKE_CASE__ = ['prompt'] SCREAMING_SNAKE_CASE__ = ['prompt', 'negative_prompt'] SCREAMING_SNAKE_CASE__ = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE__ = False @property def SCREAMING_SNAKE_CASE__ ( self ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self ): return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self ): return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self ): return 100 @property def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :int = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } a :str = PriorTransformer(**_lowerCamelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a :str = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :Tuple = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a :Tuple = CLIPVisionModelWithProjection(_lowerCamelCase ) return model @property def SCREAMING_SNAKE_CASE__ ( self ): a :Any = CLIPImageProcessor( crop_size=224 , do_center_crop=_lowerCamelCase , do_normalize=_lowerCamelCase , do_resize=_lowerCamelCase , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = self.dummy_prior a :int = self.dummy_image_encoder a :Any = self.dummy_text_encoder a :List[str] = self.dummy_tokenizer a :Union[str, Any] = self.dummy_image_processor a :List[Any] = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_lowerCamelCase , clip_sample_range=10.0 , ) a :Optional[Any] = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=0 ): if str(_lowerCamelCase ).startswith('''mps''' ): a :str = torch.manual_seed(_lowerCamelCase ) else: a :Any = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) a :List[str] = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE__ ( self ): a :int = '''cpu''' a :Tuple = self.get_dummy_components() a :Optional[int] = self.pipeline_class(**_lowerCamelCase ) a :Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :Optional[Any] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) a :Optional[Any] = output.image_embeds a :Union[str, Any] = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] a :Tuple = image[0, -10:] a :int = image_from_tuple[0, -10:] assert image.shape == (1, 32) a :Optional[int] = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = torch_device == '''cpu''' a :Union[str, Any] = True a :int = False self._test_inference_batch_single_identical( test_max_difference=_lowerCamelCase , relax_max_difference=_lowerCamelCase , test_mean_pixel_difference=_lowerCamelCase , ) @skip_mps def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = torch_device == '''cpu''' a :Union[str, Any] = False self._test_attention_slicing_forward_pass( test_max_difference=_lowerCamelCase , test_mean_pixel_difference=_lowerCamelCase , )
94
def __lowerCamelCase ( UpperCAmelCase_ : int = 100_0000 ): """simple docstring""" a :Any = set(range(3 , UpperCAmelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , UpperCAmelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , UpperCAmelCase_ , UpperCAmelCase_ ) ) ) a :Union[str, Any] = [float(UpperCAmelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
94
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __magic_name__: List[Any] = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Optional[int] = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Any = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __magic_name__: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
138
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case__ ( _lowerCAmelCase ): lowercase__ : torch.FloatTensor lowercase__ : Optional[torch.FloatTensor] = None def UpperCamelCase ( _A, _A=0.999, _A="cosine", ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __magic_name__ : Optional[Any] = [] for i in range(_A ): __magic_name__ : Dict = i / num_diffusion_timesteps __magic_name__ : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ), _A ) ) return torch.tensor(_A, dtype=torch.floataa ) class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self , lowerCAmelCase__ = 10_00 , lowerCAmelCase__ = "fixed_small_log" , lowerCAmelCase__ = True , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = "epsilon" , lowerCAmelCase__ = "squaredcos_cap_v2" , ) -> Union[str, Any]: if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) __magic_name__ : Tuple = betas_for_alpha_bar(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = 1.0 - self.betas __magic_name__ : str = torch.cumprod(self.alphas , dim=0 ) __magic_name__ : Any = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __magic_name__ : Tuple = 1.0 # setable values __magic_name__ : List[Any] = None __magic_name__ : int = torch.from_numpy(np.arange(0 , lowerCAmelCase__ )[::-1].copy() ) __magic_name__ : List[Any] = variance_type def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> torch.FloatTensor: return sample def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> str: __magic_name__ : List[Any] = num_inference_steps __magic_name__ : Union[str, Any] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __magic_name__ : List[Any] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __magic_name__ : Dict = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Tuple: if prev_timestep is None: __magic_name__ : int = t - 1 __magic_name__ : Optional[Any] = self.alphas_cumprod[t] __magic_name__ : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Tuple = 1 - alpha_prod_t __magic_name__ : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : List[str] = self.betas[t] else: __magic_name__ : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __magic_name__ : Dict = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __magic_name__ : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __magic_name__ : str = torch.log(torch.clamp(lowerCAmelCase__ , min=1e-2_0 ) ) __magic_name__ : Optional[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __magic_name__ : List[str] = variance.log() __magic_name__ : Optional[int] = beta.log() __magic_name__ : Any = (predicted_variance + 1) / 2 __magic_name__ : Any = frac * max_log + (1 - frac) * min_log return variance def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: __magic_name__ : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __magic_name__ ,__magic_name__ : List[Any] = torch.split(lowerCAmelCase__ , sample.shape[1] , dim=1 ) else: __magic_name__ : List[str] = None # 1. compute alphas, betas if prev_timestep is None: __magic_name__ : Union[str, Any] = t - 1 __magic_name__ : List[str] = self.alphas_cumprod[t] __magic_name__ : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Any = 1 - alpha_prod_t __magic_name__ : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : Union[str, Any] = self.betas[t] __magic_name__ : int = self.alphas[t] else: __magic_name__ : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev __magic_name__ : Tuple = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __magic_name__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __magic_name__ : Tuple = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __magic_name__ : Tuple = torch.clamp( lowerCAmelCase__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : List[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __magic_name__ : Dict = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __magic_name__ : Tuple = 0 if t > 0: __magic_name__ : Any = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowerCAmelCase__ , device=model_output.device ) __magic_name__ : Tuple = self._get_variance( lowerCAmelCase__ , predicted_variance=lowerCAmelCase__ , prev_timestep=lowerCAmelCase__ , ) if self.variance_type == "fixed_small_log": __magic_name__ : Tuple = variance elif self.variance_type == "learned_range": __magic_name__ : int = (0.5 * variance).exp() else: raise ValueError( F'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' """ for the UnCLIPScheduler.""" ) __magic_name__ : Tuple = variance * variance_noise __magic_name__ : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __magic_name__ : List[str] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __magic_name__ : Any = timesteps.to(original_samples.device ) __magic_name__ : int = alphas_cumprod[timesteps] ** 0.5 __magic_name__ : Union[str, Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : int = sqrt_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __magic_name__ : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : Any = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
138
1