code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os from typing import Dict, List, Tuple, TypeVar, Union UpperCamelCase__ = TypeVar("""T""") UpperCamelCase__ = Union[List[T], Tuple[T, ...]] UpperCamelCase__ = Union[T, List[T], Dict[str, T]] UpperCamelCase__ = Union[str, bytes, os.PathLike]
92
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): def update_area_of_max_square(UpperCAmelCase , UpperCAmelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase__ : int = update_area_of_max_square(UpperCAmelCase , col + 1 ) lowercase__ : Any = update_area_of_max_square(row + 1 , col + 1 ) lowercase__ : str = update_area_of_max_square(row + 1 , UpperCAmelCase ) if mat[row][col]: lowercase__ : List[Any] = 1 + min([right, diagonal, down] ) lowercase__ : List[Any] = max(largest_square_area[0] , UpperCAmelCase ) return sub_problem_sol else: return 0 lowercase__ : Dict = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): def update_area_of_max_square_using_dp_array( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase__ : int = update_area_of_max_square_using_dp_array(UpperCAmelCase , col + 1 , UpperCAmelCase ) lowercase__ : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , UpperCAmelCase ) lowercase__ : Any = update_area_of_max_square_using_dp_array(row + 1 , UpperCAmelCase , UpperCAmelCase ) if mat[row][col]: lowercase__ : Optional[int] = 1 + min([right, diagonal, down] ) lowercase__ : Any = max(largest_square_area[0] , UpperCAmelCase ) lowercase__ : int = sub_problem_sol return sub_problem_sol else: return 0 lowercase__ : Any = [0] lowercase__ : List[Any] = [[-1] * cols for _ in range(UpperCAmelCase )] update_area_of_max_square_using_dp_array(0 , 0 , UpperCAmelCase ) return largest_square_area[0] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Optional[int] = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase__ : str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase__ : str = dp_array[row][col + 1] lowercase__ : Optional[Any] = dp_array[row + 1][col + 1] lowercase__ : str = dp_array[row + 1][col] if mat[row][col] == 1: lowercase__ : Dict = 1 + min(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase__ : str = max(dp_array[row][col] , UpperCAmelCase ) else: lowercase__ : Any = 0 return largest_square_area def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : List[str] = [0] * (cols + 1) lowercase__ : str = [0] * (cols + 1) lowercase__ : Tuple = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase__ : List[Any] = current_row[col + 1] lowercase__ : Any = next_row[col + 1] lowercase__ : Optional[Any] = next_row[col] if mat[row][col] == 1: lowercase__ : List[str] = 1 + min(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase__ : List[str] = max(current_row[col] , UpperCAmelCase ) else: lowercase__ : int = 0 lowercase__ : int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
198
0
from typing import Dict, Optional import numpy as np import datasets _A = ''' IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. ''' _A = ''' Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} ''' _A = '''\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }''' def __UpperCamelCase ( _A , _A , _A , _A , _A = None , _A = False , ): if label_map is not None: for old_id, new_id in label_map.items(): lowerCAmelCase_ = new_id # turn into Numpy arrays lowerCAmelCase_ = np.array(_A ) lowerCAmelCase_ = np.array(_A ) if reduce_labels: lowerCAmelCase_ = 255 lowerCAmelCase_ = label - 1 lowerCAmelCase_ = 255 lowerCAmelCase_ = label != ignore_index lowerCAmelCase_ = np.not_equal(_A , _A ) lowerCAmelCase_ = pred_label[mask] lowerCAmelCase_ = np.array(_A )[mask] lowerCAmelCase_ = pred_label[pred_label == label] lowerCAmelCase_ = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] lowerCAmelCase_ = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] lowerCAmelCase_ = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] lowerCAmelCase_ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __UpperCamelCase ( _A , _A , _A , _A , _A = None , _A = False , ): lowerCAmelCase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase_ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_A , _A ): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = intersect_and_union( _A , _A , _A , _A , _A , _A ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __UpperCamelCase ( _A , _A , _A , _A , _A = None , _A = None , _A = False , ): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = total_intersect_and_union( _A , _A , _A , _A , _A , _A ) # compute metrics lowerCAmelCase_ = {} lowerCAmelCase_ = total_area_intersect.sum() / total_area_label.sum() lowerCAmelCase_ = total_area_intersect / total_area_union lowerCAmelCase_ = total_area_intersect / total_area_label lowerCAmelCase_ = np.nanmean(_A ) lowerCAmelCase_ = np.nanmean(_A ) lowerCAmelCase_ = all_acc lowerCAmelCase_ = iou lowerCAmelCase_ = acc if nan_to_num is not None: lowerCAmelCase_ = {metric: np.nan_to_num(_A , nan=_A ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ), reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ], ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__ = False, ): """simple docstring""" lowerCAmelCase_ = mean_iou( results=UpperCamelCase__, gt_seg_maps=UpperCamelCase__, num_labels=UpperCamelCase__, ignore_index=UpperCamelCase__, nan_to_num=UpperCamelCase__, label_map=UpperCamelCase__, reduce_labels=UpperCamelCase__, ) return iou_result
167
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('''DownBlock2D''', '''AttnDownBlock2D'''), up_block_types=('''AttnUpBlock2D''', '''UpBlock2D'''), ) return model def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.dummy_uncond_unet lowerCAmelCase_ = KarrasVeScheduler() lowerCAmelCase_ = KarrasVePipeline(unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=2, generator=UpperCamelCase__, output_type='''numpy''' ).images lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=2, generator=UpperCamelCase__, output_type='''numpy''', return_dict=UpperCamelCase__ )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = '''google/ncsnpp-celebahq-256''' lowerCAmelCase_ = UNetaDModel.from_pretrained(UpperCamelCase__ ) lowerCAmelCase_ = KarrasVeScheduler() lowerCAmelCase_ = KarrasVePipeline(unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=20, generator=UpperCamelCase__, output_type='''numpy''' ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase_ = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
167
1
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase =get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a__ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase : Optional[int] =XLMRobertaTokenizer lowerCamelCase : Optional[int] =XLMRobertaTokenizerFast lowerCamelCase : Dict =True lowerCamelCase : Any =True def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = XLMRobertaTokenizer(a , keep_accents=a ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = """<pad>""" __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(a ) , 10_02 ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = XLMRobertaTokenizer(a , keep_accents=a ) __lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowerCamelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(a , **a ) __lowerCamelCase = self.tokenizer_class.from_pretrained(a , **a ) __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = tokenizer_r.save_pretrained(a ) __lowerCamelCase = tokenizer_p.save_pretrained(a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __lowerCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(a , a ) # Checks everything loads correctly in the same way __lowerCamelCase = tokenizer_r.from_pretrained(a ) __lowerCamelCase = tokenizer_p.from_pretrained(a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a , a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(a ) # Save tokenizer rust, legacy_format=True __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = tokenizer_r.save_pretrained(a , legacy_format=a ) __lowerCamelCase = tokenizer_p.save_pretrained(a ) # Checks it save with the same files self.assertSequenceEqual(a , a ) # Checks everything loads correctly in the same way __lowerCamelCase = tokenizer_r.from_pretrained(a ) __lowerCamelCase = tokenizer_p.from_pretrained(a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a , a ) ) shutil.rmtree(a ) # Save tokenizer rust, legacy_format=False __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = tokenizer_r.save_pretrained(a , legacy_format=a ) __lowerCamelCase = tokenizer_p.save_pretrained(a ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCamelCase = tokenizer_r.from_pretrained(a ) __lowerCamelCase = tokenizer_p.from_pretrained(a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a , a ) ) shutil.rmtree(a ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(a , f.name ) __lowerCamelCase = XLMRobertaTokenizer(f.name , keep_accents=a ) __lowerCamelCase = pickle.dumps(a ) pickle.loads(a ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" if not self.test_rust_tokenizer: return __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = """I was born in 92000, and this is falsé.""" __lowerCamelCase = tokenizer.tokenize(a ) __lowerCamelCase = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) __lowerCamelCase = tokenizer.encode(a , add_special_tokens=a ) __lowerCamelCase = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = tokenizer.encode(a ) __lowerCamelCase = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = """Hello World!""" __lowerCamelCase = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(a , self.big_tokenizer.encode(a ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __lowerCamelCase = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(a , self.big_tokenizer.encode(a ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = {"""input_ids""": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
67
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if len(lowercase ) != 2 or len(a[0] ) != 2 or len(lowercase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) snake_case : int = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[list, list, list, list]: if len(lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) snake_case : Optional[int] = len(lowercase ) snake_case : str = matrix_length // 2 snake_case : int = [[a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase )] snake_case : str = [ [a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase ,lowercase ) ] snake_case : Optional[Any] = [[a[i][j] for j in range(lowercase )] for i in range(lowercase )] snake_case : str = [[a[i][j] for j in range(lowercase )] for i in range(lowercase ,lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[int, int]: return len(lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: print("""\n""".join(str(lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase ) == (2, 2): return default_matrix_multiplication(lowercase ,lowercase ) snake_case , snake_case , snake_case , snake_case : Optional[Any] = split_matrix(lowercase ) snake_case , snake_case , snake_case , snake_case : Any = split_matrix(lowercase ) snake_case : List[Any] = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : List[str] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : Tuple = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : str = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : Union[str, Any] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : int = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : List[Any] = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : str = matrix_addition(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) snake_case : List[str] = matrix_addition(lowercase ,lowercase ) snake_case : Any = matrix_addition(lowercase ,lowercase ) snake_case : List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) # construct the new matrix from our 4 quadrants snake_case : Optional[Any] = [] for i in range(len(lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase )[1] != matrix_dimensions(lowercase )[0]: snake_case : Optional[Any] = ( """Unable to multiply these matrices, please check the dimensions.\n""" f"""Matrix A: {matrixa}\n""" f"""Matrix B: {matrixa}""" ) raise Exception(lowercase ) snake_case : str = matrix_dimensions(lowercase ) snake_case : Optional[Any] = matrix_dimensions(lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case : Dict = max(*lowercase ,*lowercase ) snake_case : Optional[Any] = int(math.pow(2 ,math.ceil(math.loga(lowercase ) ) ) ) snake_case : Any = matrixa snake_case : Optional[Any] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case : Optional[int] = actual_strassen(lowercase ,lowercase ) # Removing the additional zeros for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCamelCase : Any = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCamelCase : int = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
124
0
from __future__ import annotations import math __lowerCamelCase : Tuple = """2020.9.26""" __lowerCamelCase : Tuple = """xcodz-dot, cclaus, dhruvmanila""" def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float , snake_case_ : float , snake_case_ : float ): if not all(isinstance(snake_case_ , (float, int) ) for val in locals().values() ): snake_case__ : Optional[int] = F'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(snake_case_ ) snake_case__ : Optional[int] = ((x * distance) / (z + distance)) * scale snake_case__ : Any = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float , snake_case_ : str , snake_case_ : float ): if not isinstance(snake_case_ , snake_case_ ): raise TypeError("Axis must be a str" ) snake_case__ : int = locals() del input_variables["axis"] if not all(isinstance(snake_case_ , (float, int) ) for val in input_variables.values() ): snake_case__ : Union[str, Any] = ( "Input values except axis must either be float or int: " F'''{list(input_variables.values() )}''' ) raise TypeError(snake_case_ ) snake_case__ : Optional[Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": snake_case__ : str = x * math.cos(snake_case_ ) - y * math.sin(snake_case_ ) snake_case__ : Dict = y * math.cos(snake_case_ ) + x * math.sin(snake_case_ ) snake_case__ : Optional[int] = z elif axis == "x": snake_case__ : List[Any] = y * math.cos(snake_case_ ) - z * math.sin(snake_case_ ) snake_case__ : List[Any] = z * math.cos(snake_case_ ) + y * math.sin(snake_case_ ) snake_case__ : Any = x elif axis == "y": snake_case__ : Optional[Any] = x * math.cos(snake_case_ ) - z * math.sin(snake_case_ ) snake_case__ : int = z * math.cos(snake_case_ ) + x * math.sin(snake_case_ ) snake_case__ : int = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }") print(f"{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }")
368
from datetime import datetime import matplotlib.pyplot as plt import torch def SCREAMING_SNAKE_CASE ( snake_case_ : int ): for param in module.parameters(): snake_case__ : Tuple = False def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): snake_case__ : List[Any] = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[str] = plt.imshow(snake_case_ ) fig.axes.get_xaxis().set_visible(snake_case_ ) fig.axes.get_yaxis().set_visible(snake_case_ ) plt.show() def SCREAMING_SNAKE_CASE ( ): snake_case__ : str = datetime.now() snake_case__ : Optional[Any] = current_time.strftime("%H:%M:%S" ) return timestamp
286
0
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = False ) -> Any: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase__ : Union[str, Any] = F"""Expected string as input, found {type(lowerCAmelCase_ )}""" raise ValueError(lowerCAmelCase_ ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase__ : int = F"""Expected boolean as use_pascal parameter, found {type(lowerCAmelCase_ )}""" raise ValueError(lowerCAmelCase_ ) UpperCAmelCase__ : str = input_str.split('''_''' ) UpperCAmelCase__ : Any = 0 if use_pascal else 1 UpperCAmelCase__ : int = words[start_index:] UpperCAmelCase__ : List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCAmelCase__ : List[str] = '''''' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
181
def a_ ( lowerCAmelCase_ : int ): if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
284
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list ) -> Optional[int]: UpperCAmelCase_ = len(__UpperCamelCase ) for i in range(1 , __UpperCamelCase ): UpperCAmelCase_ = collection[i] UpperCAmelCase_ = 0 UpperCAmelCase_ = i - 1 while low <= high: UpperCAmelCase_ = (low + high) // 2 if val < collection[mid]: UpperCAmelCase_ = mid - 1 else: UpperCAmelCase_ = mid + 1 for j in range(__UpperCamelCase , __UpperCamelCase , -1 ): UpperCAmelCase_ = collection[j - 1] UpperCAmelCase_ = val return collection if __name__ == "__main__": _lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
360
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class a ( _A ): '''simple docstring''' lowerCAmelCase : Optional[Any] = 'data2vec-text' def __init__( self : Optional[Any] , __snake_case : Optional[int]=3_05_22 , __snake_case : List[str]=7_68 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Union[str, Any]=30_72 , __snake_case : List[Any]="gelu" , __snake_case : Any=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Tuple=5_12 , __snake_case : str=2 , __snake_case : str=0.02 , __snake_case : List[Any]=1E-12 , __snake_case : Any=1 , __snake_case : List[Any]=0 , __snake_case : Dict=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : Any=None , **__snake_case : List[Any] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class a ( _A ): '''simple docstring''' @property def lowerCamelCase_ ( self : str ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
177
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) class __snake_case ( _lowercase): snake_case__ : Union[str, Any] = "upernet" def __init__( self : Dict , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Union[str, Any]=5_1_2 , __lowerCAmelCase : Any=0.02 , __lowerCAmelCase : List[Any]=[1, 2, 3, 6] , __lowerCAmelCase : Any=True , __lowerCAmelCase : str=0.4 , __lowerCAmelCase : Union[str, Any]=3_8_4 , __lowerCAmelCase : Optional[int]=2_5_6 , __lowerCAmelCase : Optional[int]=1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Optional[Any]=2_5_5 , **__lowerCAmelCase : List[str] , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _lowerCamelCase : Union[str, Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : Any = backbone_config.get('''model_type''' ) _lowerCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase : int = config_class.from_dict(__lowerCAmelCase ) _lowerCamelCase : List[Any] = backbone_config _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : Any = initializer_range _lowerCamelCase : Optional[Any] = pool_scales _lowerCamelCase : List[Any] = use_auxiliary_head _lowerCamelCase : Dict = auxiliary_loss_weight _lowerCamelCase : str = auxiliary_in_channels _lowerCamelCase : Optional[int] = auxiliary_channels _lowerCamelCase : Optional[int] = auxiliary_num_convs _lowerCamelCase : str = auxiliary_concat_input _lowerCamelCase : Dict = loss_ignore_index def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Tuple = copy.deepcopy(self.__dict__ ) _lowerCamelCase : Union[str, Any] = self.backbone_config.to_dict() _lowerCamelCase : List[Any] = self.__class__.model_type return output
72
"""simple docstring""" lowerCAmelCase__ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def snake_case_ ( A_ : dict, A_ : int, A_ : int ): '''simple docstring''' _lowerCamelCase : List[str] = set() # keep track of all the paths to be checked _lowerCamelCase : str = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _lowerCamelCase : str = queue.pop(0 ) # get the last node from the path _lowerCamelCase : List[Any] = path[-1] if node not in explored: _lowerCamelCase : Union[str, Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _lowerCamelCase : Union[str, Any] = list(A_ ) new_path.append(A_ ) queue.append(A_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A_ ) # in case there's no path between the 2 nodes return [] def snake_case_ ( A_ : dict, A_ : int, A_ : Dict ): '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _lowerCamelCase : Optional[int] = [start] _lowerCamelCase : int = set(A_ ) # Keep tab on distances from `start` node. _lowerCamelCase : int = {start: 0, target: -1} while queue: _lowerCamelCase : Optional[Any] = queue.pop(0 ) if node == target: _lowerCamelCase : Any = ( dist[node] if dist[target] == -1 else min(dist[target], dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A_ ) queue.append(A_ ) _lowerCamelCase : Any = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
72
1
def __lowerCamelCase ( lowerCamelCase__ = 10 , lowerCamelCase__ = 1_000 , lowerCamelCase__ = True ): """simple docstring""" assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return int((number_a + number_a) / 2 ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(lowerCamelCase__ ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) lowercase__ : str = lower lowercase__ : List[Any] = higher lowercase__ : List[str] = [] while True: lowercase__ : Any = get_avg(lowerCamelCase__ , lowerCamelCase__ ) last_numbers.append(lowerCamelCase__ ) if answer(lowerCamelCase__ ) == "low": lowercase__ : Dict = number elif answer(lowerCamelCase__ ) == "high": lowercase__ : List[str] = number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Dict = int(input("Enter lower value : " ).strip() ) lowercase__ : int = int(input("Enter high value : " ).strip() ) lowercase__ : Any = int(input("Enter value to guess : " ).strip() ) guess_the_number(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
121
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
121
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A = 1_000_000 ) -> int: _snake_case = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __A ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
42
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __UpperCAmelCase ( _lowerCamelCase ): def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return 0.0 def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> tuple[int | float, int | float]: _snake_case = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _snake_case = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> None: _snake_case = 512 _snake_case = [1] + [0] * (size - 1) _snake_case = [filter_type.process(__A ) for item in inputs] _snake_case = [0] * (samplerate - size) # zero-padding outputs += filler _snake_case = np.abs(np.fft.fft(__A ) ) _snake_case = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) # Display within reasonable bounds _snake_case = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('Gain (dB)' ) plt.plot(__A ) plt.show() def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> None: _snake_case = 512 _snake_case = [1] + [0] * (size - 1) _snake_case = [filter_type.process(__A ) for item in inputs] _snake_case = [0] * (samplerate - size) # zero-padding outputs += filler _snake_case = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('Phase shift (Radians)' ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
42
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int]=13 , lowerCAmelCase : Union[str, Any]=32 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : int=4 , lowerCAmelCase : int=[10, 20, 30, 40] , lowerCAmelCase : List[Any]=[2, 2, 3, 2] , lowerCAmelCase : Any=True , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Dict=37 , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : str=10 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : str=["stage2", "stage3", "stage4"] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=None , ) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = parent __lowerCAmelCase : List[Any] = batch_size __lowerCAmelCase : Optional[int] = image_size __lowerCAmelCase : Tuple = num_channels __lowerCAmelCase : str = num_stages __lowerCAmelCase : str = hidden_sizes __lowerCAmelCase : Optional[Any] = depths __lowerCAmelCase : Optional[Any] = is_training __lowerCAmelCase : int = use_labels __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : Optional[int] = hidden_act __lowerCAmelCase : List[Any] = type_sequence_label_size __lowerCAmelCase : Optional[int] = initializer_range __lowerCAmelCase : Dict = out_features __lowerCAmelCase : List[Any] = num_labels __lowerCAmelCase : Union[str, Any] = scope __lowerCAmelCase : Union[str, Any] = num_stages def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : Tuple = None if self.use_labels: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = UperNetForSemanticSegmentation(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Tuple = model(lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( __lowerCAmelCase ) : Dict = config_and_inputs __lowerCAmelCase : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any =(UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCamelCase : List[str] ={"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCamelCase : Dict =False lowerCamelCase : Union[str, Any] =False lowerCamelCase : Union[str, Any] =False lowerCamelCase : str =False lowerCamelCase : List[Any] =False lowerCamelCase : Optional[Any] =False def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = UperNetModelTester(self ) __lowerCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: """simple docstring""" return def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: """simple docstring""" __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Optional[int] = model_class(lowerCAmelCase ) __lowerCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : str = [*signature.parameters.keys()] __lowerCAmelCase : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: """simple docstring""" pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] ): __lowerCAmelCase : int = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): __lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowerCAmelCase : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Dict = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase : str = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Any = _config_zero_init(lowerCAmelCase ) __lowerCAmelCase : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase : str = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : int = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def snake_case_ () -> int: __lowerCAmelCase : int = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) __lowerCAmelCase : str = Image.open(__A ).convert("""RGB""" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: """simple docstring""" __lowerCAmelCase : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) __lowerCAmelCase : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(lowerCAmelCase ) __lowerCAmelCase : List[str] = prepare_img() __lowerCAmelCase : int = processor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Any = model(**lowerCAmelCase ) __lowerCAmelCase : Any = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) __lowerCAmelCase : Optional[int] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase , atol=1e-4 ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Tuple = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) __lowerCAmelCase : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = prepare_img() __lowerCAmelCase : List[Any] = processor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = model(**lowerCAmelCase ) __lowerCAmelCase : List[Any] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) __lowerCAmelCase : List[str] = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase , atol=1e-4 ) )
355
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict=13 , lowerCAmelCase : int=7 , lowerCAmelCase : Any=True , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : int=64 , lowerCAmelCase : Any=32 , lowerCAmelCase : str=5 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : str=37 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=5_12 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : str=2 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : Dict=3 , lowerCAmelCase : int=4 , lowerCAmelCase : Union[str, Any]=None , ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = parent __lowerCAmelCase : Tuple = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : List[str] = is_training __lowerCAmelCase : Dict = use_input_mask __lowerCAmelCase : Optional[int] = use_token_type_ids __lowerCAmelCase : List[str] = use_labels __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : List[str] = hidden_size __lowerCAmelCase : Optional[int] = embedding_size __lowerCAmelCase : Optional[int] = num_hidden_layers __lowerCAmelCase : Optional[Any] = num_attention_heads __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : Optional[int] = hidden_act __lowerCAmelCase : Any = hidden_dropout_prob __lowerCAmelCase : Optional[int] = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : Optional[Any] = type_vocab_size __lowerCAmelCase : Optional[Any] = type_sequence_label_size __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : Optional[Any] = num_labels __lowerCAmelCase : Union[str, Any] = num_choices __lowerCAmelCase : Union[str, Any] = scope def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Dict = None if self.use_input_mask: __lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : List[str] = None if self.use_token_type_ids: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : List[Any] = None __lowerCAmelCase : Tuple = None __lowerCAmelCase : int = None if self.use_labels: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Any = MobileBertModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase ) __lowerCAmelCase : List[Any] = model(lowerCAmelCase , token_type_ids=lowerCAmelCase ) __lowerCAmelCase : Tuple = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = MobileBertForMaskedLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = MobileBertForNextSentencePrediction(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[Any] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = MobileBertForPreTraining(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[int] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , next_sentence_label=lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = MobileBertForQuestionAnswering(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : int = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.num_labels __lowerCAmelCase : int = MobileBertForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[int] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.num_labels __lowerCAmelCase : Dict = MobileBertForTokenClassification(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Tuple = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = self.num_choices __lowerCAmelCase : List[Any] = MobileBertForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) , ) : List[Any] = config_and_inputs __lowerCAmelCase : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : str =( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase : Optional[int] =( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : Union[str, Any] =True def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=False ) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class in get_values(lowerCAmelCase ): __lowerCAmelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = MobileBertModelTester(self ) __lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase ) def snake_case_ (__A : Any ) -> Optional[Any]: return torch.tensor( __A , dtype=torch.long , device=__A , ) __UpperCAmelCase = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCAmelCase ) __lowerCAmelCase : int = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __lowerCAmelCase : List[str] = model(lowerCAmelCase )[0] __lowerCAmelCase : List[Any] = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , lowerCAmelCase ) __lowerCAmelCase : int = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] , device=lowerCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
139
0
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Optional[int] = logging.get_logger(__name__) def a_ ( lowerCamelCase ): UpperCAmelCase__ = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) UpperCAmelCase__ = re.match(r'^mobilenet_v1_([^_]*)_([^_]*)$' , lowerCamelCase ) if matches: UpperCAmelCase__ = float(matches[1] ) UpperCAmelCase__ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". UpperCAmelCase__ = 1_0_0_1 UpperCAmelCase__ = 'imagenet-1k-id2label.json' UpperCAmelCase__ = 'huggingface/label-files' UpperCAmelCase__ = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type='dataset' ) , 'r' ) ) UpperCAmelCase__ = {int(lowerCamelCase ) + 1: v for k, v in idalabel.items()} UpperCAmelCase__ = 'background' UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} return config def a_ ( ): UpperCAmelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCAmelCase__ = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): UpperCAmelCase__ = get_mobilenet_va_config(lowerCamelCase ) # Load 🤗 model UpperCAmelCase__ = MobileNetVaForImageClassification(lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor UpperCAmelCase__ = MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 3_2} , ) UpperCAmelCase__ = image_processor(images=prepare_img() , return_tensors='pt' ) UpperCAmelCase__ = model(**lowerCamelCase ) UpperCAmelCase__ = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": UpperCAmelCase__ = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": UpperCAmelCase__ = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: UpperCAmelCase__ = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowerCamelCase , atol=1e-4 ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print('Pushing to the hub...' ) UpperCAmelCase__ = 'google/' + model_name image_processor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
98
def __UpperCamelCase ( _A = 1000000 ): lowerCAmelCase_ = 1 lowerCAmelCase_ = 1 lowerCAmelCase_ = {1: 1} for inputa in range(2 , _A ): lowerCAmelCase_ = 0 lowerCAmelCase_ = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCAmelCase_ = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCAmelCase_ = counter if counter > pre_counter: lowerCAmelCase_ = inputa lowerCAmelCase_ = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
278
0
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ = 0.01 with locka.acquire(): with pytest.raises(snake_case_ ): UpperCAmelCase_ = time.time() locka.acquire(snake_case_ ) assert time.time() - _start > timeout def lowerCAmelCase_ ( snake_case_ : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = "a" * 10_00 + ".lock" UpperCAmelCase_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(snake_case_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 UpperCAmelCase_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case_ ): locka.acquire(0 )
106
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_: int ={ 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: List[str] =['MaskFormerFeatureExtractor'] SCREAMING_SNAKE_CASE_: Union[str, Any] =['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Dict =[ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] SCREAMING_SNAKE_CASE_: List[str] =[ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Dict =_LazyModule(__name__, globals()['__file__'], _import_structure)
106
1
from __future__ import annotations import math def lowerCamelCase__ ( a ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCAmelCase__ : Optional[int] = [num for num in range(3, 100001, 2) if not is_prime(num)] def lowerCamelCase__ ( a ) -> list[int]: if not isinstance(a , a ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) _A: Dict = [] for num in range(len(a ) ): _A: int = 0 while 2 * i * i <= odd_composites[num]: _A: Union[str, Any] = odd_composites[num] - 2 * i * i if is_prime(a ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(a ) == n: return list_nums return [] def lowerCamelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
121
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar UpperCAmelCase__ : Union[str, Any] = TypeVar('T') class UpperCAmelCase ( Generic[T] ): '''simple docstring''' __UpperCamelCase : deque[T] # Cache store of keys __UpperCamelCase : set[T] # References of the keys in cache __UpperCamelCase : int = 10 # Maximum capacity of cache def __init__( self : List[str] , lowerCAmelCase_ : int ): """simple docstring""" _A: Tuple = deque() _A: List[Any] = set() if not n: _A: str = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: _A: Dict = n def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : T ): """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _A: Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowerCAmelCase_ ) else: self.dq_store.remove(lowerCAmelCase_ ) self.dq_store.appendleft(lowerCAmelCase_ ) self.key_reference.add(lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for k in self.dq_store: print(lowerCAmelCase_ ) def __repr__( self : Dict ): """simple docstring""" return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
121
1
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness A : Optional[Any] = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' A : int = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' A : Tuple = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' A : Optional[Any] = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' A : List[str] = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A ( self : Union[str, Any]): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string')), 'references': datasets.Value('string'), }) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def A ( self : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any]=[1, 10, 100] , SCREAMING_SNAKE_CASE : List[Any]=4 , SCREAMING_SNAKE_CASE : str=3.0): if os.getenv('HF_ALLOW_CODE_EVAL' , 0) != "1": raise ValueError(_WARNING) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.') with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE) as executor: _A : str = [] _A : int = Counter() _A : Dict = 0 _A : Dict = defaultdict(SCREAMING_SNAKE_CASE) for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)): for candidate in candidates: _A : int = candidate + '\n' + test_case _A : Union[str, Any] = (test_program, timeout, task_id, completion_id[task_id]) _A : Any = executor.submit(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE) futures.append(SCREAMING_SNAKE_CASE) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(SCREAMING_SNAKE_CASE): _A : List[Any] = future.result() results[result["task_id"]].append((result['completion_id'], result)) _A : int = [], [] for result in results.values(): result.sort() _A : Optional[Any] = [r[1]['passed'] for r in result] total.append(len(SCREAMING_SNAKE_CASE)) correct.append(sum(SCREAMING_SNAKE_CASE)) _A : List[str] = np.array(SCREAMING_SNAKE_CASE) _A : Optional[Any] = np.array(SCREAMING_SNAKE_CASE) _A : int = k _A : Union[str, Any] = {F'pass@{k}': estimate_pass_at_k(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowerCAmelCase__ ( lowerCamelCase : Tuple ,lowerCamelCase : int ,lowerCamelCase : Any ): def estimator(lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) ) if isinstance(lowerCamelCase ,lowerCamelCase ): _A : Dict = itertools.repeat(lowerCamelCase ,len(lowerCamelCase ) ) else: assert len(lowerCamelCase ) == len(lowerCamelCase ) _A : Any = iter(lowerCamelCase ) return np.array([estimator(int(lowerCamelCase ) ,int(lowerCamelCase ) ,lowerCamelCase ) for n, c in zip(lowerCamelCase ,lowerCamelCase )] )
352
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A : Optional[int] = logging.get_logger(__name__) A : Union[str, Any] = torch.device('''cpu''') def lowerCAmelCase__ ( ): _A : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' _A : Dict = Image.open(requests.get(lowerCamelCase ,stream=lowerCamelCase ).raw ) return im def lowerCAmelCase__ ( lowerCamelCase : List[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__ ( lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Dict ): _A : Union[str, Any] = dct.pop(lowerCamelCase ) _A : List[str] = val def lowerCAmelCase__ ( lowerCamelCase : Union[str, Any] ): _A : Optional[Any] = [] for k in state_dict.keys(): _A : Optional[int] = k if ".pwconv" in k: _A : str = k_new.replace('.pwconv' ,'.point_wise_conv' ) if ".dwconv" in k: _A : Any = k_new.replace('.dwconv' ,'.depth_wise_conv' ) if ".Proj." in k: _A : Optional[Any] = k_new.replace('.Proj.' ,'.proj.' ) if "patch_embed" in k_new: _A : Optional[int] = k_new.replace('patch_embed' ,'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: _A : Tuple = k_new.split('.' ) if ls[2].isdigit(): _A : List[Any] = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: _A : List[str] = k_new.replace('network' ,'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : str ,lowerCamelCase : List[str] ): _A : Dict = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _A : Any = 1000 _A : int = 'huggingface/label-files' _A : List[Any] = 'imagenet-1k-id2label.json' _A : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase ,lowerCamelCase ,repo_type='dataset' ) ,'r' ) ) _A : Dict = {int(lowerCamelCase ): v for k, v in idalabel.items()} _A : Optional[int] = idalabel _A : Any = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _A : Optional[Any] = [3, 3, 6, 4] _A : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": _A : List[Any] = [3, 3, 9, 6] _A : Tuple = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": _A : int = [4, 3, 10, 5] _A : int = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": _A : Optional[Any] = [4, 4, 12, 6] _A : Any = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): _A : Optional[Any] = torch.hub.load_state_dict_from_url(lowerCamelCase ,map_location='cpu' ,check_hash=lowerCamelCase ) else: _A : Union[str, Any] = torch.load(lowerCamelCase ,map_location='cpu' ) _A : Union[str, Any] = checkpoint _A : List[str] = create_rename_keys(lowerCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) # load HuggingFace model _A : str = SwiftFormerForImageClassification(lowerCamelCase ).eval() hf_model.load_state_dict(lowerCamelCase ) # prepare test inputs _A : Any = prepare_img() _A : Optional[int] = ViTImageProcessor.from_pretrained('preprocessor_config' ) _A : Any = processor(images=lowerCamelCase ,return_tensors='pt' ) # compare outputs from both models _A : int = get_expected_output(lowerCamelCase ) _A : Optional[int] = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] ,lowerCamelCase ,atol=1E-3 ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') A : List[str] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
227
0
"""simple docstring""" import doctest from collections import deque import numpy as np class snake_case : """simple docstring""" def __init__( self : Union[str, Any] ): UpperCAmelCase__ = [2, 1, 2, -1] UpperCAmelCase__ = [1, 2, 3, 4] def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ = len(self.first_signal ) UpperCAmelCase__ = len(self.second_signal ) UpperCAmelCase__ = max(lowerCamelCase__ ,lowerCamelCase__ ) # create a zero matrix of max_length x max_length UpperCAmelCase__ = [[0] * max_length for i in range(lowerCamelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCamelCase__ ): UpperCAmelCase__ = deque(self.second_signal ) rotated_signal.rotate(lowerCamelCase__ ) for j, item in enumerate(lowerCamelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal UpperCAmelCase__ = np.matmul(np.transpose(lowerCamelCase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCamelCase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
98
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = (PNDMScheduler,) snake_case__ = (("num_inference_steps", 50),) def __lowerCAmelCase ( self : List[str] ,**lowerCamelCase__ : str ): UpperCAmelCase__ = { 'num_train_timesteps': 1_000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**lowerCamelCase__ ) return config def __lowerCAmelCase ( self : str ,lowerCamelCase__ : Optional[Any]=0 ,**lowerCamelCase__ : List[str] ): UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop('num_inference_steps' ,lowerCamelCase__ ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config(**lowerCamelCase__ ) UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) UpperCAmelCase__ = scheduler_class.from_pretrained(lowerCamelCase__ ) new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = new_scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step_plms(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = new_scheduler.step_plms(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : Tuple ): pass def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : List[str]=0 ,**lowerCamelCase__ : Tuple ): UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop('num_inference_steps' ,lowerCamelCase__ ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) UpperCAmelCase__ = scheduler_class.from_pretrained(lowerCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = new_scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step_plms(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = new_scheduler.step_plms(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : List[Any] ,**lowerCamelCase__ : int ): UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(**lowerCamelCase__ ) UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) UpperCAmelCase__ = 10 UpperCAmelCase__ = self.dummy_model() UpperCAmelCase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase__ = model(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase__ = model(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = scheduler.step_plms(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ).prev_sample return sample def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop('num_inference_steps' ,lowerCamelCase__ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase__ ,'set_timesteps' ): scheduler.set_timesteps(lowerCamelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase__ ,'set_timesteps' ): UpperCAmelCase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,0 ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,1 ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) UpperCAmelCase__ = scheduler.step_plms(lowerCamelCase__ ,0 ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = scheduler.step_plms(lowerCamelCase__ ,1 ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCAmelCase ( self : List[Any] ): for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[int] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase__ ) UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps ,torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) ,) def __lowerCAmelCase ( self : Dict ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] ,[0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowerCamelCase__ ,beta_end=lowerCamelCase__ ) def __lowerCAmelCase ( self : Union[str, Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ): for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ): for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCamelCase__ ) def __lowerCAmelCase ( self : int ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase__ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ).prev_sample def __lowerCAmelCase ( self : int ): with self.assertRaises(lowerCamelCase__ ): UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) scheduler.step_plms(self.dummy_sample ,1 ,self.dummy_sample ).prev_sample def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.full_loop() UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.full_loop(prediction_type='v_prediction' ) UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def __lowerCAmelCase ( self : Union[str, Any] ): # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase__ = self.full_loop(set_alpha_to_one=lowerCamelCase__ ,beta_start=0.0_1 ) UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def __lowerCAmelCase ( self : Tuple ): # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase__ = self.full_loop(set_alpha_to_one=lowerCamelCase__ ,beta_start=0.0_1 ) UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
98
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } __lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": 5_1_2, """google/realm-cc-news-pretrained-encoder""": 5_1_2, """google/realm-cc-news-pretrained-scorer""": 5_1_2, """google/realm-cc-news-pretrained-openqa""": 5_1_2, """google/realm-orqa-nq-openqa""": 5_1_2, """google/realm-orqa-nq-reader""": 5_1_2, """google/realm-orqa-wq-openqa""": 5_1_2, """google/realm-orqa-wq-reader""": 5_1_2, } __lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class UpperCAmelCase__ ( __lowercase ): """simple docstring""" __UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES __UpperCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = RealmTokenizer def __init__( self : str ,_a : str=None ,_a : List[str]=None ,_a : Union[str, Any]=True ,_a : List[Any]="[UNK]" ,_a : str="[SEP]" ,_a : Optional[int]="[PAD]" ,_a : List[str]="[CLS]" ,_a : Any="[MASK]" ,_a : List[str]=True ,_a : Union[str, Any]=None ,**_a : Tuple ,): '''simple docstring''' super().__init__( UpperCAmelCase__ ,tokenizer_file=UpperCAmelCase__ ,do_lower_case=UpperCAmelCase__ ,unk_token=UpperCAmelCase__ ,sep_token=UpperCAmelCase__ ,pad_token=UpperCAmelCase__ ,cls_token=UpperCAmelCase__ ,mask_token=UpperCAmelCase__ ,tokenize_chinese_chars=UpperCAmelCase__ ,strip_accents=UpperCAmelCase__ ,**UpperCAmelCase__ ,) _a : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' ,UpperCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,UpperCAmelCase__ ) != tokenize_chinese_chars ): _a : Optional[Any] = getattr(UpperCAmelCase__ ,normalizer_state.pop('type' ) ) _a : Dict = do_lower_case _a : int = strip_accents _a : List[str] = tokenize_chinese_chars _a : Dict = normalizer_class(**UpperCAmelCase__ ) _a : Optional[int] = do_lower_case def __lowercase ( self : Any ,_a : Dict ,**_a : Dict ): '''simple docstring''' _a : str = PaddingStrategy.MAX_LENGTH _a : Optional[Any] = text _a : Tuple = kwargs.pop('text_pair' ,UpperCAmelCase__ ) _a : List[Any] = kwargs.pop('return_tensors' ,UpperCAmelCase__ ) _a : List[Any] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCAmelCase__ ): if batch_text_pair is not None: _a : Any = batch_text_pair[idx] else: _a : Any = None _a : Optional[int] = super().__call__(UpperCAmelCase__ ,UpperCAmelCase__ ,return_tensors=UpperCAmelCase__ ,**UpperCAmelCase__ ) _a : int = encoded_candidates.get('input_ids' ) _a : Optional[int] = encoded_candidates.get('attention_mask' ) _a : int = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase__ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase__ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase__ ) _a : str = {key: item for key, item in output_data.items() if len(UpperCAmelCase__ ) != 0} return BatchEncoding(UpperCAmelCase__ ,tensor_type=UpperCAmelCase__ ) def __lowercase ( self : str ,_a : Any ,_a : Tuple=None ): '''simple docstring''' _a : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : Dict ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : Tuple = [self.sep_token_id] _a : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' _a : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase__ ,name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
360
'''simple docstring''' def UpperCAmelCase_ (__a : list[int] , __a : list[int] ): """simple docstring""" if not len(__a ) == len(__a ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _a, _a, _a : Tuple = equationa _a, _a, _a : str = equationa # Calculate the determinants of the matrices _a : Union[str, Any] = aa * ba - aa * ba _a : List[Any] = ca * ba - ca * ba _a : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _a : int = determinant_x / determinant _a : List[str] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
5
0
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __A : int = Lock() def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() _UpperCAmelCase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left _UpperCAmelCase = min(_lowercase , _lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() _UpperCAmelCase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right _UpperCAmelCase = max(_lowercase , _lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowercase ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop _UpperCAmelCase = Pipe() _UpperCAmelCase = Pipe() process_array_.append( Process( target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) _UpperCAmelCase = temp_rs _UpperCAmelCase = temp_rr for i in range(1 , len(_lowercase ) - 1 ): _UpperCAmelCase = Pipe() _UpperCAmelCase = Pipe() process_array_.append( Process( target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) _UpperCAmelCase = temp_rs _UpperCAmelCase = temp_rr process_array_.append( Process( target=_lowercase , args=( len(_lowercase ) - 1, arr[len(_lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowercase ) ): _UpperCAmelCase = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase ( ): '''simple docstring''' _UpperCAmelCase = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_lowercase ) _UpperCAmelCase = odd_even_transposition(_lowercase ) print('''Sorted List\n''' ) print(*_lowercase ) if __name__ == "__main__": main()
260
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
0
'''simple docstring''' from math import factorial def lowerCamelCase__ ( _A = 100 ): return sum(map(_A , str(factorial(_A ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase: List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Optional[int] = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Dict = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCAmelCase: Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
96
0
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Optional[int] = FlaxAutoencoderKL @property def __lowercase ( self : str ): _a : Dict = 4 _a : Dict = 3 _a : str = (32, 32) _a : Tuple = jax.random.PRNGKey(0 ) _a : List[str] = jax.random.uniform(_UpperCAmelCase ,((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __lowercase ( self : Tuple ): _a : Any = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } _a : Any = self.dummy_input return init_dict, inputs_dict
89
'''simple docstring''' def __lowerCamelCase ( ) -> Tuple: for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]: _a : Any = 1 _a : Tuple = 2 while i * i <= n: _a : Tuple = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def __lowerCamelCase ( ) -> str: return next(i for i in triangle_number_generator() if count_divisors(lowerCAmelCase_ ) > 500 ) if __name__ == "__main__": print(solution())
89
1
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A__ : Dict = 'src/transformers' A__ : Union[str, Any] = 'docs/source/en/tasks' def _snake_case ( lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] ) -> Optional[Any]: with open(lowerCamelCase__ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase_ : Any =f.readlines() # Find the start prompt. lowerCamelCase_ : Optional[int] =0 while not lines[start_index].startswith(lowerCamelCase__ ): start_index += 1 start_index += 1 lowerCamelCase_ : Optional[int] =start_index while not lines[end_index].startswith(lowerCamelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A__ : int = direct_transformers_import(TRANSFORMERS_PATH) A__ : Dict = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A__ : Optional[Any] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def _snake_case ( lowerCamelCase__ : Dict ) -> Any: lowerCamelCase_ : int =TASK_GUIDE_TO_MODELS[task_guide] lowerCamelCase_ : Optional[Any] =SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(lowerCamelCase__ , set() ) lowerCamelCase_ : Dict ={ code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any]=False ) -> Union[str, Any]: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[Any] =_find_text_in_file( filename=os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowerCamelCase_ : Tuple =get_model_list_for_task(lowerCamelCase__ ) if current_list != new_list: if overwrite: with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" " to fix this." ) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A__ : List[str] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
209
"""simple docstring""" def _snake_case ( lowerCamelCase__ : Optional[Any] ) -> Optional[int]: if not head: return True # split the list to two parts lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =head.next, head while fast and fast.next: lowerCamelCase_ : Optional[Any] =fast.next.next lowerCamelCase_ : str =slow.next lowerCamelCase_ : Tuple =slow.next lowerCamelCase_ : Any =None # Don't forget here! But forget still works! # reverse the second part lowerCamelCase_ : List[str] =None while second: lowerCamelCase_ : Any =second.next lowerCamelCase_ : Union[str, Any] =node lowerCamelCase_ : Union[str, Any] =second lowerCamelCase_ : Optional[Any] =nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCamelCase_ : List[str] =node.next lowerCamelCase_ : Optional[Any] =head.next return True def _snake_case ( lowerCamelCase__ : str ) -> Optional[int]: if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCamelCase_ : List[str] =head while fast and fast.next: lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =fast.next.next, slow.next # 2. Push the second half into the stack lowerCamelCase_ : List[Any] =[slow.val] while slow.next: lowerCamelCase_ : List[Any] =slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCamelCase_ : Union[str, Any] =cur.next return True def _snake_case ( lowerCamelCase__ : Dict ) -> Optional[Any]: if not head or not head.next: return True lowerCamelCase_ : Union[str, Any] ={} lowerCamelCase_ : List[Any] =0 while head: if head.val in d: d[head.val].append(lowerCamelCase__ ) else: lowerCamelCase_ : List[str] =[pos] lowerCamelCase_ : Optional[int] =head.next pos += 1 lowerCamelCase_ : Union[str, Any] =pos - 1 lowerCamelCase_ : Optional[int] =0 for v in d.values(): if len(lowerCamelCase__ ) % 2 != 0: middle += 1 else: lowerCamelCase_ : Optional[Any] =0 for i in range(0 , len(lowerCamelCase__ ) ): if v[i] + v[len(lowerCamelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
209
1
from __future__ import annotations def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" if not nums: return 0 lowercase : Optional[int] = nums[0] lowercase : Union[str, Any] = 0 for num in nums[1:]: lowercase , lowercase : Optional[Any] = ( max_excluding + num, max(_UpperCamelCase, _UpperCamelCase ), ) return max(_UpperCamelCase, _UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
337
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __a = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
337
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Optional[Any]=30 , _lowerCAmelCase : List[Any]=400 , _lowerCAmelCase : int=True , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Dict=True , _lowerCAmelCase : List[str]=[0.5, 0.5, 0.5] , _lowerCAmelCase : Union[str, Any]=[0.5, 0.5, 0.5] , _lowerCAmelCase : int=True , _lowerCAmelCase : Union[str, Any]=1 / 255 , _lowerCAmelCase : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE_ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean SCREAMING_SNAKE_CASE_ = image_std SCREAMING_SNAKE_CASE_ = do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor SCREAMING_SNAKE_CASE_ = do_pad def lowerCAmelCase_ ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[str]=False ): if not batched: SCREAMING_SNAKE_CASE_ = image_inputs[0] if isinstance(_lowerCAmelCase , Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_ = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE_ = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE_ = self.size['shortest_edge'] SCREAMING_SNAKE_CASE_ = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE_ = self.size['shortest_edge'] SCREAMING_SNAKE_CASE_ = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE_ = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_ = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[0] )[0] SCREAMING_SNAKE_CASE_ = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = DetaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_rescale' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_pad' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'size' ) ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : int ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[Any] ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self : Optional[int] ): # prepare image and target SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: SCREAMING_SNAKE_CASE_ = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ = {'image_id': 39_769, 'annotations': target} # encode them SCREAMING_SNAKE_CASE_ = DetaImageProcessor() SCREAMING_SNAKE_CASE_ = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _lowerCAmelCase , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _lowerCAmelCase ) ) # verify boxes SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _lowerCAmelCase , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _lowerCAmelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _lowerCAmelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _lowerCAmelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _lowerCAmelCase ) ) # verify size SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _lowerCAmelCase ) ) @slow def lowerCAmelCase_ ( self : str ): # prepare image, target and masks_path SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: SCREAMING_SNAKE_CASE_ = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} SCREAMING_SNAKE_CASE_ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE_ = DetaImageProcessor(format='coco_panoptic' ) SCREAMING_SNAKE_CASE_ = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , masks_path=_lowerCAmelCase , return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _lowerCAmelCase , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _lowerCAmelCase ) ) # verify boxes SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _lowerCAmelCase , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _lowerCAmelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _lowerCAmelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _lowerCAmelCase ) ) # verify masks SCREAMING_SNAKE_CASE_ = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _lowerCAmelCase ) # verify orig_size SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _lowerCAmelCase ) ) # verify size SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _lowerCAmelCase ) )
210
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod @abstractmethod def lowerCAmelCase_ ( _lowerCAmelCase : ArgumentParser ): raise NotImplementedError() @abstractmethod def lowerCAmelCase_ ( self : Dict ): raise NotImplementedError()
210
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A__ : int = 2 class __snake_case : def __init__( self : int , *, # begin keyword-only arguments A_ : List[str]="<s>" , A_ : int="<pad>" , A_ : Union[str, Any]="</s>" , A_ : Optional[Any]="<unk>" , A_ : Optional[Any]=None , ): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = bos, unk, pad, eos lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] lowerCAmelCase_ : Optional[Any] = {} lowerCAmelCase_ : int = self.add_symbol(lowerCamelCase_) lowerCAmelCase_ : Union[str, Any] = self.add_symbol(lowerCamelCase_) lowerCAmelCase_ : Union[str, Any] = self.add_symbol(lowerCamelCase_) lowerCAmelCase_ : Dict = self.add_symbol(lowerCamelCase_) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCamelCase_) lowerCAmelCase_ : Optional[int] = len(self.symbols) def __eq__( self : int , A_ : Dict): return self.indices == other.indices def __getitem__( self : Optional[Any] , A_ : Optional[Any]): if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__( self : Optional[int]): return len(self.symbols) def __contains__( self : int , A_ : int): return sym in self.indices @classmethod def UpperCAmelCase__ ( cls : int , A_ : Optional[int]): lowerCAmelCase_ : str = cls() d.add_from_file(lowerCamelCase_) return d def UpperCAmelCase__ ( self : Union[str, Any] , A_ : List[Any] , A_ : Union[str, Any]=1 , A_ : List[str]=False): if word in self.indices and not overwrite: lowerCAmelCase_ : Any = self.indices[word] lowerCAmelCase_ : Dict = self.count[idx] + n return idx else: lowerCAmelCase_ : Tuple = len(self.symbols) lowerCAmelCase_ : List[str] = idx self.symbols.append(lowerCamelCase_) self.count.append(lowerCamelCase_) return idx def UpperCAmelCase__ ( self : List[Any] , A_ : Union[str, Any]): return 0 def UpperCAmelCase__ ( self : List[Any] , A_ : int): if isinstance(lowerCamelCase_ , lowerCamelCase_): try: with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''') as fd: self.add_from_file(lowerCamelCase_) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(lowerCamelCase_)) return lowerCAmelCase_ : Union[str, Any] = f.readlines() lowerCAmelCase_ : Optional[int] = self._load_meta(lowerCamelCase_) for line in lines[indices_start_line:]: try: lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = line.rstrip().rsplit(''' ''' , 1) if field == "#fairseq:overwrite": lowerCAmelCase_ : List[str] = True lowerCAmelCase_ , lowerCAmelCase_ : Tuple = line.rsplit(''' ''' , 1) else: lowerCAmelCase_ : Dict = False lowerCAmelCase_ : List[str] = int(lowerCamelCase_) lowerCAmelCase_ : List[str] = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(lowerCamelCase_)) self.add_symbol(lowerCamelCase_ , n=lowerCamelCase_ , overwrite=lowerCamelCase_) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''') def UpperCamelCase( __UpperCamelCase : List[str] ): lowerCAmelCase_ : Tuple = dict((re.sub(R'''@@$''' ,'''''' ,__UpperCamelCase ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' ,'''</w>''' ,__UpperCamelCase ), v) for k, v in d.items() ) lowerCAmelCase_ : Optional[int] = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] lowerCAmelCase_ : Optional[Any] = d[k] # restore return da def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ): if not os.path.exists(__UpperCamelCase ): raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models lowerCAmelCase_ : Optional[int] = os.path.join(__UpperCamelCase ,'''checkpoint.pt''' ) if not os.path.isfile(__UpperCamelCase ): raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" ) lowerCAmelCase_ : Optional[Any] = torch.load(__UpperCamelCase ,map_location='''cpu''' ) lowerCAmelCase_ : Any = chkpt['''cfg''']['''model'''] # dicts lowerCAmelCase_ : Optional[int] = os.path.join(__UpperCamelCase ,'''dict.txt''' ) if not os.path.isfile(__UpperCamelCase ): raise ValueError(f"""path to the file {dict_file} does not exist!""" ) lowerCAmelCase_ : Tuple = Dictionary.load(__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = rewrite_dict_keys(src_dict.indices ) lowerCAmelCase_ : Any = len(__UpperCamelCase ) lowerCAmelCase_ : str = os.path.join(__UpperCamelCase ,VOCAB_FILES_NAMES['''vocab_file'''] ) print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(__UpperCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(__UpperCamelCase ,ensure_ascii=__UpperCamelCase ,indent=__UpperCamelCase ) ) # merges_file (bpecodes) lowerCAmelCase_ : str = os.path.join(__UpperCamelCase ,'''bpecodes''' ) if not os.path.isfile(__UpperCamelCase ): raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" ) lowerCAmelCase_ : Union[str, Any] = os.path.join(__UpperCamelCase ,VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(__UpperCamelCase ,__UpperCamelCase ) # model config lowerCAmelCase_ : List[Any] = os.path.join(__UpperCamelCase ,'''config.json''' ) lowerCAmelCase_ : str = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.0_2, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-1_2, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(f"""Generating {biogpt_model_config_file}""" ) with open(__UpperCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(__UpperCamelCase ,ensure_ascii=__UpperCamelCase ,indent=__UpperCamelCase ) ) # tokenizer config lowerCAmelCase_ : List[str] = os.path.join(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase_ : List[str] = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1024, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(f"""Generating {biogpt_tokenizer_config_file}""" ) with open(__UpperCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(__UpperCamelCase ,ensure_ascii=__UpperCamelCase ,indent=__UpperCamelCase ) ) # model lowerCAmelCase_ : List[Any] = chkpt['''model'''] # remove unneeded keys lowerCAmelCase_ : Optional[int] = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): lowerCAmelCase_ : str = model_state_dict.pop(__UpperCamelCase ) else: lowerCAmelCase_ : Optional[Any] = model_state_dict.pop(__UpperCamelCase ) lowerCAmelCase_ : Any = BioGptConfig.from_pretrained(__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = BioGptForCausalLM(__UpperCamelCase ) # check that it loads ok model_new.load_state_dict(__UpperCamelCase ) # save lowerCAmelCase_ : Tuple = os.path.join(__UpperCamelCase ,__UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(__UpperCamelCase ,__UpperCamelCase ) print('''Conversion is done!''' ) if __name__ == "__main__": A__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__ : Optional[int] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
103
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def a( ) -> Optional[int]: """simple docstring""" a = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" a = Image.open(requests.get(A , stream=A ).raw ).convert("RGB" ) return image def a( A : Tuple ) -> List[str]: """simple docstring""" a = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def a( A : str , A : Tuple , A : Optional[int] ) -> int: """simple docstring""" a = dct.pop(A ) a = val def a( A : Union[str, Any] , A : str ) -> List[Any]: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases a = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) a = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict a = torch.cat((q_bias, torch.zeros_like(A , requires_grad=A ), v_bias) ) a = qkv_bias def a( A : Union[str, Any] , A : Tuple ) -> str: """simple docstring""" a = 364 if "coco" in model_name else 224 a = BlipaVisionConfig(image_size=A ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: a = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=A ).to_dict() elif "opt-6.7b" in model_name: a = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=A ).to_dict() elif "t5-xl" in model_name: a = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: a = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() a = BlipaConfig(vision_config=A , text_config=A ) return config, image_size @torch.no_grad() def a( A : Optional[int] , A : List[str]=None , A : Optional[int]=False ) -> Any: """simple docstring""" a = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) a = tokenizer("\n" , add_special_tokens=A ).input_ids[0] a , a = get_blipa_config(A , eos_token_id=A ) a = BlipaForConditionalGeneration(A ).eval() a = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } a , a = model_name_to_original[model_name] # load original model print("Loading original model..." ) a = "cuda" if torch.cuda.is_available() else "cpu" a , a , a = load_model_and_preprocess( name=A , model_type=A , is_eval=A , device=A ) original_model.eval() print("Done!" ) # update state dict keys a = original_model.state_dict() a = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): a = state_dict.pop(A ) if key.startswith("Qformer.bert" ): a = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: a = key.replace("self" , "attention" ) if "opt_proj" in key: a = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: a = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): a = key.replace("opt" , "language" ) if key.startswith("t5" ): a = key.replace("t5" , "language" ) a = val # read in qv biases read_in_q_v_bias(A , A ) a , a = hf_model.load_state_dict(A , strict=A ) assert len(A ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] a = load_demo_image() a = vis_processors["eval"](A ).unsqueeze(0 ).to(A ) a = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(A ) # create processor a = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=A , image_std=A ) a = BlipaProcessor(image_processor=A , tokenizer=A ) a = processor(images=A , return_tensors="pt" ).pixel_values.to(A ) # make sure processor creates exact same pixel values assert torch.allclose(A , A ) original_model.to(A ) hf_model.to(A ) with torch.no_grad(): if "opt" in model_name: a = original_model({"image": original_pixel_values, "text_input": [""]} ).logits a = hf_model(A , A ).logits else: a = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits a = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) a = hf_model(A , A , labels=A ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": a = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=A ) assert torch.allclose(logits[0, :3, :3] , A , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": a = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=A ) else: # cast to same type a = logits.dtype assert torch.allclose(original_logits.to(A ) , A , atol=1e-2 ) print("Looks ok!" ) print("Generating a caption..." ) a = "" a = tokenizer(A , return_tensors="pt" ).input_ids.to(A ) a = original_model.generate({"image": original_pixel_values} ) a = hf_model.generate( A , A , do_sample=A , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , A ) a = input_ids.shape[1] a = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=A ) a = [text.strip() for text in output_text] print("HF generation:" , A ) if pytorch_dump_folder_path is not None: processor.save_pretrained(A ) hf_model.save_pretrained(A ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowercase: Dict = argparse.ArgumentParser() _lowercase: Tuple = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _lowercase: Any = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
227
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class lowercase_ ( __lowercase ): UpperCamelCase_ : int = "open-llama" def __init__( self : Optional[Any] , A__ : List[str]=100000 , A__ : Tuple=4096 , A__ : Dict=11008 , A__ : str=32 , A__ : Any=32 , A__ : int="silu" , A__ : List[Any]=2048 , A__ : Tuple=0.02 , A__ : List[Any]=1e-6 , A__ : Dict=True , A__ : int=0 , A__ : Tuple=1 , A__ : List[Any]=2 , A__ : Optional[Any]=False , A__ : Optional[int]=True , A__ : Optional[int]=0.1 , A__ : str=0.1 , A__ : int=True , A__ : Any=True , A__ : List[str]=None , **A__ : Dict , ) -> Optional[int]: _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = intermediate_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = initializer_range _snake_case = rms_norm_eps _snake_case = use_cache _snake_case = kwargs.pop( '''use_memorry_efficient_attention''' , A__ ) _snake_case = hidden_dropout_prob _snake_case = attention_dropout_prob _snake_case = use_stable_embedding _snake_case = shared_input_output_embedding _snake_case = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , tie_word_embeddings=A__ , **A__ , ) def UpperCamelCase_ ( self : Union[str, Any] ) -> Any: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , A__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) _snake_case = self.rope_scaling.get('''type''' , A__ ) _snake_case = self.rope_scaling.get('''factor''' , A__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(A__ , A__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
278
from __future__ import annotations def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> bool: """simple docstring""" _snake_case = get_failure_array(_UpperCamelCase ) # 2) Step through text searching for pattern _snake_case, _snake_case = 0, 0 # index into text, pattern while i < len(_UpperCamelCase ): if pattern[j] == text[i]: if j == (len(_UpperCamelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _snake_case = failure[j - 1] continue i += 1 return False def snake_case_(_UpperCamelCase ) -> list[int]: """simple docstring""" _snake_case = [0] _snake_case = 0 _snake_case = 1 while j < len(_UpperCamelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _snake_case = failure[i - 1] continue j += 1 failure.append(_UpperCamelCase ) return failure if __name__ == "__main__": # Test 1) __A = '''abc1abc12''' __A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __A = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __A = '''ABABX''' __A = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) __A = '''AAAB''' __A = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) __A = '''abcdabcy''' __A = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) __A = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
278
1
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
301
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: SCREAMING_SNAKE_CASE_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
301
1
import numpy as np from PIL import Image def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = np.array(a__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE : Union[str, Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE : List[Any] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE : Optional[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : str = 0 return updated_arr def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = np.array(a__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Tuple = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE : List[str] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE : int = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Dict = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image a__ : Optional[int] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
19
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class A__ ( snake_case__ ): """simple docstring""" def __init__( self , *__snake_case , **__snake_case ): super().__init__(*__snake_case , **__snake_case ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def a_ ( self , __snake_case=None ): snake_case = {} if top_k is not None: snake_case = top_k return {}, {}, postprocess_params def __call__( self , __snake_case , **__snake_case ): return super().__call__(__snake_case , **__snake_case ) def a_ ( self , __snake_case ): snake_case = load_image(__snake_case ) snake_case = self.image_processor(images=__snake_case , return_tensors=self.framework ) return model_inputs def a_ ( self , __snake_case ): snake_case = self.model(**__snake_case ) return model_outputs def a_ ( self , __snake_case , __snake_case=5 ): if top_k > self.model.config.num_labels: snake_case = self.model.config.num_labels if self.framework == "pt": snake_case = model_outputs.logits.softmax(-1 )[0] snake_case , snake_case = probs.topk(__snake_case ) elif self.framework == "tf": snake_case = stable_softmax(model_outputs.logits , axis=-1 )[0] snake_case = tf.math.top_k(__snake_case , k=__snake_case ) snake_case , snake_case = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) snake_case = scores.tolist() snake_case = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__snake_case , __snake_case )]
127
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) @dataclass class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **__snake_case ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case = deprecated_arg[3:] setattr(self , __snake_case , not kwargs.pop(__snake_case ) ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) snake_case = kwargs.pop('''torchscript''' , self.torchscript ) snake_case = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) snake_case = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**__snake_case ) __magic_name__ = field(default=snake_case__ , metadata={'help': 'Trace the models using torchscript'} ) __magic_name__ = field(default=snake_case__ , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) __magic_name__ = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def a_ ( self ): requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: snake_case = torch.device('''cpu''' ) snake_case = 0 elif is_torch_tpu_available(): snake_case = xm.xla_device() snake_case = 0 else: snake_case = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case = torch.cuda.device_count() return device, n_gpu @property def a_ ( self ): return is_torch_tpu_available() and self.tpu @property def a_ ( self ): requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def a_ ( self ): requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def a_ ( self ): requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def a_ ( self ): return self.n_gpu > 0
127
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): @property def lowercase__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) lowercase_ :Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ :Any = self.dummy_uncond_unet lowercase_ :List[Any] = KarrasVeScheduler() lowercase_ :List[Any] = KarrasVePipeline(unet=lowercase , scheduler=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) lowercase_ :Dict = torch.manual_seed(0 ) lowercase_ :Union[str, Any] = pipe(num_inference_steps=2 , generator=lowercase , output_type="numpy" ).images lowercase_ :Dict = torch.manual_seed(0 ) lowercase_ :Any = pipe(num_inference_steps=2 , generator=lowercase , output_type="numpy" , return_dict=lowercase )[0] lowercase_ :Optional[int] = image[0, -3:, -3:, -1] lowercase_ :Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ :int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a_ ( unittest.TestCase ): def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Optional[int] = "google/ncsnpp-celebahq-256" lowercase_ :Any = UNetaDModel.from_pretrained(lowercase ) lowercase_ :Any = KarrasVeScheduler() lowercase_ :List[Any] = KarrasVePipeline(unet=lowercase , scheduler=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) lowercase_ :Union[str, Any] = torch.manual_seed(0 ) lowercase_ :Tuple = pipe(num_inference_steps=20 , generator=lowercase , output_type="numpy" ).images lowercase_ :Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase_ :int = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
354
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging lowerCAmelCase : Tuple =logging.get_logger(__name__) def UpperCAmelCase_ ( __lowerCamelCase : Union[tf.Tensor, np.ndarray] ): if isinstance(__lowerCamelCase ,np.ndarray ): return list(tensor.shape ) lowercase_ :Optional[int] = tf.shape(__lowerCamelCase ) if tensor.shape == tf.TensorShape(__lowerCamelCase ): return dynamic lowercase_ :Union[str, Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__lowerCamelCase )] def UpperCAmelCase_ ( __lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[str] = None ): return tf.nn.softmax(logits=logits + 1e-9 ,axis=__lowerCamelCase ,name=__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : List[str]=1e-5 ,__lowerCamelCase : List[str]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__lowerCamelCase ,__lowerCamelCase ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized lowercase_ , lowercase_ :List[str] = tf.nn.moments(__lowerCamelCase ,axes=[axis] ,keepdims=__lowerCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase_ :Union[str, Any] = [1] * inputs.shape.rank lowercase_ :Optional[Any] = shape_list(__lowerCamelCase )[axis] lowercase_ :List[str] = tf.reshape(__lowerCamelCase ,__lowerCamelCase ) lowercase_ :Dict = tf.reshape(__lowerCamelCase ,__lowerCamelCase ) # Compute layer normalization using the batch_normalization # function. lowercase_ :Union[str, Any] = tf.nn.batch_normalization( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,offset=__lowerCamelCase ,scale=__lowerCamelCase ,variance_epsilon=__lowerCamelCase ,) return outputs def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : Union[str, Any]=0 ,__lowerCamelCase : Dict=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase_ :Optional[int] = tf.shape(__lowerCamelCase ) lowercase_ :Optional[int] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase_ :List[str] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] ,axis=0 ) return tf.reshape(__lowerCamelCase ,__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : tf.Tensor ): if not isinstance(__lowerCamelCase ,tf.Tensor ): lowercase_ :str = tf.convert_to_tensor(__lowerCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase_ :List[Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase_ :Optional[int] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase_ :str = ( tf.cast(1 ,encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCAmelCase_ ( __lowerCamelCase : tf.Tensor ,__lowerCamelCase : int ,__lowerCamelCase : str = "input_ids" ): tf.debugging.assert_less( __lowerCamelCase ,tf.cast(__lowerCamelCase ,dtype=tensor.dtype ) ,message=( F'The maximum value of {tensor_name} ({tf.math.reduce_max(__lowerCamelCase )}) must be smaller than the embedding ' F'layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.' ) ,) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Dict ): lowercase_ :int = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase_ :Union[str, Any] = [x for x in data if len(__lowerCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F'they are larger than {HDF5_OBJECT_HEADER_LIMIT} ' F'bytes: {bad_attributes}' ) lowercase_ :Union[str, Any] = np.asarray(__lowerCamelCase ) lowercase_ :Optional[int] = 1 lowercase_ :int = np.array_split(__lowerCamelCase ,__lowerCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase_ :List[Any] = np.array_split(__lowerCamelCase ,__lowerCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__lowerCamelCase ): lowercase_ :int = chunk_data else: lowercase_ :Tuple = data def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : Tuple ): if name in group.attrs: lowercase_ :Optional[Any] = [n.decode("utf8" ) if hasattr(__lowerCamelCase ,"decode" ) else n for n in group.attrs[name]] else: lowercase_ :List[str] = [] lowercase_ :str = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(__lowerCamelCase ,"decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def UpperCAmelCase_ ( __lowerCamelCase : str ): def _expand_single_ad_tensor(__lowerCamelCase : Tuple ): if isinstance(__lowerCamelCase ,tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__lowerCamelCase ,axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor ,__lowerCamelCase )
147
0
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' f'{test_file} instead.' ) _UpperCAmelCase = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(f'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( f'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) _UpperCAmelCase = components[:-1] + [test_fn.replace('''.py''' , '''''' )] _UpperCAmelCase = '''.'''.join(_SCREAMING_SNAKE_CASE ) return test_module_path def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = get_module_path(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = importlib.import_module(_SCREAMING_SNAKE_CASE ) return test_module def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = get_test_module(_SCREAMING_SNAKE_CASE ) for attr in dir(_SCREAMING_SNAKE_CASE ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = get_test_module(_SCREAMING_SNAKE_CASE ) for attr in dir(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , '''all_model_classes''' , [] ) if len(_SCREAMING_SNAKE_CASE ) > 0: test_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = get_test_classes(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = test_class() if hasattr(_SCREAMING_SNAKE_CASE , '''setUp''' ): test.setUp() _UpperCAmelCase = None if hasattr(_SCREAMING_SNAKE_CASE , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCAmelCase = test.model_tester.__class__ return model_tester def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = get_test_classes(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [] for test_class in test_classes: _UpperCAmelCase = get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) if tester_class is not None: tester_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = get_test_classes(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = {test_class: get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) for test_class in test_classes} return test_tester_mapping def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = get_model_classes(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = { model_class: get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_test_mapping def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = get_model_classes(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = { model_class: get_tester_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_to_tester_mapping def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return o elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return o.__name__ elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): return [to_json(_SCREAMING_SNAKE_CASE ) for x in o] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {to_json(_SCREAMING_SNAKE_CASE ): to_json(_SCREAMING_SNAKE_CASE ) for k, v in o.items()} else: return o
260
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr _UpperCAmelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _UpperCAmelCase = arr[mi::-1] + arr[mi + 1 : len(_SCREAMING_SNAKE_CASE )] # Reverse whole list _UpperCAmelCase = arr[cur - 1 :: -1] + arr[cur : len(_SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": __A : List[str] = input("Enter numbers separated by a comma:\n").strip() __A : List[Any] = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
260
1
'''simple docstring''' import math import unittest def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: assert isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> int: '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def snake_case_ ( self ) -> str: '''simple docstring''' with self.assertRaises(UpperCamelCase__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
101
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class A__ ( _snake_case , unittest.TestCase ): lowercase = ReformerTokenizer lowercase = ReformerTokenizerFast lowercase = True lowercase = False lowercase = True def snake_case_ ( self ) -> str: '''simple docstring''' super().setUp() A_ = ReformerTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = """<s>""" A_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(UpperCamelCase__ ) , 1000 ) def snake_case_ ( self ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' if not self.test_rust_tokenizer: return A_ = self.get_tokenizer() A_ = self.get_rust_tokenizer() A_ = """I was born in 92000, and this is falsé.""" A_ = tokenizer.tokenize(UpperCamelCase__ ) A_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.get_rust_tokenizer() A_ = tokenizer.encode(UpperCamelCase__ ) A_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__=15 ) -> int: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) # Simple input A_ = """This is a simple input""" A_ = ["""This is a simple input 1""", """This is a simple input 2"""] A_ = ("""This is a simple input""", """This is a pair""") A_ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" ) # Simple input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" ) # Simple input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" , ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" ) # Pair input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" , ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' pass def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = ReformerTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) A_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [285, 46, 10, 170, 382] , ) A_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) A_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = """Hello World!""" A_ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) A_ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @require_torch @slow def snake_case_ ( self ) -> str: '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence A_ = list(self.big_tokenizer.get_vocab().keys() )[:10] A_ = """ """.join(UpperCamelCase__ ) A_ = self.big_tokenizer.encode_plus(UpperCamelCase__ , return_tensors="""pt""" ) A_ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) A_ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) A_ = encoded_sequence["""input_ids"""].shape A_ = ReformerModel(UpperCamelCase__ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCamelCase__ ) model(**UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' # fmt: off A_ = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 A_ = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=UpperCamelCase__ , sequences=UpperCamelCase__ , )
101
1
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class A (SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = WavaVecaPhonemeCTCTokenizer __lowerCamelCase : Optional[Any] = False def a_ ( self : Tuple ) -> Any: """simple docstring""" super().setUp() A__ = ( """<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː """ """ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː """ """ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 """ """oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ """ """pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ """ """yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ """ """əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ """ """ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ """ """ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ """ """uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ """ """ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ """ """ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ """ """ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4""" ).split(""" """ ) A__ = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) A__ = {"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + """\n""" ) def a_ ( self : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : str=20 , __lowerCAmelCase : Optional[Any]=5 ) -> Tuple[str, list]: """simple docstring""" A__ = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCAmelCase )) for i in range(len(__lowerCAmelCase ) )] A__ = list(filter(lambda __lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__lowerCAmelCase ) , __lowerCAmelCase ) ) if max_length is not None and len(__lowerCAmelCase ) > max_length: A__ = toks[:max_length] if min_length is not None and len(__lowerCAmelCase ) < min_length and len(__lowerCAmelCase ) > 0: while len(__lowerCAmelCase ) < min_length: A__ = toks + toks # toks_str = [t[1] for t in toks] A__ = [t[0] for t in toks] # Ensure consistency A__ = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) if " " not in output_txt and len(__lowerCAmelCase ) > 1: A__ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCAmelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCAmelCase ) ) if with_prefix_space: A__ = """ """ + output_txt A__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) return output_txt, output_ids def a_ ( self : Any , **__lowerCAmelCase : str ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" A__ = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) A__ = tokenizer("""m xxx ɪ""" , do_phonemize=__lowerCAmelCase ).input_ids self.assertEqual(__lowerCAmelCase , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) A__ = tokenizer("""m aaa ɪ ccc""" , do_phonemize=__lowerCAmelCase ).input_ids self.assertEqual(__lowerCAmelCase , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa A__ = tokenizer("""maɪ c""" , do_phonemize=__lowerCAmelCase ).input_ids self.assertEqual(__lowerCAmelCase , [3, 2_00] ) # mai should be <unk> (=3) def a_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" A__ = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) A__ = """Hello how are you""" A__ = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang="""en-us""" ) self.assertEqual(__lowerCAmelCase , """h ə l oʊ h aʊ ɑːɹ j uː""" ) def a_ ( self : Optional[Any] ) -> Dict: """simple docstring""" A__ = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) A__ = """Hello how are you""" A__ = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(__lowerCAmelCase ).input_ids , tokenizer(__lowerCAmelCase , do_phonemize=__lowerCAmelCase ).input_ids ) def a_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" A__ = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) A__ = """Hello how are you""" A__ = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang="""en-us""" ) A__ = tokenizer.decode(tokenizer(__lowerCAmelCase ).input_ids ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : List[str] ) -> Optional[int]: """simple docstring""" A__ = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) A__ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] A__ = tokenizer.decode(sample_ids[0] ) A__ = tokenizer.batch_decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , batch_tokens[0] ) self.assertEqual(__lowerCAmelCase , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) def a_ ( self : List[Any] ) -> str: """simple docstring""" A__ = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) A__ = """Hello how are you""" A__ = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang="""en-us""" ) self.assertEqual(__lowerCAmelCase , """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" ) def a_ ( self : List[Any] ) -> Tuple: """simple docstring""" A__ = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) A__ = """Hello how are you""" A__ = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(__lowerCAmelCase ).input_ids , tokenizer(__lowerCAmelCase , do_phonemize=__lowerCAmelCase ).input_ids ) def a_ ( self : List[Any] ) -> Any: """simple docstring""" A__ = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off A__ = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter A__ = tokenizer.decode(sample_ids[0] ) A__ = tokenizer.batch_decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , batch_tokens[0] ) self.assertEqual(__lowerCAmelCase , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) # decode with no word_del_token filter A__ = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__lowerCAmelCase ) A__ = tokenizer.batch_decode(__lowerCAmelCase , filter_word_delimiter_token=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , batch_tokens[0] ) self.assertEqual(__lowerCAmelCase , ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] ) def a_ ( self : Dict ) -> Tuple: """simple docstring""" A__ = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) A__ = """Hello how are you""" A__ = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang="""en-us""" ) A__ = tokenizer.decode(tokenizer(__lowerCAmelCase ).input_ids , filter_word_delimiter_token=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" A__ = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) A__ = """Hello how are you""" A__ = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang="""en-us""" ) A__ = tokenizer.decode(tokenizer(__lowerCAmelCase ).input_ids , filter_word_delimiter_token=__lowerCAmelCase ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip() , __lowerCAmelCase ) def a_ ( self : List[str] ) -> Any: """simple docstring""" A__ = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token=__lowerCAmelCase ) A__ = """Hello how are you""" A__ = tokenizer(__lowerCAmelCase , phonemizer_lang="""en-us""" ).input_ids A__ = tokenizer(__lowerCAmelCase , phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) A__ = tokenizer.decode(__lowerCAmelCase ) A__ = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , """h ə l oʊ h aʊ ɑːɹ j uː""" ) self.assertEqual(__lowerCAmelCase , """ɛ l o h aʊ a ʁ j u""" ) def a_ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" A__ = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) A__ = """Hello how Are you""" A__ = """hello how are you""" A__ = tokenizer(__lowerCAmelCase ).input_ids A__ = tokenizer(__lowerCAmelCase ).input_ids self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" A__ = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off A__ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on A__ = tokenizer.batch_decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] ) @staticmethod def a_ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : int ) -> List[Any]: """simple docstring""" A__ = [d[key] for d in offsets] return retrieved_list def a_ ( self : Dict ) -> int: """simple docstring""" A__ = self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" A__ = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on A__ = tokenizer.decode(__lowerCAmelCase , output_char_offsets=__lowerCAmelCase , filter_word_delimiter_token=__lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(__lowerCAmelCase , __lowerCAmelCase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) , ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """start_offset""" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """end_offset""" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def a_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" A__ = self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(__lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): self.assertTrue(isinstance(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertTrue(isinstance(outputs_list[0] , __lowerCAmelCase ) ) # transform list to ModelOutput A__ = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""] , outputs_batch_a["""text"""] ) def recursive_check(__lowerCAmelCase : List[str] , __lowerCAmelCase : int ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): [recursive_check(__lowerCAmelCase , __lowerCAmelCase ) for la, la in zip(__lowerCAmelCase , __lowerCAmelCase )] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""] , outputs_batch_a["""char_offsets"""] ) # fmt: off A__ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char A__ = tokenizer.batch_decode(__lowerCAmelCase , output_char_offsets=__lowerCAmelCase ) A__ = [tokenizer.decode(__lowerCAmelCase , output_char_offsets=__lowerCAmelCase ) for ids in sample_ids] check_list_tuples_equal(__lowerCAmelCase , __lowerCAmelCase ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def a_ ( self : Any ) -> List[str]: """simple docstring""" pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def a_ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def a_ ( self : int ) -> str: """simple docstring""" pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def a_ ( self : Any ) -> Union[str, Any]: """simple docstring""" pass def a_ ( self : str ) -> str: """simple docstring""" A__ = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): A__ = tokenizer.vocab_size A__ = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A__ = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] A__ = tokenizer.add_tokens(__lowerCAmelCase ) A__ = tokenizer.vocab_size A__ = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , 0 ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase , all_size + len(__lowerCAmelCase ) ) A__ = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) A__ = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} A__ = tokenizer.add_special_tokens(__lowerCAmelCase ) A__ = tokenizer.vocab_size A__ = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , 0 ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase , all_size_a + len(__lowerCAmelCase ) ) A__ = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def a_ ( self : Any ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def a_ ( self : Any ) -> int: """simple docstring""" pass def a_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" A__ = self.get_tokenizers(fast=__lowerCAmelCase , do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): A__ = ["""ð""", """ɪ""", """s""", """ɪ""", """z""", """ɐ""", """t""", """ɛ""", """k""", """s""", """t"""] A__ = tokenizer.convert_tokens_to_string(__lowerCAmelCase ) self.assertIsInstance(output["""text"""] , __lowerCAmelCase )
274
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def __lowerCamelCase ( __a :List[str] , __a :List[Any] , __a :Union[str, Any] , __a :List[Any] ) -> Dict: """simple docstring""" A__ = multiprocessing.Manager() A__ = manager.list() A__ = multiprocessing.Process(target=__a , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("""timed out""" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def __lowerCamelCase ( __a :Optional[Any] , __a :Any , __a :List[Any] ) -> Union[str, Any]: """simple docstring""" with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil A__ = shutil.rmtree A__ = os.rmdir A__ = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: A__ = {} with swallow_io(): with time_limit(__a ): exec(__a , __a ) result.append("""passed""" ) except TimeoutException: result.append("""timed out""" ) except BaseException as e: result.append(F'failed: {e}' ) # Needed for cleaning up. A__ = rmtree A__ = rmdir A__ = chdir @contextlib.contextmanager def __lowerCamelCase ( __a :List[str] ) -> Dict: """simple docstring""" def signal_handler(__a :List[Any] , __a :Optional[Any] ): raise TimeoutException("""Timed out!""" ) signal.setitimer(signal.ITIMER_REAL , __a ) signal.signal(signal.SIGALRM , __a ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" A__ = WriteOnlyStringIO() with contextlib.redirect_stdout(__a ): with contextlib.redirect_stderr(__a ): with redirect_stdin(__a ): yield @contextlib.contextmanager def __lowerCamelCase ( ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as dirname: with chdir(__a ): yield dirname class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class A (io.StringIO ): '''simple docstring''' def a_ ( self : Any , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : str ) -> Dict: """simple docstring""" raise OSError def a_ ( self : Optional[Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" raise OSError def a_ ( self : Optional[Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : Any ) -> int: """simple docstring""" raise OSError def a_ ( self : str , *__lowerCAmelCase : Any , **__lowerCAmelCase : Union[str, Any] ) -> int: """simple docstring""" return False class A (contextlib._RedirectStream ): # type: ignore '''simple docstring''' __lowerCamelCase : Union[str, Any] = '''stdin''' @contextlib.contextmanager def __lowerCamelCase ( __a :Union[str, Any] ) -> List[str]: """simple docstring""" if root == ".": yield return A__ = os.getcwd() os.chdir(__a ) try: yield except BaseException as exc: raise exc finally: os.chdir(__a ) def __lowerCamelCase ( __a :Union[str, Any]=None ) -> Dict: """simple docstring""" if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins A__ = None A__ = None import os A__ = """1""" A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None import shutil A__ = None A__ = None A__ = None import subprocess A__ = None # type: ignore A__ = None import sys A__ = None A__ = None A__ = None A__ = None A__ = None
274
1
"""simple docstring""" import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a :int = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _lowercase ( __lowerCAmelCase ) -> List[Any]: """simple docstring""" config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def _lowercase ( __lowerCAmelCase ) -> Dict: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> int: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__ : int = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(__lowerCAmelCase , id=__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: """simple docstring""" if exitstatus == 5: SCREAMING_SNAKE_CASE__ : List[Any] = 0 # Doctest custom flag to ignore output. a :Any = doctest.register_optionflag("IGNORE_RESULT") a :Union[str, Any] = doctest.OutputChecker class __a (UpperCamelCase_): '''simple docstring''' def _a ( self , _a , _a , _a ) -> int: """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _a , _a , _a ) a :int = CustomOutputChecker a :Optional[int] = HfDoctestModule a :Dict = HfDocTestParser
356
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu a :List[Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: a :str = json.load(f) @require_torch class __a (unittest.TestCase): '''simple docstring''' def _a ( self , _a ) -> Optional[int]: """simple docstring""" return FSMTTokenizer.from_pretrained(_a ) def _a ( self , _a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(_a ).to(_a ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _a ( self , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = f'''facebook/wmt19-{pair}''' SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer(_a ) SCREAMING_SNAKE_CASE__ : Any = self.get_model(_a ) SCREAMING_SNAKE_CASE__ : Tuple = bleu_data[pair]["""src"""] SCREAMING_SNAKE_CASE__ : Any = bleu_data[pair]["""tgt"""] SCREAMING_SNAKE_CASE__ : Any = tokenizer(_a , return_tensors="""pt""" , truncation=_a , padding="""longest""" ).to(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.batch_decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) SCREAMING_SNAKE_CASE__ : Dict = calculate_bleu(_a , _a ) print(_a ) self.assertGreaterEqual(scores["""bleu"""] , _a )
56
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Tuple = logging.get_logger(__name__) a_ : Dict = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "mgp-str" def __init__( self , UpperCamelCase=[32, 128] , UpperCamelCase=4 , UpperCamelCase=3 , UpperCamelCase=27 , UpperCamelCase=38 , UpperCamelCase=5_0257 , UpperCamelCase=3_0522 , UpperCamelCase=768 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=4.0 , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase=1e-5 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=False , UpperCamelCase=0.02 , **UpperCamelCase , ): """simple docstring""" super().__init__(**UpperCamelCase ) lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = max_token_length lowerCamelCase_ = num_character_labels lowerCamelCase_ = num_bpe_labels lowerCamelCase_ = num_wordpiece_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = mlp_ratio lowerCamelCase_ = distilled lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = drop_rate lowerCamelCase_ = qkv_bias lowerCamelCase_ = attn_drop_rate lowerCamelCase_ = drop_path_rate lowerCamelCase_ = output_aa_attentions lowerCamelCase_ = initializer_range
55
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""LayoutLMv2FeatureExtractor"""] lowerCamelCase = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
367
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = ["""image_processor""", """tokenizer"""] lowerCAmelCase__ = """CLIPImageProcessor""" lowerCAmelCase__ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : List[Any] , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : str): '''simple docstring''' __lowercase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _lowerCAmelCase , ) __lowercase =kwargs.pop('feature_extractor') __lowercase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(_lowerCAmelCase , _lowerCAmelCase) def __call__( self : List[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=None , **_lowerCAmelCase : Union[str, Any]): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: __lowercase =self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase) if images is not None: __lowercase =self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase) if text is not None and images is not None: __lowercase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase) , tensor_type=_lowerCAmelCase) def __lowerCamelCase ( self : Tuple , *_lowerCAmelCase : str , **_lowerCAmelCase : int): '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Union[str, Any]): '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase) @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =self.tokenizer.model_input_names __lowercase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def __lowerCamelCase ( self : List[Any]): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _lowerCAmelCase , ) return self.image_processor_class @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _lowerCAmelCase , ) return self.image_processor
48
0
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowercase__ = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") lowercase__ , lowercase__ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") lowercase__ = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: lowercase__ = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowercase__ = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
151
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def UpperCamelCase( ): UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=UpperCAmelCase_ , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=UpperCAmelCase_ , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=UpperCAmelCase_ , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=UpperCAmelCase_ , default=0 , help='cuda_id.' , ) UpperCAmelCase : str = parser.parse_args() return args def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if not len(UpperCAmelCase_ ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) UpperCAmelCase , UpperCAmelCase : List[Any] = imgs[0].size UpperCAmelCase : str = Image.new('RGB' , size=(cols * w, rows * h) ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = grid.size for i, img in enumerate(UpperCAmelCase_ ): grid.paste(UpperCAmelCase_ , box=(i % cols * w, i // cols * h) ) return grid def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_="robotic cat with wings" , UpperCAmelCase_=7.5 , UpperCAmelCase_=50 , UpperCAmelCase_=1 , UpperCAmelCase_=42 , ): UpperCAmelCase : Optional[int] = torch.Generator(pipeline.device ).manual_seed(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = pipeline( UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , ).images UpperCAmelCase : Dict = int(math.sqrt(UpperCAmelCase_ ) ) UpperCAmelCase : Optional[int] = image_grid(UpperCAmelCase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowercase__ = parse_args() # Load models and create wrapper for stable diffusion lowercase__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") lowercase__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") lowercase__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") lowercase__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") lowercase__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowercase__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): lowercase__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: lowercase__ = unet.to(torch.device("cuda", args.cuda_id)) lowercase__ = pipeline.to(unet.device) lowercase__ , lowercase__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) lowercase__ = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
151
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : int = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __snake_case ( __SCREAMING_SNAKE_CASE ): _a : Tuple= 'vit_mae' def __init__( self ,snake_case=768 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=224 ,snake_case=16 ,snake_case=3 ,snake_case=True ,snake_case=16 ,snake_case=512 ,snake_case=8 ,snake_case=2048 ,snake_case=0.75 ,snake_case=False ,**snake_case ,): '''simple docstring''' super().__init__(**_a ) lowercase : List[Any] = hidden_size lowercase : Optional[Any] = num_hidden_layers lowercase : Any = num_attention_heads lowercase : Tuple = intermediate_size lowercase : List[str] = hidden_act lowercase : Union[str, Any] = hidden_dropout_prob lowercase : int = attention_probs_dropout_prob lowercase : List[str] = initializer_range lowercase : Dict = layer_norm_eps lowercase : Union[str, Any] = image_size lowercase : Any = patch_size lowercase : int = num_channels lowercase : Optional[Any] = qkv_bias lowercase : Optional[Any] = decoder_num_attention_heads lowercase : Dict = decoder_hidden_size lowercase : Dict = decoder_num_hidden_layers lowercase : Tuple = decoder_intermediate_size lowercase : Tuple = mask_ratio lowercase : int = norm_pix_loss
361
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase : str = mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: lowercase : Optional[int] = max( mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , mf_knapsack(i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - wt[i - 1] ) + val[i - 1] , ) lowercase : List[Any] = val return f[i][j] def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: lowercase : Optional[int] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase : Union[str, Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase : Any = dp[i - 1][w_] return dp[n][w_], dp def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if not (isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) if num_items != len(SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = ( """The number of weights must be the same as the number of values.\n""" f"But got {num_items} weights and {len(SCREAMING_SNAKE_CASE__ )} values" ) raise ValueError(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): if not isinstance(wt[i] , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = ( """All weights must be integers but got weight of """ f"type {type(wt[i] )} at index {i}" ) raise TypeError(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Any = knapsack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : set = set() _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return optimal_val, example_optional_set def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: optimal_set.add(SCREAMING_SNAKE_CASE__ ) _construct_solution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i - 1 , j - wt[i - 1] , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Dict = [3, 2, 4, 4] lowercase : List[Any] = [4, 3, 2, 3] lowercase : Tuple = 4 lowercase : Tuple = 6 lowercase : Tuple = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowercase , lowercase : List[str] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowercase , lowercase : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
285
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
278
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = { '''nielsr/canine-s''': 2_048, } # Unicode defines 1,114,112 total “codepoints” _A = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _A = 0 _A = 0xe0_00 _A = 0xe0_01 _A = 0xe0_02 _A = 0xe0_03 _A = 0xe0_04 # Maps special codepoints to human-readable names. _A = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _A = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A ( __UpperCAmelCase ): __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=False, UpperCamelCase__=2048, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else bos_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else eos_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else sep_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else cls_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else mask_token super().__init__( bos_token=UpperCamelCase__, eos_token=UpperCamelCase__, sep_token=UpperCamelCase__, cls_token=UpperCamelCase__, pad_token=UpperCamelCase__, mask_token=UpperCamelCase__, add_prefix_space=UpperCamelCase__, model_max_length=UpperCamelCase__, **UpperCamelCase__, ) # Creates a mapping for looking up the IDs of special symbols. lowerCAmelCase_ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowerCAmelCase_ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowerCAmelCase_ = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowerCAmelCase_ = UNICODE_VOCAB_SIZE lowerCAmelCase_ = len(self._special_codepoints ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._unicode_vocab_size def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return list(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" try: return ord(UpperCamelCase__ ) except TypeError: raise ValueError(f"invalid token: '{token}'" ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCamelCase__ ) except TypeError: raise ValueError(f"invalid id: {index}" ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return "".join(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] lowerCAmelCase_ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__, token_ids_a=UpperCamelCase__, already_has_special_tokens=UpperCamelCase__ ) lowerCAmelCase_ = [1] + ([0] * len(UpperCamelCase__ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCamelCase__ )) + [1] return result def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] lowerCAmelCase_ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" return ()
278
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[Any] = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''xlm''' __SCREAMING_SNAKE_CASE = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self , lowercase=3_0_1_4_5 , lowercase=2_0_4_8 , lowercase=1_2 , lowercase=1_6 , lowercase=0.1 , lowercase=0.1 , lowercase=True , lowercase=False , lowercase=False , lowercase=False , lowercase=1 , lowercase=True , lowercase=5_1_2 , lowercase=2_0_4_8**-0.5 , lowercase=1E-12 , lowercase=0.02 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=3 , lowercase=5 , lowercase=True , lowercase="first" , lowercase=True , lowercase=None , lowercase=True , lowercase=0.1 , lowercase=5 , lowercase=5 , lowercase=0 , lowercase=0 , lowercase=2 , lowercase=0 , **lowercase , ) -> Tuple: __UpperCamelCase = vocab_size __UpperCamelCase = emb_dim __UpperCamelCase = n_layers __UpperCamelCase = n_heads __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = gelu_activation __UpperCamelCase = sinusoidal_embeddings __UpperCamelCase = causal __UpperCamelCase = asm __UpperCamelCase = n_langs __UpperCamelCase = use_lang_emb __UpperCamelCase = layer_norm_eps __UpperCamelCase = bos_index __UpperCamelCase = eos_index __UpperCamelCase = pad_index __UpperCamelCase = unk_index __UpperCamelCase = mask_index __UpperCamelCase = is_encoder __UpperCamelCase = max_position_embeddings __UpperCamelCase = embed_init_std __UpperCamelCase = init_std __UpperCamelCase = summary_type __UpperCamelCase = summary_use_proj __UpperCamelCase = summary_activation __UpperCamelCase = summary_proj_to_labels __UpperCamelCase = summary_first_dropout __UpperCamelCase = start_n_top __UpperCamelCase = end_n_top __UpperCamelCase = mask_token_id __UpperCamelCase = lang_id if "n_words" in kwargs: __UpperCamelCase = kwargs["""n_words"""] super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , **lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __UpperCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __UpperCamelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
370
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = DistilBertTokenizer __SCREAMING_SNAKE_CASE = DistilBertTokenizerFast __SCREAMING_SNAKE_CASE = True @slow def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) __UpperCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase ) __UpperCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowercase ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
243
0
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCAmelCase ( lowercase , lowercase , lowercase = 10**-10 ): """simple docstring""" __lowercase = a while True: __lowercase = Decimal(lowercase ) - ( Decimal(eval(lowercase ) ) / Decimal(eval(str(diff(lowercase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(lowercase ) ) < precision: # noqa: S307 return float(lowercase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
210
import warnings from functools import wraps from typing import Callable def UpperCAmelCase ( lowercase ): """simple docstring""" @wraps(lowercase ) def _inner_fn(*lowercase , **lowercase ): warnings.warn( (F"'{fn.__name__}' is experimental and might be subject to breaking changes in the future.") , lowercase , ) return fn(*lowercase , **lowercase ) return _inner_fn
210
1
'''simple docstring''' from collections import Counter from timeit import timeit def SCREAMING_SNAKE_CASE__ ( __A = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def SCREAMING_SNAKE_CASE__ ( __A = "" ) -> bool: if len(__A ) == 0: return True _snake_case = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _snake_case = {} for character in lower_case_input_str: _snake_case = character_freq_dict.get(__A , 0 ) + 1 _snake_case = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def SCREAMING_SNAKE_CASE__ ( __A = "" ) -> None: print('\nFor string = ' , __A , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(__A ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(__A ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": lowercase : List[str] = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) lowercase : Union[str, Any] = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
160
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" _snake_case = inspect.getfile(accelerate.test_utils ) _snake_case = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _snake_case = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _snake_case = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def lowerCamelCase ( self ): """simple docstring""" print(F'Found {torch.cuda.device_count()} devices.' ) _snake_case = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) @require_multi_gpu def lowerCamelCase ( self ): """simple docstring""" print(F'Found {torch.cuda.device_count()} devices.' ) _snake_case = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(F'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) @require_multi_gpu def lowerCamelCase ( self ): """simple docstring""" _snake_case = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) @require_multi_gpu def lowerCamelCase ( self ): """simple docstring""" print(F'Found {torch.cuda.device_count()} devices, using 2 devices only' ) _snake_case = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase : Tuple = Accelerator() lowercase : Optional[int] = (accelerator.state.process_index + 2, 10) lowercase : Any = torch.randint(0, 10, shape).to(accelerator.device) lowercase : Union[str, Any] = "" lowercase : Dict = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase : int = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase : Any = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
160
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __init__( self : Optional[Any] ) -> Optional[Any]: # test for the above condition self.test() def __magic_name__ ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ : Union[str, Any] =0 SCREAMING_SNAKE_CASE__ : Tuple =False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE__ : List[Any] =self.advance() if not self.does_advance(__lowercase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] =self.update(__lowercase ) counter += 1 if counter > 1_00_00: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def __magic_name__ ( self : str ) -> Union[str, Any]: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def __magic_name__ ( self : int , __lowercase : int ) -> Optional[int]: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def __magic_name__ ( self : Optional[int] , __lowercase : int ) -> Dict: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def __magic_name__ ( self : Union[str, Any] ) -> Tuple: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def __magic_name__ ( self : Any ) -> Optional[Any]: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def __magic_name__ ( self : Any , __lowercase : Optional[Any]=False ) -> List[str]: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __init__( self : Tuple , __lowercase : List[int] ) -> Optional[Any]: super(__lowercase , self ).__init__() if not isinstance(__lowercase , __lowercase ) or len(__lowercase ) == 0: raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(__lowercase , __lowercase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) SCREAMING_SNAKE_CASE__ : Dict =token_ids SCREAMING_SNAKE_CASE__ : Any =len(self.token_ids ) SCREAMING_SNAKE_CASE__ : int =-1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE__ : Optional[int] =False def __magic_name__ ( self : Dict ) -> Dict: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __magic_name__ ( self : Dict , __lowercase : int ) -> List[Any]: if not isinstance(__lowercase , __lowercase ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(__lowercase )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __magic_name__ ( self : Union[str, Any] , __lowercase : int ) -> int: if not isinstance(__lowercase , __lowercase ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(__lowercase )}" ) SCREAMING_SNAKE_CASE__ : Any =False SCREAMING_SNAKE_CASE__ : int =False SCREAMING_SNAKE_CASE__ : str =False if self.does_advance(__lowercase ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE__ : Tuple =True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE__ : List[str] =True SCREAMING_SNAKE_CASE__ : Dict =completed else: # failed to make progress. SCREAMING_SNAKE_CASE__ : List[str] =True self.reset() return stepped, completed, reset def __magic_name__ ( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] =False SCREAMING_SNAKE_CASE__ : Optional[Any] =0 def __magic_name__ ( self : int ) -> int: return self.seqlen - (self.fulfilled_idx + 1) def __magic_name__ ( self : Optional[Any] , __lowercase : List[str]=False ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE__ : Optional[Any] =self.seqlen SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.fulfilled_idx SCREAMING_SNAKE_CASE__ : List[str] =self.completed return new_constraint class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , __lowercase : List[List[int]] , __lowercase : Union[str, Any]=True ) -> int: SCREAMING_SNAKE_CASE__ : Dict =max([len(__lowercase ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE__ : int ={} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE__ : str =root for tidx, token_id in enumerate(__lowercase ): if token_id not in level: SCREAMING_SNAKE_CASE__ : Optional[Any] ={} SCREAMING_SNAKE_CASE__ : List[Any] =level[token_id] if no_subsets and self.has_subsets(__lowercase , __lowercase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F" {nested_token_ids}." ) SCREAMING_SNAKE_CASE__ : str =root def __magic_name__ ( self : int , __lowercase : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : int =self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE__ : List[Any] =start[current_token] SCREAMING_SNAKE_CASE__ : Tuple =list(start.keys() ) return next_tokens def __magic_name__ ( self : str , __lowercase : str ) -> Dict: SCREAMING_SNAKE_CASE__ : int =self.next_tokens(__lowercase ) return len(__lowercase ) == 0 def __magic_name__ ( self : str , __lowercase : List[str] ) -> Any: SCREAMING_SNAKE_CASE__ : Optional[int] =list(root.values() ) if len(__lowercase ) == 0: return 1 else: return sum([self.count_leaves(__lowercase ) for nn in next_nodes] ) def __magic_name__ ( self : Tuple , __lowercase : List[Any] , __lowercase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Dict =self.count_leaves(__lowercase ) return len(__lowercase ) != leaf_count class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __init__( self : Union[str, Any] , __lowercase : List[List[int]] ) -> Any: super(__lowercase , self ).__init__() if not isinstance(__lowercase , __lowercase ) or len(__lowercase ) == 0: raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(__lowercase , __lowercase ) for token_ids in nested_token_ids ): raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(__lowercase , __lowercase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =DisjunctiveTrie(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =nested_token_ids SCREAMING_SNAKE_CASE__ : Any =self.trie.max_height SCREAMING_SNAKE_CASE__ : str =[] SCREAMING_SNAKE_CASE__ : Dict =False def __magic_name__ ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : str =self.trie.next_tokens(self.current_seq ) if len(__lowercase ) == 0: return None else: return token_list def __magic_name__ ( self : Any , __lowercase : int ) -> List[str]: if not isinstance(__lowercase , __lowercase ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowercase )}" ) SCREAMING_SNAKE_CASE__ : str =self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __magic_name__ ( self : Tuple , __lowercase : int ) -> Optional[int]: if not isinstance(__lowercase , __lowercase ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowercase )}" ) SCREAMING_SNAKE_CASE__ : Optional[Any] =False SCREAMING_SNAKE_CASE__ : List[str] =False SCREAMING_SNAKE_CASE__ : Any =False if self.does_advance(__lowercase ): self.current_seq.append(__lowercase ) SCREAMING_SNAKE_CASE__ : int =True else: SCREAMING_SNAKE_CASE__ : Optional[Any] =True self.reset() SCREAMING_SNAKE_CASE__ : int =self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE__ : List[Any] =completed return stepped, completed, reset def __magic_name__ ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE__ : Dict =False SCREAMING_SNAKE_CASE__ : List[Any] =[] def __magic_name__ ( self : int ) -> Optional[int]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __magic_name__ ( self : Optional[int] , __lowercase : Optional[Any]=False ) -> Any: SCREAMING_SNAKE_CASE__ : List[Any] =DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE__ : List[str] =self.seqlen SCREAMING_SNAKE_CASE__ : Dict =self.current_seq SCREAMING_SNAKE_CASE__ : Any =self.completed return new_constraint class __SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : List[Constraint] ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict =constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE__ : Dict =max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE__ : Optional[Any] =len(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =False self.init_state() def __magic_name__ ( self : int ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Dict =[] SCREAMING_SNAKE_CASE__ : Dict =None SCREAMING_SNAKE_CASE__ : Any =[constraint.copy(stateful=__lowercase ) for constraint in self.constraints] def __magic_name__ ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ : List[str] =0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __magic_name__ ( self : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Any =[] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE__ : Tuple =constraint.advance() if isinstance(__lowercase , __lowercase ): token_list.append(__lowercase ) elif isinstance(__lowercase , __lowercase ): token_list.extend(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Any =self.inprogress_constraint.advance() if isinstance(__lowercase , __lowercase ): token_list.append(__lowercase ) elif isinstance(__lowercase , __lowercase ): token_list.extend(__lowercase ) if len(__lowercase ) == 0: return None else: return token_list def __magic_name__ ( self : Union[str, Any] , __lowercase : Optional[List[int]] ) -> Any: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =self.add(__lowercase ) # the entire list of constraints are fulfilled if self.completed: break def __magic_name__ ( self : Dict , __lowercase : int ) -> Dict: if not isinstance(__lowercase , __lowercase ): raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] =False, False if self.completed: SCREAMING_SNAKE_CASE__ : Union[str, Any] =True SCREAMING_SNAKE_CASE__ : int =False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str =self.inprogress_constraint.update(__lowercase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__lowercase ) ) SCREAMING_SNAKE_CASE__ : Any =None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE__ : Dict =None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE__ : Optional[int] =True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__lowercase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] =pending_constraint.update(__lowercase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =None if not complete and stepped: SCREAMING_SNAKE_CASE__ : Optional[int] =pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE__ : int =( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE__ : List[str] =True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __magic_name__ ( self : str , __lowercase : List[str]=True ) -> List[str]: SCREAMING_SNAKE_CASE__ : Dict =ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE__ : Any =[ constraint.copy(stateful=__lowercase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE__ : Tuple =self.inprogress_constraint.copy(stateful=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =[constraint.copy() for constraint in self.pending_constraints] return new_state
152
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def _a( UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' f"{test_file} instead." ) SCREAMING_SNAKE_CASE__ : str =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(f"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( f"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) SCREAMING_SNAKE_CASE__ : Any =components[:-1] + [test_fn.replace('''.py''', '''''' )] SCREAMING_SNAKE_CASE__ : List[str] ='''.'''.join(UpperCamelCase__ ) return test_module_path def _a( UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =get_module_path(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =importlib.import_module(UpperCamelCase__ ) return test_module def _a( UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =[] SCREAMING_SNAKE_CASE__ : List[Any] =get_test_module(UpperCamelCase__ ) for attr in dir(UpperCamelCase__ ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(UpperCamelCase__, UpperCamelCase__ ) ) # sort with class names return sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x.__name__ ) def _a( UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =[] SCREAMING_SNAKE_CASE__ : Any =get_test_module(UpperCamelCase__ ) for attr in dir(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] =getattr(UpperCamelCase__, UpperCamelCase__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). SCREAMING_SNAKE_CASE__ : Any =getattr(UpperCamelCase__, '''all_model_classes''', [] ) if len(UpperCamelCase__ ) > 0: test_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x.__name__ ) def _a( UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =get_test_classes(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x.__name__ ) def _a( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =test_class() if hasattr(UpperCamelCase__, '''setUp''' ): test.setUp() SCREAMING_SNAKE_CASE__ : List[Any] =None if hasattr(UpperCamelCase__, '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] =test.model_tester.__class__ return model_tester def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =get_test_classes(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x.__name__ ) def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =get_test_classes_for_model(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any =[] for test_class in test_classes: SCREAMING_SNAKE_CASE__ : List[str] =get_model_tester_from_test_class(UpperCamelCase__ ) if tester_class is not None: tester_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x.__name__ ) def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =get_test_classes(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] ={test_class: get_model_tester_from_test_class(UpperCamelCase__ ) for test_class in test_classes} return test_tester_mapping def _a( UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =get_model_classes(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int ={ model_class: get_test_classes_for_model(UpperCamelCase__, UpperCamelCase__ ) for model_class in model_classes } return model_test_mapping def _a( UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =get_model_classes(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any ={ model_class: get_tester_classes_for_model(UpperCamelCase__, UpperCamelCase__ ) for model_class in model_classes } return model_to_tester_mapping def _a( UpperCamelCase__ : int ): '''simple docstring''' if isinstance(UpperCamelCase__, UpperCamelCase__ ): return o elif isinstance(UpperCamelCase__, UpperCamelCase__ ): return o.__name__ elif isinstance(UpperCamelCase__, (list, tuple) ): return [to_json(UpperCamelCase__ ) for x in o] elif isinstance(UpperCamelCase__, UpperCamelCase__ ): return {to_json(UpperCamelCase__ ): to_json(UpperCamelCase__ ) for k, v in o.items()} else: return o
152
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> str: """simple docstring""" return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
364
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
0
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = ['vqvae'] def __init__( self , lowercase , lowercase , lowercase , lowercase , ) -> Dict: super().__init__() self.register_modules(unet=lowercase , scheduler=lowercase , mel=lowercase , vqvae=lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> int: return 50 if isinstance(self.scheduler , lowercase ) else 1000 @torch.no_grad() def __call__( self , lowercase = 1 , lowercase = None , lowercase = None , lowercase = 0 , lowercase = 0 , lowercase = None , lowercase = None , lowercase = 0 , lowercase = 0 , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: lowerCamelCase_ = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase ) lowerCamelCase_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCamelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCamelCase_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase , device=self.device , ) lowerCamelCase_ = noise lowerCamelCase_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase , lowercase ) lowerCamelCase_ = self.mel.audio_slice_to_image(lowercase ) lowerCamelCase_ = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) lowerCamelCase_ = (input_image / 255) * 2 - 1 lowerCamelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCamelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase , 0 ) ).latent_dist.sample( generator=lowercase )[0] lowerCamelCase_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCamelCase_ = self.scheduler.add_noise(lowercase , lowercase , self.scheduler.timesteps[start_step - 1] ) lowerCamelCase_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCamelCase_ = int(mask_start_secs * pixels_per_second ) lowerCamelCase_ = int(mask_end_secs * pixels_per_second ) lowerCamelCase_ = self.scheduler.add_noise(lowercase , lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase ): lowerCamelCase_ = self.unet(lowercase , lowercase , lowercase )["sample"] else: lowerCamelCase_ = self.unet(lowercase , lowercase )["sample"] if isinstance(self.scheduler , lowercase ): lowerCamelCase_ = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , eta=lowercase , generator=lowercase , )["prev_sample"] else: lowerCamelCase_ = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , generator=lowercase , )["prev_sample"] if mask is not None: if mask_start > 0: lowerCamelCase_ = mask[:, step, :, :mask_start] if mask_end > 0: lowerCamelCase_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCamelCase_ = 1 / self.vqvae.config.scaling_factor * images lowerCamelCase_ = self.vqvae.decode(lowercase )["sample"] lowerCamelCase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowerCamelCase_ = (images * 255).round().astype("uint8" ) lowerCamelCase_ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase , mode="RGB" ).convert("L" ) for _ in images) ) lowerCamelCase_ = [self.mel.image_to_audio(lowercase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase ) ) @torch.no_grad() def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = 50 ) -> np.ndarray: assert isinstance(self.scheduler , lowercase ) self.scheduler.set_timesteps(lowercase ) lowerCamelCase_ = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) lowerCamelCase_ = (sample / 255) * 2 - 1 lowerCamelCase_ = torch.Tensor(lowercase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowerCamelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCamelCase_ = self.scheduler.alphas_cumprod[t] lowerCamelCase_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCamelCase_ = 1 - alpha_prod_t lowerCamelCase_ = self.unet(lowercase , lowercase )["sample"] lowerCamelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCamelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCamelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def SCREAMING_SNAKE_CASE_( lowercase , lowercase , lowercase ) -> torch.Tensor: lowerCamelCase_ = acos(torch.dot(torch.flatten(lowercase ) , torch.flatten(lowercase ) ) / torch.norm(lowercase ) / torch.norm(lowercase ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase ) + sin(alpha * theta ) * xa / sin(lowercase )
19
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 ): lowerCamelCase_ = end or len(lowerCamelCase__ ) for i in range(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = i lowerCamelCase_ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCamelCase_ = array[temp_index - 1] temp_index -= 1 lowerCamelCase_ = temp_index_value return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # Max Heap lowerCamelCase_ = index lowerCamelCase_ = 2 * index + 1 # Left Node lowerCamelCase_ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCamelCase_ = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCamelCase_ = right_index if largest != index: lowerCamelCase_ , lowerCamelCase_ = array[largest], array[index] heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) for i in range(n // 2 , -1 , -1 ): heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i in range(n - 1 , 0 , -1 ): lowerCamelCase_ , lowerCamelCase_ = array[0], array[i] heapify(lowerCamelCase__ , 0 , lowerCamelCase__ ) return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = low lowerCamelCase_ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCamelCase_ , lowerCamelCase_ = array[j], array[i] i += 1 def lowerCamelCase_ ( lowerCamelCase__ ): if len(lowerCamelCase__ ) == 0: return array lowerCamelCase_ = 2 * math.ceil(math.loga(len(lowerCamelCase__ ) ) ) lowerCamelCase_ = 1_6 return intro_sort(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): while end - start > size_threshold: if max_depth == 0: return heap_sort(lowerCamelCase__ ) max_depth -= 1 lowerCamelCase_ = median_of_a(lowerCamelCase__ , lowerCamelCase__ , start + ((end - start) // 2) + 1 , end - 1 ) lowerCamelCase_ = partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) intro_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = p return insertion_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() __A =input('''Enter numbers separated by a comma : ''').strip() __A =[float(item) for item in user_input.split(''',''')] print(sort(unsorted))
19
1
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger a : Any = get_logger(__name__) a : Any = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class __UpperCAmelCase: """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __UpperCAmelCase: """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' for processor in self: lowercase__ : Optional[Any]= inspect.signature(processor.__call__ ).parameters if len(snake_case__ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) lowercase__ : Union[str, Any]= processor(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ) else: lowercase__ : Dict= processor(snake_case__ , snake_case__ , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) lowercase__ : Any= temperature def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : int= scores / self.temperature return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = -float("Inf" ) , snake_case__ = 1 ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(snake_case__ , snake_case__ ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) lowercase__ : int= top_p lowercase__ : Optional[int]= filter_value lowercase__ : Tuple= min_tokens_to_keep def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__, lowercase__ : Dict= lax.top_k(snake_case__ , scores.shape[-1] ) lowercase__ : Optional[int]= jnp.full_like(snake_case__ , self.filter_value ) lowercase__ : Union[str, Any]= jax.nn.softmax(snake_case__ , axis=-1 ).cumsum(axis=-1 ) lowercase__ : str= cumulative_probs < self.top_p # include the token that is higher than top_p as well lowercase__ : str= jnp.roll(snake_case__ , 1 ) score_mask |= score_mask.at[:, 0].set(snake_case__ ) # min tokens to keep lowercase__ : Optional[int]= score_mask.at[:, : self.min_tokens_to_keep].set(snake_case__ ) lowercase__ : str= jnp.where(snake_case__ , snake_case__ , snake_case__ ) lowercase__ : str= jax.lax.sort_key_val(snake_case__ , snake_case__ )[-1] return next_scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = -float("Inf" ) , snake_case__ = 1 ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) lowercase__ : List[Any]= max(snake_case__ , snake_case__ ) lowercase__ : Dict= filter_value def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__, lowercase__ : Optional[Any]= scores.shape lowercase__ : int= jnp.full(batch_size * vocab_size , self.filter_value ) lowercase__ : Dict= min(self.top_k , scores.shape[-1] ) # Safety check lowercase__, lowercase__ : List[Any]= lax.top_k(snake_case__ , snake_case__ ) lowercase__ : Optional[int]= jnp.broadcast_to((jnp.arange(snake_case__ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() lowercase__ : str= topk_scores.flatten() lowercase__ : Any= topk_indices.flatten() + shift lowercase__ : Optional[Any]= next_scores_flat.at[topk_indices_flat].set(snake_case__ ) lowercase__ : str= next_scores_flat.reshape(snake_case__ , snake_case__ ) return next_scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : Any= bos_token_id def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Any= jnp.full(scores.shape , -float("inf" ) ) lowercase__ : int= 1 - jnp.bool_(cur_len - 1 ) lowercase__ : int= jnp.where(snake_case__ , new_scores.at[:, self.bos_token_id].set(0 ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Tuple= max_length lowercase__ : str= eos_token_id def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : List[Any]= jnp.full(scores.shape , -float("inf" ) ) lowercase__ : Any= 1 - jnp.bool_(cur_len - self.max_length + 1 ) lowercase__ : Optional[int]= jnp.where(snake_case__ , new_scores.at[:, self.eos_token_id].set(0 ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(snake_case__ , snake_case__ ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) lowercase__ : List[str]= min_length lowercase__ : Dict= eos_token_id def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' # create boolean flag to decide if min length penalty should be applied lowercase__ : Tuple= 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) lowercase__ : Dict= jnp.where(snake_case__ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Optional[Any]= list(snake_case__ ) lowercase__ : List[Any]= begin_index def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : str= 1 - jnp.bool_(cur_len - self.begin_index ) lowercase__ : str= jnp.where(snake_case__ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : List[Any]= list(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Any= scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : int= dict(snake_case__ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. lowercase__ : List[Any]= jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: lowercase__ : List[Any]= force_token_array.at[index].set(snake_case__ ) lowercase__ : int= jnp.intaa(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' def _force_token(snake_case__ ): lowercase__ : Dict= scores.shape[0] lowercase__ : Any= self.force_token_array[generation_idx] lowercase__ : List[Any]= jnp.ones_like(snake_case__ , dtype=scores.dtype ) * -float("inf" ) lowercase__ : List[Any]= jnp.zeros((batch_size, 1) , dtype=scores.dtype ) lowercase__ : List[str]= lax.dynamic_update_slice(snake_case__ , snake_case__ , (0, current_token) ) return new_scores lowercase__ : Dict= lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(snake_case__ ) , lambda: scores , ) , ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : str= generate_config.eos_token_id lowercase__ : Optional[int]= generate_config.no_timestamps_token_id lowercase__ : Dict= generate_config.no_timestamps_token_id + 1 lowercase__ : List[Any]= decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(snake_case__ , "max_initial_timestamp_index" ): lowercase__ : int= generate_config.max_initial_timestamp_index else: lowercase__ : Dict= model_config.vocab_size if self.max_initial_timestamp_index is None: lowercase__ : str= model_config.vocab_size def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' # suppress <|notimestamps|> which is handled by without_timestamps lowercase__ : int= scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(snake_case__ , snake_case__ ): lowercase__ : Union[str, Any]= jnp.where((cur_len - self.begin_index) >= 1 , snake_case__ , snake_case__ ) lowercase__ : Tuple= jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , snake_case__ , ) lowercase__ : int= jnp.where((cur_len - self.begin_index) < 2 , snake_case__ , snake_case__ ) lowercase__ : Optional[int]= jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , snake_case__ , snake_case__ , ) return jnp.where( snake_case__ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , snake_case__ , ) lowercase__ : List[str]= jax.vmap(snake_case__ )(snake_case__ , snake_case__ ) lowercase__ : str= jnp.where(cur_len == self.begin_index , snake_case__ , snake_case__ ) lowercase__ : List[Any]= jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , snake_case__ , ) lowercase__ : Any= self.timestamp_begin + self.max_initial_timestamp_index lowercase__ : str= jnp.where( snake_case__ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , snake_case__ , ) # if sum of probability over timestamps is above any other token, sample timestamp lowercase__ : str= jax.nn.log_softmax(snake_case__ , axis=-1 ) def handle_cumulative_probs(snake_case__ , snake_case__ ): lowercase__ : Dict= jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) lowercase__ : Union[str, Any]= jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , snake_case__ , ) lowercase__ : Optional[int]= jax.vmap(snake_case__ )(snake_case__ , snake_case__ ) return scores
150
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 a : List[str] = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase_ ( cls ): '''simple docstring''' lowercase__ : Union[str, Any]= TOKEN HfFolder.save_token(snake_case__ ) @classmethod def UpperCAmelCase_ ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) lowercase__ : List[Any]= BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) lowercase__ : int= BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[int]= BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) lowercase__ : Optional[Any]= BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) lowercase__ : Any= BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def UpperCAmelCase_ ( self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowercase__ : Union[str, Any]= CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) lowercase__ : List[str]= AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Dict= GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase__ : str= c.n_embd + 1 # int lowercase__ : Tuple= c.resid_pdrop + 1.0 # float lowercase__ : Union[str, Any]= not c.scale_attn_weights # bool lowercase__ : Optional[Any]= c.summary_type + "foo" # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= PretrainedConfig() lowercase__ : List[str]= [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) lowercase__ : Tuple= [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F''' {', '.join(snake_case__ )}.''' ) def UpperCAmelCase_ ( self ): '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__ : Optional[int]= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) lowercase__ : Optional[Any]= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' # A mock response for an HTTP head request to emulate server down lowercase__ : str= mock.Mock() lowercase__ : Optional[Any]= 500 lowercase__ : Any= {} lowercase__ : Tuple= HTTPError lowercase__ : List[Any]= {} # Download this model to make sure it's in the cache. lowercase__ : Any= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: lowercase__ : Any= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase_ ( self ): '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 lowercase__ : Optional[Any]= BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : int= AutoConfig.from_pretrained("bert-base-cased" ) lowercase__ : Optional[int]= ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) lowercase__ : List[Any]= 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase__ : int= AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase__ : Optional[int]= ["config.42.0.0.json"] lowercase__ : int= 768 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) lowercase__ : Optional[Any]= AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCAmelCase_ ( self ): '''simple docstring''' # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowercase__ : Optional[Any]= "hf-internal-testing/test-two-configs" import transformers as new_transformers lowercase__ : Optional[Any]= "v4.0.0" lowercase__, lowercase__ : str= new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase__ : Dict= "v3.0.0" lowercase__ : Tuple= old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 768 )
150
1
from __future__ import annotations def A (__A : int ) -> bool: """simple docstring""" UpperCAmelCase_ = str(__A ) return len(__A ) == 9 and set(__A ) == set('''123456789''' ) def A () -> int | None: """simple docstring""" for base_num in range(9999 , 4999 , -1 ): UpperCAmelCase_ = 100002 * base_num if is_9_pandigital(__A ): return candidate for base_num in range(333 , 99 , -1 ): UpperCAmelCase_ = 1002003 * base_num if is_9_pandigital(__A ): return candidate return None if __name__ == "__main__": print(f"{solution() = }")
51
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : str = {} class __snake_case ( a ): UpperCAmelCase__ : str = '''llama''' UpperCAmelCase__ : Dict = ['''past_key_values'''] def __init__( self : str , _snake_case : List[str]=32000 , _snake_case : int=4096 , _snake_case : List[str]=11008 , _snake_case : Optional[int]=32 , _snake_case : List[Any]=32 , _snake_case : Tuple=None , _snake_case : int="silu" , _snake_case : List[Any]=2048 , _snake_case : List[str]=0.0_2 , _snake_case : Any=1e-6 , _snake_case : List[str]=True , _snake_case : Optional[Any]=0 , _snake_case : Dict=1 , _snake_case : List[Any]=2 , _snake_case : str=1 , _snake_case : Union[str, Any]=False , _snake_case : str=None , **_snake_case : List[Any] , ): """simple docstring""" UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_key_value_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = pretraining_tp UpperCAmelCase_ = use_cache UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , tie_word_embeddings=_snake_case , **_snake_case , ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _snake_case) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _snake_case) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _snake_case) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""") if rope_scaling_factor is None or not isinstance(_snake_case , _snake_case) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""")
51
1
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): A = True from torch.cuda.amp import autocast A = logging.getLogger(__name__) @dataclass class __lowercase : __lowerCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) __lowerCAmelCase = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) __lowerCAmelCase = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) __lowerCAmelCase = field( default=0.99_9995 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def __A ( a_ :Any , a_ :Any) -> Union[str, Any]: logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout)] , ) __a : Any = logging.WARNING if model_args.verbose_logging: __a : Optional[Any] = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank): __a : List[Any] = logging.INFO logger.setLevel(a__) @dataclass class __lowercase : __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __lowerCAmelCase = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __lowerCAmelCase = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __lowerCAmelCase = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) __lowerCAmelCase = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) __lowerCAmelCase = field( default=20.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class __lowercase : __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = '''longest''' __lowerCAmelCase = None __lowerCAmelCase = None def __call__( self , _UpperCAmelCase ): __a : List[Any] = self.feature_extractor.pad( _snake_case , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) __a : List[Any] = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) __a : Dict = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __a : int = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) __a : Dict = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __a : Dict = 1 __a : List[str] = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __a : List[str] = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_snake_case , min_masks=2 , ) return batch class __lowercase ( _UpperCamelCase ): def __init__( self , *_UpperCAmelCase , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , **_UpperCAmelCase ): super().__init__(*_snake_case , **_snake_case ) __a : Union[str, Any] = 0 __a : int = max_gumbel_temp __a : Optional[Any] = min_gumbel_temp __a : Tuple = gumbel_temp_decay def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): model.train() __a : int = self._prepare_inputs(_snake_case ) if self.use_amp: with autocast(): __a : Dict = self.compute_loss(_snake_case , _snake_case ) else: __a : Any = self.compute_loss(_snake_case , _snake_case ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __a : Tuple = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __a : Dict = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __a : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_snake_case ).backward() elif self.use_apex: with amp.scale_loss(_snake_case , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_snake_case ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __A ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) __a , __a , __a : List[Any] = parser.parse_args_into_dataclasses() configure_logger(a__ , a__) # Downloading and loading a dataset from the hub. __a : List[str] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __a : Tuple = DatasetDict() __a : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) __a : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __a : Optional[int] = DatasetDict() __a : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) __a : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __a : Dict = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=a__) def prepare_dataset(a_ :Tuple): # check that all files have the correct sampling rate __a , __a : List[str] = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate) return batch # load audio files into numpy arrays __a : List[Any] = datasets.map( a__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names) # filter audio files that are too long __a : Optional[int] = vectorized_datasets.filter( lambda a_: len(data['''speech''']) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)) def normalize(a_ :List[Any]): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate) # normalize and transform to `BatchFeatures` __a : Tuple = vectorized_datasets.map( a__ , batched=a__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __a : int = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''') __a : Any = WavaVecaForPreTraining(a__) __a : Dict = DataCollatorForWavaVecaPretraining(model=a__ , feature_extractor=a__) __a : Optional[int] = WavaVecaPreTrainer( model=a__ , data_collator=a__ , args=a__ , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=a__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
361
"""simple docstring""" def __A ( a_ :float) -> float: if edge <= 0 or not isinstance(a_ , a_): raise ValueError('''Length must be a positive.''') return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __A ( a_ :float) -> float: if edge <= 0 or not isinstance(a_ , a_): raise ValueError('''Length must be a positive.''') return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
188
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowercase__ :Optional[int] = pytest.mark.integration @require_faiss class lowercase ( SCREAMING_SNAKE_CASE__ ): def A__ ( self): lowercase = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(A__) for x in np.arange(3_0).tolist()]}) return dset def A__ ( self): import faiss lowercase = self._create_dummy_dataset() lowercase = dset.map( lambda A__ ,A__: {"vecs": i * np.ones(5 ,dtype=np.floataa)} ,with_indices=A__ ,keep_in_memory=A__) lowercase = dset.add_faiss_index('''vecs''' ,batch_size=1_0_0 ,metric_type=faiss.METRIC_INNER_PRODUCT) lowercase , lowercase = dset.get_nearest_examples('''vecs''' ,np.ones(5 ,dtype=np.floataa)) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') dset.drop_index('''vecs''') def A__ ( self): import faiss lowercase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 ,1) ,index_name='''vecs''' ,batch_size=1_0_0 ,metric_type=faiss.METRIC_INNER_PRODUCT ,) lowercase , lowercase = dset.get_nearest_examples('''vecs''' ,np.ones(5 ,dtype=np.floataa)) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') def A__ ( self): import faiss lowercase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 ,1) ,index_name='''vecs''' ,metric_type=faiss.METRIC_INNER_PRODUCT ,) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A__) as tmp_file: dset.save_faiss_index('''vecs''' ,tmp_file.name) dset.load_faiss_index('''vecs2''' ,tmp_file.name) os.unlink(tmp_file.name) lowercase , lowercase = dset.get_nearest_examples('''vecs2''' ,np.ones(5 ,dtype=np.floataa)) self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') def A__ ( self): lowercase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 ,1) ,index_name='''vecs''') dset.drop_index('''vecs''') self.assertRaises(A__ ,partial(dset.get_nearest_examples ,'''vecs2''' ,np.ones(5 ,dtype=np.floataa))) def A__ ( self): from elasticsearch import Elasticsearch lowercase = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''') as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''') as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''') as mocked_bulk: lowercase = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 3_0) lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 2_9}]}} lowercase = Elasticsearch() dset.add_elasticsearch_index('''filename''' ,es_client=A__) lowercase , lowercase = dset.get_nearest_examples('''filename''' ,'''my_name-train_29''') self.assertEqual(examples['''filename'''][0] ,'''my_name-train_29''') @require_faiss class lowercase ( SCREAMING_SNAKE_CASE__ ): def A__ ( self): import faiss lowercase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal ,5) index.add_vectors(np.zeros((5, 5) ,dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal ,1_0) # single query lowercase = np.zeros(5 ,dtype=np.floataa) lowercase = 1 lowercase , lowercase = index.search(A__) self.assertRaises(A__ ,index.search ,query.reshape(-1 ,1)) self.assertGreater(scores[0] ,0) self.assertEqual(indices[0] ,1) # batched queries lowercase = np.eye(5 ,dtype=np.floataa)[::-1] lowercase , lowercase = index.search_batch(A__) self.assertRaises(A__ ,index.search_batch ,queries[0]) lowercase = [scores[0] for scores in total_scores] lowercase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__) ,0) self.assertListEqual([4, 3, 2, 1, 0] ,A__) def A__ ( self): import faiss lowercase = FaissIndex(string_factory='''Flat''') index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat) lowercase = FaissIndex(string_factory='''LSH''') index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsInstance(index.faiss_index ,faiss.IndexLSH) with self.assertRaises(A__): lowercase = FaissIndex(string_factory='''Flat''' ,custom_index=faiss.IndexFlat(5)) def A__ ( self): import faiss lowercase = faiss.IndexFlat(5) lowercase = FaissIndex(custom_index=A__) index.add_vectors(np.eye(5 ,dtype=np.floataa)) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat) def A__ ( self): import faiss lowercase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 ,dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A__) as tmp_file: index.save(tmp_file.name) lowercase = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) lowercase = np.zeros(5 ,dtype=np.floataa) lowercase = 1 lowercase , lowercase = index.search(A__) self.assertGreater(scores[0] ,0) self.assertEqual(indices[0] ,1) @require_faiss def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' import faiss lowercase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowercase = '''index.faiss''' lowercase = f'mock://{index_name}' index.save(lowerCAmelCase__ , storage_options=mockfs.storage_options ) lowercase = FaissIndex.load(lowerCAmelCase__ , storage_options=mockfs.storage_options ) lowercase = np.zeros(5 , dtype=np.floataa ) lowercase = 1 lowercase , lowercase = index.search(lowerCAmelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowercase ( SCREAMING_SNAKE_CASE__ ): def A__ ( self): from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''') as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''') as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''') as mocked_bulk: lowercase = Elasticsearch() lowercase = {'''acknowledged''': True} lowercase = ElasticSearchIndex(es_client=A__) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['''foo''', '''bar''', '''foobar''']) # single query lowercase = '''foo''' lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowercase , lowercase = index.search(A__) self.assertEqual(scores[0] ,1) self.assertEqual(indices[0] ,0) # single query with timeout lowercase = '''foo''' lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowercase , lowercase = index.search(A__ ,request_timeout=3_0) self.assertEqual(scores[0] ,1) self.assertEqual(indices[0] ,0) # batched queries lowercase = ['''foo''', '''bar''', '''foobar'''] lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowercase , lowercase = index.search_batch(A__) lowercase = [scores[0] for scores in total_scores] lowercase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__) ,0) self.assertListEqual([1, 1, 1] ,A__) # batched queries with timeout lowercase = ['''foo''', '''bar''', '''foobar'''] lowercase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowercase , lowercase = index.search_batch(A__ ,request_timeout=3_0) lowercase = [scores[0] for scores in total_scores] lowercase = [indices[0] for indices in total_indices] self.assertGreater(np.min(A__) ,0) self.assertListEqual([1, 1, 1] ,A__)
101
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Optional[Any] =IFPipeline lowercase_ : List[str] =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} lowercase_ : List[str] =TEXT_TO_IMAGE_BATCH_PARAMS lowercase_ : int =PipelineTesterMixin.required_optional_params - {'''latents'''} def A__ ( self): return self._get_dummy_components() def A__ ( self ,A__ ,A__=0): if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def A__ ( self): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''') def A__ ( self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1) def A__ ( self): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def A__ ( self): self._test_save_load_local() def A__ ( self): self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def A__ ( self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): # if lowercase = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' ,variant='''fp16''' ,torch_dtype=torch.floataa) lowercase = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' ,variant='''fp16''' ,torch_dtype=torch.floataa ,text_encoder=A__ ,tokenizer=A__) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''') lowercase , lowercase = pipe_a.encode_prompt('''anime turtle''' ,device='''cuda''') del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowercase = None lowercase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(A__ ,A__ ,A__ ,A__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowercase = IFImgaImgPipeline(**pipe_a.components) lowercase = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(A__ ,A__ ,A__ ,A__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowercase = IFInpaintingPipeline(**pipe_a.components) lowercase = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(A__ ,A__ ,A__ ,A__) def A__ ( self ,A__ ,A__ ,A__ ,A__): # pipeline 1 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,num_inference_steps=2 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''') assert_mean_pixel_difference(A__ ,A__) # pipeline 2 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''') assert_mean_pixel_difference(A__ ,A__) def A__ ( self ,A__ ,A__ ,A__ ,A__): # pipeline 1 _start_torch_memory_measurement() lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,num_inference_steps=2 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''') assert_mean_pixel_difference(A__ ,A__) # pipeline 2 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,original_image=A__ ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''') assert_mean_pixel_difference(A__ ,A__) def A__ ( self ,A__ ,A__ ,A__ ,A__): # pipeline 1 _start_torch_memory_measurement() lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(1)).to(A__) lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,mask_image=A__ ,num_inference_steps=2 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''') assert_mean_pixel_difference(A__ ,A__) # pipeline 2 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) ,rng=random.Random(1)).to(A__) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,mask_image=A__ ,original_image=A__ ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''') assert_mean_pixel_difference(A__ ,A__) def UpperCamelCase ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
101
1
import sys import turtle def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(lowerCamelCase__ , get_mid(lowerCamelCase__ , lowerCamelCase__ ) , get_mid(lowerCamelCase__ , lowerCamelCase__ ) , depth - 1 ) triangle(lowerCamelCase__ , get_mid(lowerCamelCase__ , lowerCamelCase__ ) , get_mid(lowerCamelCase__ , lowerCamelCase__ ) , depth - 1 ) triangle(lowerCamelCase__ , get_mid(lowerCamelCase__ , lowerCamelCase__ ) , get_mid(lowerCamelCase__ , lowerCamelCase__ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) __A =turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') __A =[(-1_7_5, -1_2_5), (0, 1_7_5), (1_7_5, -1_2_5)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
356
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A =get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): lowerCAmelCase__ = AlbertTokenizer lowerCAmelCase__ = AlbertTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = AlbertTokenizer(lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Any: lowerCamelCase_ = "this is a test" lowerCamelCase_ = "this is a test" return input_text, output_text def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = "<pad>" lowerCamelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(lowercase ) , 30000 ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: if not self.test_rust_tokenizer: return lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = "I was born in 92000, and this is falsé." lowerCamelCase_ = tokenizer.tokenize(lowercase ) lowerCamelCase_ = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) lowerCamelCase_ = tokenizer.encode(lowercase , add_special_tokens=lowercase ) lowerCamelCase_ = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(lowercase ) lowerCamelCase_ = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = AlbertTokenizer(lowercase , keep_accents=lowercase ) lowerCamelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [48, 25, 21, 1289] ) lowerCamelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual(lowercase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = AlbertTokenizer(lowercase ) lowerCamelCase_ = tokenizer.encode("sequence builders" ) lowerCamelCase_ = tokenizer.encode("multi-sequence build" ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(lowercase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: # fmt: off lowerCamelCase_ = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
47
0
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy __A : Dict = logging.getLogger(__name__) __A : List[str] = "pytorch_model.bin" @dataclasses.dataclass class _a : """simple docstring""" UpperCamelCase__ = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""}) UpperCamelCase__ = dataclasses.field( default=lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} , ) @dataclasses.dataclass class _a : """simple docstring""" UpperCamelCase__ = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""}) UpperCamelCase__ = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""}) UpperCamelCase__ = dataclasses.field( default=lowerCAmelCase , metadata={"""help""": """A csv or a json file containing the validation data."""}) UpperCamelCase__ = dataclasses.field( default=lowerCAmelCase , metadata={"""help""": """The name of the task to train on."""} , ) UpperCamelCase__ = dataclasses.field( default=lowerCAmelCase , metadata={"""help""": """The list of labels for the task."""}) @dataclasses.dataclass class _a : """simple docstring""" UpperCamelCase__ = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""}) UpperCamelCase__ = dataclasses.field( default="""accuracy""" , metadata={"""help""": """The evaluation metric used for the task."""}) UpperCamelCase__ = dataclasses.field( default="""no""" , metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" } , ) UpperCamelCase__ = dataclasses.field( default=10 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) UpperCamelCase__ = dataclasses.field( default=0.0 , metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" } , ) UpperCamelCase__ = dataclasses.field( default=lowerCAmelCase , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} , ) UpperCamelCase__ = dataclasses.field( default=lowerCAmelCase , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} , ) UpperCamelCase__ = dataclasses.field( default=lowerCAmelCase , metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} , ) UpperCamelCase__ = dataclasses.field( default=0.0 , metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} , ) UpperCamelCase__ = dataclasses.field( default=100 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) UpperCamelCase__ = dataclasses.field( default=lowerCAmelCase , metadata={"""help""": """Random seed for initialization."""} , ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _UpperCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _UpperCAmelCase = int(eval_result * len(_SCREAMING_SNAKE_CASE ) ) print(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = dataset.sort('''probability''' , reverse=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = dataset.select(range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = dataset.remove_columns(['''label''', '''probability'''] ) _UpperCAmelCase = dataset.rename_column('''prediction''' , '''label''' ) _UpperCAmelCase = dataset.map(lambda _SCREAMING_SNAKE_CASE : {"label": idalabel[example["label"]]} ) _UpperCAmelCase = dataset.shuffle(seed=args.seed ) _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , f'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) else: dataset.to_json(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , **_SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = STModelArguments(model_name_or_path=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = STDataArguments(train_file=_SCREAMING_SNAKE_CASE , infer_file=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = STTrainingArguments(output_dir=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_SCREAMING_SNAKE_CASE ).items(): setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for key, value in kwargs.items(): if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Sanity checks _UpperCAmelCase = {} _UpperCAmelCase = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _UpperCAmelCase = args.train_file _UpperCAmelCase = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _UpperCAmelCase = args.eval_file for key in data_files: _UpperCAmelCase = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], f'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: _UpperCAmelCase = extension else: assert extension == args.data_file_extension, f'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), f'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) _UpperCAmelCase = f'{args.output_dir}/self-train_iter-{{}}'.format _UpperCAmelCase = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_SCREAMING_SNAKE_CASE ) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = 0 _UpperCAmelCase = False # Show the progress bar _UpperCAmelCase = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _UpperCAmelCase = data_dir_format(_SCREAMING_SNAKE_CASE ) assert os.path.exists(_SCREAMING_SNAKE_CASE ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''stage-1''' ) _UpperCAmelCase = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): arguments_dict.update({key: value} ) _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''best-checkpoint''' , _SCREAMING_SNAKE_CASE ) if os.path.exists(_SCREAMING_SNAKE_CASE ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , _SCREAMING_SNAKE_CASE ) finetune(**_SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() assert os.path.exists(_SCREAMING_SNAKE_CASE ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , _SCREAMING_SNAKE_CASE ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''best-checkpoint''' ) _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''stage-2''' ) # Update arguments_dict _UpperCAmelCase = model_path _UpperCAmelCase = data_files['''train'''] _UpperCAmelCase = current_output_dir _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''best-checkpoint''' , _SCREAMING_SNAKE_CASE ) if os.path.exists(_SCREAMING_SNAKE_CASE ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , _SCREAMING_SNAKE_CASE ) finetune(**_SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() assert os.path.exists(_SCREAMING_SNAKE_CASE ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = iteration _UpperCAmelCase = data_dir_format(iteration + 1 ) _UpperCAmelCase = AutoConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , '''best-checkpoint''' ) ) _UpperCAmelCase = config.idalabel _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''eval_results_best-checkpoint.json''' ) _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''test_results_best-checkpoint.json''' ) assert os.path.exists(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , '''r''' ) as f: _UpperCAmelCase = float(json.load(_SCREAMING_SNAKE_CASE )[args.eval_metric] ) _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(_SCREAMING_SNAKE_CASE ) # Loading the dataset from local csv or json files. _UpperCAmelCase = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] _UpperCAmelCase = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) shutil.copy(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , f'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_SCREAMING_SNAKE_CASE ): shutil.copy(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , f'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , f'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: _UpperCAmelCase = eval_result if best_iteration is None: _UpperCAmelCase = new_iteration _UpperCAmelCase = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _UpperCAmelCase = new_iteration _UpperCAmelCase = new_eval_result _UpperCAmelCase = 0 else: if new_eval_result == best_eval_result: _UpperCAmelCase = new_iteration _UpperCAmelCase = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _UpperCAmelCase = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , _SCREAMING_SNAKE_CASE ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , _SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_SCREAMING_SNAKE_CASE , f'eval_results_iter-{iteration}.json' ) , os.path.join(_SCREAMING_SNAKE_CASE , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , _SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_SCREAMING_SNAKE_CASE , f'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_SCREAMING_SNAKE_CASE , '''eval_results_best-iteration.json''' ) , )
260
"""simple docstring""" from __future__ import annotations import math def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = str(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [n] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if len(str(_SCREAMING_SNAKE_CASE ) ) > 3: if not is_prime(int(str(_SCREAMING_SNAKE_CASE )[-3:] ) ) or not is_prime(int(str(_SCREAMING_SNAKE_CASE )[:3] ) ): return False return True def lowercase ( _SCREAMING_SNAKE_CASE : int = 11 ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = 13 while len(_SCREAMING_SNAKE_CASE ) != count: if validate(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = list_truncated_nums(_SCREAMING_SNAKE_CASE ) if all(is_prime(_SCREAMING_SNAKE_CASE ) for i in list_nums ): list_truncated_primes.append(_SCREAMING_SNAKE_CASE ) num += 2 return list_truncated_primes def lowercase ( ): '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f'''{sum(compute_truncated_primes(11)) = }''')
260
1
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Dict=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : int=[2, 2, 3, 2] , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : Dict=1_0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[str]=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : List[Any]=[2, 3, 4] , lowerCAmelCase_ : List[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = out_indices __lowerCAmelCase = scope def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : int ) -> Dict: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowercase ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int ) -> List[Any]: __lowerCAmelCase = ConvNextVaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] ) -> Tuple: __lowerCAmelCase = ConvNextVaForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : int ) -> Dict: __lowerCAmelCase = ConvNextVaBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowerCAmelCase = None __lowerCAmelCase = ConvNextVaBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) a_ = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : str ) -> Optional[Any]: __lowerCAmelCase = ConvNextVaModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Union[str, Any] ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : int ) -> List[Any]: return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def lowercase ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def lowercase ( self : str ) -> Any: pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def lowercase ( self : Optional[Any] ) -> Union[str, Any]: pass def lowercase ( self : List[Any] ) -> str: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() __lowerCAmelCase = True if model_class.__name__ in [ *get_values(lowerCAmelCase_ ), *get_values(lowerCAmelCase_ ), ]: continue __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ).loss loss.backward() def lowercase ( self : List[str] ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() __lowerCAmelCase = False __lowerCAmelCase = True if ( model_class.__name__ in [*get_values(lowerCAmelCase_ ), *get_values(lowerCAmelCase_ )] or not model_class.supports_gradient_checkpointing ): continue __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.gradient_checkpointing_enable() model.train() __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ).loss loss.backward() def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Dict: def check_hidden_states_output(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : int ) -> Optional[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = ConvNextVaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : List[str] ) -> int: return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Optional[int]: __lowerCAmelCase = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(lowerCAmelCase_ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = preprocessor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
207
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Any ) -> Optional[int]: __lowerCAmelCase = 1_0 def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = [1, 2, 3, 4] __lowerCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Optional[Any]: __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' __lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , [] ) def lowercase ( self : Any ) -> str: __lowerCAmelCase = '' __lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , [] ) self.assertEqual(lowerCAmelCase_ , [] ) def lowercase ( self : int ) -> int: __lowerCAmelCase = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) __lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ ) __lowerCAmelCase = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = ['It was the best of times.'] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Any: __lowerCAmelCase = torch.tensor([1, 2, 3, 4] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 0 ).numpy() , expected.numpy() ) def lowercase ( self : List[Any] ) -> Optional[int]: __lowerCAmelCase = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 2_3 ).numpy() , expected.numpy() ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 1 ).numpy() , expected.numpy() ) def lowercase ( self : Optional[Any] ) -> Optional[int]: __lowerCAmelCase = 1_0_1 __lowerCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) __lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __lowerCAmelCase = compute_token_type_ids(lowerCAmelCase_ , lowerCAmelCase_ ) np.testing.assert_array_equal(lowerCAmelCase_ , lowerCAmelCase_ )
207
1
'''simple docstring''' import os def A__ ( ): _UpperCamelCase : List[str] = os.path.join(os.path.dirname(UpperCAmelCase_ ) , 'num.txt' ) with open(UpperCAmelCase_ ) as file_hand: return str(sum(int(UpperCAmelCase_ ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
83
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCAmelCase ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE =tempfile.mktemp() with open(snake_case ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case ) SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case ) finally: os.remove(snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCAmelCase ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _lowerCAmelCase ( cls : List[Any] ): SCREAMING_SNAKE_CASE =TOKEN HfFolder.save_token(snake_case ) @classmethod def _lowerCAmelCase ( cls : Tuple ): try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCAmelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def _lowerCAmelCase ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def _lowerCAmelCase ( self : str ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case ) bert_tokenizer.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def _lowerCAmelCase ( self : Optional[Any] ): # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE =Trie() SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case ,['AB', 'C'] )
334
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer UpperCAmelCase: int = logging.get_logger(__name__) UpperCAmelCase: List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase: str = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } UpperCAmelCase: Tuple = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } class UpperCamelCase ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[Any] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : Any = BartTokenizer def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_="replace" ,UpperCAmelCase_="<s>" ,UpperCAmelCase_="</s>" ,UpperCAmelCase_="</s>" ,UpperCAmelCase_="<s>" ,UpperCAmelCase_="<unk>" ,UpperCAmelCase_="<pad>" ,UpperCAmelCase_="<mask>" ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__( UpperCAmelCase_ ,UpperCAmelCase_ ,tokenizer_file=UpperCAmelCase_ ,errors=UpperCAmelCase_ ,bos_token=UpperCAmelCase_ ,eos_token=UpperCAmelCase_ ,sep_token=UpperCAmelCase_ ,cls_token=UpperCAmelCase_ ,unk_token=UpperCAmelCase_ ,pad_token=UpperCAmelCase_ ,mask_token=UpperCAmelCase_ ,add_prefix_space=UpperCAmelCase_ ,trim_offsets=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" ,UpperCAmelCase_ ) != add_prefix_space: _lowercase : Union[str, Any] = getattr(UpperCAmelCase_ ,pre_tok_state.pop("""type""" ) ) _lowercase : Tuple = add_prefix_space _lowercase : Union[str, Any] = pre_tok_class(**UpperCAmelCase_ ) _lowercase : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowercase : Tuple = 'post_processor' _lowercase : Union[str, Any] = getattr(self.backend_tokenizer ,UpperCAmelCase_ ,UpperCAmelCase_ ) if tokenizer_component_instance: _lowercase : int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowercase : Optional[Any] = tuple(state["""sep"""] ) if "cls" in state: _lowercase : str = tuple(state["""cls"""] ) _lowercase : Tuple = False if state.get("""add_prefix_space""" ,UpperCAmelCase_ ) != add_prefix_space: _lowercase : Optional[int] = add_prefix_space _lowercase : Optional[Any] = True if state.get("""trim_offsets""" ,UpperCAmelCase_ ) != trim_offsets: _lowercase : List[str] = trim_offsets _lowercase : List[str] = True if changes_to_apply: _lowercase : Optional[int] = getattr(UpperCAmelCase_ ,state.pop("""type""" ) ) _lowercase : Optional[Any] = component_class(**UpperCAmelCase_ ) setattr(self.backend_tokenizer ,UpperCAmelCase_ ,UpperCAmelCase_ ) @property def lowerCamelCase__ ( self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = AddedToken(UpperCAmelCase_ ,lstrip=UpperCAmelCase_ ,rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) else value _lowercase : Union[str, Any] = value def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : str = kwargs.get("""is_split_into_words""" ,UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : Any = kwargs.get("""is_split_into_words""" ,UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ """to use it with pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase_ ,name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): _lowercase : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Dict = [self.sep_token_id] _lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
368
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase: Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = XLNetTokenizer SCREAMING_SNAKE_CASE_ : Dict = XLNetTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def lowerCamelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = """<s>""" _lowercase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) ,UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(UpperCAmelCase_ ) ,10_06 ) def lowerCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,10_00 ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,[2_85, 46, 10, 1_70, 3_82] ) _lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) _lowercase : List[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _lowercase : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _lowercase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ,UpperCAmelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase__ ( self ): # fmt: off _lowercase : Union[str, Any] = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
336
0
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __A : Dict = logging.get_logger(__name__) def __UpperCamelCase ( _A : Union[str, Any] ) ->List[str]: """simple docstring""" lowerCamelCase_ =MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) lowerCamelCase_ =re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _A ) if matches: lowerCamelCase_ =float(matches[1] ) lowerCamelCase_ =int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". lowerCamelCase_ =1001 lowerCamelCase_ ="""imagenet-1k-id2label.json""" lowerCamelCase_ ="""huggingface/label-files""" lowerCamelCase_ =json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase_ ={int(_A ) + 1: v for k, v in idalabel.items()} lowerCamelCase_ ="""background""" lowerCamelCase_ =idalabel lowerCamelCase_ ={v: k for k, v in idalabel.items()} return config def __UpperCamelCase ( ) ->int: """simple docstring""" lowerCamelCase_ ="""http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase_ =Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _A : List[Any] , _A : Any , _A : str , _A : int=False ) ->List[str]: """simple docstring""" lowerCamelCase_ =get_mobilenet_va_config(_A ) # Load 🤗 model lowerCamelCase_ =MobileNetVaForImageClassification(_A ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_A , _A , _A ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor lowerCamelCase_ =MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) lowerCamelCase_ =image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCamelCase_ =model(**_A ) lowerCamelCase_ =outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": lowerCamelCase_ =torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": lowerCamelCase_ =torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: lowerCamelCase_ =None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _A , atol=1E-4 ) Path(_A ).mkdir(exist_ok=_A ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_A ) if push_to_hub: print("""Pushing to the hub...""" ) lowerCamelCase_ ="""google/""" + model_name image_processor.push_to_hub(_A ) model.push_to_hub(_A ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __A : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
154
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def __UpperCamelCase ( _A : Dict=None ) ->Dict: """simple docstring""" if subparsers is not None: lowerCamelCase_ =subparsers.add_parser("""tpu-config""" , description=_description ) else: lowerCamelCase_ =argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments lowerCamelCase_ =parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=_A , default=_A , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=_A , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=_A , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) lowerCamelCase_ =parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=_A , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=_A ) return parser def __UpperCamelCase ( _A : Tuple ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_A ): lowerCamelCase_ =load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowerCamelCase_ =defaults.command_file if not args.command and defaults.commands is not None: lowerCamelCase_ =defaults.commands if not args.tpu_name: lowerCamelCase_ =defaults.tpu_name if not args.tpu_zone: lowerCamelCase_ =defaults.tpu_zone if args.accelerate_version == "dev": lowerCamelCase_ ="""git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": lowerCamelCase_ ="""accelerate -U""" elif isinstance(parse(args.accelerate_version ) , _A ): lowerCamelCase_ =f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: lowerCamelCase_ =[f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _A ): lowerCamelCase_ =[line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowerCamelCase_ =["""cd /usr/share"""] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command lowerCamelCase_ ="""; """.join(_A ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowerCamelCase_ =["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(_A )}' ) return subprocess.run(_A ) print("""Successfully setup pod.""" ) def __UpperCamelCase ( ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =tpu_command_parser() lowerCamelCase_ =parser.parse_args() tpu_command_launcher(_A )
154
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _a( UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =[ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def _a( UpperCamelCase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =emb.weight.shape SCREAMING_SNAKE_CASE__ : Tuple =nn.Linear(_UpperCAmelCase, _UpperCAmelCase, bias=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] =emb.weight.data return lin_layer def _a( UpperCamelCase__ : Dict, UpperCamelCase__ : Dict="facebook/mbart-large-en-ro", UpperCamelCase__ : List[Any]=False, UpperCamelCase__ : List[str]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =torch.load(_UpperCAmelCase, map_location='''cpu''' )['model'] remove_ignore_keys_(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] =state_dict['encoder.embed_tokens.weight'].shape[0] SCREAMING_SNAKE_CASE__ : str =MBartConfig.from_pretrained(_UpperCAmelCase, vocab_size=_UpperCAmelCase ) if mbart_aa and finetuned: SCREAMING_SNAKE_CASE__ : Optional[Any] ='relu' SCREAMING_SNAKE_CASE__ : str =state_dict['decoder.embed_tokens.weight'] SCREAMING_SNAKE_CASE__ : Optional[int] =MBartForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase ) if finetuned: SCREAMING_SNAKE_CASE__ : Optional[int] =make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') a_ = parser.parse_args() a_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
359
'''simple docstring''' from datetime import datetime as dt import os from github import Github a_ = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =Github(os.environ['''GITHUB_TOKEN'''] ) SCREAMING_SNAKE_CASE__ : List[Any] =g.get_repo('''huggingface/transformers''' ) SCREAMING_SNAKE_CASE__ : List[Any] =repo.get_issues(state='''open''' ) for issue in open_issues: SCREAMING_SNAKE_CASE__ : List[Any] =sorted([comment for comment in issue.get_comments()], key=lambda UpperCamelCase__ : i.created_at, reverse=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Dict =comments[0] if len(UpperCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
222
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
166
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
166
1
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class UpperCAmelCase__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) __UpperCamelCase = AutoTokenizer.from_pretrained("""google/mt5-small""" ) __UpperCamelCase = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids __UpperCamelCase = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids __UpperCamelCase = shift_tokens_right(lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) __UpperCamelCase = model(lowercase , decoder_input_ids=lowercase ).logits __UpperCamelCase = optax.softmax_cross_entropy(lowercase , onehot(lowercase , logits.shape[-1] ) ).mean() __UpperCamelCase = -(labels.shape[-1] * loss.item()) __UpperCamelCase = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
243
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCamelCase ( self ) -> Any: torch.manual_seed(0 ) __UpperCamelCase = UNetaDModel( sample_size=(3_2, 6_4) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def __lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=1_0 , ) return model @property def __lowerCamelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( sample_size=(1_2_8, 6_4) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) __UpperCamelCase = UNetaDModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __UpperCamelCase = DDPMScheduler() __UpperCamelCase = AudioDiffusionPipeline(vqvae=lowercase , unet=self.dummy_unet , mel=lowercase , scheduler=lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(generator=lowercase , steps=4 ) __UpperCamelCase = output.audios[0] __UpperCamelCase = output.images[0] __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(generator=lowercase , steps=4 , return_dict=lowercase ) __UpperCamelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([6_9, 2_5_5, 2_5_5, 2_5_5, 0, 0, 7_7, 1_8_1, 1_2, 1_2_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __UpperCamelCase = DDIMScheduler() __UpperCamelCase = self.dummy_vqvae_and_unet __UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=lowercase , scheduler=lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) np.random.seed(0 ) __UpperCamelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(raw_audio=lowercase , generator=lowercase , start_step=5 , steps=1_0 ) __UpperCamelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([1_2_0, 1_1_7, 1_1_0, 1_0_9, 1_3_8, 1_6_7, 1_3_8, 1_4_8, 1_3_2, 1_2_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase = self.dummy_unet_condition __UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=lowercase , mel=lowercase , scheduler=lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) np.random.seed(0 ) __UpperCamelCase = torch.rand((1, 1, 1_0) ) __UpperCamelCase = pipe(generator=lowercase , encoding=lowercase ) __UpperCamelCase = output.images[0] __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([1_0_7, 1_0_3, 1_2_0, 1_2_7, 1_4_2, 1_2_2, 1_1_3, 1_2_2, 9_7, 1_1_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ) -> str: __UpperCamelCase = torch_device __UpperCamelCase = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(generator=lowercase ) __UpperCamelCase = output.audios[0] __UpperCamelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([1_5_1, 1_6_7, 1_5_4, 1_4_4, 1_2_2, 1_3_4, 1_2_1, 1_0_5, 7_0, 2_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
243
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) a_ = logging.getLogger() def a__ ( _UpperCamelCase : Optional[Any] ): __lowerCamelCase = {} __lowerCamelCase = os.path.join(_UpperCamelCase ,'''all_results.json''' ) if os.path.exists(_UpperCamelCase ): with open(_UpperCamelCase ,'''r''' ) as f: __lowerCamelCase = json.load(_UpperCamelCase ) else: raise ValueError(F"""can't find {path}""" ) return results a_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' import xla_spawn __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = F""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(__UpperCAmelCase , '''argv''' , __UpperCAmelCase ): __lowerCamelCase = time() xla_spawn.main() __lowerCamelCase = time() __lowerCamelCase = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def lowerCamelCase ( self ): '''simple docstring''' import xla_spawn __lowerCamelCase = ''' ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py '''.split() with patch.object(__UpperCAmelCase , '''argv''' , __UpperCAmelCase ): xla_spawn.main()
330
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING a_ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return {}, {}, {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = load_image(__UpperCAmelCase ) __lowerCamelCase = image.size __lowerCamelCase = self.image_processor(images=__UpperCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.model(**__UpperCAmelCase ) return model_outputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = model_outputs.predicted_depth __lowerCamelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=__UpperCAmelCase ) __lowerCamelCase = prediction.squeeze().cpu().numpy() __lowerCamelCase = (output * 255 / np.max(__UpperCAmelCase )).astype('''uint8''' ) __lowerCamelCase = Image.fromarray(__UpperCAmelCase ) __lowerCamelCase = {} __lowerCamelCase = predicted_depth __lowerCamelCase = depth return output_dict
330
1
import math def A ( a_ ) -> bool: return math.sqrt(a_ ) * math.sqrt(a_ ) == num def A ( a_ ) -> bool: __UpperCamelCase : List[Any] =0 __UpperCamelCase : Dict =n while left <= right: __UpperCamelCase : Optional[Any] =(left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase : Optional[Any] =mid - 1 else: __UpperCamelCase : int =mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
245
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A_ :Tuple = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def A ( a_ ,a_ ,a_=None ,a_=None ,a_=None ,a_=None ,a_=None ,a_=None ,) -> int: if attention_mask is None: __UpperCamelCase : Any =np.where(input_ids != config.pad_token_id ,1 ,0 ) if decoder_attention_mask is None: __UpperCamelCase : Optional[Any] =np.where(decoder_input_ids != config.pad_token_id ,1 ,0 ) if head_mask is None: __UpperCamelCase : str =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase : Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase : Optional[int] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __A : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=99 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=0.02 , ): """simple docstring""" __UpperCamelCase : Tuple =parent __UpperCamelCase : str =batch_size __UpperCamelCase : Optional[Any] =seq_length __UpperCamelCase : List[Any] =is_training __UpperCamelCase : int =use_labels __UpperCamelCase : int =vocab_size __UpperCamelCase : Any =hidden_size __UpperCamelCase : List[str] =num_hidden_layers __UpperCamelCase : Any =num_attention_heads __UpperCamelCase : int =intermediate_size __UpperCamelCase : List[Any] =hidden_act __UpperCamelCase : Optional[Any] =hidden_dropout_prob __UpperCamelCase : int =attention_probs_dropout_prob __UpperCamelCase : Tuple =max_position_embeddings __UpperCamelCase : List[Any] =eos_token_id __UpperCamelCase : Tuple =pad_token_id __UpperCamelCase : Any =bos_token_id __UpperCamelCase : Tuple =initializer_range def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __UpperCamelCase : Any =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __UpperCamelCase : Any =shift_tokens_right(lowerCamelCase__ , 1 , 2 ) __UpperCamelCase : List[str] =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCamelCase__ , ) __UpperCamelCase : Dict =prepare_blenderbot_inputs_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return config, inputs_dict def __lowercase ( self ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Optional[Any] =self.prepare_config_and_inputs() return config, inputs_dict def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =20 __UpperCamelCase : Optional[int] =model_class_name(lowerCamelCase__ ) __UpperCamelCase : Tuple =model.encode(inputs_dict['input_ids'] ) __UpperCamelCase , __UpperCamelCase : Optional[Any] =( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __UpperCamelCase : Any =model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase : List[str] =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase : Any =model.decode( decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) __UpperCamelCase : List[str] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase : Tuple =model.decode( decoder_input_ids[:, -1:] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase__ , ) __UpperCamelCase : Tuple =model.decode(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =20 __UpperCamelCase : int =model_class_name(lowerCamelCase__ ) __UpperCamelCase : Optional[int] =model.encode(inputs_dict['input_ids'] ) __UpperCamelCase , __UpperCamelCase : Any =( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __UpperCamelCase : int =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCamelCase : List[str] =model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Any =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase : Any =model.decode( decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) __UpperCamelCase : Optional[Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase : Tuple =model.decode( decoder_input_ids[:, -1:] , lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) __UpperCamelCase : Optional[int] =model.decode(lowerCamelCase__ , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ ) __UpperCamelCase : Tuple =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) @require_flax class __A ( unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Any =9_9 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __UpperCamelCase : int =input_ids.shape[0] __UpperCamelCase : List[str] =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __lowercase ( self ): """simple docstring""" __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : int =self._get_config_and_data() __UpperCamelCase : Optional[Any] =FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase__ ) __UpperCamelCase : int =lm_model(input_ids=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __UpperCamelCase : List[str] =FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase__ ) __UpperCamelCase : Any =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __UpperCamelCase : int =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __UpperCamelCase : Any =lm_model(input_ids=lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =(*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __UpperCamelCase : Tuple =shift_tokens_right(lowerCamelCase__ , 1 , 2 ) __UpperCamelCase : Optional[int] =np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum() __UpperCamelCase : Optional[Any] =np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCamelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __A ( a , unittest.TestCase , a ): """simple docstring""" UpperCamelCase__ : Any =True UpperCamelCase__ : List[Any] =( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) UpperCamelCase__ : Dict =(FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =FlaxBlenderbotSmallModelTester(self ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Dict =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Any =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase : Tuple =self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =model_class(lowerCamelCase__ ) @jax.jit def encode_jitted(lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ): return model.encode(input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) with self.subTest('JIT Enabled' ): __UpperCamelCase : Union[str, Any] =encode_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __UpperCamelCase : Any =encode_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase : Tuple =model_class(lowerCamelCase__ ) __UpperCamelCase : Tuple =model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) __UpperCamelCase : Any ={ 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): return model.decode( decoder_input_ids=lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , encoder_outputs=lowerCamelCase__ , ) with self.subTest('JIT Enabled' ): __UpperCamelCase : Optional[Any] =decode_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __UpperCamelCase : int =decode_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __lowercase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: __UpperCamelCase : Optional[Any] =model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __UpperCamelCase : Optional[Any] =np.ones((1, 1) ) * model.config.eos_token_id __UpperCamelCase : Union[str, Any] =model(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
245
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE_ ( a__ ): __lowerCAmelCase = """table-transformer""" __lowerCAmelCase = ["""past_key_values"""] __lowerCAmelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Any , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : List[Any]=100 , lowerCamelCase_ : str=6 , lowerCamelCase_ : Dict=2048 , lowerCamelCase_ : int=8 , lowerCamelCase_ : Dict=6 , lowerCamelCase_ : Optional[Any]=2048 , lowerCamelCase_ : List[str]=8 , lowerCamelCase_ : Tuple=0.0 , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : List[Any]="relu" , lowerCamelCase_ : Optional[Any]=256 , lowerCamelCase_ : int=0.1 , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Tuple=0.0_2 , lowerCamelCase_ : Optional[int]=1.0 , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : List[Any]="sine" , lowerCamelCase_ : int="resnet50" , lowerCamelCase_ : str=True , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Any=1 , lowerCamelCase_ : Any=5 , lowerCamelCase_ : Dict=2 , lowerCamelCase_ : Union[str, Any]=1 , lowerCamelCase_ : Tuple=1 , lowerCamelCase_ : str=5 , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : int=0.1 , **lowerCamelCase_ : Any , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCamelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase = backbone_config.get("""model_type""" ) UpperCamelCase = CONFIG_MAPPING[backbone_model_type] UpperCamelCase = config_class.from_dict(lowerCamelCase_ ) # set timm attributes to None UpperCamelCase , UpperCamelCase , UpperCamelCase = None, None, None UpperCamelCase = use_timm_backbone UpperCamelCase = backbone_config UpperCamelCase = num_channels UpperCamelCase = num_queries UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = init_xavier_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = encoder_layers UpperCamelCase = auxiliary_loss UpperCamelCase = position_embedding_type UpperCamelCase = backbone UpperCamelCase = use_pretrained_backbone UpperCamelCase = dilation # Hungarian matcher UpperCamelCase = class_cost UpperCamelCase = bbox_cost UpperCamelCase = giou_cost # Loss coefficients UpperCamelCase = mask_loss_coefficient UpperCamelCase = dice_loss_coefficient UpperCamelCase = bbox_loss_coefficient UpperCamelCase = giou_loss_coefficient UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=lowerCamelCase_ , **lowerCamelCase_ ) @property def lowerCamelCase_ ( self : str ): """simple docstring""" return self.encoder_attention_heads @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return self.d_model class SCREAMING_SNAKE_CASE_ ( a__ ): __lowerCAmelCase = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self : Any ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowerCamelCase_ ( self : str ): """simple docstring""" return 1E-5 @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" return 12
343
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer a__ : int = logging.get_logger(__name__) a__ : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__ : List[Any] = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } a__ : Optional[Any] = { 'junnyu/roformer_chinese_small': 1_5_3_6, 'junnyu/roformer_chinese_base': 1_5_3_6, 'junnyu/roformer_chinese_char_small': 5_1_2, 'junnyu/roformer_chinese_char_base': 5_1_2, 'junnyu/roformer_small_discriminator': 1_2_8, 'junnyu/roformer_small_generator': 1_2_8, } a__ : str = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class lowercase_ ( a__ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = RoFormerTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ): super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) UpperCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase" , a ) != do_lower_case or pre_tok_state.get("strip_accents" , a ) != strip_accents ): UpperCamelCase__ = getattr(a , pre_tok_state.pop("type" ) ) UpperCamelCase__ = do_lower_case UpperCamelCase__ = strip_accents UpperCamelCase__ = pre_tok_class(**a ) UpperCamelCase__ = do_lower_case def __getstate__( self ): UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = BertPreTokenizer() return state def __setstate__( self , a ): UpperCamelCase__ = d UpperCamelCase__ = self.__dict__["_tokenizer"].get_vocab() UpperCamelCase__ = PreTokenizer.custom(JiebaPreTokenizer(a ) ) def __a ( self , a , a=None ): UpperCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , a , a = None ): UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , a , a = None ): UpperCamelCase__ = self._tokenizer.model.save(a , name=a ) return tuple(a ) def __a ( self , a , a=None , a=None , a=False , **a , ): UpperCamelCase__ = BertPreTokenizer() return super().save_pretrained(a , a , a , a , **a )
80
0
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __A : Union[str, Any] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : List[str] , lowerCamelCase : str , lowerCamelCase : bool , lowerCamelCase : str = None , lowerCamelCase : list = None ) -> Optional[int]: lowerCAmelCase_ : Any = None lowerCAmelCase_ : Optional[int] = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) lowerCAmelCase_ : List[str] = os.path.abspath("""examples""" ) for item in os.listdir(_lowerCAmelCase ): if item not in EXCLUDE_EXAMPLES: lowerCAmelCase_ : Tuple = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if os.path.isfile(_lowerCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=_lowerCAmelCase , feature_script=_lowerCAmelCase , tested_section="""main()""" if parser_only else """training_function()""" , ): lowerCAmelCase_ : Optional[Any] = compare_against_test( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowerCAmelCase_ : Any = """\n""".join(_lowerCAmelCase ) if special_strings is not None: for string in special_strings: lowerCAmelCase_ : Optional[int] = diff.replace(_lowerCAmelCase , """""" ) self.assertEqual(_lowerCAmelCase , """""" ) def __lowercase ( self : int ) -> List[Any]: self.one_complete_example("""complete_nlp_example.py""" , _lowerCAmelCase ) self.one_complete_example("""complete_nlp_example.py""" , _lowerCAmelCase ) def __lowercase ( self : Union[str, Any] ) -> Tuple: lowerCAmelCase_ : List[str] = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) lowerCAmelCase_ : Dict = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.one_complete_example("""complete_cv_example.py""" , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @mock.patch.dict(os.environ ,{'TESTING_MOCKED_DATALOADERS': '1'}) class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = False @classmethod def __lowercase ( cls : Any ) -> Optional[Any]: super().setUpClass() lowerCAmelCase_ : int = tempfile.mkdtemp() lowerCAmelCase_ : Dict = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase_ : Dict = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def __lowercase ( cls : List[str] ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __lowercase ( self : str ) -> Dict: lowerCAmelCase_ : List[Any] = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def __lowercase ( self : Tuple ) -> List[Any]: lowerCAmelCase_ : Dict = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() lowerCAmelCase_ : Dict = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def __lowercase ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase_ : Any = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() lowerCAmelCase_ : List[str] = run_command(self._launch_args + testargs , return_stdout=_lowerCAmelCase ) self.assertNotIn("""epoch 0:""" , _lowerCAmelCase ) self.assertIn("""epoch 1:""" , _lowerCAmelCase ) def __lowercase ( self : str ) -> Dict: lowerCAmelCase_ : List[Any] = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() lowerCAmelCase_ : Optional[Any] = run_command(self._launch_args + testargs , return_stdout=_lowerCAmelCase ) if torch.cuda.is_available(): lowerCAmelCase_ : List[str] = torch.cuda.device_count() else: lowerCAmelCase_ : int = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , _lowerCAmelCase ) self.assertIn("""epoch 1:""" , _lowerCAmelCase ) else: self.assertIn("""epoch 0:""" , _lowerCAmelCase ) self.assertIn("""epoch 1:""" , _lowerCAmelCase ) @slow def __lowercase ( self : Dict ) -> Optional[int]: lowerCAmelCase_ : List[Any] = """\n examples/by_feature/cross_validation.py\n --num_folds 2\n """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): lowerCAmelCase_ : int = run_command(self._launch_args + testargs , return_stdout=_lowerCAmelCase ) lowerCAmelCase_ : str = re.findall("""({.+})""" , _lowerCAmelCase ) lowerCAmelCase_ : List[str] = [r for r in results if """accuracy""" in r][-1] lowerCAmelCase_ : List[str] = ast.literal_eval(_lowerCAmelCase ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def __lowercase ( self : int ) -> Any: lowerCAmelCase_ : int = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __lowercase ( self : Tuple ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: lowerCAmelCase_ : Dict = F'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_lowerCAmelCase , """tracking""" ) ) ) def __lowercase ( self : int ) -> Tuple: lowerCAmelCase_ : Optional[Any] = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def __lowercase ( self : Any ) -> Optional[int]: lowerCAmelCase_ : str = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
354
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __A : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCAmelCase_ : str = get_sagemaker_input() else: lowerCAmelCase_ : Optional[int] = get_cluster_input() return config def UpperCamelCase_ ( A__ : Optional[Any]=None ): '''simple docstring''' if subparsers is not None: lowerCAmelCase_ : List[str] = subparsers.add_parser("""config""" , description=A__ ) else: lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser("""Accelerate config command""" , description=A__ ) parser.add_argument( """--config_file""" , default=A__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def UpperCamelCase_ ( A__ : Any ): '''simple docstring''' lowerCAmelCase_ : Dict = get_user_input() if args.config_file is not None: lowerCAmelCase_ : List[str] = args.config_file else: if not os.path.isdir(A__ ): os.makedirs(A__ ) lowerCAmelCase_ : List[Any] = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(A__ ) else: config.to_yaml_file(A__ ) print(f'accelerate configuration saved at {config_file}' ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : str = config_command_parser() lowerCAmelCase_ : Tuple = parser.parse_args() config_command(A__ ) if __name__ == "__main__": main()
89
0
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __A ( a_ :List[Any] , a_ :Any , a_ :int=10_24 , a_ :Optional[Any]=10_24 , a_ :List[Any]=False , **a_ :List[str]) -> Optional[Any]: __a : Dict = AutoTokenizer.from_pretrained(a_) __a : int = SeqaSeqDataset(a_ , a_ , a_ , a_ , type_path='''train''' , **a_) __a : List[str] = tok.pad_token_id def get_lens(a_ :Any): __a : Any = tqdm( DataLoader(a_ , batch_size=5_12 , num_workers=8 , shuffle=a_ , collate_fn=ds.collate_fn) , desc=str(ds.len_file) , ) __a : Optional[int] = [] for batch in dl: __a : Optional[Any] = batch['''input_ids'''].ne(a_).sum(1).tolist() __a : Any = batch['''labels'''].ne(a_).sum(1).tolist() if consider_target: for src, tgt in zip(a_ , a_): max_lens.append(max(a_ , a_)) else: max_lens.extend(a_) return max_lens __a : Any = get_lens(a_) __a : Dict = SeqaSeqDataset(a_ , a_ , a_ , a_ , type_path='''val''' , **a_) __a : Optional[int] = get_lens(a_) pickle_save(a_ , train_ds.len_file) pickle_save(a_ , val_ds.len_file) if __name__ == "__main__": fire.Fire(save_len_file)
160
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml A = NewType('''DataClass''', Any) A = NewType('''DataClassType''', Any) def __A ( a_ :List[str]) -> Tuple: if isinstance(a_ , a_): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""") def __A ( a_ :list) -> Callable[[str], Any]: __a : Any = {str(a_): choice for choice in choices} return lambda a_: str_to_choice.get(a_ , a_) def __A ( *, a_ :Union[str, List[str]] = None , a_ :str = None , a_ :Any = dataclasses.MISSING , a_ :Callable[[], Any] = dataclasses.MISSING , a_ :dict = None , **a_ :str , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __a : List[Any] = {} if aliases is not None: __a : Optional[Any] = aliases if help is not None: __a : int = help return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 42 def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ): # To make the default appear when using --help if "formatter_class" not in kwargs: __a : str = ArgumentDefaultsHelpFormatter super().__init__(**_UpperCAmelCase ) if dataclasses.is_dataclass(_UpperCAmelCase ): __a : int = [dataclass_types] __a : Optional[Any] = list(_UpperCAmelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_UpperCAmelCase ) @staticmethod def _lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = f"""--{field.name}""" __a : Optional[int] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _UpperCAmelCase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __a : Dict = kwargs.pop('''aliases''' , [] ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = [aliases] __a : Tuple = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(_UpperCAmelCase , '''UnionType''' ) and isinstance(_UpperCAmelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_UpperCAmelCase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f""" Problem encountered in field '{field.name}'.""" ) if type(_UpperCAmelCase ) not in field.type.__args__: # filter `str` in Union __a : List[str] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __a : List[str] = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __a : List[str] = ( field.type.__args__[0] if isinstance(_UpperCAmelCase , field.type.__args__[1] ) else field.type.__args__[1] ) __a : Optional[Any] = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __a : Optional[int] = {} if origin_type is Literal or (isinstance(field.type , _UpperCAmelCase ) and issubclass(field.type , _UpperCAmelCase )): if origin_type is Literal: __a : int = field.type.__args__ else: __a : List[str] = [x.value for x in field.type] __a : Any = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __a : Tuple = field.default else: __a : Optional[int] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __a : Any = copy(_UpperCAmelCase ) # Hack because type=bool in argparse does not behave as we want. __a : List[str] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __a : Union[str, Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __a : List[Any] = default # This tells argparse we accept 0 or 1 value after --field_name __a : Union[str, Any] = '''?''' # This is the value that will get picked if we do --field_name (without value) __a : List[Any] = True elif isclass(_UpperCAmelCase ) and issubclass(_UpperCAmelCase , _UpperCAmelCase ): __a : Dict = field.type.__args__[0] __a : Optional[int] = '''+''' if field.default_factory is not dataclasses.MISSING: __a : Union[str, Any] = field.default_factory() elif field.default is dataclasses.MISSING: __a : List[Any] = True else: __a : int = field.type if field.default is not dataclasses.MISSING: __a : Optional[Any] = field.default elif field.default_factory is not dataclasses.MISSING: __a : Optional[int] = field.default_factory() else: __a : Union[str, Any] = True parser.add_argument(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __a : Any = False parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): if hasattr(_UpperCAmelCase , '''_argument_group_name''' ): __a : Any = self.add_argument_group(dtype._argument_group_name ) else: __a : Optional[Any] = self try: __a : Dict[str, type] = get_type_hints(_UpperCAmelCase ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_UpperCAmelCase ): __a : Union[str, Any] = '''.'''.join(map(_UpperCAmelCase , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(_UpperCAmelCase ): if not field.init: continue __a : str = type_hints[field.name] self._parse_dataclass_field(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __a : int = [] if args_filename: args_files.append(Path(_UpperCAmelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __a : Optional[Any] = ArgumentParser() args_file_parser.add_argument(_UpperCAmelCase , type=_UpperCAmelCase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __a , __a : List[Any] = args_file_parser.parse_known_args(args=_UpperCAmelCase ) __a : Union[str, Any] = vars(_UpperCAmelCase ).get(args_file_flag.lstrip('''-''' ) , _UpperCAmelCase ) if cmd_args_file_paths: args_files.extend([Path(_UpperCAmelCase ) for p in cmd_args_file_paths] ) __a : Union[str, Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __a : Dict = file_args + args if args is not None else file_args + sys.argv[1:] __a , __a : str = self.parse_known_args(args=_UpperCAmelCase ) __a : Optional[int] = [] for dtype in self.dataclass_types: __a : Optional[int] = {f.name for f in dataclasses.fields(_UpperCAmelCase ) if f.init} __a : List[str] = {k: v for k, v in vars(_UpperCAmelCase ).items() if k in keys} for k in keys: delattr(_UpperCAmelCase , _UpperCAmelCase ) __a : int = dtype(**_UpperCAmelCase ) outputs.append(_UpperCAmelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_UpperCAmelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): __a : Tuple = set(args.keys() ) __a : List[str] = [] for dtype in self.dataclass_types: __a : Dict = {f.name for f in dataclasses.fields(_UpperCAmelCase ) if f.init} __a : Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __a : Tuple = dtype(**_UpperCAmelCase ) outputs.append(_UpperCAmelCase ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(_UpperCAmelCase )}""" ) return tuple(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): with open(Path(_UpperCAmelCase ) , encoding='''utf-8''' ) as open_json_file: __a : int = json.loads(open_json_file.read() ) __a : str = self.parse_dict(_UpperCAmelCase , allow_extra_keys=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): __a : Tuple = self.parse_dict(yaml.safe_load(Path(_UpperCAmelCase ).read_text() ) , allow_extra_keys=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
160
1
import sys _lowercase: List[str] = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def a( A : str = N ) -> int: """simple docstring""" a = -sys.maxsize - 1 for i in range(len(A ) - 12 ): a = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: a = product return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
71
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a( A : Optional[Any] ) -> Tuple: """simple docstring""" a = 384 a = 7 if "tiny" in model_name: a = 96 a = (2, 2, 6, 2) a = (3, 6, 12, 24) elif "small" in model_name: a = 96 a = (2, 2, 18, 2) a = (3, 6, 12, 24) elif "base" in model_name: a = 128 a = (2, 2, 18, 2) a = (4, 8, 16, 32) a = 12 a = 512 elif "large" in model_name: a = 192 a = (2, 2, 18, 2) a = (6, 12, 24, 48) a = 12 a = 768 # set label information a = 150 a = "huggingface/label-files" a = "ade20k-id2label.json" a = json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) ) a = {int(A ): v for k, v in idalabel.items()} a = {v: k for k, v in idalabel.items()} a = SwinConfig( embed_dim=A , depths=A , num_heads=A , window_size=A , out_features=["stage1", "stage2", "stage3", "stage4"] , ) a = UperNetConfig( backbone_config=A , auxiliary_in_channels=A , num_labels=A , idalabel=A , labelaid=A , ) return config def a( A : Optional[Any] ) -> Tuple: """simple docstring""" a = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def a( A : List[str] , A : List[str] , A : Dict ) -> Any: """simple docstring""" a = dct.pop(A ) a = val def a( A : str , A : List[str] ) -> List[Any]: """simple docstring""" a = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) a = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a = in_proj_weight[:dim, :] a = in_proj_bias[: dim] a = in_proj_weight[ dim : dim * 2, : ] a = in_proj_bias[ dim : dim * 2 ] a = in_proj_weight[ -dim :, : ] a = in_proj_bias[-dim :] # fmt: on def a( A : Optional[int] ) -> Optional[Any]: """simple docstring""" a , a = x.shape a = x.reshape(A , 4 , in_channel // 4 ) a = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(A , A ) return x def a( A : int ) -> Dict: """simple docstring""" a , a = x.shape a = x.reshape(A , in_channel // 4 , 4 ) a = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(A , A ) return x def a( A : List[Any] ) -> Dict: """simple docstring""" a = x.shape[0] a = x.reshape(4 , in_channel // 4 ) a = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(A ) return x def a( A : Optional[Any] ) -> List[str]: """simple docstring""" a = x.shape[0] a = x.reshape(in_channel // 4 , 4 ) a = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(A ) return x def a( A : Any , A : int , A : Dict ) -> Union[str, Any]: """simple docstring""" a = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } a = model_name_to_url[model_name] a = torch.hub.load_state_dict_from_url(A , map_location="cpu" , file_name=A )[ "state_dict" ] for name, param in state_dict.items(): print(A , param.shape ) a = get_upernet_config(A ) a = UperNetForSemanticSegmentation(A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): a = state_dict.pop(A ) if "bn" in key: a = key.replace("bn" , "batch_norm" ) a = val # rename keys a = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_q_k_v(A , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: a = reverse_correct_unfold_reduction_order(A ) if "norm" in key: a = reverse_correct_unfold_norm_order(A ) model.load_state_dict(A ) # verify on image a = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" a = Image.open(requests.get(A , stream=A ).raw ).convert("RGB" ) a = SegformerImageProcessor() a = processor(A , return_tensors="pt" ).pixel_values with torch.no_grad(): a = model(A ) a = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": a = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": a = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": a = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": a = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _lowercase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[F"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowercase: int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
71
1
"""simple docstring""" from typing import List import numpy as np def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = {key: len(__lowerCamelCase ) for key, value in gen_kwargs.items() if isinstance(__lowerCamelCase, __lowerCamelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) UpperCAmelCase_ : List[str] = max(lists_lengths.values(), default=0 ) return max(1, __lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = [] for group_idx in range(__lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break UpperCAmelCase_ : Optional[Any] = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 UpperCAmelCase_ : List[Any] = range(__lowerCamelCase, start + num_shards_to_add ) shards_indices_per_group.append(__lowerCamelCase ) return shards_indices_per_group def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = _number_of_shards_in_gen_kwargs(__lowerCamelCase ) if num_shards == 1: return [dict(__lowerCamelCase )] else: UpperCAmelCase_ : Any = _distribute_shards(num_shards=__lowerCamelCase, max_num_jobs=__lowerCamelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__lowerCamelCase, __lowerCamelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__lowerCamelCase ) ) ] def __a ( __lowerCamelCase ): return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key], __lowerCamelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = {len(__lowerCamelCase ) for value in gen_kwargs.values() if isinstance(__lowerCamelCase, __lowerCamelCase )} UpperCAmelCase_ : List[str] = {} for size in list_sizes: UpperCAmelCase_ : Tuple = list(range(__lowerCamelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes UpperCAmelCase_ : Optional[int] = dict(__lowerCamelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : str = [value[i] for i in indices_per_size[len(__lowerCamelCase )]] return shuffled_kwargs
61
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = ['''model.decoder.embed_positions.weights'''] def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if "emb" in name: lowercase__ : int = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: lowercase__ : Any = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: lowercase__ : int = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: lowercase__ : int = name.replace("linear1" , "fc1" ) if "linear2" in name: lowercase__ : int = name.replace("linear2" , "fc2" ) if "norm1" in name: lowercase__ : Union[str, Any] = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: lowercase__ : Union[str, Any] = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: lowercase__ : Dict = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: lowercase__ : Union[str, Any] = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: lowercase__ : Union[str, Any] = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[Any] = list(state_dict.keys() ) lowercase__ : Dict = {} for key in keys: lowercase__ : Tuple = state_dict.pop(lowerCamelCase__ ) lowercase__ : Union[str, Any] = rename_keys(lowerCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj lowercase__ : Optional[int] = val[:hidden_size, :] lowercase__ : Optional[int] = val[hidden_size : 2 * hidden_size, :] lowercase__ : List[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: lowercase__ : Union[str, Any] = val else: lowercase__ : List[Any] = val return state_dict, enc_dec_proj_state_dict def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if checkpoint == "small": # default config values lowercase__ : Optional[Any] = 1_024 lowercase__ : int = 24 lowercase__ : Optional[Any] = 16 elif checkpoint == "medium": lowercase__ : str = 1_536 lowercase__ : Union[str, Any] = 48 lowercase__ : Optional[int] = 24 elif checkpoint == "large": lowercase__ : Tuple = 2_048 lowercase__ : Union[str, Any] = 48 lowercase__ : Dict = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) lowercase__ : int = MusicgenDecoderConfig( hidden_size=lowerCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowerCamelCase__ , num_attention_heads=lowerCamelCase__ , ) return config @torch.no_grad() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="cpu" ): """simple docstring""" lowercase__ : List[Any] = MusicGen.get_pretrained(lowerCamelCase__ , device=lowerCamelCase__ ) lowercase__ : str = decoder_config_from_checkpoint(lowerCamelCase__ ) lowercase__ : Optional[Any] = fairseq_model.lm.state_dict() lowercase__ , lowercase__ : Tuple = rename_state_dict( lowerCamelCase__ , hidden_size=decoder_config.hidden_size ) lowercase__ : str = TaEncoderModel.from_pretrained("t5-base" ) lowercase__ : Tuple = EncodecModel.from_pretrained("facebook/encodec_32khz" ) lowercase__ : List[str] = MusicgenForCausalLM(lowerCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection lowercase__ , lowercase__ : List[str] = decoder.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(lowerCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model lowercase__ : Any = MusicgenForConditionalGeneration(text_encoder=lowerCamelCase__ , audio_encoder=lowerCamelCase__ , decoder=lowerCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowerCamelCase__ ) # check we can do a forward pass lowercase__ : List[str] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) lowercase__ : Any = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): lowercase__ : List[str] = model(input_ids=lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor lowercase__ : List[Any] = AutoTokenizer.from_pretrained("t5-base" ) lowercase__ : Dict = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) lowercase__ : Optional[Any] = MusicgenProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) # set the appropriate bos/pad token ids lowercase__ : List[Any] = 2_048 lowercase__ : List[Any] = 2_048 # set other default generation config params lowercase__ : str = int(30 * audio_encoder.config.frame_rate ) lowercase__ : List[Any] = True lowercase__ : Dict = 3.0 if pytorch_dump_folder is not None: Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(lowerCamelCase__ ) processor.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) lowerCAmelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
130
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class _a : """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=99 , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Any=False , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=2 , UpperCAmelCase : Any=32 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Tuple=30 , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Dict=None , ): A_ = parent A_ = batch_size A_ = decoder_seq_length # For common tests A_ = self.decoder_seq_length A_ = is_training A_ = use_attention_mask A_ = use_labels A_ = vocab_size A_ = d_model A_ = d_model A_ = decoder_layers A_ = decoder_layers A_ = decoder_ffn_dim A_ = decoder_attention_heads A_ = decoder_attention_heads A_ = eos_token_id A_ = bos_token_id A_ = pad_token_id A_ = decoder_start_token_id A_ = use_cache A_ = max_position_embeddings A_ = None A_ = decoder_seq_length A_ = 2 A_ = 1 def __A ( self : List[Any] ): A_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) A_ = None if self.use_attention_mask: A_ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) A_ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def __A ( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ): A_ = True A_ = TrOCRDecoder(config=UpperCAmelCase ).to(UpperCAmelCase ).eval() A_ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass A_ = model(UpperCAmelCase , use_cache=UpperCAmelCase ) A_ = model(UpperCAmelCase ) A_ = model(UpperCAmelCase , use_cache=UpperCAmelCase ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 ) A_ = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids A_ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and A_ = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ = model(UpperCAmelCase )["last_hidden_state"] A_ = model(UpperCAmelCase , past_key_values=UpperCAmelCase )["last_hidden_state"] # select random slice A_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() A_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) def __A ( self : int ): A_ = self.prepare_config_and_inputs() A_ , A_ , A_ , A_ = config_and_inputs A_ = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _lowerCamelCase : Tuple = (TrOCRForCausalLM,) if is_torch_available() else () _lowerCamelCase : List[str] = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} _lowerCamelCase : Dict = True _lowerCamelCase : Dict = False def __A ( self : Optional[int] ): A_ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCAmelCase ) A_ = ConfigTester(self , config_class=UpperCAmelCase ) def __A ( self : Optional[int] ): pass def __A ( self : Union[str, Any] ): pass def __A ( self : int ): pass def __A ( self : Union[str, Any] ): self.config_tester.run_common_tests() def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCAmelCase ) def __A ( self : Any ): return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def __A ( self : List[str] ): pass
357
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __a :Optional[Any] = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
329
0
'''simple docstring''' _A : Tuple ={str(digit): digit**5 for digit in range(10)} def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(UpperCamelCase ) ) def SCREAMING_SNAKE_CASE_ () -> int: return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(UpperCamelCase ) ) if __name__ == "__main__": print(solution())
41
from jiwer import compute_measures import datasets lowerCAmelCase : Tuple = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' lowerCAmelCase : List[Any] = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' lowerCAmelCase : Dict = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _A ( datasets.Metric): def UpperCAmelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" if concatenate_texts: return compute_measures(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )["wer"] else: SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 for prediction, reference in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : str = compute_measures(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
253
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } __lowerCAmelCase : List[Any] = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Dict) -> int: """simple docstring""" __lowerCAmelCase : Union[str, Any] = np.random.randn(3 , 4) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE) , x.transpose())) __lowerCAmelCase : Optional[Any] = np.random.randn(3 , 4 , 5) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0)) , x.transpose((1, 2, 0)))) @require_torch def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = np.random.randn(3 , 4) __lowerCAmelCase : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE) , transpose(_SCREAMING_SNAKE_CASE).numpy())) __lowerCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5) __lowerCAmelCase : Any = torch.tensor(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0)) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0)).numpy())) @require_tf def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Tuple = np.random.randn(3 , 4) __lowerCAmelCase : Any = tf.constant(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE) , transpose(_SCREAMING_SNAKE_CASE).numpy())) __lowerCAmelCase : Dict = np.random.randn(3 , 4 , 5) __lowerCAmelCase : str = tf.constant(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0)) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0)).numpy())) @require_flax def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = np.random.randn(3 , 4) __lowerCAmelCase : Dict = jnp.array(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE) , np.asarray(transpose(_SCREAMING_SNAKE_CASE)))) __lowerCAmelCase : Optional[int] = np.random.randn(3 , 4 , 5) __lowerCAmelCase : Optional[int] = jnp.array(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0)) , np.asarray(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0))))) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Any: """simple docstring""" __lowerCAmelCase : Dict = np.random.randn(3 , 4) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3)) , np.reshape(_SCREAMING_SNAKE_CASE , (4, 3)))) __lowerCAmelCase : Dict = np.random.randn(3 , 4 , 5) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5)) , np.reshape(_SCREAMING_SNAKE_CASE , (12, 5)))) @require_torch def _SCREAMING_SNAKE_CASE ( self: Any) -> Any: """simple docstring""" __lowerCAmelCase : Dict = np.random.randn(3 , 4) __lowerCAmelCase : List[Any] = torch.tensor(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3)) , reshape(_SCREAMING_SNAKE_CASE , (4, 3)).numpy())) __lowerCAmelCase : List[str] = np.random.randn(3 , 4 , 5) __lowerCAmelCase : List[Any] = torch.tensor(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5)) , reshape(_SCREAMING_SNAKE_CASE , (12, 5)).numpy())) @require_tf def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Dict = np.random.randn(3 , 4) __lowerCAmelCase : Tuple = tf.constant(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3)) , reshape(_SCREAMING_SNAKE_CASE , (4, 3)).numpy())) __lowerCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5) __lowerCAmelCase : Union[str, Any] = tf.constant(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5)) , reshape(_SCREAMING_SNAKE_CASE , (12, 5)).numpy())) @require_flax def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = np.random.randn(3 , 4) __lowerCAmelCase : Tuple = jnp.array(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3)) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (4, 3))))) __lowerCAmelCase : Tuple = np.random.randn(3 , 4 , 5) __lowerCAmelCase : List[str] = jnp.array(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5)) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (12, 5))))) def _SCREAMING_SNAKE_CASE ( self: Any) -> int: """simple docstring""" __lowerCAmelCase : Any = np.random.randn(1 , 3 , 4) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE) , np.squeeze(_SCREAMING_SNAKE_CASE))) __lowerCAmelCase : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2) , np.squeeze(_SCREAMING_SNAKE_CASE , axis=2))) @require_torch def _SCREAMING_SNAKE_CASE ( self: Dict) -> str: """simple docstring""" __lowerCAmelCase : List[str] = np.random.randn(1 , 3 , 4) __lowerCAmelCase : Any = torch.tensor(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE) , squeeze(_SCREAMING_SNAKE_CASE).numpy())) __lowerCAmelCase : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5) __lowerCAmelCase : Dict = torch.tensor(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2) , squeeze(_SCREAMING_SNAKE_CASE , axis=2).numpy())) @require_tf def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Dict: """simple docstring""" __lowerCAmelCase : str = np.random.randn(1 , 3 , 4) __lowerCAmelCase : int = tf.constant(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE) , squeeze(_SCREAMING_SNAKE_CASE).numpy())) __lowerCAmelCase : str = np.random.randn(1 , 4 , 1 , 5) __lowerCAmelCase : Union[str, Any] = tf.constant(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2) , squeeze(_SCREAMING_SNAKE_CASE , axis=2).numpy())) @require_flax def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> List[str]: """simple docstring""" __lowerCAmelCase : List[Any] = np.random.randn(1 , 3 , 4) __lowerCAmelCase : List[str] = jnp.array(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE)))) __lowerCAmelCase : Tuple = np.random.randn(1 , 4 , 1 , 5) __lowerCAmelCase : Union[str, Any] = jnp.array(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE , axis=2)))) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = np.random.randn(3 , 4) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1) , np.expand_dims(_SCREAMING_SNAKE_CASE , axis=1))) @require_torch def _SCREAMING_SNAKE_CASE ( self: Any) -> Any: """simple docstring""" __lowerCAmelCase : Optional[Any] = np.random.randn(3 , 4) __lowerCAmelCase : List[Any] = torch.tensor(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1).numpy())) @require_tf def _SCREAMING_SNAKE_CASE ( self: Any) -> str: """simple docstring""" __lowerCAmelCase : str = np.random.randn(3 , 4) __lowerCAmelCase : int = tf.constant(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1).numpy())) @require_flax def _SCREAMING_SNAKE_CASE ( self: Dict) -> str: """simple docstring""" __lowerCAmelCase : Optional[Any] = np.random.randn(3 , 4) __lowerCAmelCase : Any = jnp.array(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1) , np.asarray(expand_dims(_SCREAMING_SNAKE_CASE , axis=1))))
356
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowercase ( __snake_case ) -> Optional[Any]: __lowerCAmelCase : str = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" ,__snake_case ).groups()[0] class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Any=None) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : str = file_names __lowerCAmelCase : Optional[int] = image_transform __lowerCAmelCase : List[Any] = label_to_id def __len__( self: Union[str, Any]) -> int: """simple docstring""" return len(self.file_names) def __getitem__( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : int = self.file_names[idx] __lowerCAmelCase : List[str] = PIL.Image.open(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = raw_image.convert("RGB") if self.image_transform is not None: __lowerCAmelCase : Union[str, Any] = self.image_transform(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = extract_label(_SCREAMING_SNAKE_CASE) if self.label_to_id is not None: __lowerCAmelCase : str = self.label_to_id[label] return {"image": image, "label": label} def _lowercase ( __snake_case ,__snake_case ) -> Optional[int]: # Initialize accelerator if args.with_tracking: __lowerCAmelCase : str = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,log_with="all" ,project_dir=args.project_dir ) else: __lowerCAmelCase : Any = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase : int = config["lr"] __lowerCAmelCase : Union[str, Any] = int(config["num_epochs"] ) __lowerCAmelCase : Tuple = int(config["seed"] ) __lowerCAmelCase : Tuple = int(config["batch_size"] ) __lowerCAmelCase : int = config["image_size"] if not isinstance(__snake_case ,(list, tuple) ): __lowerCAmelCase : Tuple = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps ,"isdigit" ): if args.checkpointing_steps == "epoch": __lowerCAmelCase : Optional[Any] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __lowerCAmelCase : Dict = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: __lowerCAmelCase : int = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __lowerCAmelCase : Dict = os.path.split(__snake_case )[-1].split("." )[0] accelerator.init_trackers(__snake_case ,__snake_case ) # Grab all the image filenames __lowerCAmelCase : Union[str, Any] = [os.path.join(args.data_dir ,__snake_case ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences __lowerCAmelCase : Union[str, Any] = [extract_label(__snake_case ) for fname in file_names] __lowerCAmelCase : Any = list(set(__snake_case ) ) id_to_label.sort() __lowerCAmelCase : Optional[Any] = {lbl: i for i, lbl in enumerate(__snake_case )} # Set the seed before splitting the data. np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # Split our filenames between train and validation __lowerCAmelCase : List[str] = np.random.permutation(len(__snake_case ) ) __lowerCAmelCase : Dict = int(0.8 * len(__snake_case ) ) __lowerCAmelCase : str = random_perm[:cut] __lowerCAmelCase : Optional[int] = random_perm[cut:] # For training we use a simple RandomResizedCrop __lowerCAmelCase : str = Compose([RandomResizedCrop(__snake_case ,scale=(0.5, 1.0) ), ToTensor()] ) __lowerCAmelCase : List[str] = PetsDataset( [file_names[i] for i in train_split] ,image_transform=__snake_case ,label_to_id=__snake_case ) # For evaluation, we use a deterministic Resize __lowerCAmelCase : Union[str, Any] = Compose([Resize(__snake_case ), ToTensor()] ) __lowerCAmelCase : List[str] = PetsDataset([file_names[i] for i in eval_split] ,image_transform=__snake_case ,label_to_id=__snake_case ) # Instantiate dataloaders. __lowerCAmelCase : Union[str, Any] = DataLoader(__snake_case ,shuffle=__snake_case ,batch_size=__snake_case ,num_workers=4 ) __lowerCAmelCase : Any = DataLoader(__snake_case ,shuffle=__snake_case ,batch_size=__snake_case ,num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase : int = create_model("resnet50d" ,pretrained=__snake_case ,num_classes=len(__snake_case ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase : List[str] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __lowerCAmelCase : Any = False for param in model.get_classifier().parameters(): __lowerCAmelCase : List[Any] = True # We normalize the batches of images to be a bit faster. __lowerCAmelCase : Optional[Any] = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) __lowerCAmelCase : int = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase : int = torch.optim.Adam(params=model.parameters() ,lr=lr / 25 ) # Instantiate learning rate scheduler __lowerCAmelCase : List[Any] = OneCycleLR(optimizer=__snake_case ,max_lr=__snake_case ,epochs=__snake_case ,steps_per_epoch=len(__snake_case ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) # We need to keep track of how many total steps we have iterated over __lowerCAmelCase : Dict = 0 # We also need to keep track of the starting epoch so files are named properly __lowerCAmelCase : List[str] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) __lowerCAmelCase : Optional[Any] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __lowerCAmelCase : Optional[int] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __lowerCAmelCase : Optional[Any] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __lowerCAmelCase : str = os.path.splitext(__snake_case )[0] if "epoch" in training_difference: __lowerCAmelCase : Dict = int(training_difference.replace("epoch_" ,"" ) ) + 1 __lowerCAmelCase : Optional[Any] = None else: __lowerCAmelCase : Any = int(training_difference.replace("step_" ,"" ) ) __lowerCAmelCase : Optional[int] = resume_step // len(__snake_case ) resume_step -= starting_epoch * len(__snake_case ) # Now we train the model for epoch in range(__snake_case ,__snake_case ): model.train() if args.with_tracking: __lowerCAmelCase : Any = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __lowerCAmelCase : Optional[int] = accelerator.skip_first_batches(__snake_case ,__snake_case ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __lowerCAmelCase : Optional[int] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __lowerCAmelCase : List[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} __lowerCAmelCase : Union[str, Any] = (batch["image"] - mean) / std __lowerCAmelCase : Optional[int] = model(__snake_case ) __lowerCAmelCase : List[str] = torch.nn.functional.cross_entropy(__snake_case ,batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__snake_case ,__snake_case ): __lowerCAmelCase : List[Any] = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __lowerCAmelCase : Tuple = os.path.join(args.output_dir ,__snake_case ) accelerator.save_state(__snake_case ) model.eval() __lowerCAmelCase : int = 0 __lowerCAmelCase : Optional[int] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. __lowerCAmelCase : Tuple = {k: v.to(accelerator.device ) for k, v in batch.items()} __lowerCAmelCase : Optional[Any] = (batch["image"] - mean) / std with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model(__snake_case ) __lowerCAmelCase : List[str] = outputs.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase : Optional[int] = accelerator.gather_for_metrics((predictions, batch["label"]) ) __lowerCAmelCase : str = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __lowerCAmelCase : Optional[Any] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(__snake_case ), "epoch": epoch, } ,step=__snake_case ,) if checkpointing_steps == "epoch": __lowerCAmelCase : Tuple = F"""epoch_{epoch}""" if args.output_dir is not None: __lowerCAmelCase : Optional[Any] = os.path.join(args.output_dir ,__snake_case ) accelerator.save_state(__snake_case ) if args.with_tracking: accelerator.end_training() def _lowercase ( ) -> Tuple: __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" ,required=__snake_case ,help="The data folder on disk." ) parser.add_argument("--fp16" ,action="store_true" ,help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" ,type=__snake_case ,default=__snake_case ,choices=["no", "fp16", "bf16", "fp8"] ,help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ,) parser.add_argument("--cpu" ,action="store_true" ,help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" ,type=__snake_case ,default=__snake_case ,help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." ,) parser.add_argument( "--output_dir" ,type=__snake_case ,default="." ,help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." ,) parser.add_argument( "--resume_from_checkpoint" ,type=__snake_case ,default=__snake_case ,help="If the training should continue from a checkpoint folder." ,) parser.add_argument( "--with_tracking" ,action="store_true" ,help="Whether to load in all available experiment trackers from the environment and use them for logging." ,) parser.add_argument( "--project_dir" ,type=__snake_case ,default="logs" ,help="Location on where to store experiment tracking logs` and relevent project information" ,) __lowerCAmelCase : List[Any] = parser.parse_args() __lowerCAmelCase : List[Any] = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(__snake_case ,__snake_case ) if __name__ == "__main__": main()
58
0
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple ) -> int: UpperCAmelCase : Optional[Any] = ['a', 'b', 'c'] # Defaults to last layer if both are None UpperCAmelCase , UpperCAmelCase : Tuple = get_aligned_output_features_output_indices(lowercase_ , lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , ['c'] ) self.assertEqual(lowercase_ , [2] ) # Out indices set to match out features UpperCAmelCase , UpperCAmelCase : str = get_aligned_output_features_output_indices(['a', 'c'] , lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , ['a', 'c'] ) self.assertEqual(lowercase_ , [0, 2] ) # Out features set to match out indices UpperCAmelCase , UpperCAmelCase : int = get_aligned_output_features_output_indices(lowercase_ , [0, 2] , lowercase_ ) self.assertEqual(lowercase_ , ['a', 'c'] ) self.assertEqual(lowercase_ , [0, 2] ) # Out features selected from negative indices UpperCAmelCase , UpperCAmelCase : Optional[int] = get_aligned_output_features_output_indices(lowercase_ , [-3, -1] , lowercase_ ) self.assertEqual(lowercase_ , ['a', 'c'] ) self.assertEqual(lowercase_ , [-3, -1] ) def UpperCAmelCase_ ( self : int ) -> int: # Stage names must be set with self.assertRaises(lowercase_ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , lowercase_ ) # Out features must be a list with self.assertRaises(lowercase_ ): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(lowercase_ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'] ) # Out indices must be a list or tuple with self.assertRaises(lowercase_ ): verify_out_features_out_indices(lowercase_ , 0 , ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(lowercase_ ): verify_out_features_out_indices(lowercase_ , (0, 1) , ['a'] ) # Out features and out indices must be the same length with self.assertRaises(lowercase_ ): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(lowercase_ ): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(lowercase_ ): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'] ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: UpperCAmelCase : int = BackboneMixin() UpperCAmelCase : Tuple = ['a', 'b', 'c'] UpperCAmelCase : List[Any] = ['a', 'c'] UpperCAmelCase : List[str] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly UpperCAmelCase : Tuple = ['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b'] ) self.assertEqual(backbone.out_indices , [0, 1] ) UpperCAmelCase : Any = [-3, -1] self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [-3, -1] )
151
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ : '''simple docstring''' def __init__( self : Any , lowercase_ : List[Any] , lowercase_ : int=3 , lowercase_ : Dict=32 , lowercase_ : Optional[Any]=3 , lowercase_ : Tuple=10 , lowercase_ : Optional[Any]=[10, 20, 30, 40] , lowercase_ : List[str]=[1, 1, 2, 1] , lowercase_ : Optional[int]=True , lowercase_ : str=True , lowercase_ : Dict="relu" , lowercase_ : Optional[Any]=3 , lowercase_ : List[str]=None , ) -> int: UpperCAmelCase : Dict = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Any = image_size UpperCAmelCase : Any = num_channels UpperCAmelCase : List[str] = embeddings_size UpperCAmelCase : str = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : int = use_labels UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Union[str, Any] = scope UpperCAmelCase : Any = len(lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase_ ( self : int , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : List[Any] = TFResNetModel(config=lowercase_ ) UpperCAmelCase : int = model(lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self : Any , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] ) -> List[Any]: UpperCAmelCase : List[Any] = self.num_labels UpperCAmelCase : Union[str, Any] = TFResNetForImageClassification(lowercase_ ) UpperCAmelCase : Any = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCAmelCase_ : Dict = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : str = False UpperCAmelCase_ : Optional[int] = False def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Optional[int] = TFResNetModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: pass def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(lowercase_ ) UpperCAmelCase : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: def check_hidden_states_output(lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] ): UpperCAmelCase : Union[str, Any] = model_class(lowercase_ ) UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase : List[Any] = layer_type UpperCAmelCase : int = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : List[Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = TFResNetModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCamelCase( ): UpperCAmelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Optional[int] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase : Any = self.default_image_processor UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=lowercase_ , return_tensors='tf' ) # forward pass UpperCAmelCase : List[Any] = model(**lowercase_ ) # verify the logits UpperCAmelCase : Optional[Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCAmelCase : int = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowercase_ , atol=1E-4 ) )
151
1
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __A ( __lowerCamelCase, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = WavaVecaPhonemeCTCTokenizer __lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self ) -> Dict: super().setUp() a =( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) a =dict(zip(__lowercase , range(len(__lowercase ) ) ) ) a ={'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) def SCREAMING_SNAKE_CASE ( self , __A , __A=False , __A=20 , __A=5 ) -> Optional[int]: a =[(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__lowercase )) for i in range(len(__lowercase ) )] a =list(filter(lambda __A : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__lowercase ) , __lowercase ) ) if max_length is not None and len(__lowercase ) > max_length: a =toks[:max_length] if min_length is not None and len(__lowercase ) < min_length and len(__lowercase ) > 0: while len(__lowercase ) < min_length: a =toks + toks # toks_str = [t[1] for t in toks] a =[t[0] for t in toks] # Ensure consistency a =tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) if " " not in output_txt and len(__lowercase ) > 1: a =( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowercase ) ) if with_prefix_space: a =''' ''' + output_txt a =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) return output_txt, output_ids def SCREAMING_SNAKE_CASE ( self , **__A ) -> List[Any]: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) a =tokenizer('''m xxx ɪ''' , do_phonemize=__lowercase ).input_ids self.assertEqual(__lowercase , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) a =tokenizer('''m aaa ɪ ccc''' , do_phonemize=__lowercase ).input_ids self.assertEqual(__lowercase , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa a =tokenizer('''maɪ c''' , do_phonemize=__lowercase ).input_ids self.assertEqual(__lowercase , [3, 200] ) # mai should be <unk> (=3) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) a ='''Hello how are you''' a =tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) self.assertEqual(__lowercase , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) a ='''Hello how are you''' a =tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(__lowercase ).input_ids , tokenizer(__lowercase , do_phonemize=__lowercase ).input_ids ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) a ='''Hello how are you''' a =tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) a =tokenizer.decode(tokenizer(__lowercase ).input_ids ) self.assertEqual(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) a =[ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] a =tokenizer.decode(sample_ids[0] ) a =tokenizer.batch_decode(__lowercase ) self.assertEqual(__lowercase , batch_tokens[0] ) self.assertEqual(__lowercase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) a ='''Hello how are you''' a =tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) self.assertEqual(__lowercase , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) a ='''Hello how are you''' a =tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(__lowercase ).input_ids , tokenizer(__lowercase , do_phonemize=__lowercase ).input_ids ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off a =[ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter a =tokenizer.decode(sample_ids[0] ) a =tokenizer.batch_decode(__lowercase ) self.assertEqual(__lowercase , batch_tokens[0] ) self.assertEqual(__lowercase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter a =tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__lowercase ) a =tokenizer.batch_decode(__lowercase , filter_word_delimiter_token=__lowercase ) self.assertEqual(__lowercase , batch_tokens[0] ) self.assertEqual(__lowercase , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) a ='''Hello how are you''' a =tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) a =tokenizer.decode(tokenizer(__lowercase ).input_ids , filter_word_delimiter_token=__lowercase ) self.assertEqual(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) a ='''Hello how are you''' a =tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) a =tokenizer.decode(tokenizer(__lowercase ).input_ids , filter_word_delimiter_token=__lowercase ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , __lowercase ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=__lowercase ) a ='''Hello how are you''' a =tokenizer(__lowercase , phonemizer_lang='''en-us''' ).input_ids a =tokenizer(__lowercase , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(__lowercase , __lowercase ) a =tokenizer.decode(__lowercase ) a =tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(__lowercase , '''ɛ l o h aʊ a ʁ j u''' ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) a ='''Hello how Are you''' a ='''hello how are you''' a =tokenizer(__lowercase ).input_ids a =tokenizer(__lowercase ).input_ids self.assertEqual(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off a =[ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on a =tokenizer.batch_decode(__lowercase ) self.assertEqual(__lowercase , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def SCREAMING_SNAKE_CASE ( __A , __A ) -> Tuple: a =[d[key] for d in offsets] return retrieved_list def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" a =[11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on a =tokenizer.decode(__lowercase , output_char_offsets=__lowercase , filter_word_delimiter_token=__lowercase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(__lowercase , __lowercase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def SCREAMING_SNAKE_CASE ( self ) -> Any: a =self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(__A , __A ): self.assertTrue(isinstance(__lowercase , __lowercase ) ) self.assertTrue(isinstance(outputs_list[0] , __lowercase ) ) # transform list to ModelOutput a =WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(__A , __A ): if isinstance(__lowercase , __lowercase ): [recursive_check(__lowercase , __lowercase ) for la, la in zip(__lowercase , __lowercase )] self.assertEqual(__lowercase , __lowercase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off a =[ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char a =tokenizer.batch_decode(__lowercase , output_char_offsets=__lowercase ) a =[tokenizer.decode(__lowercase , output_char_offsets=__lowercase ) for ids in sample_ids] check_list_tuples_equal(__lowercase , __lowercase ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def SCREAMING_SNAKE_CASE ( self ) -> int: pass def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): a =tokenizer.vocab_size a =len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) a =['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] a =tokenizer.add_tokens(__lowercase ) a =tokenizer.vocab_size a =len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , len(__lowercase ) ) self.assertEqual(__lowercase , all_size + len(__lowercase ) ) a =tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) a ={'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} a =tokenizer.add_special_tokens(__lowercase ) a =tokenizer.vocab_size a =len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , len(__lowercase ) ) self.assertEqual(__lowercase , all_size_a + len(__lowercase ) ) a =tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def SCREAMING_SNAKE_CASE ( self ) -> Any: pass def SCREAMING_SNAKE_CASE ( self ) -> int: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. a =self.get_tokenizers(fast=__lowercase , do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): a =['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] a =tokenizer.convert_tokens_to_string(__lowercase ) self.assertIsInstance(output['''text'''] , __lowercase )
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase_ : Union[str, Any] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCamelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
0
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
37
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : List[str] = {"""tokenizer_file""": """tokenizer.json"""} lowercase__ : List[str] = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] _SCREAMING_SNAKE_CASE = None def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE_ : Optional[int]="<s>" , SCREAMING_SNAKE_CASE_ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE_ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : Any=False , **SCREAMING_SNAKE_CASE_ : Any , ): super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: lowerCAmelCase_ : str = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) lowerCAmelCase_ : str = add_prefix_space lowerCAmelCase_ : str = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = add_prefix_space def SCREAMING_SNAKE_CASE__ ( self : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Tuple ): lowerCAmelCase_ : List[Any] = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" ' pretokenized inputs.' ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Any , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : List[Any] = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" ' pretokenized inputs.' ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): lowerCAmelCase_ : Optional[int] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : "Conversation" ): lowerCAmelCase_ : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [self.eos_token_id] ) if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length: lowerCAmelCase_ : Any = input_ids[-self.model_max_length :] return input_ids
224
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __a :str = pytest.mark.integration @pytest.mark.parametrize("path" ,["paws", "csv"] ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : str ): """simple docstring""" inspect_dataset(__UpperCamelCase ,__UpperCamelCase ) A_ = path + ".py" assert script_name in os.listdir(__UpperCamelCase ) assert "__pycache__" not in os.listdir(__UpperCamelCase ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" ,["accuracy"] ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Tuple ): """simple docstring""" inspect_metric(__UpperCamelCase ,__UpperCamelCase ) A_ = path + ".py" assert script_name in os.listdir(__UpperCamelCase ) assert "__pycache__" not in os.listdir(__UpperCamelCase ) @pytest.mark.parametrize( "path, config_name, expected_splits" ,[ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] ,) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Dict ): """simple docstring""" A_ = get_dataset_config_info(__UpperCamelCase ,config_name=__UpperCamelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" ,[ ("paws", None, ValueError), ] ,) def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" with pytest.raises(__UpperCamelCase ): get_dataset_config_info(__UpperCamelCase ,config_name=__UpperCamelCase ) @pytest.mark.parametrize( "path, expected" ,[ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] ,) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple ): """simple docstring""" A_ = get_dataset_config_names(__UpperCamelCase ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" ,[ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] ,) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : Any ): """simple docstring""" A_ = get_dataset_infos(__UpperCamelCase ) assert list(infos.keys() ) == expected_configs A_ = expected_configs[0] assert expected_config in infos A_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" ,[ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] ,) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ): """simple docstring""" A_ = get_dataset_infos(__UpperCamelCase ) assert expected_config in infos A_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" ,[ ("paws", None, ValueError), ] ,) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Dict ,__UpperCamelCase : Optional[int] ): """simple docstring""" with pytest.raises(__UpperCamelCase ): get_dataset_split_names(__UpperCamelCase ,config_name=__UpperCamelCase )
355
import math __a :Union[str, Any] = 10 __a :Union[str, Any] = 7 __a :int = BALLS_PER_COLOUR * NUM_COLOURS def __snake_case ( __UpperCamelCase : int = 20 ): """simple docstring""" A_ = math.comb(__UpperCamelCase ,__UpperCamelCase ) A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase ) A_ = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
329
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( _lowerCamelCase ): snake_case_ : Union[str, Any] = 0 snake_case_ : Optional[Any] = False snake_case_ : Dict = 3.0 class __lowerCAmelCase ( unittest.TestCase ): def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCamelCase ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() _UpperCAmelCase = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _UpperCAmelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _UpperCamelCase ) @require_multi_gpu def UpperCamelCase ( self : Tuple ): """simple docstring""" _UpperCAmelCase = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ : Optional[int] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowercase_ : Optional[int] = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ : Dict = torch.nn.Linear(1_00, 2_00) lowercase_ : int = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ : Optional[Any] = '' lowercase_ : int = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
133
def _a ( lowerCamelCase: int = 2_00 ) -> int: '''simple docstring''' __A = [1, 2, 5, 10, 20, 50, 1_00, 2_00] __A = [0] * (pence + 1) __A = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
117
0
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar _A : Tuple =TypeVar('''T''') def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: return (position - 1) // 2 def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> List[Any]: return (2 * position) + 1 def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> List[str]: return (2 * position) + 2 class _lowercase ( Generic[T] ): def __init__( self: Tuple ): lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Dict = {} lowerCamelCase__ : Dict = 0 def __len__( self: str ): return self.elements def __repr__( self: Optional[Any] ): return str(self.heap ) def lowerCamelCase_ ( self: Dict ): return self.elements == 0 def lowerCamelCase_ ( self: str , UpperCamelCase__: List[Any] , UpperCamelCase__: int ): self.heap.append((elem, weight) ) lowerCamelCase__ : Tuple = self.elements self.elements += 1 self._bubble_up(a__ ) def lowerCamelCase_ ( self: Optional[int] ): if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.heap[0] self._bubble_down(a__ ) return elem def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: str ): lowerCamelCase__ : str = self.position_map[elem] lowerCamelCase__ : List[str] = (elem, weight) if position > 0: lowerCamelCase__ : List[str] = get_parent_position(a__ ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(a__ ) else: self._bubble_down(a__ ) else: self._bubble_down(a__ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : Dict = self.position_map[elem] if curr_pos == 0: return None lowerCamelCase__ : str = get_parent_position(a__ ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.heap[curr_pos] lowerCamelCase__ , lowerCamelCase__ : List[str] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(a__ , a__ ) return self._bubble_up(a__ ) return None def lowerCamelCase_ ( self: int , UpperCamelCase__: List[str] ): lowerCamelCase__ : Union[str, Any] = self.position_map[elem] lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.heap[curr_pos] lowerCamelCase__ : str = get_child_left_position(a__ ) lowerCamelCase__ : Optional[int] = get_child_right_position(a__ ) if child_left_position < self.elements and child_right_position < self.elements: lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.heap[child_left_position] lowerCamelCase__ , lowerCamelCase__ : Dict = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(a__ , a__ ) return self._bubble_down(a__ ) if child_left_position < self.elements: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(a__ , a__ ) return self._bubble_down(a__ ) else: return None if child_right_position < self.elements: lowerCamelCase__ , lowerCamelCase__ : List[str] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(a__ , a__ ) return self._bubble_down(a__ ) return None def lowerCamelCase_ ( self: Any , UpperCamelCase__: str , UpperCamelCase__: str ): lowerCamelCase__ : List[Any] = self.heap[nodea_pos][0] lowerCamelCase__ : List[Any] = self.heap[nodea_pos][0] lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowerCamelCase__ : Optional[int] = nodea_pos lowerCamelCase__ : Any = nodea_pos class _lowercase ( Generic[T] ): def __init__( self: List[Any] ): lowerCamelCase__ : Optional[Any] = {} lowerCamelCase__ : List[Any] = 0 def __repr__( self: Dict ): return str(self.connections ) def __len__( self: int ): return self.nodes def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Any ): if node not in self.connections: lowerCamelCase__ : Union[str, Any] = {} self.nodes += 1 def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Any , UpperCamelCase__: int ): self.add_node(a__ ) self.add_node(a__ ) lowerCamelCase__ : Dict = weight lowerCamelCase__ : Tuple = weight def SCREAMING_SNAKE_CASE_ (UpperCamelCase , ) -> Tuple: lowerCamelCase__ : Tuple = {node: maxsize for node in graph.connections} lowerCamelCase__ : Tuple = {node: None for node in graph.connections} lowerCamelCase__ : Optional[Any] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(UpperCamelCase , UpperCamelCase ) if priority_queue.is_empty(): return dist, parent # initialization lowerCamelCase__ : Optional[Any] = priority_queue.extract_min() lowerCamelCase__ : List[Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCamelCase__ : Union[str, Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCamelCase , dist[neighbour] ) lowerCamelCase__ : Dict = node # running prim's algorithm while not priority_queue.is_empty(): lowerCamelCase__ : List[Any] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCamelCase__ : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCamelCase , dist[neighbour] ) lowerCamelCase__ : List[Any] = node return dist, parent
354
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _A : Union[str, Any] =8 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=BITS ) -> Tuple: lowerCamelCase__ : List[str] = x.device lowerCamelCase__ : Any = (x * 255).int().clamp(0 , 255 ) lowerCamelCase__ : Optional[int] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase ) lowerCamelCase__ : int = rearrange(UpperCamelCase , """d -> d 1 1""" ) lowerCamelCase__ : List[str] = rearrange(UpperCamelCase , """b c h w -> b c 1 h w""" ) lowerCamelCase__ : Tuple = ((x & mask) != 0).float() lowerCamelCase__ : List[Any] = rearrange(UpperCamelCase , """b c d h w -> b (c d) h w""" ) lowerCamelCase__ : Optional[int] = bits * 2 - 1 return bits def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=BITS ) -> List[Any]: lowerCamelCase__ : List[Any] = x.device lowerCamelCase__ : Dict = (x > 0).int() lowerCamelCase__ : Optional[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa ) lowerCamelCase__ : List[Any] = rearrange(UpperCamelCase , """d -> d 1 1""" ) lowerCamelCase__ : List[str] = rearrange(UpperCamelCase , """b (c d) h w -> b c d h w""" , d=8 ) lowerCamelCase__ : List[Any] = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def SCREAMING_SNAKE_CASE_ (self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 0.0 , UpperCamelCase = True , UpperCamelCase=None , UpperCamelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowerCamelCase__ : Optional[int] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowerCamelCase__ : str = self.alphas_cumprod[timestep] lowerCamelCase__ : List[str] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowerCamelCase__ : Optional[int] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowerCamelCase__ : Dict = self.bit_scale if self.config.clip_sample: lowerCamelCase__ : Optional[Any] = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowerCamelCase__ : Tuple = self._get_variance(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Optional[int] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowerCamelCase__ : int = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowerCamelCase__ : Dict = model_output.device if torch.is_tensor(UpperCamelCase ) else """cpu""" lowerCamelCase__ : str = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise lowerCamelCase__ : int = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase="epsilon" , UpperCamelCase=None , UpperCamelCase = True , ) -> Union[DDPMSchedulerOutput, Tuple]: lowerCamelCase__ : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = torch.split(UpperCamelCase , sample.shape[1] , dim=1 ) else: lowerCamelCase__ : List[str] = None # 1. compute alphas, betas lowerCamelCase__ : str = self.alphas_cumprod[t] lowerCamelCase__ : List[str] = self.alphas_cumprod[t - 1] if t > 0 else self.one lowerCamelCase__ : str = 1 - alpha_prod_t lowerCamelCase__ : List[Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowerCamelCase__ : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowerCamelCase__ : Optional[Any] = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" lowerCamelCase__ : str = self.bit_scale if self.config.clip_sample: lowerCamelCase__ : List[Any] = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : Tuple = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowerCamelCase__ : Tuple = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCamelCase__ : Optional[Any] = 0 if t > 0: lowerCamelCase__ : Optional[Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device ) lowerCamelCase__ : str = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise lowerCamelCase__ : Optional[int] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) class _lowercase ( _lowercase ): def __init__( self: List[str] , UpperCamelCase__: UNetaDConditionModel , UpperCamelCase__: Union[DDIMScheduler, DDPMScheduler] , UpperCamelCase__: Optional[float] = 1.0 , ): super().__init__() lowerCamelCase__ : Optional[int] = bit_scale lowerCamelCase__ : List[Any] = ( ddim_bit_scheduler_step if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self: Union[str, Any] , UpperCamelCase__: Optional[int] = 256 , UpperCamelCase__: Optional[int] = 256 , UpperCamelCase__: Optional[int] = 50 , UpperCamelCase__: Optional[torch.Generator] = None , UpperCamelCase__: Optional[int] = 1 , UpperCamelCase__: Optional[str] = "pil" , UpperCamelCase__: bool = True , **UpperCamelCase__: int , ): lowerCamelCase__ : List[Any] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCamelCase__ , ) lowerCamelCase__ : Union[str, Any] = decimal_to_bits(UpperCamelCase__ ) * self.bit_scale lowerCamelCase__ : Union[str, Any] = latents.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowerCamelCase__ : Tuple = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : Any = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample lowerCamelCase__ : Dict = bits_to_decimal(UpperCamelCase__ ) if output_type == "pil": lowerCamelCase__ : int = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
129
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _snake_case = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' _snake_case = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' _snake_case = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def _lowerCamelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = 4 , ): """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_UpperCamelCase , hypotheses=_UpperCamelCase , min_len=_UpperCamelCase , max_len=_UpperCamelCase ) }
250
'''simple docstring''' from math import factorial def _A ( snake_case , snake_case ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(snake_case ) // (factorial(snake_case ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', F'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( 'If a class of 40 students must be arranged into groups of', F'''4 for group projects, there are {combinations(40, 4)} ways''', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', F'''are {combinations(10, 3)} ways that first, second and''', 'third place can be awarded.', )
250
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a =logging.get_logger(__name__) a ={ """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Dict = '''pix2struct_text_model''' _UpperCAmelCase : Union[str, Any] = ['''past_key_values'''] _UpperCAmelCase : str = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_0_2_4_4 ,SCREAMING_SNAKE_CASE__ : Optional[int]=7_6_8 ,SCREAMING_SNAKE_CASE__ : str=6_4 ,SCREAMING_SNAKE_CASE__ : Dict=2_0_4_8 ,SCREAMING_SNAKE_CASE__ : List[str]=1_2 ,SCREAMING_SNAKE_CASE__ : int=1_2 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=3_2 ,SCREAMING_SNAKE_CASE__ : List[str]=1_2_8 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Any=1E-6 ,SCREAMING_SNAKE_CASE__ : str=1.0 ,SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu_new" ,SCREAMING_SNAKE_CASE__ : Tuple=0 ,SCREAMING_SNAKE_CASE__ : List[str]=False ,SCREAMING_SNAKE_CASE__ : str=0 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1 ,SCREAMING_SNAKE_CASE__ : int=False ,SCREAMING_SNAKE_CASE__ : Dict=True ,**SCREAMING_SNAKE_CASE__ : Tuple ,): __lowerCamelCase : int = vocab_size __lowerCamelCase : List[str] = hidden_size __lowerCamelCase : int = d_kv __lowerCamelCase : str = d_ff __lowerCamelCase : Optional[int] = num_layers __lowerCamelCase : Optional[int] = num_heads __lowerCamelCase : Optional[Any] = relative_attention_num_buckets __lowerCamelCase : Any = relative_attention_max_distance __lowerCamelCase : int = dropout_rate __lowerCamelCase : Union[str, Any] = layer_norm_epsilon __lowerCamelCase : Optional[Any] = initializer_factor __lowerCamelCase : Optional[Any] = use_cache __lowerCamelCase : str = eos_token_id __lowerCamelCase : List[str] = decoder_start_token_id # for backwards compatibility __lowerCamelCase : int = dense_act_fn super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,decoder_start_token_id=SCREAMING_SNAKE_CASE__ ,tie_word_embeddings=SCREAMING_SNAKE_CASE__ ,is_decoder=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) @classmethod def lowerCAmelCase ( cls : str ,SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] ,**SCREAMING_SNAKE_CASE__ : Dict): cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = cls.get_config_dict(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type') == "pix2struct": __lowerCamelCase : Dict = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls ,'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[Any] = '''pix2struct_vision_model''' def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : Dict=7_6_8 ,SCREAMING_SNAKE_CASE__ : List[Any]=7_6_8 ,SCREAMING_SNAKE_CASE__ : List[Any]=2_0_4_8 ,SCREAMING_SNAKE_CASE__ : Dict=6_4 ,SCREAMING_SNAKE_CASE__ : Any=1_2 ,SCREAMING_SNAKE_CASE__ : str=1_2 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu_new" ,SCREAMING_SNAKE_CASE__ : Optional[int]=1E-6 ,SCREAMING_SNAKE_CASE__ : str=0.0 ,SCREAMING_SNAKE_CASE__ : str=0.0 ,SCREAMING_SNAKE_CASE__ : int=1E-10 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=1.0 ,SCREAMING_SNAKE_CASE__ : str=4_0_9_6 ,SCREAMING_SNAKE_CASE__ : List[Any]=3_2 ,SCREAMING_SNAKE_CASE__ : int=1_2_8 ,**SCREAMING_SNAKE_CASE__ : List[str] ,): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = hidden_size __lowerCamelCase : Any = patch_embed_hidden_size __lowerCamelCase : Any = d_ff __lowerCamelCase : Optional[Any] = dropout_rate __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Optional[int] = num_attention_heads __lowerCamelCase : Dict = initializer_range __lowerCamelCase : List[str] = initializer_factor __lowerCamelCase : Union[str, Any] = attention_dropout __lowerCamelCase : Any = layer_norm_eps __lowerCamelCase : Dict = dense_act_fn __lowerCamelCase : Tuple = seq_len __lowerCamelCase : Union[str, Any] = relative_attention_num_buckets __lowerCamelCase : Optional[Any] = relative_attention_max_distance __lowerCamelCase : Tuple = d_kv @classmethod def lowerCAmelCase ( cls : Optional[int] ,SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] ,**SCREAMING_SNAKE_CASE__ : Optional[int]): cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type') == "pix2struct": __lowerCamelCase : Tuple = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[int] = '''pix2struct''' _UpperCAmelCase : List[str] = True def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[str]=None ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1.0 ,SCREAMING_SNAKE_CASE__ : str=0.02 ,SCREAMING_SNAKE_CASE__ : Tuple=False ,SCREAMING_SNAKE_CASE__ : Optional[Any]=False ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ,**SCREAMING_SNAKE_CASE__ : List[Any] ,): super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE__ ,is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) if text_config is None: __lowerCamelCase : Any = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.') if vision_config is None: __lowerCamelCase : Union[str, Any] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.') __lowerCamelCase : Dict = PixaStructTextConfig(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = PixaStructVisionConfig(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = self.text_config.decoder_start_token_id __lowerCamelCase : Optional[int] = self.text_config.pad_token_id __lowerCamelCase : Any = self.text_config.eos_token_id __lowerCamelCase : Optional[Any] = initializer_factor __lowerCamelCase : Optional[Any] = initializer_range __lowerCamelCase : Optional[Any] = self.initializer_range __lowerCamelCase : Tuple = self.initializer_range __lowerCamelCase : Any = is_vqa @classmethod def lowerCAmelCase ( cls : Optional[int] ,SCREAMING_SNAKE_CASE__ : PixaStructTextConfig ,SCREAMING_SNAKE_CASE__ : PixaStructVisionConfig ,**SCREAMING_SNAKE_CASE__ : Dict): return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : List[Any] = copy.deepcopy(self.__dict__) __lowerCamelCase : Union[str, Any] = self.text_config.to_dict() __lowerCamelCase : Dict = self.vision_config.to_dict() __lowerCamelCase : Dict = self.__class__.model_type return output
365
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a ={ """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
113
0
'''simple docstring''' def snake_case_ (_a : Any ): UpperCAmelCase = [] UpperCAmelCase = set({'''(''', '''[''', '''{'''} ) UpperCAmelCase = set({''')''', ''']''', '''}'''} ) UpperCAmelCase = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(_a ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_a ) == 0 or (len(_a ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_a ) == 0 def snake_case_ (): UpperCAmelCase = input('''Enter sequence of brackets: ''' ) if is_balanced(_a ): print(_a , '''is balanced''' ) else: print(_a , '''is not balanced''' ) if __name__ == "__main__": main()
34
def UpperCAmelCase__ ( _A : dict ): '''simple docstring''' a__ =set() # To detect a back edge, keep track of vertices currently in the recursion stack a__ =set() return any( node not in visited and depth_first_search(_A , _A , _A , _A ) for node in graph ) def UpperCAmelCase__ ( _A : dict , _A : int , _A : set , _A : set ): '''simple docstring''' visited.add(_A ) rec_stk.add(_A ) for node in graph[vertex]: if node not in visited: if depth_first_search(_A , _A , _A , _A ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_A ) return False if __name__ == "__main__": from doctest import testmod testmod()
188
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = """▁""" _A = {"""vocab_file""": """spiece.model"""} _A = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } _A = { """google/reformer-crime-and-punishment""": 52_42_88, } class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__(self , _lowerCamelCase , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase=[] , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) UpperCAmelCase__ : str = vocab_file UpperCAmelCase__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def _a (self ): """simple docstring""" return self.sp_model.get_piece_size() def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): """simple docstring""" UpperCAmelCase__ : Dict = self.__dict__.copy() UpperCAmelCase__ : List[str] = None return state def __setstate__(self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase__ : int = {} UpperCAmelCase__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a (self , _lowerCamelCase ): """simple docstring""" return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _a (self , _lowerCamelCase ): """simple docstring""" return self.sp_model.piece_to_id(_lowerCamelCase ) def _a (self , _lowerCamelCase ): """simple docstring""" if index < self.sp_model.get_piece_size(): UpperCAmelCase__ : List[Any] = self.sp_model.IdToPiece(_lowerCamelCase ) return token def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : int = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token UpperCAmelCase__ : Union[str, Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ : Union[str, Any] = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , """wb""" ) as fi: UpperCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
166
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _A = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , ): """simple docstring""" UpperCAmelCase__ : Dict = [file for file in os.listdir(_lowerCamelCase ) if os.path.isfile(os.path.join(_lowerCamelCase , _lowerCamelCase ) )] if identifier is not None: UpperCAmelCase__ : List[str] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_lowerCamelCase , _lowerCamelCase ): for n_ in n_identifier: UpperCAmelCase__ : Optional[int] = [file for file in files if n_ not in file] else: UpperCAmelCase__ : List[Any] = [file for file in files if n_identifier not in file] UpperCAmelCase__ : str = ignore_files or [] ignore_files.append("""__init__.py""" ) UpperCAmelCase__ : Any = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , _lowerCamelCase ) if only_modules: UpperCAmelCase__ : List[str] = file.split(""".""" )[0] try: UpperCAmelCase__ : Any = getattr(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Optional[int] = doctest.DocTestSuite(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = unittest.TextTestRunner().run(_lowerCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase__ : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = Path("""src/transformers""" ) UpperCAmelCase__ : Union[str, Any] = """modeling""" UpperCAmelCase__ : int = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(_lowerCamelCase , identifier=_lowerCamelCase , ignore_files=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = Path("""src/transformers""" ) UpperCAmelCase__ : List[Any] = """tokenization""" self.analyze_directory(_lowerCamelCase , identifier=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : int = Path("""src/transformers""" ) UpperCAmelCase__ : Optional[int] = """configuration""" self.analyze_directory(_lowerCamelCase , identifier=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = Path("""src/transformers""" ) UpperCAmelCase__ : List[Any] = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(_lowerCamelCase , n_identifier=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = Path("""docs/source""" ) UpperCAmelCase__ : str = ["""favicon.ico"""] self.analyze_directory(_lowerCamelCase , ignore_files=_lowerCamelCase , only_modules=_lowerCamelCase )
166
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
271
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
90
0
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: if isinstance(UpperCAmelCase__, collections.abc.Iterable ): return x return (x, x) @require_flax class A__ : def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' pass def snake_case_ ( self ) -> Tuple: '''simple docstring''' pass def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = np.abs((a - b) ).max() self.assertLessEqual(UpperCamelCase__ , UpperCamelCase__ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase__ , UpperCamelCase__ ) A_ = FlaxVisionTextDualEncoderModel(UpperCamelCase__ ) A_ = model(input_ids=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ , A_ = self.get_vision_text_model(UpperCamelCase__ , UpperCamelCase__ ) A_ = {"""vision_model""": vision_model, """text_model""": text_model} A_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase__ ) A_ = model(input_ids=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ , A_ = self.get_vision_text_model(UpperCamelCase__ , UpperCamelCase__ ) A_ = {"""vision_model""": vision_model, """text_model""": text_model} A_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase__ ) A_ = model(input_ids=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ ) A_ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ ) A_ = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase__ ) A_ = model(input_ids=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ ) A_ = after_output[0] A_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase__ , 1e-3 ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , **UpperCamelCase__ ) -> int: '''simple docstring''' A_ , A_ = self.get_vision_text_model(UpperCamelCase__ , UpperCamelCase__ ) A_ = {"""vision_model""": vision_model, """text_model""": text_model} A_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase__ ) A_ = model( input_ids=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , output_attentions=UpperCamelCase__ ) A_ = output.vision_model_output.attentions self.assertEqual(len(UpperCamelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A_ = to_atuple(vision_model.config.image_size ) A_ = to_atuple(vision_model.config.patch_size ) A_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A_ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A_ = output.text_model_output.attentions self.assertEqual(len(UpperCamelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' pt_model.to(UpperCamelCase__ ) pt_model.eval() # prepare inputs A_ = inputs_dict A_ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): A_ = pt_model(**UpperCamelCase__ ).to_tuple() A_ = fx_model(**UpperCamelCase__ ).to_tuple() self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(UpperCamelCase__ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCamelCase__ ) A_ = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase__ , from_pt=UpperCamelCase__ ) A_ = fx_model_loaded(**UpperCamelCase__ ).to_tuple() self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(UpperCamelCase__ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCamelCase__ ) A_ = VisionTextDualEncoderModel.from_pretrained(UpperCamelCase__ , from_flax=UpperCamelCase__ ) pt_model_loaded.to(UpperCamelCase__ ) pt_model_loaded.eval() with torch.no_grad(): A_ = pt_model_loaded(**UpperCamelCase__ ).to_tuple() self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(UpperCamelCase__ , pt_output_loaded.numpy() , 4e-2 ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase__ , UpperCamelCase__ ) A_ = VisionTextDualEncoderModel(UpperCamelCase__ ) A_ = FlaxVisionTextDualEncoderModel(UpperCamelCase__ ) A_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCamelCase__ ) A_ = fx_state self.check_pt_flax_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase__ , UpperCamelCase__ ) A_ = VisionTextDualEncoderModel(UpperCamelCase__ ) A_ = FlaxVisionTextDualEncoderModel(UpperCamelCase__ ) A_ = load_flax_weights_in_pytorch_model(UpperCamelCase__ , fx_model.params ) self.check_pt_flax_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.prepare_config_and_inputs() self.check_save_load(**UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**UpperCamelCase__ ) @is_pt_flax_cross_test def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.prepare_config_and_inputs() A_ = config_inputs_dict.pop("""vision_config""" ) A_ = config_inputs_dict.pop("""text_config""" ) A_ = config_inputs_dict self.check_equivalence_pt_to_flax(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.check_equivalence_flax_to_pt(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ , A_ = self.get_pretrained_model_and_inputs() A_ = model_a(**UpperCamelCase__ ) A_ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(UpperCamelCase__ ) A_ = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase__ ) A_ = model_a(**UpperCamelCase__ ) A_ = after_outputs[0] A_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase__ , 1e-5 ) @require_flax class A__ ( _snake_case , unittest.TestCase ): def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=UpperCamelCase__ , text_from_pt=UpperCamelCase__ , ) A_ = 13 A_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) A_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) A_ = random_attention_mask([batch_size, 4] ) A_ = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = FlaxViTModel(UpperCamelCase__ ) A_ = FlaxBertModel(UpperCamelCase__ ) return vision_model, text_model def snake_case_ ( self ) -> str: '''simple docstring''' A_ = FlaxViTModelTester(self ) A_ = FlaxBertModelTester(self ) A_ = vit_model_tester.prepare_config_and_inputs() A_ = bert_model_tester.prepare_config_and_inputs() A_ , A_ = vision_config_and_inputs A_ , A_ , A_ , A_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class A__ ( _snake_case , unittest.TestCase ): def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=UpperCamelCase__ , text_from_pt=UpperCamelCase__ , ) A_ = 13 A_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) A_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) A_ = random_attention_mask([batch_size, 4] ) A_ = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = FlaxCLIPVisionModel(UpperCamelCase__ ) A_ = FlaxBertModel(UpperCamelCase__ ) return vision_model, text_model def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = FlaxCLIPVisionModelTester(self ) A_ = FlaxBertModelTester(self ) A_ = clip_model_tester.prepare_config_and_inputs() A_ = bert_model_tester.prepare_config_and_inputs() A_ , A_ = vision_config_and_inputs A_ , A_ , A_ , A_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) A_ = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) A_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A_ = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors="""np""" ) A_ = model(**UpperCamelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A_ = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , UpperCamelCase__ , atol=1e-3 ) )
101
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class A__ ( _snake_case ): lowercase = 42 lowercase = 42 class A__ ( nn.Module ): lowercase = 42 lowercase = (16, 32, 96, 256) lowercase = jnp.floataa def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) A_ = [] for i in range(len(self.block_out_channels ) - 1 ): A_ = self.block_out_channels[i] A_ = self.block_out_channels[i + 1] A_ = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) A_ = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) A_ = blocks A_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = self.conv_in(UpperCamelCase__ ) A_ = nn.silu(UpperCamelCase__ ) for block in self.blocks: A_ = block(UpperCamelCase__ ) A_ = nn.silu(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return embedding @flax_register_to_config class A__ ( nn.Module , _snake_case , _snake_case ): lowercase = 32 lowercase = 4 lowercase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase = False lowercase = (320, 640, 1_280, 1_280) lowercase = 2 lowercase = 8 lowercase = None lowercase = 1_280 lowercase = 0.0 lowercase = False lowercase = jnp.floataa lowercase = True lowercase = 0 lowercase = "rgb" lowercase = (16, 32, 96, 256) def snake_case_ ( self , UpperCamelCase__ ) -> FrozenDict: '''simple docstring''' # init input tensors A_ = (1, self.in_channels, self.sample_size, self.sample_size) A_ = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) A_ = jnp.ones((1,) , dtype=jnp.intaa ) A_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) A_ = (1, 3, self.sample_size * 8, self.sample_size * 8) A_ = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) A_ , A_ = jax.random.split(UpperCamelCase__ ) A_ = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )["params"] def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.block_out_channels A_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. A_ = self.num_attention_heads or self.attention_head_dim # input A_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time A_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) A_ = FlaxTimestepEmbedding(UpperCamelCase__ , dtype=self.dtype ) A_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) A_ = self.only_cross_attention if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = (num_attention_heads,) * len(self.down_block_types ) # down A_ = [] A_ = [] A_ = block_out_channels[0] A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) for i, down_block_type in enumerate(self.down_block_types ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": A_ = FlaxCrossAttnDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: A_ = FlaxDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCamelCase__ ) for _ in range(self.layers_per_block ): A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) if not is_final_block: A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) A_ = down_blocks A_ = controlnet_down_blocks # mid A_ = block_out_channels[-1] A_ = FlaxUNetMidBlockaDCrossAttn( in_channels=UpperCamelCase__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1.0 , UpperCamelCase__ = True , UpperCamelCase__ = False , ) -> Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' A_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": A_ = jnp.flip(UpperCamelCase__ , axis=1 ) # 1. time if not isinstance(UpperCamelCase__ , jnp.ndarray ): A_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCamelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: A_ = timesteps.astype(dtype=jnp.floataa ) A_ = jnp.expand_dims(UpperCamelCase__ , 0 ) A_ = self.time_proj(UpperCamelCase__ ) A_ = self.time_embedding(UpperCamelCase__ ) # 2. pre-process A_ = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) A_ = self.conv_in(UpperCamelCase__ ) A_ = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) A_ = self.controlnet_cond_embedding(UpperCamelCase__ ) sample += controlnet_cond # 3. down A_ = (sample,) for down_block in self.down_blocks: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ , A_ = down_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) else: A_ , A_ = down_block(UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) # 5. contronet blocks A_ = () for down_block_res_sample, controlnet_block in zip(UpperCamelCase__ , self.controlnet_down_blocks ): A_ = controlnet_block(UpperCamelCase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) A_ = controlnet_down_block_res_samples A_ = self.controlnet_mid_block(UpperCamelCase__ ) # 6. scaling A_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=UpperCamelCase__ , mid_block_res_sample=UpperCamelCase__ )
101
1
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case =get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Union[str, Any] = XLMRobertaTokenizer lowerCamelCase : Dict = XLMRobertaTokenizerFast lowerCamelCase : str = True lowerCamelCase : Optional[int] = True def __UpperCAmelCase ( self : Dict ) -> str: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = XLMRobertaTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase = '<pad>' lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(UpperCAmelCase__ ) , 1_0_0_2 ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: lowerCAmelCase = XLMRobertaTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) lowerCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __UpperCAmelCase ( self : List[Any] ) -> str: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.save_pretrained(UpperCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCAmelCase = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.from_pretrained(UpperCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase__ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(UpperCAmelCase__ , legacy_format=UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.save_pretrained(UpperCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.from_pretrained(UpperCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) shutil.rmtree(UpperCAmelCase__ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(UpperCAmelCase__ , legacy_format=UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.save_pretrained(UpperCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.from_pretrained(UpperCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) shutil.rmtree(UpperCAmelCase__ ) @cached_property def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def __UpperCAmelCase ( self : int ) -> Union[str, Any]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCAmelCase__ , f.name ) lowerCAmelCase = XLMRobertaTokenizer(f.name , keep_accents=UpperCAmelCase__ ) lowerCAmelCase = pickle.dumps(UpperCAmelCase__ ) pickle.loads(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] ) -> Dict: if not self.test_rust_tokenizer: return lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = 'I was born in 92000, and this is falsé.' lowerCAmelCase = tokenizer.tokenize(UpperCAmelCase__ ) lowerCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) lowerCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = tokenizer.encode(UpperCAmelCase__ ) lowerCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> Any: lowerCAmelCase = 'Hello World!' lowerCAmelCase = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @slow def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: lowerCAmelCase = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCAmelCase = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @slow def __UpperCAmelCase ( self : str ) -> Tuple: # fmt: off lowerCAmelCase = {'input_ids': [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
4
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase ) -> None: create_state_space_tree(UpperCAmelCase , [] , 0 , [0 for i in range(len(UpperCAmelCase ) )] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> None: if index == len(UpperCAmelCase ): print(UpperCAmelCase ) return for i in range(len(UpperCAmelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case_ = True create_state_space_tree(UpperCAmelCase , UpperCAmelCase , index + 1 , UpperCAmelCase ) current_sequence.pop() snake_case_ = False __UpperCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) __UpperCamelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
69
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
365
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A = random.Random() def snake_case_(_UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ) -> Optional[int]: """simple docstring""" if rng is None: _snake_case = global_rng _snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase_ ( unittest.TestCase ): def __init__( self : List[Any] , A__ : List[Any] , A__ : int=7 , A__ : Tuple=400 , A__ : int=2000 , A__ : Any=2048 , A__ : List[Any]=128 , A__ : Optional[int]=1 , A__ : Optional[Any]=512 , A__ : Any=30 , A__ : Any=44100 , ) -> int: _snake_case = parent _snake_case = batch_size _snake_case = min_seq_length _snake_case = max_seq_length _snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _snake_case = spectrogram_length _snake_case = feature_size _snake_case = num_audio_channels _snake_case = hop_length _snake_case = chunk_length _snake_case = sampling_rate def UpperCamelCase_ ( self : str ) -> Optional[int]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCamelCase_ ( self : Any , A__ : Any=False , A__ : List[str]=False ) -> Tuple: def _flatten(A__ : List[str] ): return list(itertools.chain(*A__ ) ) if equal_length: _snake_case = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _snake_case = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case = [np.asarray(A__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = TvltFeatureExtractor def UpperCamelCase_ ( self : Dict ) -> List[str]: _snake_case = TvltFeatureExtractionTester(self ) def UpperCamelCase_ ( self : int ) -> Optional[int]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A__ , '''spectrogram_length''' ) ) self.assertTrue(hasattr(A__ , '''feature_size''' ) ) self.assertTrue(hasattr(A__ , '''num_audio_channels''' ) ) self.assertTrue(hasattr(A__ , '''hop_length''' ) ) self.assertTrue(hasattr(A__ , '''chunk_length''' ) ) self.assertTrue(hasattr(A__ , '''sampling_rate''' ) ) def UpperCamelCase_ ( self : Any ) -> Union[str, Any]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = feat_extract_first.save_pretrained(A__ )[0] check_json_file_has_correct_format(A__ ) _snake_case = self.feature_extraction_class.from_pretrained(A__ ) _snake_case = feat_extract_first.to_dict() _snake_case = feat_extract_second.to_dict() _snake_case = dict_first.pop('''mel_filters''' ) _snake_case = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(A__ , A__ ) ) self.assertEqual(A__ , A__ ) def UpperCamelCase_ ( self : int ) -> Union[str, Any]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = os.path.join(A__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(A__ ) _snake_case = self.feature_extraction_class.from_json_file(A__ ) _snake_case = feat_extract_first.to_dict() _snake_case = feat_extract_second.to_dict() _snake_case = dict_first.pop('''mel_filters''' ) _snake_case = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(A__ , A__ ) ) self.assertEqual(A__ , A__ ) def UpperCamelCase_ ( self : Union[str, Any] ) -> Any: # Initialize feature_extractor _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _snake_case = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _snake_case = [np.asarray(A__ ) for speech_input in speech_inputs] # Test not batched input _snake_case = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _snake_case = feature_extractor(A__ , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _snake_case = feature_extractor( A__ , return_tensors='''np''' , sampling_rate=44100 , mask_audio=A__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _snake_case = [floats_list((1, x) )[0] for x in (800, 800, 800)] _snake_case = np.asarray(A__ ) _snake_case = feature_extractor(A__ , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCamelCase_ ( self : Optional[Any] , A__ : Any ) -> Optional[int]: _snake_case = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _snake_case = ds.sort('''id''' ).select(range(A__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCamelCase_ ( self : List[str] ) -> Optional[Any]: _snake_case = self._load_datasamples(1 ) _snake_case = TvltFeatureExtractor() _snake_case = feature_extractor(A__ , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _snake_case = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , A__ , atol=1e-4 ) )
278
0
snake_case__ : str = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on snake_case__ : str = {value: key for key, value in MORSE_CODE_DICT.items()} def _a ( lowerCamelCase: str ) -> str: '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def _a ( lowerCamelCase: str ) -> str: '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def _a ( ) -> None: '''simple docstring''' __A = '''Morse code here!''' print(a__ ) __A = encrypt(a__ ) print(a__ ) __A = decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
117
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ :str = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Union[str, Any] = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCAmelCase__ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
329
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( lowerCAmelCase_ ): A_ = (DEISMultistepScheduler,) A_ = (("num_inference_steps", 25),) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' __a : Union[str, Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**__a ) return config def __UpperCAmelCase ( self , __a=0 , **__a ): '''simple docstring''' __a : Optional[int] = dict(self.forward_default_kwargs ) __a : Dict = kwargs.pop('num_inference_steps' , __a ) __a : List[Any] = self.dummy_sample __a : Tuple = 0.1 * sample __a : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __a : int = self.get_scheduler_config(**__a ) __a : Optional[Any] = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals __a : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) __a : Dict = scheduler_class.from_pretrained(__a ) new_scheduler.set_timesteps(__a ) # copy over dummy past residuals __a : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __a , __a : Optional[Any] = sample, sample for t in range(__a , time_step + scheduler.config.solver_order + 1 ): __a : List[str] = scheduler.step(__a , __a , __a , **__a ).prev_sample __a : Dict = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self , __a=0 , **__a ): '''simple docstring''' __a : Dict = dict(self.forward_default_kwargs ) __a : Tuple = kwargs.pop('num_inference_steps' , __a ) __a : Optional[Any] = self.dummy_sample __a : Any = 0.1 * sample __a : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __a : Any = self.get_scheduler_config() __a : int = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals (must be after setting timesteps) __a : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) __a : Any = scheduler_class.from_pretrained(__a ) # copy over dummy past residuals new_scheduler.set_timesteps(__a ) # copy over dummy past residual (must be after setting timesteps) __a : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __a : List[str] = scheduler.step(__a , __a , __a , **__a ).prev_sample __a : Tuple = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self , __a=None , **__a ): '''simple docstring''' if scheduler is None: __a : str = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config(**__a ) __a : str = scheduler_class(**__a ) __a : Optional[int] = self.scheduler_classes[0] __a : Any = self.get_scheduler_config(**__a ) __a : Optional[int] = scheduler_class(**__a ) __a : List[Any] = 10 __a : Any = self.dummy_model() __a : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.timesteps ): __a : Optional[Any] = model(__a , __a ) __a : Union[str, Any] = scheduler.step(__a , __a , __a ).prev_sample return sample def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = dict(self.forward_default_kwargs ) __a : Optional[int] = kwargs.pop('num_inference_steps' , __a ) for scheduler_class in self.scheduler_classes: __a : Any = self.get_scheduler_config() __a : Optional[int] = scheduler_class(**__a ) __a : List[Any] = self.dummy_sample __a : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(__a , 'set_timesteps' ): scheduler.set_timesteps(__a ) elif num_inference_steps is not None and not hasattr(__a , 'set_timesteps' ): __a : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __a : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] __a : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] __a : List[str] = scheduler.timesteps[5] __a : Optional[Any] = scheduler.timesteps[6] __a : Optional[Any] = scheduler.step(__a , __a , __a , **__a ).prev_sample __a : str = scheduler.step(__a , __a , __a , **__a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = DEISMultistepScheduler(**self.get_scheduler_config() ) __a : Optional[int] = self.full_loop(scheduler=__a ) __a : Any = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 __a : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __a : Dict = DPMSolverMultistepScheduler.from_config(scheduler.config ) __a : int = UniPCMultistepScheduler.from_config(scheduler.config ) __a : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config ) __a : str = self.full_loop(scheduler=__a ) __a : Any = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def __UpperCAmelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__a ) def __UpperCAmelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=__a ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , algorithm_type='deis' , solver_order=__a , solver_type=__a , ) def __UpperCAmelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def __UpperCAmelCase ( self ): '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , ) __a : int = self.full_loop( solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , ) assert not torch.isnan(__a ).any(), "Samples have nan numbers" def __UpperCAmelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=__a ) self.check_over_configs(lower_order_final=__a ) def __UpperCAmelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__a , time_step=0 ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.full_loop() __a : Optional[Any] = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = self.full_loop(prediction_type='v_prediction' ) __a : Any = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.scheduler_classes[0] __a : str = self.get_scheduler_config(thresholding=__a , dynamic_thresholding_ratio=0 ) __a : Dict = scheduler_class(**__a ) __a : Any = 10 __a : Tuple = self.dummy_model() __a : Tuple = self.dummy_sample_deter.half() scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.timesteps ): __a : List[Any] = model(__a , __a ) __a : List[Any] = scheduler.step(__a , __a , __a ).prev_sample assert sample.dtype == torch.floataa
294
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Tuple = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __lowercase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
294
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case : Optional[Any] = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
248
from __future__ import annotations def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[str] = str(a__) return len(a__) == 9 and set(a__) == set("""123456789""") def _UpperCAmelCase ( ): '''simple docstring''' for base_num in range(9_9_9_9 , 4_9_9_9 , -1): a_ : Dict = 1_0_0_0_0_2 * base_num if is_9_pandigital(a__): return candidate for base_num in range(3_3_3 , 9_9 , -1): a_ : Tuple = 1_0_0_2_0_0_3 * base_num if is_9_pandigital(a__): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
248
1
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self ,_snake_case ,_snake_case=13 ,_snake_case=32 ,_snake_case=2 ,_snake_case=3 ,_snake_case=16 ,_snake_case=[1, 2, 1] ,_snake_case=[2, 2, 4] ,_snake_case=2 ,_snake_case=2.0 ,_snake_case=True ,_snake_case=0.0 ,_snake_case=0.0 ,_snake_case=0.1 ,_snake_case="gelu" ,_snake_case=False ,_snake_case=True ,_snake_case=0.02 ,_snake_case=1E-5 ,_snake_case=True ,_snake_case=None ,_snake_case=True ,_snake_case=10 ,_snake_case=8 ,): UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Dict = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : List[Any] = embed_dim UpperCAmelCase_ : str = depths UpperCAmelCase_ : Dict = num_heads UpperCAmelCase_ : str = window_size UpperCAmelCase_ : int = mlp_ratio UpperCAmelCase_ : Union[str, Any] = qkv_bias UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = drop_path_rate UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Optional[int] = use_absolute_embeddings UpperCAmelCase_ : Any = patch_norm UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Tuple = is_training UpperCAmelCase_ : Any = scope UpperCAmelCase_ : Optional[Any] = use_labels UpperCAmelCase_ : Optional[int] = type_sequence_label_size UpperCAmelCase_ : int = encoder_stride def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Tuple = SwinvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__UpperCAmelCase ) UpperCAmelCase_ : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_ : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : str = self.type_sequence_label_size UpperCAmelCase_ : str = SwinvaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_ : Any = model(__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): __A : List[str] =( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __A : List[str] =( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) __A : Dict =False __A : Optional[Any] =False __A : Union[str, Any] =False __A : Optional[Any] =False def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = SwinvaModelTester(self ) UpperCAmelCase_ : Any = ConfigTester(self ,config_class=__UpperCAmelCase ,embed_dim=37 ) def UpperCamelCase__ ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase ,nn.Linear ) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(__UpperCAmelCase ) UpperCAmelCase_ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : str = [*signature.parameters.keys()] UpperCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,__UpperCAmelCase ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[Any] = True for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase ,__UpperCAmelCase ) ) UpperCAmelCase_ : str = outputs.attentions UpperCAmelCase_ : Any = len(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) ,__UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ : Dict = True UpperCAmelCase_ : int = config.window_size**2 UpperCAmelCase_ : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ : int = model(**self._prepare_for_class(__UpperCAmelCase ,__UpperCAmelCase ) ) UpperCAmelCase_ : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) ,__UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) UpperCAmelCase_ : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine UpperCAmelCase_ : Any = True UpperCAmelCase_ : Any = True UpperCAmelCase_ : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ : List[str] = model(**self._prepare_for_class(__UpperCAmelCase ,__UpperCAmelCase ) ) if hasattr(self.model_tester ,"num_hidden_states_types" ): UpperCAmelCase_ : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase_ : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states ,len(__UpperCAmelCase ) ) UpperCAmelCase_ : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) ,__UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase ,__UpperCAmelCase ) ) UpperCAmelCase_ : List[Any] = outputs.hidden_states UpperCAmelCase_ : List[Any] = getattr( self.model_tester ,"expected_num_hidden_layers" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) ,__UpperCAmelCase ) # Swinv2 has a different seq_length UpperCAmelCase_ : List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : int = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCAmelCase ) ,__UpperCAmelCase ) UpperCAmelCase_ : str = reshaped_hidden_states[0].shape UpperCAmelCase_ : Any = ( reshaped_hidden_states[0].view(__UpperCAmelCase ,__UpperCAmelCase ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase_ : int = True self.check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Tuple = True self.check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,(padded_height, padded_width) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def UpperCamelCase__ ( self ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case (unittest.TestCase): @cached_property def UpperCamelCase__ ( self ): return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( __UpperCAmelCase ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase_ : Any = image_processor(images=__UpperCAmelCase ,return_tensors="pt" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**__UpperCAmelCase ) # verify the logits UpperCAmelCase_ : int = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,__UpperCAmelCase ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__UpperCAmelCase ,atol=1E-4 ) )
366
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Tuple = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = val def a__ ( _SCREAMING_SNAKE_CASE : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Dict = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ : Optional[int] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase_ : Union[str, Any] = value else: UpperCAmelCase_ : int = value return new_state_dict def a__ ( _SCREAMING_SNAKE_CASE : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ : str = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : List[Any] = in_proj_weight[:2_56, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[:2_56] UpperCAmelCase_ : Dict = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ : Dict = in_proj_bias[2_56:5_12] UpperCAmelCase_ : int = in_proj_weight[-2_56:, :] UpperCAmelCase_ : Dict = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : str = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[:2_56, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[:2_56] UpperCAmelCase_ : Optional[Any] = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ : List[str] = in_proj_bias[2_56:5_12] UpperCAmelCase_ : Optional[int] = in_proj_weight[-2_56:, :] UpperCAmelCase_ : List[Any] = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ : int = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) UpperCAmelCase_ : Union[str, Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ : List[str] = in_proj_weight_cross_attn[:2_56, :] UpperCAmelCase_ : Dict = in_proj_bias_cross_attn[:2_56] UpperCAmelCase_ : List[Any] = in_proj_weight_cross_attn[2_56:5_12, :] UpperCAmelCase_ : int = in_proj_bias_cross_attn[2_56:5_12] UpperCAmelCase_ : int = in_proj_weight_cross_attn[-2_56:, :] UpperCAmelCase_ : str = in_proj_bias_cross_attn[-2_56:] def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image.size UpperCAmelCase_ : int = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = 8_00 if "detection" in checkpoint_url else 10_00 UpperCAmelCase_ : str = target_max_size / current_max_size UpperCAmelCase_ : Tuple = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = F.to_tensor(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = F.normalize(_SCREAMING_SNAKE_CASE , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" logger.info("Converting model..." ) # load original state dict UpperCAmelCase_ : Union[str, Any] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = rename_backbone_keys(_SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(_SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ : Any = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ : Optional[Any] = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = val # create HuggingFace model and load state dict UpperCAmelCase_ : str = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCAmelCase_ : str = 15 UpperCAmelCase_ : str = 2 UpperCAmelCase_ : Union[str, Any] = {0: "table", 1: "table rotated"} UpperCAmelCase_ : Tuple = idalabel UpperCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} else: UpperCAmelCase_ : Tuple = 1_25 UpperCAmelCase_ : Tuple = 6 UpperCAmelCase_ : Union[str, Any] = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } UpperCAmelCase_ : str = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = DetrImageProcessor( format="coco_detection" , max_size=8_00 if "detection" in checkpoint_url else 10_00 ) UpperCAmelCase_ : Optional[int] = TableTransformerForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # verify our conversion UpperCAmelCase_ : Optional[Any] = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" UpperCAmelCase_ : Dict = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = Image.open(_SCREAMING_SNAKE_CASE ).convert("RGB" ) UpperCAmelCase_ : int = normalize(resize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) UpperCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) if "detection" in checkpoint_url: UpperCAmelCase_ : Any = (1, 15, 3) UpperCAmelCase_ : Optional[int] = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) UpperCAmelCase_ : Dict = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: UpperCAmelCase_ : Union[str, Any] = (1, 1_25, 7) UpperCAmelCase_ : List[str] = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) UpperCAmelCase_ : Any = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) UpperCAmelCase_ : List[str] = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowerCamelCase = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
67
0
'''simple docstring''' def lowercase__ ( __lowercase : float , __lowercase : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__lowercase ) , __lowercase ) return number - int(__lowercase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
53
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Union[str, Any] = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] A_ : int = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = torch.load(lowerCAmelCase_ , map_location="""cpu""" ) return sd def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=rename_keys_prefix )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any = OrderedDict() _UpperCAmelCase : Any = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _UpperCAmelCase : Dict = key for name_pair in rename_keys_prefix: _UpperCAmelCase : str = new_key.replace(name_pair[0] , name_pair[1] ) _UpperCAmelCase : str = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _UpperCAmelCase : int = new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: _UpperCAmelCase : Optional[int] = """pretraining""" if "vcr" in checkpoint_path: _UpperCAmelCase : Optional[int] = {"""visual_embedding_dim""": 512} elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase : List[Any] = {"""visual_embedding_dim""": 2048} elif "vqa" in checkpoint_path: _UpperCAmelCase : Any = {"""visual_embedding_dim""": 2048} elif "nlvr" in checkpoint_path: _UpperCAmelCase : Any = {"""visual_embedding_dim""": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: _UpperCAmelCase : str = {"""visual_embedding_dim""": 512} _UpperCAmelCase : int = """multichoice""" elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase : str = {"""visual_embedding_dim""": 2048} _UpperCAmelCase : int = """vqa_advanced""" elif "vqa" in checkpoint_path: _UpperCAmelCase : List[str] = {"""visual_embedding_dim""": 2048, """num_labels""": 3129} _UpperCAmelCase : int = """vqa""" elif "nlvr" in checkpoint_path: _UpperCAmelCase : int = { """visual_embedding_dim""": 1024, """num_labels""": 2, } _UpperCAmelCase : Optional[Any] = """nlvr""" _UpperCAmelCase : int = VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict _UpperCAmelCase : Any = load_state_dict(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = get_new_dict(lowerCAmelCase_ , lowerCAmelCase_ ) if model_type == "pretraining": _UpperCAmelCase : List[str] = VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": _UpperCAmelCase : Optional[int] = VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": _UpperCAmelCase : str = VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": _UpperCAmelCase : Dict = VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") A_ : int = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
215
0
def SCREAMING_SNAKE_CASE_ ( __A : int = 60_08_51_47_51_43 ) -> int: """simple docstring""" try: a_ : Dict = int(__A ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) a_ : str = 1 a_ : int = 2 while i * i <= n: while n % i == 0: a_ : int = i n //= i i += 1 if n > 1: a_ : Any = n return int(__A ) if __name__ == "__main__": print(F'{solution() = }')
120
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : Union[str, Any] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
120
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase_ : Any = get_tests_dir('fixtures') lowerCAmelCase_ : Union[str, Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCAmelCase_ : Dict = get_tests_dir('fixtures/dummy-config.json') class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): _a = 0 def UpperCamelCase__ ( self : str ): _a = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Tuple ): _a = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: _a = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _a = AutoFeatureExtractor.from_pretrained(__a ).to_dict() config_dict.pop("feature_extractor_type" ) _a = WavaVecaFeatureExtractor(**__a ) # save in new folder model_config.save_pretrained(__a ) config.save_pretrained(__a ) _a = AutoFeatureExtractor.from_pretrained(__a ) # make sure private variable is not incorrectly saved _a = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Tuple ): _a = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] ): with self.assertRaisesRegex( __a , "bert-base is not a local folder and is not a valid model identifier" ): _a = AutoFeatureExtractor.from_pretrained("bert-base" ) def UpperCamelCase__ ( self : Optional[Any] ): with self.assertRaisesRegex( __a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _a = AutoFeatureExtractor.from_pretrained(__a , revision="aaaaaa" ) def UpperCamelCase__ ( self : List[Any] ): with self.assertRaisesRegex( __a , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): _a = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def UpperCamelCase__ ( self : List[Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__a ): _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) _a = AutoFeatureExtractor.from_pretrained(__a , trust_remote_code=__a ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def UpperCamelCase__ ( self : Any ): try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoFeatureExtractor.register(__a , __a ) # Now that the config is registered, it can be used as any other config with the auto-API _a = CustomFeatureExtractor.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) _a = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self : Tuple ): class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =True try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # If remote code is not set, the default is to use local _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(__a , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
63
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=14 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=0.02 , ) -> Any: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = rotary_dim _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = initializer_range _lowerCAmelCase = None _lowerCAmelCase = vocab_size - 1 _lowerCAmelCase = vocab_size - 1 _lowerCAmelCase = vocab_size - 1 def _snake_case ( self ) -> str: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_lowerCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(_lowerCAmelCase ) _lowerCAmelCase = model.init_cache(input_ids.shape[0] , _lowerCAmelCase ) _lowerCAmelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) _lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) _lowerCAmelCase = model( input_ids[:, -1:] , attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(_lowerCAmelCase ) _lowerCAmelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) _lowerCAmelCase = model.init_cache(input_ids.shape[0] , _lowerCAmelCase ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) _lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) _lowerCAmelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_lowerCAmelCase , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) @require_flax class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : str = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _snake_case ( self ) -> List[str]: _lowerCAmelCase = FlaxGPTJModelTester(self ) def _snake_case ( self ) -> List[str]: for model_class_name in self.all_model_classes: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> int: for model_class_name in self.all_model_classes: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @tooslow def _snake_case ( self ) -> Any: _lowerCAmelCase = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) _lowerCAmelCase = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase ) _lowerCAmelCase = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) _lowerCAmelCase = False _lowerCAmelCase = model.config.eos_token_id _lowerCAmelCase = jax.jit(model.generate ) _lowerCAmelCase = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences _lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @is_pt_flax_cross_test def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCAmelCase = getattr(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = pt_inputs["input_ids"].shape _lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowerCAmelCase ): _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = pt_model_class(_lowerCAmelCase ).eval() _lowerCAmelCase = model_class(_lowerCAmelCase , dtype=jnp.floataa ) _lowerCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowerCAmelCase ) _lowerCAmelCase = fx_state with torch.no_grad(): _lowerCAmelCase = pt_model(**_lowerCAmelCase ).to_tuple() _lowerCAmelCase = fx_model(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = model_class.from_pretrained(_lowerCAmelCase , from_pt=_lowerCAmelCase ) _lowerCAmelCase = fx_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual( len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def _snake_case ( self ) -> Dict: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCAmelCase = getattr(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = pt_model_class(_lowerCAmelCase ).eval() _lowerCAmelCase = model_class(_lowerCAmelCase , dtype=jnp.floataa ) _lowerCAmelCase = load_flax_weights_in_pytorch_model(_lowerCAmelCase , fx_model.params ) _lowerCAmelCase , _lowerCAmelCase = pt_inputs["input_ids"].shape _lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowerCAmelCase ): _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 0 _lowerCAmelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): _lowerCAmelCase = pt_model(**_lowerCAmelCase ).to_tuple() _lowerCAmelCase = fx_model(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = pt_model_class.from_pretrained(_lowerCAmelCase , from_flax=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = pt_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual( len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def _snake_case ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: _lowerCAmelCase = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) _lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
158
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __lowercase = None __lowercase = logging.get_logger(__name__) __lowercase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } __lowercase = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __lowercase = '''▁''' class _lowercase ( __a ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = AlbertTokenizer def __init__( self : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Any=False , UpperCamelCase__ : Union[str, Any]="[CLS]" , UpperCamelCase__ : Any="[SEP]" , UpperCamelCase__ : Any="<unk>" , UpperCamelCase__ : str="[SEP]" , UpperCamelCase__ : int="<pad>" , UpperCamelCase__ : Optional[Any]="[CLS]" , UpperCamelCase__ : List[str]="[MASK]" , **UpperCamelCase__ : str , ) -> Any: '''simple docstring''' __UpperCamelCase =( AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ , normalized=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , **UpperCamelCase__ , ) __UpperCamelCase =do_lower_case __UpperCamelCase =remove_space __UpperCamelCase =keep_accents __UpperCamelCase =vocab_file __UpperCamelCase =False if not self.vocab_file else True def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCamelCase =os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
370
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __lowercase = '''\ Text data. Second line of data.''' __lowercase = '''file''' @pytest.fixture(scope='''session''' ) def lowerCAmelCase (__UpperCamelCase : Any ): """simple docstring""" __UpperCamelCase =tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') __UpperCamelCase =bytes(__UpperCamelCase , '''utf-8''' ) with zstd.open(__UpperCamelCase , '''wb''' ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture def lowerCAmelCase (__UpperCamelCase : Any ): """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , __UpperCamelCase ) , '''w''' ) as f: f.write(__UpperCamelCase ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): """simple docstring""" __UpperCamelCase ={'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} __UpperCamelCase =input_paths[compression_format] __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase =DownloadConfig(cache_dir=__UpperCamelCase , extract_compressed_file=__UpperCamelCase ) __UpperCamelCase =cached_path(__UpperCamelCase , download_config=__UpperCamelCase ) with open(__UpperCamelCase ) as f: __UpperCamelCase =f.read() with open(__UpperCamelCase ) as f: __UpperCamelCase =f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def lowerCAmelCase (__UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple ): """simple docstring""" __UpperCamelCase ='''custom_cache''' __UpperCamelCase ='''custom_extracted_dir''' __UpperCamelCase =tmp_path / '''custom_extracted_path''' if default_extracted: __UpperCamelCase =('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , __UpperCamelCase ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__UpperCamelCase ) ) __UpperCamelCase =custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __UpperCamelCase =xz_file __UpperCamelCase =( DownloadConfig(extract_compressed_file=__UpperCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__UpperCamelCase ) ) __UpperCamelCase =cached_path(__UpperCamelCase , download_config=__UpperCamelCase ) assert Path(__UpperCamelCase ).parent.parts[-2:] == expected def lowerCAmelCase (__UpperCamelCase : Dict ): """simple docstring""" __UpperCamelCase =str(Path(__UpperCamelCase ).resolve() ) assert cached_path(__UpperCamelCase ) == text_file # relative path __UpperCamelCase =str(Path(__UpperCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__UpperCamelCase ) == text_file def lowerCAmelCase (__UpperCamelCase : int ): """simple docstring""" __UpperCamelCase =str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(__UpperCamelCase ): cached_path(__UpperCamelCase ) # relative path __UpperCamelCase ='''./__missing_file__.txt''' with pytest.raises(__UpperCamelCase ): cached_path(__UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : Any ): """simple docstring""" __UpperCamelCase =get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(__UpperCamelCase ) as f: __UpperCamelCase =f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __UpperCamelCase ) def lowerCAmelCase (): """simple docstring""" with pytest.raises(__UpperCamelCase ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : Dict ): """simple docstring""" __UpperCamelCase =tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__UpperCamelCase ): http_get('''https://huggingface.co''' , temp_file=__UpperCamelCase ) with pytest.raises(__UpperCamelCase ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : List[str] ): """simple docstring""" __UpperCamelCase =tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__UpperCamelCase ): ftp_get('''ftp://huggingface.co''' , temp_file=__UpperCamelCase ) with pytest.raises(__UpperCamelCase ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : Dict ): """simple docstring""" __UpperCamelCase =tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__UpperCamelCase ): fsspec_get('''s3://huggingface.co''' , temp_file=__UpperCamelCase ) with pytest.raises(__UpperCamelCase ): fsspec_head('''s3://huggingface.co''' )
85
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
201
'''simple docstring''' a_ : str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ a_ : Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] a_ : int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
55
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase__( __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = filter(lambda __SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) lowercase_ : Optional[int] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __SCREAMING_SNAKE_CASE =logging.getLogger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple ): if metric == "rouge2": lowercase_ : Union[str, Any] = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": lowercase_ : List[str] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": lowercase_ : Dict = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) lowercase_ : Dict = ModelCheckpoint( dirpath=__SCREAMING_SNAKE_CASE , filename=__SCREAMING_SNAKE_CASE , monitor=F'''val_{metric}''' , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] ): return EarlyStopping( monitor=F'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=__SCREAMING_SNAKE_CASE , verbose=__SCREAMING_SNAKE_CASE , ) class __lowerCamelCase ( pl.Callback ): def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Dict = {f'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__UpperCamelCase ) @rank_zero_only def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=True ) -> None: '''simple docstring''' logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) lowercase_ : str = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results lowercase_ : Optional[int] = Path(pl_module.hparams.output_dir ) if type_path == "test": lowercase_ : List[Any] = od / 'test_results.txt' lowercase_ : int = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowercase_ : int = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' lowercase_ : Any = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=__UpperCamelCase ) generations_file.parent.mkdir(exist_ok=__UpperCamelCase ) with open(__UpperCamelCase ,'a+' ) as writer: for key in sorted(__UpperCamelCase ): if key in ["log", "progress_bar", "preds"]: continue lowercase_ : Tuple = metrics[key] if isinstance(__UpperCamelCase ,torch.Tensor ): lowercase_ : Union[str, Any] = val.item() lowercase_ : Tuple = f'''{key}: {val:.6f}\n''' writer.write(__UpperCamelCase ) if not save_generations: return if "preds" in metrics: lowercase_ : Any = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(__UpperCamelCase ) @rank_zero_only def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' try: lowercase_ : Any = pl_module.model.model.num_parameters() except AttributeError: lowercase_ : str = pl_module.model.num_parameters() lowercase_ : List[Any] = count_trainable_parameters(__UpperCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6} ) @rank_zero_only def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' save_json(pl_module.metrics ,pl_module.metrics_save_path ) return self._write_logs(__UpperCamelCase ,__UpperCamelCase ,'test' ) @rank_zero_only def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' save_json(pl_module.metrics ,pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
365
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]: '''simple docstring''' lowercase_ : Dict = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : Any = use_input_mask lowercase_ : Optional[Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Optional[Any] = initializer_range lowercase_ : Union[str, Any] = use_labels lowercase_ : Union[str, Any] = scope def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : List[str] = None if self.use_input_mask: lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Any = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : str = self.prepare_config_and_inputs() lowercase_ : int = True lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = True lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Union[str, Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,) lowercase_ : Dict = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int: '''simple docstring''' lowercase_ : List[str] = True lowercase_ : Union[str, Any] = True lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() # first forward pass lowercase_ : str = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,) lowercase_ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase_ : int = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] lowercase_ : List[Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] # select random slice lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoderTester(self ) lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[int] = 'bert' self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Tuple = model(__UpperCamelCase )[0] lowercase_ : Dict = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : str = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Dict = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Any = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class _A( snake_case__ ): """simple docstring""" UpperCamelCase : int = '''blip_2_vision_model''' def __init__( self , _A=1408 , _A=6144 , _A=39 , _A=16 , _A=224 , _A=14 , _A="gelu" , _A=0.0_0_0_0_1 , _A=0.0 , _A=1e-1_0 , _A=True , **_A , ): super().__init__(**_A ) __A : Dict = hidden_size __A : Dict = intermediate_size __A : List[str] = num_hidden_layers __A : List[Any] = num_attention_heads __A : List[Any] = patch_size __A : List[str] = image_size __A : Optional[Any] = initializer_range __A : Optional[Any] = attention_dropout __A : List[str] = layer_norm_eps __A : Dict = hidden_act __A : List[str] = qkv_bias @classmethod def UpperCAmelCase_ ( cls , _A , **_A ): cls._set_token_in_kwargs(_A ) __A , __A : Any = cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": __A : Union[str, Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) class _A( snake_case__ ): """simple docstring""" UpperCamelCase : int = '''blip_2_qformer''' def __init__( self , _A=30522 , _A=768 , _A=12 , _A=12 , _A=3072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=0.0_2 , _A=1e-1_2 , _A=0 , _A="absolute" , _A=2 , _A=1408 , **_A , ): super().__init__(pad_token_id=_A , **_A ) __A : Any = vocab_size __A : str = hidden_size __A : Optional[Any] = num_hidden_layers __A : Any = num_attention_heads __A : Union[str, Any] = hidden_act __A : Optional[Any] = intermediate_size __A : List[str] = hidden_dropout_prob __A : Tuple = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : str = initializer_range __A : str = layer_norm_eps __A : Optional[int] = position_embedding_type __A : str = cross_attention_frequency __A : Optional[Any] = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls , _A , **_A ): cls._set_token_in_kwargs(_A ) __A , __A : Optional[int] = cls.get_config_dict(_A , **_A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": __A : str = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) class _A( snake_case__ ): """simple docstring""" UpperCamelCase : Tuple = '''blip-2''' UpperCamelCase : str = True def __init__( self , _A=None , _A=None , _A=None , _A=32 , **_A ): super().__init__(**_A ) if vision_config is None: __A : Any = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: __A : str = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: __A : Any = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __A : Dict = BlipaVisionConfig(**_A ) __A : Dict = BlipaQFormerConfig(**_A ) __A : Dict = text_config['model_type'] if 'model_type' in text_config else 'opt' __A : Union[str, Any] = CONFIG_MAPPING[text_model_type](**_A ) __A : Dict = self.text_config.tie_word_embeddings __A : str = self.text_config.is_encoder_decoder __A : Dict = num_query_tokens __A : Any = self.vision_config.hidden_size __A : List[str] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __A : Dict = 1.0 __A : str = 0.0_2 @classmethod def UpperCAmelCase_ ( cls , _A , _A , _A , **_A , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_A , ) def UpperCAmelCase_ ( self ): __A : Any = copy.deepcopy(self.__dict__ ) __A : Any = self.vision_config.to_dict() __A : Optional[Any] = self.qformer_config.to_dict() __A : Dict = self.text_config.to_dict() __A : Optional[int] = self.__class__.model_type return output
280
def _SCREAMING_SNAKE_CASE ( a ) -> bool: return str(a ) == str(a )[::-1] def _SCREAMING_SNAKE_CASE ( a ) -> int: return int(a ) + int(str(a )[::-1] ) def _SCREAMING_SNAKE_CASE ( a = 1_00_00 ) -> int: __A : int = [] for num in range(1 , a ): __A : List[str] = 0 __A : List[Any] = num while iterations < 50: __A : str = sum_reverse(a ) iterations += 1 if is_palindrome(a ): break else: lychrel_nums.append(a ) return len(a ) if __name__ == "__main__": print(F"""{solution() = }""")
280
1
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCamelCase ( snake_case__ : Optional[Any] ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_E_0_0 and cp <= 0x9_F_F_F) or (cp >= 0x3_4_0_0 and cp <= 0x4_D_B_F) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_A_6_D_F) # or (cp >= 0x2_A_7_0_0 and cp <= 0x2_B_7_3_F) # or (cp >= 0x2_B_7_4_0 and cp <= 0x2_B_8_1_F) # or (cp >= 0x2_B_8_2_0 and cp <= 0x2_C_E_A_F) # or (cp >= 0xF_9_0_0 and cp <= 0xF_A_F_F) or (cp >= 0x2_F_8_0_0 and cp <= 0x2_F_A_1_F) # ): # return True return False def UpperCamelCase ( snake_case__ : str ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: UpperCamelCase : Tuple = ord(lowerCAmelCase__ ) if not _is_chinese_char(lowerCAmelCase__ ): return 0 return 1 def UpperCamelCase ( snake_case__ : List[str] ) -> str: UpperCamelCase : int = set() for token in tokens: UpperCamelCase : List[Any] = len(lowerCAmelCase__ ) > 1 and is_chinese(lowerCAmelCase__ ) if chinese_word: word_set.add(lowerCAmelCase__ ) UpperCamelCase : Tuple = list(lowerCAmelCase__ ) return word_list def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : set() ) -> Union[str, Any]: if not chinese_word_set: return bert_tokens UpperCamelCase : str = max([len(lowerCAmelCase__ ) for w in chinese_word_set] ) UpperCamelCase : Optional[int] = bert_tokens UpperCamelCase : Optional[int] = 0, len(lowerCAmelCase__ ) while start < end: UpperCamelCase : Tuple = True if is_chinese(bert_word[start] ): UpperCamelCase : int = min(end - start , lowerCAmelCase__ ) for i in range(lowerCAmelCase__ , 1 , -1 ): UpperCamelCase : Optional[int] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase : List[str] = '''##''' + bert_word[j] UpperCamelCase : Dict = start + i UpperCamelCase : int = False break if single_word: start += 1 return bert_word def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : LTP , snake_case__ : BertTokenizer ) -> Union[str, Any]: UpperCamelCase : str = [] for i in range(0 , len(lowerCAmelCase__ ) , 100 ): UpperCamelCase : Dict = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase : str = [get_chinese_word(lowerCAmelCase__ ) for r in res] ltp_res.extend(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) UpperCamelCase : List[Any] = [] for i in range(0 , len(lowerCAmelCase__ ) , 100 ): UpperCamelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) UpperCamelCase : List[str] = [] for input_ids, chinese_word in zip(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCamelCase : Union[str, Any] = [] for id in input_ids: UpperCamelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(lowerCAmelCase__ ) input_tokens.append(lowerCAmelCase__ ) UpperCamelCase : Optional[int] = add_sub_symbol(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCamelCase : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase__ ): if token[:2] == "##": UpperCamelCase : Any = token[2:] # save chinese tokens' pos if len(lowerCAmelCase__ ) == 1 and _is_chinese_char(ord(lowerCAmelCase__ ) ): ref_id.append(lowerCAmelCase__ ) ref_ids.append(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) return ref_ids def UpperCamelCase ( snake_case__ : str ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: UpperCamelCase : Optional[Any] = f.readlines() UpperCamelCase : Tuple = [line.strip() for line in data if len(lowerCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase : str = LTP(args.ltp ) # faster in GPU device UpperCamelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase : Union[str, Any] = prepare_ref(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: UpperCamelCase : Dict = [json.dumps(lowerCAmelCase__ ) + '''\n''' for ref in ref_ids] f.writelines(lowerCAmelCase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') __UpperCAmelCase = parser.parse_args() main(args)
352
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCAmelCase = 16 __UpperCAmelCase = 32 def UpperCamelCase ( snake_case__ : Accelerator , snake_case__ : int = 16 ) -> Dict: UpperCamelCase : str = AutoTokenizer.from_pretrained('bert-base-cased' ) UpperCamelCase : str = load_dataset('glue' , 'mrpc' ) def tokenize_function(snake_case__ : Dict ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase : Optional[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase : List[str] = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase : Dict = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case__ : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase : str = 16 elif accelerator.mixed_precision != "no": UpperCamelCase : Dict = 8 else: UpperCamelCase : Union[str, Any] = None return tokenizer.pad( snake_case__ , padding='longest' , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase : Optional[int] = DataLoader( tokenized_datasets['train'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) UpperCamelCase : List[Any] = DataLoader( tokenized_datasets['validation'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCAmelCase = mocked_dataloaders # noqa: F811 def UpperCamelCase ( snake_case__ : str , snake_case__ : List[Any] ) -> List[str]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , snake_case__ ) == "1": UpperCamelCase : List[str] = 2 # New Code # UpperCamelCase : Optional[int] = int(args.gradient_accumulation_steps ) UpperCamelCase : List[str] = int(args.local_sgd_steps ) # Initialize accelerator UpperCamelCase : Optional[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=snake_case__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase : Union[str, Any] = config['lr'] UpperCamelCase : Optional[int] = int(config['num_epochs'] ) UpperCamelCase : List[Any] = int(config['seed'] ) UpperCamelCase : List[str] = int(config['batch_size'] ) UpperCamelCase : Optional[Any] = evaluate.load('glue' , 'mrpc' ) set_seed(snake_case__ ) UpperCamelCase , UpperCamelCase : int = get_dataloaders(snake_case__ , snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase : Tuple = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase : Dict = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase : List[str] = AdamW(params=model.parameters() , lr=snake_case__ ) # Instantiate scheduler UpperCamelCase : Any = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=100 , num_training_steps=(len(snake_case__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() with LocalSGD( accelerator=snake_case__ , model=snake_case__ , local_sgd_steps=snake_case__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(snake_case__ ): UpperCamelCase : int = model(**snake_case__ ) UpperCamelCase : Union[str, Any] = output.loss accelerator.backward(snake_case__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase : Dict = model(**snake_case__ ) UpperCamelCase : Any = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase : Any = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) UpperCamelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , snake_case__ ) def UpperCamelCase ( ) -> Dict: UpperCamelCase : Any = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=snake_case__ , default=snake_case__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=snake_case__ , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=snake_case__ , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) UpperCamelCase : str = parser.parse_args() UpperCamelCase : Tuple = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
103
0
'''simple docstring''' import os from distutils.util import strtobool def _lowerCamelCase ( lowercase : str , lowercase : int ) -> str: for e in env_keys: _a = int(os.environ.get(lowercase , -1 ) ) if val >= 0: return val return default def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict=False ) -> Tuple: _a = os.environ.get(lowercase , str(lowercase ) ) return strtobool(lowercase ) == 1 # As its name indicates `strtobool` actually returns an int... def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Optional[Any]="no" ) -> Tuple: _a = os.environ.get(lowercase , str(lowercase ) ) return value
63
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __A = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __A = "UperNetConfig" class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0 , _UpperCAmelCase = False , _UpperCAmelCase = 1 , ): super().__init__() lowercase__: List[Any] = nn.Convad( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , kernel_size=_UpperCAmelCase , padding=_UpperCAmelCase , bias=_UpperCAmelCase , dilation=_UpperCAmelCase , ) lowercase__: List[Any] = nn.BatchNormad(_UpperCAmelCase ) lowercase__: int = nn.ReLU() def _snake_case ( self , _UpperCAmelCase ): lowercase__: Dict = self.conv(_UpperCAmelCase ) lowercase__: Optional[int] = self.batch_norm(_UpperCAmelCase ) lowercase__: List[Any] = self.activation(_UpperCAmelCase ) return output class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() lowercase__: int = [ nn.AdaptiveAvgPoolad(_UpperCAmelCase ), UperNetConvModule(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Any = input for layer in self.layers: lowercase__: Any = layer(_UpperCAmelCase ) return hidden_state class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() lowercase__: int = pool_scales lowercase__: Optional[Any] = align_corners lowercase__: Optional[int] = in_channels lowercase__: Optional[Any] = channels lowercase__: List[Any] = [] for i, pool_scale in enumerate(_UpperCAmelCase ): lowercase__: Optional[int] = UperNetPyramidPoolingBlock(pool_scale=_UpperCAmelCase , in_channels=_UpperCAmelCase , channels=_UpperCAmelCase ) self.blocks.append(_UpperCAmelCase ) self.add_module(str(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Union[str, Any] = [] for ppm in self.blocks: lowercase__: Tuple = ppm(_UpperCAmelCase ) lowercase__: Any = nn.functional.interpolate( _UpperCAmelCase , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(_UpperCAmelCase ) return ppm_outs class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() lowercase__: Optional[int] = config lowercase__: int = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__: Optional[int] = in_channels lowercase__: List[str] = config.hidden_size lowercase__: List[str] = False lowercase__: List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowercase__: Dict = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowercase__: int = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowercase__: List[Any] = nn.ModuleList() lowercase__: Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__: int = UperNetConvModule(_UpperCAmelCase , self.channels , kernel_size=1 ) lowercase__: Dict = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_UpperCAmelCase ) self.fpn_convs.append(_UpperCAmelCase ) lowercase__: Any = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _snake_case ( self ): self.apply(self._init_weights ) def _snake_case ( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = inputs[-1] lowercase__: str = [x] psp_outs.extend(self.psp_modules(_UpperCAmelCase ) ) lowercase__: Dict = torch.cat(_UpperCAmelCase , dim=1 ) lowercase__: Tuple = self.bottleneck(_UpperCAmelCase ) return output def _snake_case ( self , _UpperCAmelCase ): # build laterals lowercase__: Dict = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_UpperCAmelCase ) ) # build top-down path lowercase__: int = len(_UpperCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase__: str = laterals[i - 1].shape[2:] lowercase__: Optional[int] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_UpperCAmelCase , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs lowercase__: str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase__: Any = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) lowercase__: int = torch.cat(_UpperCAmelCase , dim=1 ) lowercase__: Tuple = self.fpn_bottleneck(_UpperCAmelCase ) lowercase__: Dict = self.classifier(_UpperCAmelCase ) return output class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = 2 , _UpperCAmelCase = 3 , _UpperCAmelCase = 1 ): super().__init__() lowercase__: Optional[Any] = config lowercase__: Optional[Any] = config.auxiliary_in_channels lowercase__: List[Any] = config.auxiliary_channels lowercase__: Tuple = config.auxiliary_num_convs lowercase__: Any = config.auxiliary_concat_input lowercase__: Optional[int] = in_index lowercase__: Tuple = (kernel_size // 2) * dilation lowercase__: Tuple = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_UpperCAmelCase , padding=_UpperCAmelCase , dilation=_UpperCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_UpperCAmelCase , padding=_UpperCAmelCase , dilation=_UpperCAmelCase ) ) if self.num_convs == 0: lowercase__: List[Any] = nn.Identity() else: lowercase__: Union[str, Any] = nn.Sequential(*_UpperCAmelCase ) if self.concat_input: lowercase__: Dict = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_UpperCAmelCase , padding=kernel_size // 2 ) lowercase__: Union[str, Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _snake_case ( self ): self.apply(self._init_weights ) def _snake_case ( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _snake_case ( self , _UpperCAmelCase ): # just take the relevant feature maps lowercase__: Dict = encoder_hidden_states[self.in_index] lowercase__: Optional[int] = self.convs(_UpperCAmelCase ) if self.concat_input: lowercase__: Optional[int] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowercase__: Dict = self.classifier(_UpperCAmelCase ) return output class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = UperNetConfig _UpperCAmelCase :int = "pixel_values" _UpperCAmelCase :Optional[Any] = True def _snake_case ( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _snake_case ( self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = value __A = R"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __A = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,_UpperCAmelCase ,) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) lowercase__: Optional[int] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__: Any = UperNetHead(_UpperCAmelCase , in_channels=self.backbone.channels ) lowercase__: Tuple = UperNetFCNHead(_UpperCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def _snake_case ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): lowercase__: Tuple = return_dict if return_dict is not None else self.config.use_return_dict lowercase__: Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__: str = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__: List[str] = self.backbone.forward_with_filtered_kwargs( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , output_attentions=_UpperCAmelCase ) lowercase__: Tuple = outputs.feature_maps lowercase__: Union[str, Any] = self.decode_head(_UpperCAmelCase ) lowercase__: str = nn.functional.interpolate(_UpperCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_UpperCAmelCase ) lowercase__: Any = None if self.auxiliary_head is not None: lowercase__: Union[str, Any] = self.auxiliary_head(_UpperCAmelCase ) lowercase__: Tuple = nn.functional.interpolate( _UpperCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_UpperCAmelCase ) lowercase__: List[Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__: List[str] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__: Optional[Any] = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__: Tuple = (logits,) + outputs[1:] else: lowercase__: Optional[int] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
177
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __A = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __A = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __A = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> tuple[str, float]: """simple docstring""" _snake_case = len([g for position, g in enumerate(_UpperCamelCase ) if g == main_target[position]] ) return (item, float(_UpperCamelCase )) def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> tuple[str, str]: """simple docstring""" _snake_case = random.randint(0 , len(_UpperCamelCase ) - 1 ) _snake_case = parent_a[:random_slice] + parent_a[random_slice:] _snake_case = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" _snake_case = list(_UpperCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _snake_case = random.choice(_UpperCamelCase ) return "".join(_UpperCamelCase ) def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> list[str]: """simple docstring""" _snake_case = [] # Generate more children proportionally to the fitness score. _snake_case = int(parent_a[1] * 100 ) + 1 _snake_case = 10 if child_n >= 10 else child_n for _ in range(_UpperCamelCase ): _snake_case = population_score[random.randint(0 , _UpperCamelCase )][0] _snake_case, _snake_case = crossover(parent_a[0] , _UpperCamelCase ) # Append new string to the population list. pop.append(mutate(_UpperCamelCase , _UpperCamelCase ) ) pop.append(mutate(_UpperCamelCase , _UpperCamelCase ) ) return pop def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _snake_case = F"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(_UpperCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. _snake_case = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _snake_case = F"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(_UpperCamelCase ) # Generate random starting population. _snake_case = [] for _ in range(_UpperCamelCase ): population.append(''''''.join([random.choice(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. _snake_case, _snake_case = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _snake_case = [evaluate(_UpperCamelCase , _UpperCamelCase ) for item in population] # Check if there is a matching evolution. _snake_case = sorted(_UpperCamelCase , key=lambda _UpperCamelCase : x[1] , reverse=_UpperCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"""\nGeneration: {generation}""" F"""\nTotal Population:{total_population}""" F"""\nBest score: {population_score[0][1]}""" F"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _snake_case = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCamelCase ) # Normalize population score to be between 0 and 1. _snake_case = [ (item, score / len(_UpperCamelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCamelCase ): population.extend(select(population_score[int(_UpperCamelCase )] , _UpperCamelCase , _UpperCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCamelCase ) > N_POPULATION: break if __name__ == "__main__": __A = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __A = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __A , __A , __A = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
278
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" _snake_case = AlbertConfig.from_json_file(_UpperCamelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) _snake_case = AlbertForPreTraining(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _UpperCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
278
1
def A_ ( a ): """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError('List is empty' ) SCREAMING_SNAKE_CASE_ : List[Any] = sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
253
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase__ : List[str] = logging.getLogger() def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> Dict: """simple docstring""" lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Union[str, Any] = os.path.join(lowerCAmelCase__ , 'all_results.json' ) if os.path.exists(lowerCAmelCase__ ): with open(lowerCAmelCase__ , 'r' ) as f: lowerCAmelCase_ : Any = json.load(lowerCAmelCase__ ) else: raise ValueError(f"can't find {path}" ) return results lowercase__ : Optional[int] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : Any ): import xla_spawn lowerCAmelCase_ : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Optional[Any] = F"\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(SCREAMING_SNAKE_CASE_ , 'argv' , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : Optional[Any] = time() xla_spawn.main() lowerCAmelCase_ : Any = time() lowerCAmelCase_ : Dict = get_results(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_0_0 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): import xla_spawn lowerCAmelCase_ : Dict = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(SCREAMING_SNAKE_CASE_ , 'argv' , SCREAMING_SNAKE_CASE_ ): xla_spawn.main()
224
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowercase : List[str] = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowercase : Dict = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): from transformers.testing_utils import pytest_terminal_summary_main __a : Any = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(_SCREAMING_SNAKE_CASE , id=_SCREAMING_SNAKE_CASE )
294
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case_( a__ ): __UpperCamelCase = ['''image_processor''', '''tokenizer'''] __UpperCamelCase = '''FlavaImageProcessor''' __UpperCamelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Any=None , **UpperCamelCase_ : Dict ): lowerCAmelCase : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase_ , ) lowerCAmelCase : List[str] = kwargs.pop('''feature_extractor''' ) lowerCAmelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[str] = self.image_processor def __call__( self : Union[str, Any] , UpperCamelCase_ : Optional[ImageInput] = None , UpperCamelCase_ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase_ : Union[bool, str, TruncationStrategy] = False , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : int = 0 , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : List[Any] , ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCAmelCase : Optional[Any] = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) if images is not None: lowerCAmelCase : str = self.image_processor( UpperCamelCase_ , return_image_mask=UpperCamelCase_ , return_codebook_pixels=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) if text is not None and images is not None: encoding.update(UpperCamelCase_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase_ ) , tensor_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any , *UpperCamelCase_ : str , **UpperCamelCase_ : Dict ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : str ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[Any] = self.tokenizer.model_input_names lowerCAmelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase__ ( self : Union[str, Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCamelCase_ , ) return self.image_processor_class @property def lowerCamelCase__ ( self : Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCamelCase_ , ) return self.image_processor
60
class _a : """simple docstring""" def __init__( self: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Tuple=None , __lowerCamelCase: Optional[Any]=None ): '''simple docstring''' UpperCamelCase__: Any = data UpperCamelCase__: Tuple = previous UpperCamelCase__: Any = next_node def __str__( self: str ): '''simple docstring''' return F"{self.data}" def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' return self.data def UpperCAmelCase_ ( self: str ): '''simple docstring''' return self.next def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' return self.previous class _a : """simple docstring""" def __init__( self: List[str] , __lowerCamelCase: str ): '''simple docstring''' UpperCamelCase__: Optional[Any] = head def __iter__( self: Optional[int] ): '''simple docstring''' return self def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' if not self.current: raise StopIteration else: UpperCamelCase__: Tuple = self.current.get_data() UpperCamelCase__: str = self.current.get_next() return value class _a : """simple docstring""" def __init__( self: List[Any] ): '''simple docstring''' UpperCamelCase__: List[str] = None # First node in list UpperCamelCase__: str = None # Last node in list def __str__( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Dict = self.head UpperCamelCase__: int = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase__: Optional[Any] = current.get_next() return " ".join(str(__lowerCamelCase ) for node in nodes ) def __contains__( self: List[str] , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: Any = self.head while current: if current.get_data() == value: return True UpperCamelCase__: int = current.get_next() return False def __iter__( self: List[Any] ): '''simple docstring''' return LinkedListIterator(self.head ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' if self.head: return self.head.get_data() return None def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' if self.tail: return self.tail.get_data() return None def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: Node ): '''simple docstring''' if self.head is None: UpperCamelCase__: List[str] = node UpperCamelCase__: List[str] = node else: self.insert_before_node(self.head , __lowerCamelCase ) def UpperCAmelCase_ ( self: Any , __lowerCamelCase: Node ): '''simple docstring''' if self.head is None: self.set_head(__lowerCamelCase ) else: self.insert_after_node(self.tail , __lowerCamelCase ) def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: Optional[int] = Node(__lowerCamelCase ) if self.head is None: self.set_head(__lowerCamelCase ) else: self.set_tail(__lowerCamelCase ) def UpperCAmelCase_ ( self: Tuple , __lowerCamelCase: Node , __lowerCamelCase: Node ): '''simple docstring''' UpperCamelCase__: Tuple = node UpperCamelCase__: int = node.previous if node.get_previous() is None: UpperCamelCase__: List[str] = node_to_insert else: UpperCamelCase__: Union[str, Any] = node_to_insert UpperCamelCase__: Dict = node_to_insert def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: Node , __lowerCamelCase: Node ): '''simple docstring''' UpperCamelCase__: List[Any] = node UpperCamelCase__: Dict = node.next if node.get_next() is None: UpperCamelCase__: Optional[int] = node_to_insert else: UpperCamelCase__: Optional[int] = node_to_insert UpperCamelCase__: Any = node_to_insert def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: Optional[int] = 1 UpperCamelCase__: Dict = Node(__lowerCamelCase ) UpperCamelCase__: Dict = self.head while node: if current_position == position: self.insert_before_node(__lowerCamelCase , __lowerCamelCase ) return current_position += 1 UpperCamelCase__: Dict = node.next self.insert_after_node(self.tail , __lowerCamelCase ) def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: Any = self.head while node: if node.get_data() == item: return node UpperCamelCase__: str = node.get_next() raise Exception("Node not found" ) def UpperCAmelCase_ ( self: Union[str, Any] , __lowerCamelCase: Any ): '''simple docstring''' if (node := self.get_node(__lowerCamelCase )) is not None: if node == self.head: UpperCamelCase__: List[Any] = self.head.get_next() if node == self.tail: UpperCamelCase__: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(__lowerCamelCase ) @staticmethod def UpperCAmelCase_ ( __lowerCamelCase: Node ): '''simple docstring''' if node.get_next(): UpperCamelCase__: List[str] = node.previous if node.get_previous(): UpperCamelCase__: Union[str, Any] = node.next UpperCamelCase__: Union[str, Any] = None UpperCamelCase__: int = None def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' return self.head is None def lowerCAmelCase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
149
0
from __future__ import annotations import requests def __lowercase ( __lowerCAmelCase : str ): a__ = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(__lowerCAmelCase ).json() def __lowercase ( __lowerCAmelCase : int = 1_0 ): a__ = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' a__ = requests.get(__lowerCAmelCase ).json()[:max_stories] return [get_hackernews_story(__lowerCAmelCase ) for story_id in story_ids] def __lowercase ( __lowerCAmelCase : int = 1_0 ): a__ = hackernews_top_stories(__lowerCAmelCase ) return "\n".join('* [{title}]({url})'.format(**__lowerCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
360
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin snake_case : Tuple = logging.get_logger(__name__) enable_full_determinism() class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = UNetaDModel UpperCAmelCase__ : str = '''sample''' @property def lowerCamelCase__( self :Optional[int] ) -> List[str]: a__ = 4 a__ = 3 a__ = (32, 32) a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor([10] ).to(__snake_case ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__( self :Tuple ) -> Tuple: return (3, 32, 32) @property def lowerCamelCase__( self :List[str] ) -> Optional[Any]: return (3, 32, 32) def lowerCamelCase__( self :str ) -> Tuple: a__ = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } a__ = self.dummy_input return init_dict, inputs_dict class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : int = UNetaDModel UpperCAmelCase__ : Any = '''sample''' @property def lowerCamelCase__( self :Dict ) -> List[str]: a__ = 4 a__ = 4 a__ = (32, 32) a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor([10] ).to(__snake_case ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__( self :Any ) -> str: return (4, 32, 32) @property def lowerCamelCase__( self :Any ) -> Dict: return (4, 32, 32) def lowerCamelCase__( self :int ) -> int: a__ = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } a__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__( self :str ) -> Any: a__ , a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info['missing_keys'] ) ,0 ) model.to(__snake_case ) a__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' ,'This test is supposed to run on GPU' ) def lowerCamelCase__( self :Tuple ) -> Optional[int]: a__ , a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ) model.to(__snake_case ) a__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' ,'This test is supposed to run on GPU' ) def lowerCamelCase__( self :Union[str, Any] ) -> int: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` a__ , a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ) model_accelerate.to(__snake_case ) model_accelerate.eval() a__ = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) a__ = noise.to(__snake_case ) a__ = torch.tensor([10] * noise.shape[0] ).to(__snake_case ) a__ = model_accelerate(__snake_case ,__snake_case )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() a__ , a__ = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ,low_cpu_mem_usage=__snake_case ) model_normal_load.to(__snake_case ) model_normal_load.eval() a__ = model_normal_load(__snake_case ,__snake_case )['sample'] assert torch_all_close(__snake_case ,__snake_case ,rtol=1E-3 ) def lowerCamelCase__( self :str ) -> Union[str, Any]: a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(__snake_case ) a__ = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) a__ = noise.to(__snake_case ) a__ = torch.tensor([10] * noise.shape[0] ).to(__snake_case ) with torch.no_grad(): a__ = model(__snake_case ,__snake_case ).sample a__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off a__ = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(__snake_case ,__snake_case ,rtol=1E-3 ) ) class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Dict = UNetaDModel UpperCAmelCase__ : Optional[Any] = '''sample''' @property def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any]=(32, 32) ) -> Optional[int]: a__ = 4 a__ = 3 a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=__snake_case ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__( self :Tuple ) -> Optional[int]: return (3, 32, 32) @property def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: return (3, 32, 32) def lowerCamelCase__( self :Optional[Any] ) -> List[str]: a__ = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } a__ = self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase__( self :str ) -> Tuple: a__ , a__ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ,output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info['missing_keys'] ) ,0 ) model.to(__snake_case ) a__ = self.dummy_input a__ = floats_tensor((4, 3) + (2_56, 2_56) ).to(__snake_case ) a__ = noise a__ = model(**__snake_case ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase__( self :Union[str, Any] ) -> Dict: a__ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(__snake_case ) a__ = 4 a__ = 3 a__ = (2_56, 2_56) a__ = torch.ones((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor(batch_size * [1E-4] ).to(__snake_case ) with torch.no_grad(): a__ = model(__snake_case ,__snake_case ).sample a__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off a__ = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(__snake_case ,__snake_case ,rtol=1E-2 ) ) def lowerCamelCase__( self :Dict ) -> int: a__ = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(__snake_case ) a__ = 4 a__ = 3 a__ = (32, 32) a__ = torch.ones((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor(batch_size * [1E-4] ).to(__snake_case ) with torch.no_grad(): a__ = model(__snake_case ,__snake_case ).sample a__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off a__ = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(__snake_case ,__snake_case ,rtol=1E-2 ) ) def lowerCamelCase__( self :int ) -> str: # not required for this model pass
109
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class lowerCamelCase__ ( lowerCAmelCase_): '''simple docstring''' _A = None _A = None _A = None _A = None class lowerCamelCase__ ( lowerCAmelCase_): '''simple docstring''' def __init__( self :Union[str, Any] , a :int=1 , a :int=0 , a :List[str]=2 , a :List[str]=5_1_2 , a :Tuple="cls" , a :Union[str, Any]=False , a :str=True , **a :Union[str, Any] , ) -> Any: super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) __UpperCamelCase : Union[str, Any] = project_dim __UpperCamelCase : str = pooler_fn __UpperCamelCase : List[str] = learn_encoder __UpperCamelCase : int = use_attention_mask class lowerCamelCase__ ( lowerCAmelCase_): '''simple docstring''' _A = [r'''pooler''', r'''logit_scale'''] _A = [r'''position_ids''', r'''predictions.decoder.bias'''] _A = '''roberta''' _A = RobertaSeriesConfig def __init__( self :List[str] , a :Any ) -> Tuple: super().__init__(_snake_case ) __UpperCamelCase : Union[str, Any] = XLMRobertaModel(_snake_case ) __UpperCamelCase : Optional[int] = nn.Linear(config.hidden_size , config.project_dim ) __UpperCamelCase : Optional[int] = getattr(_snake_case , "has_pre_transformation" , _snake_case ) if self.has_pre_transformation: __UpperCamelCase : Union[str, Any] = nn.Linear(config.hidden_size , config.project_dim ) __UpperCamelCase : Any = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def _lowerCamelCase ( self :Dict , a :Optional[torch.Tensor] = None , a :Optional[torch.Tensor] = None , a :Optional[torch.Tensor] = None , a :Optional[torch.Tensor] = None , a :Optional[torch.Tensor] = None , a :Optional[torch.Tensor] = None , a :Optional[torch.Tensor] = None , a :Optional[torch.Tensor] = None , a :Optional[bool] = None , a :Optional[bool] = None , a :Optional[bool] = None , ) -> Optional[int]: __UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase : Any = self.base_model( input_ids=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , position_ids=_snake_case , head_mask=_snake_case , inputs_embeds=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_attentions=_snake_case , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_snake_case , ) if self.has_pre_transformation: __UpperCamelCase : Optional[int] = outputs['''hidden_states'''][-2] __UpperCamelCase : Union[str, Any] = self.pre_LN(_snake_case ) __UpperCamelCase : Optional[int] = self.transformation_pre(_snake_case ) return TransformationModelOutput( projection_state=_snake_case , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __UpperCamelCase : str = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_snake_case , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
232
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __lowerCAmelCase : Any = (3, 9, -11, 0, 7, 5, 1, -1) __lowerCAmelCase : Tuple = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __lowerCAmelCase : """simple docstring""" A__ : int A__ : Node | None class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , _snake_case : Iterable[int] ): __lowercase : Node | None = None for i in sorted(_snake_case , reverse=_snake_case ): __lowercase : List[Any] = Node(_snake_case , self.head ) def __iter__( self : str ): __lowercase : Union[str, Any] = self.head while node: yield node.data __lowercase : List[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : List[str] ): return " -> ".join([str(_snake_case ) for node in self] ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> SortedLinkedList: return SortedLinkedList(list(__lowerCAmelCase ) + list(__lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Dict = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
156
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __UpperCAmelCase ( unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = MODEL_FOR_CAUSAL_LM_MAPPING __SCREAMING_SNAKE_CASE : Union[str, Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a ( self ): snake_case_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output snake_case_ = text_generator('This is a test' , do_sample=_snake_case ) self.assertEqual( _snake_case , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) snake_case_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( _snake_case , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) snake_case_ = text_generator('This is a test' , do_sample=_snake_case , num_return_sequences=2 , return_tensors=_snake_case ) self.assertEqual( _snake_case , [ {'generated_token_ids': ANY(_snake_case )}, {'generated_token_ids': ANY(_snake_case )}, ] , ) snake_case_ = text_generator.model.config.eos_token_id snake_case_ = "<pad>" snake_case_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=_snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=_snake_case , ) self.assertEqual( _snake_case , [ [ {'generated_token_ids': ANY(_snake_case )}, {'generated_token_ids': ANY(_snake_case )}, ], [ {'generated_token_ids': ANY(_snake_case )}, {'generated_token_ids': ANY(_snake_case )}, ], ] , ) @require_tf def a ( self ): snake_case_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output snake_case_ = text_generator('This is a test' , do_sample=_snake_case ) self.assertEqual( _snake_case , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) snake_case_ = text_generator(['This is a test', 'This is a second test'] , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a ( self , snake_case , snake_case , snake_case ): snake_case_ = TextGenerationPipeline(model=_snake_case , tokenizer=_snake_case ) return text_generator, ["This is a test", "Another test"] def a ( self ): snake_case_ = "Hello I believe in" snake_case_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) snake_case_ = text_generator(_snake_case ) self.assertEqual( _snake_case , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) snake_case_ = text_generator(_snake_case , stop_sequence=' fe' ) self.assertEqual(_snake_case , [{'generated_text': 'Hello I believe in fe'}] ) def a ( self , snake_case , snake_case ): snake_case_ = text_generator.model snake_case_ = text_generator.tokenizer snake_case_ = text_generator('This is a test' ) self.assertEqual(_snake_case , [{'generated_text': ANY(_snake_case )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) snake_case_ = text_generator('This is a test' , return_full_text=_snake_case ) self.assertEqual(_snake_case , [{'generated_text': ANY(_snake_case )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) snake_case_ = pipeline(task='text-generation' , model=_snake_case , tokenizer=_snake_case , return_full_text=_snake_case ) snake_case_ = text_generator('This is a test' ) self.assertEqual(_snake_case , [{'generated_text': ANY(_snake_case )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) snake_case_ = text_generator('This is a test' , return_full_text=_snake_case ) self.assertEqual(_snake_case , [{'generated_text': ANY(_snake_case )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) snake_case_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [{'generated_text': ANY(_snake_case )}, {'generated_text': ANY(_snake_case )}], [{'generated_text': ANY(_snake_case )}, {'generated_text': ANY(_snake_case )}], ] , ) if text_generator.tokenizer.pad_token is not None: snake_case_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [{'generated_text': ANY(_snake_case )}, {'generated_text': ANY(_snake_case )}], [{'generated_text': ANY(_snake_case )}, {'generated_text': ANY(_snake_case )}], ] , ) with self.assertRaises(_snake_case ): snake_case_ = text_generator('test' , return_full_text=_snake_case , return_text=_snake_case ) with self.assertRaises(_snake_case ): snake_case_ = text_generator('test' , return_full_text=_snake_case , return_tensors=_snake_case ) with self.assertRaises(_snake_case ): snake_case_ = text_generator('test' , return_text=_snake_case , return_tensors=_snake_case ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): snake_case_ = text_generator('' ) self.assertEqual(_snake_case , [{'generated_text': ANY(_snake_case )}] ) else: with self.assertRaises((ValueError, AssertionError) ): snake_case_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. snake_case_ = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) snake_case_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_snake_case ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a ( self ): import torch # Classic `model_kwargs` snake_case_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case_ = pipe('This is a test' ) self.assertEqual( _snake_case , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) snake_case_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case_ = pipe('This is a test' ) self.assertEqual( _snake_case , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 snake_case_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) snake_case_ = pipe('This is a test' ) self.assertEqual( _snake_case , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a ( self ): import torch snake_case_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a ( self ): import torch snake_case_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=_snake_case , top_p=0.5 ) def a ( self ): snake_case_ = "Hello world" snake_case_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": snake_case_ = logging.get_logger('transformers.generation.tf_utils' ) else: snake_case_ = logging.get_logger('transformers.generation.utils' ) snake_case_ = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_snake_case ) as cl: snake_case_ = text_generator(_snake_case , max_length=10 , max_new_tokens=1 ) self.assertIn(_snake_case , cl.out ) # The user only sets one -> no warning with CaptureLogger(_snake_case ) as cl: snake_case_ = text_generator(_snake_case , max_new_tokens=1 ) self.assertNotIn(_snake_case , cl.out ) with CaptureLogger(_snake_case ) as cl: snake_case_ = text_generator(_snake_case , max_length=10 ) self.assertNotIn(_snake_case , cl.out )
351
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : int = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : int = '''canine''' def __init__( self , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=1_6384 , snake_case=16 , snake_case=0.02 , snake_case=1e-1_2 , snake_case=0 , snake_case=0xE000 , snake_case=0xE001 , snake_case=4 , snake_case=4 , snake_case=8 , snake_case=1_6384 , snake_case=128 , **snake_case , ): super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = type_vocab_size snake_case_ = layer_norm_eps # Character config: snake_case_ = downsampling_rate snake_case_ = upsampling_kernel_size snake_case_ = num_hash_functions snake_case_ = num_hash_buckets snake_case_ = local_transformer_stride
200
0