code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """M-CLIP""" def __init__( self , A=1_0_2_4 , A=7_6_8 , **A ) -> Tuple: snake_case : List[str] = transformerDimSize snake_case : Dict = imageDimSize super().__init__(**A ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = MCLIPConfig def __init__( self , A , *A , **A ) -> int: super().__init__(A , *A , **A ) snake_case : str = XLMRobertaModel(A ) snake_case : str = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def UpperCAmelCase ( self , A , A ) -> Optional[Any]: snake_case : Tuple = self.transformer(input_ids=A , attention_mask=A )[0] snake_case : Optional[Any] = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A ), embs
124
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""image_processor""", """tokenizer"""] _snake_case = """FlavaImageProcessor""" _snake_case = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , A=None , A=None , **A ) -> Tuple: snake_case : str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A , ) snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) snake_case : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A , A ) snake_case : Dict = self.image_processor def __call__( self , A = None , A = None , A = True , A = False , A = False , A = None , A = 0 , A = None , A = None , A = None , A = None , A = None , A = False , A = False , A = False , A = False , A = True , A = None , **A , ) -> Tuple: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case : str = self.tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_token_type_ids=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_length=A , verbose=A , return_tensors=A , **A , ) if images is not None: snake_case : Tuple = self.image_processor( A , return_image_mask=A , return_codebook_pixels=A , return_tensors=A , **A , ) if text is not None and images is not None: encoding.update(A ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A ) , tensor_type=A ) def UpperCAmelCase ( self , *A , **A ) -> List[str]: return self.tokenizer.batch_decode(*A , **A ) def UpperCAmelCase ( self , *A , **A ) -> int: return self.tokenizer.decode(*A , **A ) @property def UpperCAmelCase ( self ) -> str: snake_case : Any = self.tokenizer.model_input_names snake_case : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> Dict: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A , ) return self.image_processor
124
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] _lowercase : List[Any] = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def lowercase__ ( snake_case_ :Optional[Any] ): __UpperCAmelCase = torch.load(__UpperCAmelCase , map_location='''cpu''' ) return sd def lowercase__ ( snake_case_ :Dict , snake_case_ :Union[str, Any] , snake_case_ :List[Any]=rename_keys_prefix ): __UpperCAmelCase = OrderedDict() __UpperCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __UpperCAmelCase = key for name_pair in rename_keys_prefix: __UpperCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) __UpperCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __UpperCAmelCase = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :Tuple ): assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: __UpperCAmelCase = '''pretraining''' if "vcr" in checkpoint_path: __UpperCAmelCase = {'''visual_embedding_dim''': 512} elif "vqa_advanced" in checkpoint_path: __UpperCAmelCase = {'''visual_embedding_dim''': 2_048} elif "vqa" in checkpoint_path: __UpperCAmelCase = {'''visual_embedding_dim''': 2_048} elif "nlvr" in checkpoint_path: __UpperCAmelCase = {'''visual_embedding_dim''': 1_024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: __UpperCAmelCase = {'''visual_embedding_dim''': 512} __UpperCAmelCase = '''multichoice''' elif "vqa_advanced" in checkpoint_path: __UpperCAmelCase = {'''visual_embedding_dim''': 2_048} __UpperCAmelCase = '''vqa_advanced''' elif "vqa" in checkpoint_path: __UpperCAmelCase = {'''visual_embedding_dim''': 2_048, '''num_labels''': 3_129} __UpperCAmelCase = '''vqa''' elif "nlvr" in checkpoint_path: __UpperCAmelCase = { '''visual_embedding_dim''': 1_024, '''num_labels''': 2, } __UpperCAmelCase = '''nlvr''' __UpperCAmelCase = VisualBertConfig(**__UpperCAmelCase ) # Load State Dict __UpperCAmelCase = load_state_dict(__UpperCAmelCase ) __UpperCAmelCase = get_new_dict(__UpperCAmelCase , __UpperCAmelCase ) if model_type == "pretraining": __UpperCAmelCase = VisualBertForPreTraining(__UpperCAmelCase ) elif model_type == "vqa": __UpperCAmelCase = VisualBertForQuestionAnswering(__UpperCAmelCase ) elif model_type == "nlvr": __UpperCAmelCase = VisualBertForVisualReasoning(__UpperCAmelCase ) elif model_type == "multichoice": __UpperCAmelCase = VisualBertForMultipleChoice(__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # Save Checkpoints Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') _lowercase : Dict = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
356
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _UpperCAmelCase : def __init__( self : Dict , _lowercase : int , _lowercase : List[str]=13 , _lowercase : Dict=32 , _lowercase : Any=2 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=16 , _lowercase : Optional[int]=[1, 2, 1] , _lowercase : int=[2, 2, 4] , _lowercase : Optional[Any]=2 , _lowercase : Union[str, Any]=2.0 , _lowercase : Any=True , _lowercase : Optional[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : Dict=0.1 , _lowercase : str="gelu" , _lowercase : List[Any]=False , _lowercase : List[Any]=True , _lowercase : Optional[Any]=0.02 , _lowercase : str=1E-5 , _lowercase : str=True , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Any=10 , _lowercase : int=8 , _lowercase : Optional[Any]=["stage1", "stage2", "stage3"] , _lowercase : Optional[Any]=[1, 2, 3] , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = patch_norm __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = is_training __UpperCAmelCase = scope __UpperCAmelCase = use_labels __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = encoder_stride __UpperCAmelCase = out_features __UpperCAmelCase = out_indices def a ( self : int ): __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def a ( self : Dict ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : int ): __UpperCAmelCase = MaskFormerSwinModel(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase ) __UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a ( self : int , _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Dict ): __UpperCAmelCase = MaskFormerSwinBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowercase ): __UpperCAmelCase = ['''stem'''] __UpperCAmelCase = MaskFormerSwinBackbone(config=_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) a__ : Optional[int] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} a__ : List[str] = False a__ : int = False a__ : str = False a__ : str = False a__ : Any = False def a ( self : Optional[Any] ): __UpperCAmelCase = MaskFormerSwinModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=_lowercase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def a ( self : int ): pass def a ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : str ): return def a ( self : Optional[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowercase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def a ( self : List[Any] ): pass @unittest.skip('''Swin does not support feedforward chunking''' ) def a ( self : str ): pass def a ( self : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def a ( self : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def a ( self : Optional[Any] ): pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def a ( self : Optional[Any] ): pass def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : Dict , _lowercase : Tuple ): __UpperCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) # Swin has a different seq_length __UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a ( self : str ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = 3 __UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def a ( self : Any ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a ( self : str ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a ( self : Tuple ): pass def a ( self : Tuple ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowercase : List[str] ): __UpperCAmelCase = 0 return t def check_equivalence(_lowercase : List[Any] , _lowercase : Any , _lowercase : str , _lowercase : List[str]={} ): with torch.no_grad(): __UpperCAmelCase = model(**_lowercase , return_dict=_lowercase , **_lowercase ) __UpperCAmelCase = model(**_lowercase , return_dict=_lowercase , **_lowercase ).to_tuple() def recursive_check(_lowercase : Dict , _lowercase : Optional[Any] ): if isinstance(_lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowercase , _lowercase ): recursive_check(_lowercase , _lowercase ) elif isinstance(_lowercase , _lowercase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowercase , _lowercase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowercase ) , set_nan_tensor_to_zero(_lowercase ) , atol=1E-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}. Dict has''' F''' `nan`: {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}.''' ) , ) recursive_check(_lowercase , _lowercase ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True} ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True} ) @require_torch class _UpperCAmelCase ( unittest.TestCase , _lowerCAmelCase ): a__ : Optional[Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () a__ : List[str] = MaskFormerSwinConfig def a ( self : List[str] ): __UpperCAmelCase = MaskFormerSwinModelTester(self ) def a ( self : List[Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: __UpperCAmelCase = backbone_class(_lowercase ) backbone.to(_lowercase ) backbone.eval() __UpperCAmelCase = backbone(**_lowercase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowercase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __UpperCAmelCase = backbone(**_lowercase , output_hidden_states=_lowercase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __UpperCAmelCase = backbone(**_lowercase , output_attentions=_lowercase ) self.assertIsNotNone(outputs.attentions )
86
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ : Optional[int] = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Any = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[Any] = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
63
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self , *, lowerCAmelCase__ = 4 , lowerCAmelCase__ = 768 , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Optional[Any]: super().__init__() a : Tuple = nn.Parameter(torch.zeros(lowerCAmelCase__ ) ) # parameters for additional clip time embeddings a : str = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) a : Any = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) # parameters for encoder hidden states a : int = clip_extra_context_tokens a : int = nn.Linear( lowerCAmelCase__ , self.clip_extra_context_tokens * cross_attention_dim ) a : Any = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) a : str = nn.LayerNorm(lowerCAmelCase__ ) def __a ( self , *, lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings a : str = image_embeddings.shape[0] a : Optional[int] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) a : Any = classifier_free_guidance_embeddings.expand( lowerCAmelCase__ , -1 ) a : Any = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] a : List[str] = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... a : Dict = self.embedding_proj(lowerCAmelCase__ ) a : List[str] = self.clip_image_embeddings_project_to_time_embeddings(lowerCAmelCase__ ) a : Dict = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" a : Union[str, Any] = self.clip_extra_context_tokens_proj(lowerCAmelCase__ ) a : List[str] = clip_extra_context_tokens.reshape(lowerCAmelCase__ , -1 , self.clip_extra_context_tokens ) a : Optional[Any] = clip_extra_context_tokens.permute(0 , 2 , 1 ) a : Optional[int] = self.encoder_hidden_states_proj(lowerCAmelCase__ ) a : str = self.text_encoder_hidden_states_norm(lowerCAmelCase__ ) a : List[str] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
105
0
'''simple docstring''' import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__ : List[Any] =logging.get_logger(__name__) class UpperCAmelCase ( snake_case_ ): _lowercase: List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , __snake_case : Any="</s>" , __snake_case : int="<unk>" , __snake_case : str="<pad>" , __snake_case : Any=1_25 , __snake_case : Optional[int]=None , **__snake_case : List[str] , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _lowerCAmelCase = [f"<extra_id_{i}>" for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _lowerCAmelCase = len(set(filter(lambda __snake_case : bool("""extra_id""" in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) _lowerCAmelCase = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token _lowerCAmelCase = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token _lowerCAmelCase = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token super().__init__( eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) _lowerCAmelCase = extra_ids _lowerCAmelCase = 2**8 # utf is 8 bits # define special tokens dict _lowerCAmelCase = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } _lowerCAmelCase = len(self.special_tokens_encoder ) _lowerCAmelCase = len(__snake_case ) for i, token in enumerate(__snake_case ): _lowerCAmelCase = self.vocab_size + i - n _lowerCAmelCase = {v: k for k, v in self.special_tokens_encoder.items()} @property def lowercase__ ( self : Dict ) -> Optional[Any]: return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def lowercase__ ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__snake_case )) + [1] return ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] def lowercase__ ( self : List[Any] , __snake_case : List[int] ) -> List[int]: if len(__snake_case ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def lowercase__ ( self : Any , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowercase__ ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = self._add_eos_if_not_present(__snake_case ) if token_ids_a is None: return token_ids_a else: _lowerCAmelCase = self._add_eos_if_not_present(__snake_case ) return token_ids_a + token_ids_a def lowercase__ ( self : Tuple , __snake_case : str ) -> List[str]: _lowerCAmelCase = [chr(__snake_case ) for i in text.encode("""utf-8""" )] return tokens def lowercase__ ( self : Any , __snake_case : int ) -> int: if token in self.special_tokens_encoder: _lowerCAmelCase = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: _lowerCAmelCase = self.added_tokens_encoder[token] elif len(__snake_case ) != 1: _lowerCAmelCase = self.unk_token_id else: _lowerCAmelCase = ord(__snake_case ) + self._num_special_tokens return token_id def lowercase__ ( self : Union[str, Any] , __snake_case : Tuple ) -> Optional[int]: if index in self.special_tokens_decoder: _lowerCAmelCase = self.special_tokens_decoder[index] else: _lowerCAmelCase = chr(index - self._num_special_tokens ) return token def lowercase__ ( self : Dict , __snake_case : Dict ) -> Any: _lowerCAmelCase = b"""""" for token in tokens: if token in self.special_tokens_decoder: _lowerCAmelCase = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: _lowerCAmelCase = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: _lowerCAmelCase = token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: _lowerCAmelCase = token.encode("""utf-8""" ) else: _lowerCAmelCase = bytes([ord(__snake_case )] ) bstring += tok_string _lowerCAmelCase = bstring.decode("""utf-8""" , errors="""ignore""" ) return string def lowercase__ ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: return ()
220
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Dict: _lowerCAmelCase = tempfile.mkdtemp() # fmt: off _lowerCAmelCase = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowerCAmelCase = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) _lowerCAmelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _lowerCAmelCase = {"""unk_token""": """<unk>"""} _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__snake_case ) ) _lowerCAmelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], """image_std""": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } _lowerCAmelCase = os.path.join(self.tmpdirname , __snake_case ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__snake_case , __snake_case ) def lowercase__ ( self : Optional[int] , **__snake_case : Dict ) -> List[str]: return CLIPTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase__ ( self : List[str] , **__snake_case : Any ) -> List[Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase__ ( self : Tuple , **__snake_case : List[str] ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase__ ( self : str ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : str ) -> List[Any]: _lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Optional[Any] ) -> List[str]: _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = CLIPSegProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_slow.save_pretrained(self.tmpdirname ) _lowerCAmelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=__snake_case ) _lowerCAmelCase = CLIPSegProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_fast.save_pretrained(self.tmpdirname ) _lowerCAmelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __snake_case ) self.assertIsInstance(processor_fast.tokenizer , __snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __snake_case ) self.assertIsInstance(processor_fast.image_processor , __snake_case ) def lowercase__ ( self : Optional[int] ) -> Dict: _lowerCAmelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase = self.get_image_processor(do_normalize=__snake_case , padding_value=1.0 ) _lowerCAmelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __snake_case ) def lowercase__ ( self : Tuple ) -> List[Any]: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = CLIPSegProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(__snake_case , return_tensors="""np""" ) _lowerCAmelCase = processor(images=__snake_case , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Any ) -> str: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = CLIPSegProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _lowerCAmelCase = """lower newer""" _lowerCAmelCase = processor(text=__snake_case ) _lowerCAmelCase = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : str ) -> Union[str, Any]: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = CLIPSegProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _lowerCAmelCase = """lower newer""" _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def lowercase__ ( self : Union[str, Any] ) -> Dict: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = CLIPSegProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(images=__snake_case , visual_prompt=__snake_case ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """conditional_pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def lowercase__ ( self : int ) -> Tuple: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = CLIPSegProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase = processor.batch_decode(__snake_case ) _lowerCAmelCase = tokenizer.batch_decode(__snake_case ) self.assertListEqual(__snake_case , __snake_case )
220
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _lowercase ( _lowercase , _lowercase ): a = 1 @register_to_config def __init__( self: List[Any] , UpperCamelCase__: Any=2_000 , UpperCamelCase__: Any=0.1 , UpperCamelCase__: Union[str, Any]=20 , UpperCamelCase__: int=1e-3 ): lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Dict = None lowerCamelCase__ : Dict = None def lowerCamelCase_ ( self: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Union[str, torch.device] = None ): lowerCamelCase__ : List[Any] = torch.linspace(1 , self.config.sampling_eps , UpperCamelCase__ , device=UpperCamelCase__ ) def lowerCamelCase_ ( self: int , UpperCamelCase__: str , UpperCamelCase__: Dict , UpperCamelCase__: Tuple , UpperCamelCase__: List[Any]=None ): if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCamelCase__ : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCamelCase__ : Optional[int] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCamelCase__ : Dict = std.flatten() while len(std.shape ) < len(score.shape ): lowerCamelCase__ : Any = std.unsqueeze(-1 ) lowerCamelCase__ : Dict = -score / std # compute lowerCamelCase__ : Any = -1.0 / len(self.timesteps ) lowerCamelCase__ : Optional[int] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCamelCase__ : List[str] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCamelCase__ : Tuple = beta_t.unsqueeze(-1 ) lowerCamelCase__ : Union[str, Any] = -0.5 * beta_t * x lowerCamelCase__ : List[str] = torch.sqrt(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = drift - diffusion**2 * score lowerCamelCase__ : Dict = x + drift * dt # add noise lowerCamelCase__ : int = randn_tensor(x.shape , layout=x.layout , generator=UpperCamelCase__ , device=x.device , dtype=x.dtype ) lowerCamelCase__ : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self: Dict ): return self.config.num_train_timesteps
41
import numpy as np def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1e-12 , SCREAMING_SNAKE_CASE = 100 , ): '''simple docstring''' assert np.shape(SCREAMING_SNAKE_CASE )[0] == np.shape(SCREAMING_SNAKE_CASE )[1] # Ensure proper dimensionality. assert np.shape(SCREAMING_SNAKE_CASE )[0] == np.shape(SCREAMING_SNAKE_CASE )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(SCREAMING_SNAKE_CASE ) == np.iscomplexobj(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = np.iscomplexobj(SCREAMING_SNAKE_CASE ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(SCREAMING_SNAKE_CASE , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __UpperCamelCase :str = False __UpperCamelCase :int = 0 __UpperCamelCase :Optional[Any] = 0 __UpperCamelCase :Union[str, Any] = 1e12 while not convergence: # Multiple matrix by the vector. __UpperCamelCase :List[str] = np.dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Normalize the resulting output vector. __UpperCamelCase :Tuple = w / np.linalg.norm(SCREAMING_SNAKE_CASE ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __UpperCamelCase :int = vector.conj().T if is_complex else vector.T __UpperCamelCase :Optional[int] = np.dot(SCREAMING_SNAKE_CASE , np.dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # Check convergence. __UpperCamelCase :Optional[Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __UpperCamelCase :Dict = True __UpperCamelCase :List[Any] = lambda_ if is_complex: __UpperCamelCase :Tuple = np.real(lambda_ ) return lambda_, vector def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :int = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __UpperCamelCase :Optional[Any] = np.array([41, 4, 20] ) __UpperCamelCase :Any = real_input_matrix.astype(np.complexaaa ) __UpperCamelCase :Dict = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __UpperCamelCase :Optional[int] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __UpperCamelCase :Any = real_input_matrix __UpperCamelCase :int = real_vector elif problem_type == "complex": __UpperCamelCase :Tuple = complex_input_matrix __UpperCamelCase :Optional[Any] = complex_vector # Our implementation. __UpperCamelCase , __UpperCamelCase :Dict = power_iteration(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __UpperCamelCase , __UpperCamelCase :List[Any] = np.linalg.eigh(SCREAMING_SNAKE_CASE ) # Last eigenvalue is the maximum one. __UpperCamelCase :List[Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __UpperCamelCase :str = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(SCREAMING_SNAKE_CASE ) - np.abs(SCREAMING_SNAKE_CASE ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
43
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class SCREAMING_SNAKE_CASE_ : def __init__( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : str=13 , lowerCamelCase_ : Optional[int]=7 , lowerCamelCase_ : int=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : Tuple=99 , lowerCamelCase_ : Optional[int]=64 , lowerCamelCase_ : Dict=32 , lowerCamelCase_ : Optional[int]=5 , lowerCamelCase_ : Dict=4 , lowerCamelCase_ : Union[str, Any]=37 , lowerCamelCase_ : List[str]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : List[str]=512 , lowerCamelCase_ : Any=16 , lowerCamelCase_ : int=2 , lowerCamelCase_ : Any=0.0_2 , lowerCamelCase_ : Dict=3 , lowerCamelCase_ : Any=4 , lowerCamelCase_ : Optional[int]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = embedding_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : str ): """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCamelCase = MobileBertModel(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) UpperCamelCase = model(_lowercase , token_type_ids=_lowercase ) UpperCamelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = MobileBertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = MobileBertForNextSentencePrediction(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = MobileBertForPreTraining(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , next_sentence_label=_lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCamelCase = MobileBertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileBertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileBertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCamelCase = self.num_choices UpperCamelCase = MobileBertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) __lowerCAmelCase = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = True def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple=False ): """simple docstring""" UpperCamelCase = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class in get_values(_lowercase ): UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase ) UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = MobileBertModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def lowerCamelCase_ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowercase ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowercase ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowercase ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowercase ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowercase ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowercase ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowercase ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowercase ) def lowercase( UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' return torch.tensor( snake_case_ , dtype=torch.long , device=snake_case_ , ) _SCREAMING_SNAKE_CASE = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(_lowercase ) UpperCamelCase = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): UpperCamelCase = model(_lowercase )[0] UpperCamelCase = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _lowercase ) UpperCamelCase = torch.tensor( [ [ [-2.4_736_526E07, 8.2_691_656E04, 1.6_521_838E05], [-5.7_541_704E-01, 3.9_056_022E00, 4.4_011_507E00], [2.6_047_359E00, 1.5_677_652E00, -1.7_324_188E-01], ] ] , device=_lowercase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCamelCase = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCamelCase = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""YolosFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
165
0
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowerCamelCase : str = (boundary[1] - boundary[0]) / steps lowerCamelCase : List[str] = boundary[0] lowerCamelCase : Union[str, Any] = boundary[1] lowerCamelCase : int = make_points(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[str] = 0.0 y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) for i in x_i: # print(i) y += h * f(_SCREAMING_SNAKE_CASE ) y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) return y def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: lowerCamelCase : int = a + h while x < (b - h): yield x lowerCamelCase : List[str] = x + h def A ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: # enter your function here lowerCamelCase : str = (x - 0) * (x - 0) return y def A ( ) -> int: lowerCamelCase : int = 0.0 # Lower bound of integration lowerCamelCase : int = 1.0 # Upper bound of integration lowerCamelCase : Dict = 10.0 # define number of steps or resolution lowerCamelCase : int = [a, b] # define boundary of integration lowerCamelCase : str = method_a(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
48
"""simple docstring""" from collections.abc import Callable def lowerCamelCase ( _UpperCamelCase : Callable[[float], float] , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : float = a __UpperCAmelCase : float = b if function(_UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCamelCase ) == 0: return b elif ( function(_UpperCamelCase ) * function(_UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: __UpperCAmelCase : float = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(_UpperCamelCase ) == 0: return mid elif function(_UpperCamelCase ) * function(_UpperCamelCase ) < 0: __UpperCAmelCase : Union[str, Any] = mid else: __UpperCAmelCase : List[Any] = mid __UpperCAmelCase : Optional[Any] = start + (end - start) / 2.0 return mid def lowerCamelCase ( _UpperCamelCase : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
115
0
def _a ( ) -> int: '''simple docstring''' return [ a * b * (10_00 - a - b) for a in range(1 , 9_99 ) for b in range(SCREAMING_SNAKE_CASE__ , 9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"{solution() = }")
191
def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> int: '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError("String lengths must match!" ) SCREAMING_SNAKE_CASE__ : Dict = 0 for chara, chara in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
191
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase__ ( A_ ): __a = ["""pixel_values"""] def __init__( self : List[str] , _lowerCamelCase : bool = True , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCamelCase : bool = True , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : bool = True , _lowerCamelCase : Union[int, float] = 1 / 255 , _lowerCamelCase : bool = True , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : bool = True , **_lowerCamelCase : Optional[Any] , ): super().__init__(**_lowerCamelCase ) _snake_case = size if size is not None else {'''shortest_edge''': 224} _snake_case = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) _snake_case = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _snake_case = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase , param_name='''crop_size''' ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _snake_case = image_std if image_std is not None else OPENAI_CLIP_STD _snake_case = do_convert_rgb def lowercase ( self : Optional[int] , _lowerCamelCase : np.ndarray , _lowerCamelCase : Dict[str, int] , _lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : List[str] , ): _snake_case = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _snake_case = get_resize_output_image_size(_lowerCamelCase , size=size['''shortest_edge'''] , default_to_square=_lowerCamelCase ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def lowercase ( self : Dict , _lowerCamelCase : np.ndarray , _lowerCamelCase : Dict[str, int] , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : List[str] , ): _snake_case = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_lowerCamelCase , size=(size['''height'''], size['''width''']) , data_format=_lowerCamelCase , **_lowerCamelCase ) def lowercase ( self : str , _lowerCamelCase : np.ndarray , _lowerCamelCase : Union[int, float] , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : Any , ): return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def lowercase ( self : Optional[Any] , _lowerCamelCase : np.ndarray , _lowerCamelCase : Union[float, List[float]] , _lowerCamelCase : Union[float, List[float]] , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : Any , ): return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def lowercase ( self : Optional[Any] , _lowerCamelCase : ImageInput , _lowerCamelCase : bool = None , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : PILImageResampling = None , _lowerCamelCase : bool = None , _lowerCamelCase : int = None , _lowerCamelCase : bool = None , _lowerCamelCase : float = None , _lowerCamelCase : bool = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : bool = None , _lowerCamelCase : Optional[Union[str, TensorType]] = None , _lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowerCamelCase : Optional[Any] , ): _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = size if size is not None else self.size _snake_case = get_size_dict(_lowerCamelCase , param_name='''size''' , default_to_square=_lowerCamelCase ) _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(_lowerCamelCase , param_name='''crop_size''' , default_to_square=_lowerCamelCase ) _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _snake_case = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _snake_case = [convert_to_rgb(_lowerCamelCase ) for image in images] # All transformations expect numpy arrays. _snake_case = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: _snake_case = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase ) for image in images] if do_rescale: _snake_case = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] if do_normalize: _snake_case = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) for image in images] _snake_case = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] _snake_case = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
288
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _UpperCAmelCase ( __lowerCamelCase : str ) -> List[Any]: return 1 / (1 + np.exp(-z )) def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) -> Optional[Any]: return (-y * np.log(__lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) -> List[str]: _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__lowerCamelCase ) ) ) def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str=7_00_00 ) -> Optional[Any]: _snake_case = np.zeros(x.shape[1] ) for iterations in range(__lowerCamelCase ): _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) _snake_case = sigmoid_function(__lowerCamelCase ) _snake_case = np.dot(x.T , h - y ) / y.size _snake_case = theta - alpha * gradient # updating the weights _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) _snake_case = sigmoid_function(__lowerCamelCase ) _snake_case = cost_function(__lowerCamelCase , __lowerCamelCase ) if iterations % 1_00 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCAmelCase__ = datasets.load_iris() UpperCAmelCase__ = iris.data[:, :2] UpperCAmelCase__ = (iris.target != 0) * 1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = logistic_reg(alpha, x, y, max_iterations=70000) print('theta: ', theta) # printing the theta i.e our weights vector def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Union[str, Any]: return sigmoid_function( np.dot(__lowerCamelCase , __lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((UpperCAmelCase__) , (UpperCAmelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCAmelCase__) , (UpperCAmelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCAmelCase__) , (UpperCAmelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCAmelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCAmelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
288
1
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase = 1_000_000 ) ->str: """simple docstring""" a_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __a ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
350
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a_ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } a_ = F'''{src_lang}-{tgt_lang}''' a_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=UpperCAmelCase , exist_ok=UpperCAmelCase ) a_ = os.path.join(UpperCAmelCase , "README.md" ) print(F'''Generating {path}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(UpperCAmelCase ) # make sure we are under the root of the project UpperCamelCase_ = Path(__file__).resolve().parent.parent.parent UpperCamelCase_ = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase_ = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
303
0
def lowerCAmelCase_ ( __A ) -> list: '''simple docstring''' if len(__A ) <= 1: return [tuple(__A )] UpperCAmelCase__ = [] def generate(__A, __A ): UpperCAmelCase__ = [0] * n res.append(tuple(__A ) ) UpperCAmelCase__ = 0 while i < n: if c[i] < i: if i % 2 == 0: UpperCAmelCase__ , UpperCAmelCase__ = arr[i], arr[0] else: UpperCAmelCase__ , UpperCAmelCase__ = arr[i], arr[c[i]] res.append(tuple(__A ) ) c[i] += 1 UpperCAmelCase__ = 0 else: UpperCAmelCase__ = 0 i += 1 generate(len(__A ), __A ) return res if __name__ == "__main__": UpperCamelCase__ = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase__ = [int(item) for item in user_input.split(',')] print(heaps(arr))
65
from manim import * class A ( UpperCAmelCase_ ): def lowercase_ (self : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase__ = Rectangle(height=0.25 , width=0.25 ) UpperCAmelCase__ = [mem.copy() for i in range(6 )] UpperCAmelCase__ = [mem.copy() for i in range(6 )] UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = Text("CPU" , font_size=2_4 ) UpperCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCAmelCase ) UpperCAmelCase__ = [mem.copy() for i in range(4 )] UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = Text("GPU" , font_size=2_4 ) UpperCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCAmelCase ) UpperCAmelCase__ = [mem.copy() for i in range(6 )] UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = Text("Model" , font_size=2_4 ) UpperCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCAmelCase ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] for i, rect in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = fill.copy().set_fill(__UpperCAmelCase , opacity=0.8 ) target.move_to(__UpperCAmelCase ) model_arr.append(__UpperCAmelCase ) UpperCAmelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__UpperCAmelCase ) self.add(*__UpperCAmelCase , *__UpperCAmelCase ) UpperCAmelCase__ = [meta_mem.copy() for i in range(6 )] UpperCAmelCase__ = [meta_mem.copy() for i in range(6 )] UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = Text("Disk" , font_size=2_4 ) UpperCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase__ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(__UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__UpperCAmelCase ) UpperCAmelCase__ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase ) ) UpperCAmelCase__ = Square(0.3 ) input.set_fill(__UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , __UpperCAmelCase , buff=0.5 ) self.play(Write(__UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=__UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(__UpperCAmelCase ) ) self.play(FadeOut(__UpperCAmelCase ) ) UpperCAmelCase__ = Arrow(start=__UpperCAmelCase , end=__UpperCAmelCase , color=__UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , __UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) UpperCAmelCase__ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase , run_time=3 ) ) UpperCAmelCase__ = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.02} self.play( Write(__UpperCAmelCase ) , Circumscribe(model_arr[0] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=__UpperCAmelCase , **__UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) UpperCAmelCase__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , __UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) UpperCAmelCase__ = AnimationGroup( FadeOut(__UpperCAmelCase , run_time=0.5 ) , MoveToTarget(__UpperCAmelCase , run_time=0.5 ) , FadeIn(__UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(__UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: UpperCAmelCase__ = 0.7 self.play( Circumscribe(model_arr[i] , **__UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **__UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=__UpperCAmelCase , **__UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=__UpperCAmelCase , **__UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) UpperCAmelCase__ = a_c UpperCAmelCase__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(__UpperCAmelCase ) , FadeOut(__UpperCAmelCase , run_time=0.5 ) , ) UpperCAmelCase__ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase , run_time=3 ) , MoveToTarget(__UpperCAmelCase ) ) self.wait()
65
1
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def a_ ( _lowercase , _lowercase , _lowercase ): # Initialise PyTorch model _UpperCamelCase : List[str] = LxmertConfig.from_json_file(_lowercase ) print(F"""Building PyTorch model from configuration: {config}""" ) _UpperCamelCase : List[str] = LxmertForPreTraining(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_lowercase , _lowercase , _lowercase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": UpperCamelCase_ =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCamelCase_ =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
351
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCamelCase_ =0b1_0_1_1_0_0_1_1_1_1_1_0_1_1_0_0_1_0_0_1_0_0_0_0_0_1_1_1_1_0_1_1_1_0_1_1_0_0_0_1_1_0_0_1_1_1_1_0 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCamelCase_ =[int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _a : def __init__( self : str ) -> str: '''simple docstring''' _UpperCamelCase : str = WATERMARK_BITS _UpperCamelCase : Optional[int] = WatermarkEncoder() self.encoder.set_watermark('''bits''', self.watermark ) def snake_case ( self : Dict, lowerCAmelCase__ : torch.FloatTensor ) -> int: '''simple docstring''' if images.shape[-1] < 2_5_6: return images _UpperCamelCase : Union[str, Any] = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0, 2, 3, 1 ).float().numpy() _UpperCamelCase : List[str] = [self.encoder.encode(lowerCAmelCase__, '''dwtDct''' ) for image in images] _UpperCamelCase : Dict = torch.from_numpy(np.array(lowerCAmelCase__ ) ).permute(0, 3, 1, 2 ) _UpperCamelCase : Optional[int] = torch.clamp(2 * (images / 2_5_5 - 0.5), min=-1.0, max=1.0 ) return images
128
0
def __UpperCAmelCase ( a_): snake_case_ = [] snake_case_ = set({'(', '[', '{'}) snake_case_ = set({')', ']', '}'}) snake_case_ = {'{': '}', '[': ']', '(': ')'} for i in range(len(a_)): if s[i] in open_brackets: stack.append(s[i]) elif s[i] in closed_brackets and ( len(a_) == 0 or (len(a_) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a_) == 0 def __UpperCAmelCase ( ): snake_case_ = input('Enter sequence of brackets: ') if is_balanced(a_): print(a_ , 'is balanced') else: print(a_ , 'is not balanced') if __name__ == "__main__": main()
178
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
178
1
"""simple docstring""" import math import qiskit def __UpperCAmelCase ( snake_case_ : int = 1 , snake_case_ : int = 1 , snake_case_ : int = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(snake_case_ , snake_case_ ) or isinstance(snake_case_ , snake_case_ ) or isinstance(snake_case_ , snake_case_ ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(snake_case_ ) != input_a) or (math.floor(snake_case_ ) != input_a) or (math.floor(snake_case_ ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers _lowerCAmelCase = qiskit.QuantumRegister(4 , """qr""" ) _lowerCAmelCase = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries _lowerCAmelCase = [input_a, input_a, carry_in] _lowerCAmelCase = qiskit.QuantumCircuit(snake_case_ , snake_case_ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(snake_case_ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(snake_case_ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(snake_case_ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , snake_case_ ) # measure the last two qbits _lowerCAmelCase = qiskit.Aer.get_backend("""aer_simulator""" ) _lowerCAmelCase = qiskit.execute(snake_case_ , snake_case_ , shots=1000 ) return job.result().get_counts(snake_case_ ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
317
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
317
1
from collections.abc import Generator from math import sin def __snake_case ( _UpperCAmelCase ): if len(_UpperCAmelCase ) != 32: raise ValueError('''Input must be of length 32''' ) __a = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __snake_case ( _UpperCAmelCase ): if i < 0: raise ValueError('''Input must be non-negative''' ) __a = format(_UpperCAmelCase , '''08x''' )[-8:] __a = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def __snake_case ( _UpperCAmelCase ): __a = b'''''' for char in message: bit_string += format(_UpperCAmelCase , '''08b''' ).encode('''utf-8''' ) __a = format(len(_UpperCAmelCase ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_UpperCAmelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __snake_case ( _UpperCAmelCase ): if len(_UpperCAmelCase ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(_UpperCAmelCase ) , 512 ): __a = bit_string[pos : pos + 512] __a = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __snake_case ( _UpperCAmelCase ): if i < 0: raise ValueError('''Input must be non-negative''' ) __a = format(_UpperCAmelCase , '''032b''' ) __a = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(_UpperCAmelCase , 2 ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): return (a + b) % 2**32 def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __snake_case ( _UpperCAmelCase ): __a = preprocess(_UpperCAmelCase ) __a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __a = 0X67_452_301 __a = 0Xef_cda_b89 __a = 0X98_bad_cfe __a = 0X10_325_476 __a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_UpperCAmelCase ): __a = aa __a = ba __a = ca __a = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __a = d ^ (b & (c ^ d)) __a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __a = c ^ (d & (b ^ c)) __a = (5 * i + 1) % 16 elif i <= 47: __a = b ^ c ^ d __a = (3 * i + 5) % 16 else: __a = c ^ (b | not_aa(_UpperCAmelCase )) __a = (7 * i) % 16 __a = (f + a + added_consts[i] + block_words[g]) % 2**32 __a = d __a = c __a = b __a = sum_aa(_UpperCAmelCase , left_rotate_aa(_UpperCAmelCase , shift_amounts[i] ) ) # Add hashed chunk to running total __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
49
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __snake_case :List[Any] = logging.getLogger(__name__) class _A : def __init__( self : List[str]): '''simple docstring''' __a = False def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' if not self.initialized: __a = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=__SCREAMING_SNAKE_CASE , generator_tokenizer=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , init_retrieval=__SCREAMING_SNAKE_CASE , ) __a = True def _lowerCamelCase ( self : List[str]): '''simple docstring''' self.retriever.index.init_index() def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a , __a = self.retriever._main_retrieve(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) return doc_ids, retrieved_doc_embeds class _A ( __UpperCAmelCase ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=None): '''simple docstring''' if index is not None and index.is_initialized() and len(__SCREAMING_SNAKE_CASE) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''') super().__init__( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=__SCREAMING_SNAKE_CASE , generator_tokenizer=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , init_retrieval=__SCREAMING_SNAKE_CASE , ) __a = retrieval_workers if len(self.retrieval_workers) > 0: ray.get( [ worker.create_rag_retriever.remote(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for worker in self.retrieval_workers ]) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' logger.info('''initializing retrieval''') if len(self.retrieval_workers) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers]) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' if len(self.retrieval_workers) > 0: # Select a random retrieval actor. __a = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers) - 1)] __a , __a = ray.get(random_worker.retrieve.remote(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) else: __a , __a = self._main_retrieve(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__SCREAMING_SNAKE_CASE) @classmethod def _lowerCamelCase ( cls : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' return super(__SCREAMING_SNAKE_CASE , cls).get_tokenizers(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) @classmethod def _lowerCamelCase ( cls : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = kwargs.pop('''config''' , __SCREAMING_SNAKE_CASE) or RagConfig.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = RagTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE) __a = rag_tokenizer.question_encoder __a = rag_tokenizer.generator if indexed_dataset is not None: __a = '''custom''' __a = CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE) else: __a = cls._build_index(__SCREAMING_SNAKE_CASE) return cls( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=__SCREAMING_SNAKE_CASE , generator_tokenizer=__SCREAMING_SNAKE_CASE , retrieval_workers=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , )
49
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int]=7 , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : List[Any]=30 , SCREAMING_SNAKE_CASE : Optional[Any]=400 , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Optional[Any]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE : List[str]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Tuple=1 / 255 , SCREAMING_SNAKE_CASE : Tuple=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A : Union[str, Any] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _A : Optional[int] = parent _A : List[Any] = batch_size _A : Tuple = num_channels _A : List[str] = min_resolution _A : str = max_resolution _A : str = do_resize _A : Optional[int] = size _A : Any = do_normalize _A : Union[str, Any] = image_mean _A : List[Any] = image_std _A : Any = do_rescale _A : Optional[Any] = rescale_factor _A : Union[str, Any] = do_pad def A ( self : Any): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A ( self : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple=False): if not batched: _A : int = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE , Image.Image): _A : int = image.size else: _A : Dict = image.shape[1], image.shape[2] if w < h: _A : Tuple = int(self.size['shortest_edge'] * h / w) _A : str = self.size['shortest_edge'] elif w > h: _A : List[str] = self.size['shortest_edge'] _A : List[str] = int(self.size['shortest_edge'] * w / h) else: _A : Any = self.size['shortest_edge'] _A : Dict = self.size['shortest_edge'] else: _A : List[Any] = [] for image in image_inputs: _A : Optional[int] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) _A : List[str] = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE: item[0])[0] _A : List[Any] = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE: item[1])[1] return expected_height, expected_width @require_torch @require_vision class __lowerCamelCase ( a_ , unittest.TestCase ): """simple docstring""" a = YolosImageProcessor if is_vision_available() else None def A ( self : Optional[int]): _A : Optional[int] = YolosImageProcessingTester(self) @property def A ( self : Optional[Any]): return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Any): _A : Tuple = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , 'image_mean')) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , 'image_std')) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , 'do_normalize')) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , 'do_resize')) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , 'size')) def A ( self : Optional[Any]): _A : Dict = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333}) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE) _A : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84}) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE) def A ( self : Optional[int]): pass def A ( self : int): # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images _A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image) # Test not batched input _A : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _A : List[Any] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A : Optional[Any] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE) _A : List[str] = image_processing(SCREAMING_SNAKE_CASE , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : List[Any]): # Initialize image_processing _A : List[str] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray) # Test not batched input _A : Tuple = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _A : Tuple = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A : str = image_processing(SCREAMING_SNAKE_CASE , return_tensors='pt').pixel_values _A : List[str] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int): # Initialize image_processing _A : int = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor) # Test not batched input _A : List[str] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values _A : str = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A : Optional[Any] = image_processing(SCREAMING_SNAKE_CASE , return_tensors='pt').pixel_values _A : List[str] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Optional[int]): # Initialize image_processings _A : Any = self.image_processing_class(**self.image_processor_dict) _A : Any = self.image_processing_class(do_resize=SCREAMING_SNAKE_CASE , do_normalize=SCREAMING_SNAKE_CASE , do_rescale=SCREAMING_SNAKE_CASE) # create random PyTorch tensors _A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor) # Test whether the method "pad" and calling the image processor return the same tensors _A : List[Any] = image_processing_a.pad(SCREAMING_SNAKE_CASE , return_tensors='pt') _A : Any = image_processing_a(SCREAMING_SNAKE_CASE , return_tensors='pt') self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1e-4)) @slow def A ( self : int): # prepare image and target _A : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r') as f: _A : List[str] = json.loads(f.read()) _A : Optional[int] = {'image_id': 39769, 'annotations': target} # encode them _A : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small') _A : List[Any] = image_processing(images=SCREAMING_SNAKE_CASE , annotations=SCREAMING_SNAKE_CASE , return_tensors='pt') # verify pixel values _A : Optional[int] = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE) _A : Tuple = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)) # verify area _A : str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE)) # verify boxes _A : List[str] = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE) _A : Optional[int] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE , atol=1e-3)) # verify image_id _A : List[Any] = torch.tensor([39769]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE)) # verify is_crowd _A : str = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE)) # verify class_labels _A : Any = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE)) # verify orig_size _A : str = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE)) # verify size _A : List[str] = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE)) @slow def A ( self : str): # prepare image, target and masks_path _A : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r') as f: _A : List[str] = json.loads(f.read()) _A : int = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} _A : List[str] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic') # encode them _A : str = YolosImageProcessor(format='coco_panoptic') _A : List[Any] = image_processing(images=SCREAMING_SNAKE_CASE , annotations=SCREAMING_SNAKE_CASE , masks_path=SCREAMING_SNAKE_CASE , return_tensors='pt') # verify pixel values _A : Dict = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE) _A : Dict = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)) # verify area _A : List[str] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE)) # verify boxes _A : Optional[Any] = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE) _A : str = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE , atol=1e-3)) # verify image_id _A : Optional[Any] = torch.tensor([39769]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE)) # verify is_crowd _A : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE)) # verify class_labels _A : int = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE)) # verify masks _A : Optional[Any] = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE) # verify orig_size _A : Dict = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE)) # verify size _A : Optional[Any] = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE))
370
'''simple docstring''' def lowerCAmelCase__ ( lowerCamelCase : int = 10 ): if not isinstance(lowerCamelCase ,lowerCamelCase ) or n < 0: raise ValueError('Invalid input' ) _A : Optional[Any] = 10**n _A : List[str] = 28433 * (pow(2 ,7830457 ,lowerCamelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
227
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: _a : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _a : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: _a : Union[str, Any] = '' else: _a : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _a : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) _a : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _a : Union[str, Any] = in_proj_bias[: config.hidden_size] _a : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _a : Dict = in_proj_weight[ -config.hidden_size :, : ] _a : Optional[Any] = in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: _a : int = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _a : Tuple = dct.pop(lowerCAmelCase_ ) _a : Optional[Any] = val def __lowerCamelCase ( ) -> Any: _a : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' _a : List[Any] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _a : Any = ViTConfig() _a : List[Any] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _a : List[Any] = True _a : str = int(vit_name[-12:-10] ) _a : Any = int(vit_name[-9:-6] ) else: _a : str = 1000 _a : List[Any] = 'huggingface/label-files' _a : int = 'imagenet-1k-id2label.json' _a : Any = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='dataset' ) , 'r' ) ) _a : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _a : str = idalabel _a : int = {v: k for k, v in idalabel.items()} _a : List[Any] = int(vit_name[-6:-4] ) _a : Optional[int] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): _a : Optional[int] = 192 _a : Dict = 768 _a : List[Any] = 12 _a : Union[str, Any] = 3 elif vit_name[9:].startswith('small' ): _a : Optional[Any] = 384 _a : str = 1536 _a : str = 12 _a : Union[str, Any] = 6 else: pass else: if vit_name[4:].startswith('small' ): _a : int = 768 _a : str = 2304 _a : List[str] = 8 _a : Optional[int] = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): _a : Any = 1024 _a : Optional[int] = 4096 _a : Union[str, Any] = 24 _a : Any = 16 elif vit_name[4:].startswith('huge' ): _a : str = 1280 _a : Dict = 5120 _a : str = 32 _a : str = 16 # load original model from timm _a : Union[str, Any] = timm.create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys _a : str = timm_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) _a : Optional[Any] = create_rename_keys(lowerCAmelCase_ , lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model if vit_name[-5:] == "in21k": _a : Union[str, Any] = ViTModel(lowerCAmelCase_ ).eval() else: _a : str = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _a : Any = DeiTImageProcessor(size=config.image_size ) else: _a : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _a : List[str] = image_processor(images=prepare_img() , return_tensors='pt' ) _a : str = encoding['pixel_values'] _a : List[str] = model(lowerCAmelCase_ ) if base_model: _a : Optional[Any] = timm_model.forward_features(lowerCAmelCase_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCAmelCase_ , outputs.pooler_output , atol=1E-3 ) else: _a : Union[str, Any] = timm_model(lowerCAmelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
89
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase = '''▁''' lowerCAmelCase = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } lowerCAmelCase = { '''google/pegasus-xsum''': 5_1_2, } lowerCAmelCase = logging.get_logger(__name__) class A ( A_ ): UpperCamelCase_ : Union[str, Any] =VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase_ : int =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int =['''input_ids''', '''attention_mask'''] def __init__(self , lowerCAmelCase , lowerCAmelCase="<pad>" , lowerCAmelCase="</s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<mask_2>" , lowerCAmelCase="<mask_1>" , lowerCAmelCase=None , lowerCAmelCase=1_0_3 , lowerCAmelCase = None , **lowerCAmelCase , ): __lowercase= offset if additional_special_tokens is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError( f'additional_special_tokens should be of type {type(lowerCAmelCase )}, but is' f' {type(lowerCAmelCase )}' ) __lowercase= ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(lowerCAmelCase ) , self.offset - 1 ) ] if len(set(lowerCAmelCase ) ) != len(lowerCAmelCase ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) __lowercase= additional_special_tokens_extended else: __lowercase= [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] __lowercase= {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , mask_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token_sent=lowerCAmelCase , offset=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) __lowercase= mask_token_sent __lowercase= vocab_file __lowercase= spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase ) # add special tokens to encoder dict __lowercase= { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __lowercase= {v: k for k, v in self.encoder.items()} @property def _A (self ): return len(self.sp_model ) + self.offset def _A (self ): __lowercase= {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): __lowercase= self.__dict__.copy() __lowercase= None return state def __setstate__(self , lowerCAmelCase ): __lowercase= d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowercase= {} __lowercase= spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _A (self , lowerCAmelCase ): return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def _A (self , lowerCAmelCase ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __lowercase= self.sp_model.piece_to_id(lowerCAmelCase ) return sp_id + self.offset def _A (self , lowerCAmelCase ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __lowercase= self.sp_model.IdToPiece(index - self.offset ) return token def _A (self , lowerCAmelCase ): __lowercase= [] __lowercase= '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase ) + token __lowercase= [] else: current_sub_tokens.append(lowerCAmelCase ) out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def _A (self , lowerCAmelCase=False ): return 1 def _A (self , lowerCAmelCase ): __lowercase= set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ): if already_has_special_tokens: return self._special_token_mask(lowerCAmelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _A (self , lowerCAmelCase , lowerCAmelCase=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _A (self , lowerCAmelCase , lowerCAmelCase = None ): if not os.path.isdir(lowerCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase= os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , 'wb' ) as fi: __lowercase= self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,)
295
0
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCAmelCase__ : Optional[Any] = str(bin(lowerCAmelCase__ ) )[2:] # remove the leading "0b" UpperCAmelCase__ : Tuple = str(bin(lowerCAmelCase__ ) )[2:] UpperCAmelCase__ : List[str] = max(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase__ ) , b_binary.zfill(lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
355
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger('''transformers.models.speecht5''') UpperCamelCase__ = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } UpperCamelCase__ = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } UpperCamelCase__ = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } UpperCamelCase__ = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } UpperCamelCase__ = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } UpperCamelCase__ = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } UpperCamelCase__ = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } UpperCamelCase__ = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = [] UpperCamelCase__ = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "weight_g": UpperCAmelCase__ : Tuple = value elif weight_type == "weight_v": UpperCAmelCase__ : List[Any] = value elif weight_type == "bias": UpperCAmelCase__ : int = value elif weight_type == "running_mean": UpperCAmelCase__ : int = value elif weight_type == "running_var": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ : List[Any] = value else: UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase__ , UpperCAmelCase__ : int = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: UpperCAmelCase__ : int = [] if task == "s2t": UpperCAmelCase__ : Optional[Any] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : List[Any] = MAPPING_S2T UpperCAmelCase__ : int = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Tuple = MAPPING_T2S UpperCAmelCase__ : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase__ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : Tuple = MAPPING_S2S UpperCAmelCase__ : int = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(F"""{name} was ignored""" ) continue UpperCAmelCase__ : List[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: UpperCAmelCase__ : List[str] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : Any = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Union[str, Any] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : Dict = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Union[str, Any] = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: UpperCAmelCase__ : Optional[int] = '''weight''' elif "running_mean" in name: UpperCAmelCase__ : Optional[int] = '''running_mean''' elif "running_var" in name: UpperCAmelCase__ : List[Any] = '''running_var''' elif "num_batches_tracked" in name: UpperCAmelCase__ : Optional[Any] = '''num_batches_tracked''' else: UpperCAmelCase__ : Union[str, Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[int] = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Any = int(items[0] ) UpperCAmelCase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> Any: if config_path is not None: UpperCAmelCase__ : Optional[Any] = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : str = SpeechTaConfig() if task == "s2t": UpperCAmelCase__ : str = config.max_text_positions UpperCAmelCase__ : List[str] = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : int = 6_00 UpperCAmelCase__ : Union[str, Any] = config.max_speech_positions UpperCAmelCase__ : Optional[Any] = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : Optional[Any] = config.max_speech_positions UpperCAmelCase__ : Dict = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: UpperCAmelCase__ : Tuple = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase__ : Dict = AddedToken('''<mask>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) UpperCAmelCase__ : int = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) UpperCAmelCase__ : Optional[Any] = SpeechTaFeatureExtractor() UpperCAmelCase__ : Any = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
299
0
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = BertJapaneseTokenizer __lowercase = False __lowercase = True def lowerCamelCase ( self ): """simple docstring""" super().setUp() _snake_case = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = 'こんにちは、世界。 \nこんばんは、世界。' _snake_case = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case = self.get_input_output_texts(lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def lowerCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def lowerCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def lowerCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer_class(self.vocab_file ) _snake_case = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(lowerCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(lowerCAmelCase_ ) _snake_case = 'こんにちは、世界。\nこんばんは、世界。' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _snake_case = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(lowerCAmelCase_ , 'wb' ) as handle: pickle.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(lowerCAmelCase_ , 'rb' ) as handle: _snake_case = pickle.load(lowerCAmelCase_ ) _snake_case = tokenizer_new.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowerCamelCase ( self ): """simple docstring""" try: _snake_case = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowerCamelCase ( self ): """simple docstring""" try: _snake_case = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = MecabTokenizer(do_lower_case=lowerCAmelCase_ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowerCamelCase ( self ): """simple docstring""" try: _snake_case = MecabTokenizer( do_lower_case=lowerCAmelCase_ , normalize_text=lowerCAmelCase_ , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = MecabTokenizer(normalize_text=lowerCAmelCase_ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(lowerCAmelCase_ ) _snake_case = 'こんにちは、世界。\nこんばんは、世界。' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _snake_case = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(lowerCAmelCase_ , 'wb' ) as handle: pickle.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(lowerCAmelCase_ , 'rb' ) as handle: _snake_case = pickle.load(lowerCAmelCase_ ) _snake_case = tokenizer_new.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_sudachi def lowerCamelCase ( self ): """simple docstring""" _snake_case = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowerCamelCase ( self ): """simple docstring""" _snake_case = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def lowerCamelCase ( self ): """simple docstring""" _snake_case = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def lowerCamelCase ( self ): """simple docstring""" _snake_case = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def lowerCamelCase ( self ): """simple docstring""" _snake_case = SudachiTokenizer(do_lower_case=lowerCAmelCase_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowerCamelCase ( self ): """simple docstring""" _snake_case = SudachiTokenizer(normalize_text=lowerCAmelCase_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def lowerCamelCase ( self ): """simple docstring""" _snake_case = SudachiTokenizer(trim_whitespace=lowerCAmelCase_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(lowerCAmelCase_ ) _snake_case = 'こんにちは、世界。\nこんばんは、世界。' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _snake_case = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(lowerCAmelCase_ , 'wb' ) as handle: pickle.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(lowerCAmelCase_ , 'rb' ) as handle: _snake_case = pickle.load(lowerCAmelCase_ ) _snake_case = tokenizer_new.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_jumanpp def lowerCamelCase ( self ): """simple docstring""" _snake_case = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowerCamelCase ( self ): """simple docstring""" _snake_case = JumanppTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowerCamelCase ( self ): """simple docstring""" _snake_case = JumanppTokenizer(normalize_text=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowerCamelCase ( self ): """simple docstring""" _snake_case = JumanppTokenizer(trim_whitespace=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def lowerCamelCase ( self ): """simple docstring""" _snake_case = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] _snake_case = {} for i, token in enumerate(lowerCAmelCase_ ): _snake_case = i _snake_case = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) _snake_case = tokenizer.subword_tokenizer _snake_case = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(lowerCAmelCase_ , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) _snake_case = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(lowerCAmelCase_ , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) _snake_case = tokenizer.encode('ありがとう。' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode('どういたしまして。' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = BertJapaneseTokenizer __lowercase = False def lowerCamelCase ( self ): """simple docstring""" super().setUp() _snake_case = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCamelCase ( self , **lowerCAmelCase_ ): """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = 'こんにちは、世界。 \nこんばんは、世界。' _snake_case = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def lowerCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def lowerCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def lowerCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) _snake_case = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( lowerCAmelCase_ , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] _snake_case = {} for i, token in enumerate(lowerCAmelCase_ ): _snake_case = i _snake_case = CharacterTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) _snake_case = tokenizer.encode('ありがとう。' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode('どういたしまして。' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cl-tohoku/bert-base-japanese' _snake_case = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) _snake_case = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
42
'''simple docstring''' import math def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): return math.pow(UpperCAmelCase_ , 2 ) - a def __snake_case ( UpperCAmelCase_ : float ): return 2 * x def __snake_case ( UpperCAmelCase_ : float ): lowerCamelCase_ = 2.0 while start <= a: lowerCamelCase_ = math.pow(UpperCAmelCase_ , 2 ) return start def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : int = 9999 , UpperCAmelCase_ : float = 0.00_0000_0000_0001 ): if a < 0: raise ValueError("math domain error" ) lowerCamelCase_ = get_initial_point(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ): lowerCamelCase_ = value lowerCamelCase_ = value - fx(UpperCAmelCase_ , UpperCAmelCase_ ) / fx_derivative(UpperCAmelCase_ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
55
0
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowerCamelCase ( a_ ) -> List[str]: lowerCAmelCase_ = os.path.join(args.tf_model_dir , 'parameters.json' ) lowerCAmelCase_ = json.loads(open(a_ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): lowerCAmelCase_ = args.output + '.pt' lowerCAmelCase_ = OrderedDict() with tf.device('/CPU:0' ): lowerCAmelCase_ = tf.train.load_checkpoint(args.tf_model_dir ) lowerCAmelCase_ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCAmelCase_ = reader.get_tensor(a_ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): lowerCAmelCase_ = int(key_name[9] ) elif key_name.startswith('pasts/out' ): lowerCAmelCase_ = 8 lowerCAmelCase_ = 'model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.startswith('model/moe' ): lowerCAmelCase_ = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/softmlp/kernel' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): lowerCAmelCase_ = key_name[-9:-7] for i in range(16 ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) lowerCAmelCase_ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.startswith('model/mlp' ): lowerCAmelCase_ = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.wi.weight' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/p1/bias' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.wi.bias' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/p2/kernel' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.wo.weight' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/p2/bias' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.mlp.wo.bias' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.startswith('model/ln' ): lowerCAmelCase_ = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.norm.bias' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/g' ): lowerCAmelCase_ = 'model.blocks.%d.feed_forward.norm.weight' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.startswith('model/att' ): lowerCAmelCase_ = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): lowerCAmelCase_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCAmelCase_ = state[:, 0, :, :] lowerCAmelCase_ = state[:, 1, :, :] lowerCAmelCase_ = state[:, 2, :, :] lowerCAmelCase_ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = 'model.blocks.%d.self_attn.self_attn.q_proj.weight' % player lowerCAmelCase_ = torch.tensor(a_ ) lowerCAmelCase_ = 'model.blocks.%d.self_attn.self_attn.k_proj.weight' % player lowerCAmelCase_ = torch.tensor(a_ ) lowerCAmelCase_ = 'model.blocks.%d.self_attn.self_attn.v_proj.weight' % player lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/o/kernel' ): lowerCAmelCase_ = 'model.blocks.%d.self_attn.self_attn.out_proj.weight' % player lowerCAmelCase_ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.startswith('model/an' ): lowerCAmelCase_ = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): lowerCAmelCase_ = 'model.blocks.%d.self_attn.norm.bias' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.endswith('/g' ): lowerCAmelCase_ = 'model.blocks.%d.self_attn.norm.weight' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(a_ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): lowerCAmelCase_ = {'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] lowerCAmelCase_ = 'model.%s.weight' % nlayer lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = torch.tensor(a_ ) if key_name.startswith('model/wte' ): lowerCAmelCase_ = 'lm_head.weight' lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = torch.tensor(a_ ) elif key_name.startswith('model/wob' ): lowerCAmelCase_ = 'final_logits_bias' lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = state.reshape((1, -1) ) lowerCAmelCase_ = torch.tensor(a_ ) elif key_name == "model/dense/kernel": lowerCAmelCase_ = 'model.last_project.weight' lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(a_ ) elif key_name == "model/dense_1/bias": lowerCAmelCase_ = 'model.last_project.bias' lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(a_ ) torch.save(a_ , args.output ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") lowerCamelCase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
14
from __future__ import annotations lowerCamelCase_ = 1_0 def lowerCamelCase ( a_ ) -> list[int]: lowerCAmelCase_ = 1 lowerCAmelCase_ = max(a_ ) while placement <= max_digit: # declare and initialize empty buckets lowerCAmelCase_ = [[] for _ in range(a_ )] # split list_of_ints between the buckets for i in list_of_ints: lowerCAmelCase_ = int((i / placement) % RADIX ) buckets[tmp].append(a_ ) # put each buckets' contents into list_of_ints lowerCAmelCase_ = 0 for b in range(a_ ): for i in buckets[b]: lowerCAmelCase_ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
14
1
"""simple docstring""" import argparse import copy def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] ) ->int: '''simple docstring''' a : int = {} with open(_lowercase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: a : Union[str, Any] = [] _list.append([line.split()[1], line.split()[2]] ) a : Dict = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: a : Optional[int] = [] _list.append([line.split()[0], line.split()[2]] ) a : Dict = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] , _lowercase : List[str] ) ->Optional[int]: '''simple docstring''' with open(_lowercase ) as f: a : Union[str, Any] = f.read(1 ) a : Optional[Any] = start_node a : List[str] = [] a : Union[str, Any] = start_node a : int = 0 while visiting not in first_solution: a : Optional[int] = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_lowercase ) and k[0] not in first_solution: a : List[str] = k[1] a : Optional[int] = k[0] first_solution.append(_lowercase ) a : Dict = distance_of_first_solution + int(_lowercase ) a : Tuple = best_node first_solution.append(_lowercase ) a : Dict = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 a : Union[str, Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def _SCREAMING_SNAKE_CASE ( _lowercase : Any , _lowercase : List[str] ) ->Dict: '''simple docstring''' a : int = [] for n in solution[1:-1]: a : int = solution.index(_lowercase ) for kn in solution[1:-1]: a : Optional[Any] = solution.index(_lowercase ) if n == kn: continue a : str = copy.deepcopy(_lowercase ) a : Any = kn a : Tuple = n a : Optional[int] = 0 for k in _tmp[:-1]: a : int = _tmp[_tmp.index(_lowercase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: a : Optional[Any] = distance + int(i[1] ) _tmp.append(_lowercase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) a : List[str] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _lowercase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _SCREAMING_SNAKE_CASE ( _lowercase : Any , _lowercase : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : str ) ->List[str]: '''simple docstring''' a : Optional[int] = 1 a : int = first_solution a : str = [] a : Any = distance_of_first_solution a : List[str] = solution while count <= iters: a : List[Any] = find_neighborhood(_lowercase , _lowercase ) a : Union[str, Any] = 0 a : List[Any] = neighborhood[index_of_best_solution] a : Dict = len(_lowercase ) - 1 a : Optional[Any] = False while not found: a : str = 0 while i < len(_lowercase ): if best_solution[i] != solution[i]: a : str = best_solution[i] a : int = solution[i] break a : Union[str, Any] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) a : Optional[Any] = True a : Optional[Any] = best_solution[:-1] a : Union[str, Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: a : Any = cost a : List[str] = solution else: a : int = index_of_best_solution + 1 a : Any = neighborhood[index_of_best_solution] if len(_lowercase ) >= size: tabu_list.pop(0 ) a : Any = count + 1 return best_solution_ever, best_cost def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple=None ) ->Union[str, Any]: '''simple docstring''' a : List[Any] = generate_neighbours(args.File ) a, a : Union[str, Any] = generate_first_solution( args.File , _lowercase ) a, a : Optional[Any] = tabu_search( _lowercase , _lowercase , _lowercase , args.Iterations , args.Size , ) print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": a : Optional[int] = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
105
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __UpperCamelCase : @staticmethod def __a ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: pass def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple ) ->Dict: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a : Optional[Any] = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): lowerCamelCase : Union[str, Any] =MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : Tuple = pipeline( "document-question-answering" , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a : Optional[int] = INVOICE_URL a : str = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) a : Union[str, Any] = "What is the placebo?" a : Dict = [ { "image": load_image(lowerCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Tuple = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> List[Any]: a : List[Any] = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) a : Dict = INVOICE_URL a : List[str] = "How many cats are there?" a : Tuple = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] a : Optional[int] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) a : Optional[int] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably a : List[Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" a : Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes a : Optional[int] = "./tests/fixtures/tests_samples/COCO/000000039769.png" a : Tuple = [] a : Optional[int] = [] a : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> Tuple: a : int = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) a : List[str] = INVOICE_URL a : List[Any] = "What is the invoice number?" a : int = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : str = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> Optional[int]: a : List[str] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) a : Optional[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : str = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : Tuple = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __a ( self ) -> str: a : Optional[int] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase__ ) a : int = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase__ , revision="3dc6de3" , ) a : List[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a : List[Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) a : Dict = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) # This model should also work if `image` is set to None a : Optional[Any] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __a ( self ) -> Tuple: a : int = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase__ ) a : Tuple = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase__ , revision="3dc6de3" , max_seq_len=50 , ) a : List[str] = INVOICE_URL a : Union[str, Any] = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : List[str] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) a : List[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) # This model should also work if `image` is set to None a : Any = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def __a ( self ) -> int: a : Tuple = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) a : Optional[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def __a ( self ) -> int: pass
105
1
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : list[int] , _UpperCamelCase : list[int] , _UpperCamelCase : int ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_UpperCamelCase ) ) def _lowerCAmelCase ( _UpperCamelCase : list[list[int]] , _UpperCamelCase : int , _UpperCamelCase : list[int] , _UpperCamelCase : int ) -> bool: """simple docstring""" if index == len(_UpperCamelCase ): return True # Recursive Step for i in range(_UpperCamelCase ): if valid_coloring(graph[index] , _UpperCamelCase , _UpperCamelCase ): # Color current vertex _SCREAMING_SNAKE_CASE =i # Validate coloring if util_color(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , index + 1 ): return True # Backtrack _SCREAMING_SNAKE_CASE =-1 return False def _lowerCAmelCase ( _UpperCamelCase : list[list[int]] , _UpperCamelCase : int ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =[-1] * len(_UpperCamelCase ) if util_color(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , 0 ): return colored_vertices return []
114
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowerCamelCase : List[Any] = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" lowerCamelCase : List[str] = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" lowerCamelCase : Dict = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return float((preds == labels).mean() ) def _lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Any ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =simple_accuracy(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =float(fa_score(y_true=_UpperCamelCase , y_pred=_UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =float(pearsonr(_UpperCamelCase , _UpperCamelCase )[0] ) _SCREAMING_SNAKE_CASE =float(spearmanr(_UpperCamelCase , _UpperCamelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def A ( self : Optional[int] ) -> Any: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : str , _a : str , _a : List[Any] ) -> str: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "stsb": return pearson_and_spearman(_a , _a ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_a , _a ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
114
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ :Tuple = logging.get_logger(__name__) lowercase__ :int = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Any ='''time_series_transformer''' lowercase_ : str ={ '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self ,A__ = None ,A__ = None ,A__ = "student_t" ,A__ = "nll" ,A__ = 1 ,A__ = [1, 2, 3, 4, 5, 6, 7] ,A__ = "mean" ,A__ = 0 ,A__ = 0 ,A__ = 0 ,A__ = 0 ,A__ = None ,A__ = None ,A__ = 3_2 ,A__ = 3_2 ,A__ = 2 ,A__ = 2 ,A__ = 2 ,A__ = 2 ,A__ = True ,A__ = "gelu" ,A__ = 6_4 ,A__ = 0.1 ,A__ = 0.1 ,A__ = 0.1 ,A__ = 0.1 ,A__ = 0.1 ,A__ = 1_0_0 ,A__ = 0.02 ,A__=True ,**A__ ,): # time series specific configuration lowercase = prediction_length lowercase = context_length or prediction_length lowercase = distribution_output lowercase = loss lowercase = input_size lowercase = num_time_features lowercase = lags_sequence lowercase = scaling lowercase = num_dynamic_real_features lowercase = num_static_real_features lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(A__) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''') lowercase = cardinality else: lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(A__) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''') lowercase = embedding_dimension else: lowercase = [min(5_0 ,(cat + 1) // 2) for cat in self.cardinality] lowercase = num_parallel_samples # Transformer architecture configuration lowercase = input_size * len(A__) + self._number_of_features lowercase = d_model lowercase = encoder_attention_heads lowercase = decoder_attention_heads lowercase = encoder_ffn_dim lowercase = decoder_ffn_dim lowercase = encoder_layers lowercase = decoder_layers lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = encoder_layerdrop lowercase = decoder_layerdrop lowercase = activation_function lowercase = init_std lowercase = use_cache super().__init__(is_encoder_decoder=A__ ,**A__) @property def A__ ( self): return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
101
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
257
0
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = { '''7B''': 1_1_0_0_8, '''13B''': 1_3_8_2_4, '''30B''': 1_7_9_2_0, '''65B''': 2_2_0_1_6, '''70B''': 2_8_6_7_2, } _SCREAMING_SNAKE_CASE = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str]=1 , lowerCamelCase_ : List[str]=2_5_6 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def _lowerCAmelCase ( lowerCamelCase_ : str ): with open(lowerCamelCase_ , '''r''' ) as f: return json.load(lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] ): with open(lowerCamelCase_ , '''w''' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict=True ): os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) __lowercase = os.path.join(lowerCamelCase_ , '''tmp''' ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) __lowercase = read_json(os.path.join(lowerCamelCase_ , '''params.json''' ) ) __lowercase = NUM_SHARDS[model_size] __lowercase = params['''n_layers'''] __lowercase = params['''n_heads'''] __lowercase = n_heads // num_shards __lowercase = params['''dim'''] __lowercase = dim // n_heads __lowercase = 1_0_0_0_0.0 __lowercase = 1.0 / (base ** (torch.arange(0 , lowerCamelCase_ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: __lowercase = params['''n_kv_heads'''] # for GQA / MQA __lowercase = n_heads_per_shard // num_key_value_heads __lowercase = dim // num_key_value_heads else: # compatibility with other checkpoints __lowercase = n_heads __lowercase = n_heads_per_shard __lowercase = dim # permute for sliced rotary def permute(lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict=n_heads , lowerCamelCase_ : Tuple=dim , lowerCamelCase_ : Dict=dim ): return w.view(lowerCamelCase_ , dima // n_heads // 2 , 2 , lowerCamelCase_ ).transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ ) print(f"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) __lowercase = torch.load(os.path.join(lowerCamelCase_ , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded __lowercase = [ torch.load(os.path.join(lowerCamelCase_ , f"consolidated.{i:02d}.pth" ) , map_location='''cpu''' ) for i in range(lowerCamelCase_ ) ] __lowercase = 0 __lowercase = {'''weight_map''': {}} for layer_i in range(lowerCamelCase_ ): __lowercase = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded __lowercase = { f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wq.weight"] ), f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wk.weight"] ), f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. __lowercase = { f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ].clone(), f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ f"layers.{layer_i}.ffn_norm.weight" ].clone(), } __lowercase = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for i in range(lowerCamelCase_ ) ] , dim=0 , ).reshape(lowerCamelCase_ , lowerCamelCase_ ) ) __lowercase = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for i in range(lowerCamelCase_ ) ] , dim=0 , ).reshape(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) __lowercase = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for i in range(lowerCamelCase_ ) ] , dim=0 , ).reshape(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(lowerCamelCase_ )] , dim=1 ) __lowercase = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(lowerCamelCase_ )] , dim=0 ) __lowercase = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(lowerCamelCase_ )] , dim=1 ) __lowercase = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(lowerCamelCase_ )] , dim=0 ) __lowercase = inv_freq for k, v in state_dict.items(): __lowercase = filename param_count += v.numel() torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) __lowercase = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded __lowercase = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: __lowercase = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(lowerCamelCase_ )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(lowerCamelCase_ )] , dim=0 ), } for k, v in state_dict.items(): __lowercase = filename param_count += v.numel() torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) # Write configs __lowercase = {'''total_size''': param_count * 2} write_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , '''pytorch_model.bin.index.json''' ) ) __lowercase = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 __lowercase = params['''multiple_of'''] if '''multiple_of''' in params else 2_5_6 __lowercase = LlamaConfig( hidden_size=lowerCamelCase_ , intermediate_size=compute_intermediate_size(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=lowerCamelCase_ , ) config.save_pretrained(lowerCamelCase_ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) __lowercase = LlamaForCausalLM.from_pretrained(lowerCamelCase_ , torch_dtype=torch.floataa , low_cpu_mem_usage=lowerCamelCase_ ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(lowerCamelCase_ , safe_serialization=lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] ): # Initialize the tokenizer based on the `spm` model __lowercase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) __lowercase = tokenizer_class(lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) def _lowerCAmelCase ( ): __lowercase = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=lowerCamelCase_ , help='''Whether or not to save using `safetensors`.''' ) __lowercase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) __lowercase = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , lowerCamelCase_ ) if __name__ == "__main__": main()
354
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
217
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Any = ['''pixel_values'''] def __init__( self ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = 1 / 2_55 ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = True ,**SCREAMING_SNAKE_CASE__ ,) -> None: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = size if size is not None else {'''shortest_edge''': 2_24} __SCREAMING_SNAKE_CASE :Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __SCREAMING_SNAKE_CASE :Any = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ,param_name='''crop_size''' ) __SCREAMING_SNAKE_CASE :Optional[int] = do_resize __SCREAMING_SNAKE_CASE :Dict = size __SCREAMING_SNAKE_CASE :Optional[Any] = resample __SCREAMING_SNAKE_CASE :Optional[int] = do_center_crop __SCREAMING_SNAKE_CASE :List[Any] = crop_size __SCREAMING_SNAKE_CASE :str = do_rescale __SCREAMING_SNAKE_CASE :Tuple = rescale_factor __SCREAMING_SNAKE_CASE :str = do_normalize __SCREAMING_SNAKE_CASE :List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __SCREAMING_SNAKE_CASE :List[str] = image_std if image_std is not None else OPENAI_CLIP_STD __SCREAMING_SNAKE_CASE :Optional[Any] = do_convert_rgb def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ = None ,**SCREAMING_SNAKE_CASE__ ,) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __SCREAMING_SNAKE_CASE :List[str] = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ ,size=size['''shortest_edge'''] ,default_to_square=SCREAMING_SNAKE_CASE__ ) return resize(SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ,**SCREAMING_SNAKE_CASE__ ,) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE__ ,size=(size['''height'''], size['''width''']) ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ,**SCREAMING_SNAKE_CASE__ ,) -> int: """simple docstring""" return rescale(SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ,**SCREAMING_SNAKE_CASE__ ,) -> np.ndarray: """simple docstring""" return normalize(SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE__ ,) -> PIL.Image.Image: """simple docstring""" __SCREAMING_SNAKE_CASE :int = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE :str = size if size is not None else self.size __SCREAMING_SNAKE_CASE :Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE__ ,param_name='''size''' ,default_to_square=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE :Dict = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE :List[str] = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE :Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE__ ,param_name='''crop_size''' ,default_to_square=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE :Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE :int = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE :Optional[int] = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE :Dict = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE :int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __SCREAMING_SNAKE_CASE :List[str] = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __SCREAMING_SNAKE_CASE :List[str] = [convert_to_rgb(SCREAMING_SNAKE_CASE__ ) for image in images] # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE :Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE :Dict = [self.resize(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE :Dict = [self.center_crop(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE :List[Any] = [self.rescale(image=SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE :List[Any] = [self.normalize(image=SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ) for image in images] __SCREAMING_SNAKE_CASE :Union[str, Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for image in images] __SCREAMING_SNAKE_CASE :Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ ,tensor_type=SCREAMING_SNAKE_CASE__ )
191
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowerCamelCase_ = logging.getLogger(__name__) def __lowerCamelCase ( ) -> int: __SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=a_ , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=a_ , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=a_ , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=a_ , default='''data/dump''' , help='''The dump file prefix.''' ) __SCREAMING_SNAKE_CASE :Any = parser.parse_args() logger.info(f'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": __SCREAMING_SNAKE_CASE :Union[str, Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __SCREAMING_SNAKE_CASE :str = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE :str = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __SCREAMING_SNAKE_CASE :str = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __SCREAMING_SNAKE_CASE :Union[str, Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __SCREAMING_SNAKE_CASE :str = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(f'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: __SCREAMING_SNAKE_CASE :Union[str, Any] = fp.readlines() logger.info('''Start encoding''' ) logger.info(f'''{len(a_ )} examples to process.''' ) __SCREAMING_SNAKE_CASE :Optional[int] = [] __SCREAMING_SNAKE_CASE :List[str] = 0 __SCREAMING_SNAKE_CASE :Optional[Any] = 1_00_00 __SCREAMING_SNAKE_CASE :List[Any] = time.time() for text in data: __SCREAMING_SNAKE_CASE :Any = f'''{bos} {text.strip()} {sep}''' __SCREAMING_SNAKE_CASE :int = tokenizer.encode(a_ , add_special_tokens=a_ ) rslt.append(a_ ) iter += 1 if iter % interval == 0: __SCREAMING_SNAKE_CASE :Any = time.time() logger.info(f'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) __SCREAMING_SNAKE_CASE :Any = time.time() logger.info('''Finished binarization''' ) logger.info(f'''{len(a_ )} examples processed.''' ) __SCREAMING_SNAKE_CASE :Optional[int] = f'''{args.dump_file}.{args.tokenizer_name}.pickle''' __SCREAMING_SNAKE_CASE :str = tokenizer.vocab_size if vocab_size < (1 << 16): __SCREAMING_SNAKE_CASE :Union[str, Any] = [np.uintaa(a_ ) for d in rslt] else: __SCREAMING_SNAKE_CASE :List[Any] = [np.intaa(a_ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'''Dump to {dp_file}''' ) with open(a_ , '''wb''' ) as handle: pickle.dump(rslt_ , a_ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
191
1
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' snake_case_ = s.rsplit(lowercase_ , lowercase_ ) return new.join(lowercase_ ) def UpperCamelCase( lowercase_ ) -> Union[str, Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase( lowercase_ ) -> str: '''simple docstring''' snake_case_ = {} snake_case_ = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: snake_case_ = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: snake_case_ = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): snake_case_ = rreplace(lowercase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): snake_case_ = rreplace(lowercase_ , """.b""" , """.bias""" , 1 ) snake_case_ = value.float() return upgrade @torch.no_grad() def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=None , lowercase_=True ) -> Any: '''simple docstring''' from dall_e import Encoder snake_case_ = Encoder() if os.path.exists(lowercase_ ): snake_case_ = torch.load(lowercase_ ) else: snake_case_ = torch.hub.load_state_dict_from_url(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): snake_case_ = ckpt.state_dict() encoder.load_state_dict(lowercase_ ) if config_path is not None: snake_case_ = FlavaImageCodebookConfig.from_pretrained(lowercase_ ) else: snake_case_ = FlavaImageCodebookConfig() snake_case_ = FlavaImageCodebook(lowercase_ ).eval() snake_case_ = encoder.state_dict() snake_case_ = upgrade_state_dict(lowercase_ ) hf_model.load_state_dict(lowercase_ ) snake_case_ = hf_model.state_dict() snake_case_ = count_parameters(lowercase_ ) snake_case_ = count_parameters(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowercase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase_ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
34
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger lowerCamelCase_ = get_logger(__name__) class __lowerCamelCase ( enum.Enum ): lowerCamelCase_ : Dict = 'all_checks' lowerCamelCase_ : Any = 'basic_checks' lowerCamelCase_ : Any = 'no_checks' class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=None ) -> List[str]: '''simple docstring''' if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(lowercase_ ) - set(lowercase_ ) ) ) if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise UnexpectedDownloadedFile(str(set(lowercase_ ) - set(lowercase_ ) ) ) snake_case_ = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] snake_case_ = """ for """ + verification_name if verification_name is not None else """""" if len(lowercase_ ) > 0: raise NonMatchingChecksumError( f'''Checksums didn\'t match{for_verification_name}:\n''' f'''{bad_urls}\n''' """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass def UpperCamelCase( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise ExpectedMoreSplits(str(set(lowercase_ ) - set(lowercase_ ) ) ) if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise UnexpectedSplits(str(set(lowercase_ ) - set(lowercase_ ) ) ) snake_case_ = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(lowercase_ ) > 0: raise NonMatchingSplitsSizesError(str(lowercase_ ) ) logger.info("""All the splits matched successfully.""" ) def UpperCamelCase( lowercase_ , lowercase_ = True ) -> dict: '''simple docstring''' if record_checksum: snake_case_ = shaaaa() with open(lowercase_ , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"""""" ): m.update(lowercase_ ) snake_case_ = m.hexdigest() else: snake_case_ = None return {"num_bytes": os.path.getsize(lowercase_ ), "checksum": checksum} def UpperCamelCase( lowercase_ ) -> List[str]: '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
34
1
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration A: List[str] = pytest.mark.integration A: Any = {'comet'} A: str = importlib.util.find_spec("fairseq") is not None A: Optional[int] = {'code_eval'} A: Optional[int] = os.name == 'nt' A: Union[str, Any] = {'bertscore', 'frugalscore', 'perplexity'} A: int = importlib.util.find_spec("transformers") is not None def _snake_case ( UpperCamelCase : Dict ): @wraps(lowerCamelCase__ ) def wrapper(self : int , UpperCamelCase : Optional[int] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , lowerCamelCase__ ) return wrapper def _snake_case ( UpperCamelCase : str ): @wraps(lowerCamelCase__ ) def wrapper(self : str , UpperCamelCase : Optional[int] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , lowerCamelCase__ ) return wrapper def _snake_case ( UpperCamelCase : Dict ): @wraps(lowerCamelCase__ ) def wrapper(self : List[str] , UpperCamelCase : str ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , lowerCamelCase__ ) return wrapper def _snake_case ( ): UpperCAmelCase : List[Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( snake_case__ , snake_case__ , snake_case__ ) @local class SCREAMING_SNAKE_CASE__ ( parameterized.TestCase ): __lowerCAmelCase : Union[str, Any] = {} __lowerCAmelCase : Optional[int] = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : int = "[...]" UpperCAmelCase : List[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , snake_case__ ) ).module_path ) UpperCAmelCase : int = datasets.load.import_main_class(metric_module.__name__ , dataset=snake_case__ ) # check parameters UpperCAmelCase : int = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(snake_case__ , metric_module.__name__ ): with self.use_local_metrics(): try: UpperCAmelCase : Dict = doctest.testmod(snake_case__ , verbose=snake_case__ , raise_on_error=snake_case__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] = "[...]" UpperCAmelCase : List[str] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , snake_case__ ) ).module_path ) # run doctest with self.use_local_metrics(): UpperCAmelCase : Any = doctest.testmod(snake_case__ , verbose=snake_case__ , raise_on_error=snake_case__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](snake_case__ ): yield else: yield @contextmanager def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' def load_local_metric(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return load_metric(os.path.join("""metrics""" , snake_case__ ) , *snake_case__ , **snake_case__ ) with patch("""datasets.load_metric""" ) as mock_load_metric: UpperCAmelCase : List[str] = load_local_metric yield @classmethod def SCREAMING_SNAKE_CASE ( cls , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' def wrapper(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : int = contextmanager(snake_case__ ) UpperCAmelCase : Dict = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def _snake_case ( UpperCamelCase : Optional[int] ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class SCREAMING_SNAKE_CASE__ ( snake_case__ ): def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: UpperCAmelCase : int = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def _snake_case ( UpperCamelCase : Tuple ): import torch def bert_cos_score_idf(UpperCamelCase : List[Any] , UpperCamelCase : Tuple , *UpperCamelCase : int , **UpperCamelCase : Dict ): return torch.tensor([[1.0, 1.0, 1.0]] * len(lowerCamelCase__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: UpperCAmelCase : Optional[int] = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def _snake_case ( UpperCamelCase : str ): def load_from_checkpoint(UpperCamelCase : Optional[int] ): class SCREAMING_SNAKE_CASE__ : def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' assert len(snake_case__ ) == 2 UpperCAmelCase : int = [0.19, 0.92] return scores, sum(snake_case__ ) / len(snake_case__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: UpperCAmelCase : Optional[int] = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: UpperCAmelCase : Union[str, Any] = load_from_checkpoint yield def _snake_case ( ): UpperCAmelCase : Any = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) UpperCAmelCase : int = "ERROR" UpperCAmelCase : int = F"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(lowerCamelCase__ , match=re.escape(lowerCamelCase__ ) ): metric.compute(predictions=[] , references=[] , scheme=lowerCamelCase__ )
109
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowercase__ ( snake_case__ ): _UpperCAmelCase :BigBirdConfig _UpperCAmelCase :jnp.dtype = jnp.floataa _UpperCAmelCase :bool = True def UpperCAmelCase__ ( self : Dict ): super().setup() lowerCamelCase_ : List[str] =nn.Dense(5 , dtype=self.dtype ) def __call__( self : Dict , *snake_case__ : Optional[int] , **snake_case__ : Any ): lowerCamelCase_ : int =super().__call__(*snake_case__ , **snake_case__ ) lowerCamelCase_ : Tuple =self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowercase__ ( snake_case__ ): _UpperCAmelCase :List[str] = FlaxBigBirdForNaturalQuestionsModule def _snake_case ( lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> List[str]: def cross_entropy(lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int=None ): lowerCamelCase_ : List[str] =logits.shape[-1] lowerCamelCase_ : List[str] =(labels[..., None] == jnp.arange(lowerCamelCase__ )[None]).astype("f4" ) lowerCamelCase_ : str =jax.nn.log_softmax(lowerCamelCase__ , axis=-1 ) lowerCamelCase_ : Tuple =-jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCamelCase_ : str =reduction(lowerCamelCase__ ) return loss lowerCamelCase_ : int =partial(lowerCamelCase__ , reduction=jnp.mean ) lowerCamelCase_ : int =cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Any =cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : List[str] =cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowercase__ : _UpperCAmelCase :str = "google/bigbird-roberta-base" _UpperCAmelCase :int = 3000 _UpperCAmelCase :int = 10500 _UpperCAmelCase :int = 128 _UpperCAmelCase :int = 3 _UpperCAmelCase :int = 1 _UpperCAmelCase :int = 5 # tx_args _UpperCAmelCase :float = 3e-5 _UpperCAmelCase :float = 0.0 _UpperCAmelCase :int = 20000 _UpperCAmelCase :float = 0.00_95 _UpperCAmelCase :str = "bigbird-roberta-natural-questions" _UpperCAmelCase :str = "training-expt" _UpperCAmelCase :str = "data/nq-training.jsonl" _UpperCAmelCase :str = "data/nq-validation.jsonl" def UpperCAmelCase__ ( self : Union[str, Any] ): os.makedirs(self.base_dir , exist_ok=snake_case__ ) lowerCamelCase_ : Tuple =os.path.join(self.base_dir , self.save_dir ) lowerCamelCase_ : Optional[Any] =self.batch_size_per_device * jax.device_count() @dataclass class lowercase__ : _UpperCAmelCase :int _UpperCAmelCase :int = 4096 # no dynamic padding on TPUs def __call__( self : List[str] , snake_case__ : List[str] ): lowerCamelCase_ : Optional[int] =self.collate_fn(snake_case__ ) lowerCamelCase_ : List[str] =jax.tree_util.tree_map(snake_case__ , snake_case__ ) return batch def UpperCAmelCase__ ( self : str , snake_case__ : Dict ): lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =self.fetch_inputs(features["input_ids"] ) lowerCamelCase_ : Dict ={ "input_ids": jnp.array(snake_case__ , dtype=jnp.intaa ), "attention_mask": jnp.array(snake_case__ , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def UpperCAmelCase__ ( self : List[Any] , snake_case__ : list ): lowerCamelCase_ : Any =[self._fetch_inputs(snake_case__ ) for ids in input_ids] return zip(*snake_case__ ) def UpperCAmelCase__ ( self : int , snake_case__ : list ): lowerCamelCase_ : List[Any] =[1 for _ in range(len(snake_case__ ) )] while len(snake_case__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case ( lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int]=None ) -> Optional[int]: if seed is not None: lowerCamelCase_ : Union[str, Any] =dataset.shuffle(seed=lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) // batch_size ): lowerCamelCase_ : Any =dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCamelCase__ ) @partial(jax.pmap , axis_name="batch" ) def _snake_case ( lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Tuple ) -> int: def loss_fn(lowerCamelCase__ : Optional[int] ): lowerCamelCase_ : List[Any] =model_inputs.pop("start_labels" ) lowerCamelCase_ : Dict =model_inputs.pop("end_labels" ) lowerCamelCase_ : Any =model_inputs.pop("pooled_labels" ) lowerCamelCase_ : Tuple =state.apply_fn(**lowerCamelCase__ , params=lowerCamelCase__ , dropout_rng=lowerCamelCase__ , train=lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any =outputs return state.loss_fn( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =jax.random.split(lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =jax.value_and_grad(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ : Tuple =grad_fn(state.params ) lowerCamelCase_ : List[Any] =jax.lax.pmean({"loss": loss} , axis_name="batch" ) lowerCamelCase_ : int =jax.lax.pmean(lowerCamelCase__ , "batch" ) lowerCamelCase_ : List[Any] =state.apply_gradients(grads=lowerCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def _snake_case ( lowerCamelCase__ : List[str] , **lowerCamelCase__ : Union[str, Any] ) -> Dict: lowerCamelCase_ : Dict =model_inputs.pop("start_labels" ) lowerCamelCase_ : List[Any] =model_inputs.pop("end_labels" ) lowerCamelCase_ : Union[str, Any] =model_inputs.pop("pooled_labels" ) lowerCamelCase_ : Tuple =state.apply_fn(**lowerCamelCase__ , params=state.params , train=lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =outputs lowerCamelCase_ : int =state.loss_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : str =jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class lowercase__ ( train_state.TrainState ): _UpperCAmelCase :Callable = struct.field(pytree_node=snake_case__ ) @dataclass class lowercase__ : _UpperCAmelCase :Args _UpperCAmelCase :Callable _UpperCAmelCase :Callable _UpperCAmelCase :Callable _UpperCAmelCase :Callable _UpperCAmelCase :wandb _UpperCAmelCase :Callable = None def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : str=None ): lowerCamelCase_ : int =model.params lowerCamelCase_ : Optional[Any] =TrainState.create( apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , loss_fn=snake_case__ , ) if ckpt_dir is not None: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any =restore_checkpoint(snake_case__ , snake_case__ ) lowerCamelCase_ : Tuple ={ "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } lowerCamelCase_ , lowerCamelCase_ : Tuple =build_tx(**snake_case__ ) lowerCamelCase_ : Union[str, Any] =train_state.TrainState( step=snake_case__ , apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , opt_state=snake_case__ , ) lowerCamelCase_ : int =args lowerCamelCase_ : Union[str, Any] =data_collator lowerCamelCase_ : Dict =lr lowerCamelCase_ : Optional[Any] =params lowerCamelCase_ : Dict =jax_utils.replicate(snake_case__ ) return state def UpperCAmelCase__ ( self : Dict , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : List[str] ): lowerCamelCase_ : str =self.args lowerCamelCase_ : List[Any] =len(snake_case__ ) // args.batch_size lowerCamelCase_ : Optional[int] =jax.random.PRNGKey(0 ) lowerCamelCase_ : Dict =jax.random.split(snake_case__ , jax.device_count() ) for epoch in range(args.max_epochs ): lowerCamelCase_ : int =jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase_ : List[Any] =get_batched_dataset(snake_case__ , args.batch_size , seed=snake_case__ ) lowerCamelCase_ : Dict =0 for batch in tqdm(snake_case__ , total=snake_case__ , desc=F"""Running EPOCH-{epoch}""" ): lowerCamelCase_ : str =self.data_collator(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any =self.train_step_fn(snake_case__ , snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: lowerCamelCase_ : Tuple =jax_utils.unreplicate(state.step ) lowerCamelCase_ : Optional[Any] =running_loss.item() / i lowerCamelCase_ : Any =self.scheduler_fn(state_step - 1 ) lowerCamelCase_ : Optional[Any] =self.evaluate(snake_case__ , snake_case__ ) lowerCamelCase_ : str ={ "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(snake_case__ ) ) self.logger.log(snake_case__ , commit=snake_case__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=snake_case__ ) def UpperCAmelCase__ ( self : str , snake_case__ : Dict , snake_case__ : Union[str, Any] ): lowerCamelCase_ : List[Any] =get_batched_dataset(snake_case__ , self.args.batch_size ) lowerCamelCase_ : List[str] =len(snake_case__ ) // self.args.batch_size lowerCamelCase_ : Tuple =jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase_ : Any =0 for batch in tqdm(snake_case__ , total=snake_case__ , desc="Evaluating ... " ): lowerCamelCase_ : Optional[Any] =self.data_collator(snake_case__ ) lowerCamelCase_ : List[str] =self.val_step_fn(snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def UpperCAmelCase__ ( self : str , snake_case__ : Optional[int] , snake_case__ : Any ): lowerCamelCase_ : List[Any] =jax_utils.unreplicate(snake_case__ ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... " ) self.model_save_fn(snake_case__ , params=state.params ) with open(os.path.join(snake_case__ , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(snake_case__ , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(snake_case__ , "data_collator.joblib" ) ) with open(os.path.join(snake_case__ , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , snake_case__ ) print("DONE" ) def _snake_case ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Any ) -> List[Any]: print(F"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " ) with open(os.path.join(lowerCamelCase__ , "flax_model.msgpack" ) , "rb" ) as f: lowerCamelCase_ : Any =from_bytes(state.params , f.read() ) with open(os.path.join(lowerCamelCase__ , "opt_state.msgpack" ) , "rb" ) as f: lowerCamelCase_ : Optional[Any] =from_bytes(state.opt_state , f.read() ) lowerCamelCase_ : List[Any] =joblib.load(os.path.join(lowerCamelCase__ , "args.joblib" ) ) lowerCamelCase_ : int =joblib.load(os.path.join(lowerCamelCase__ , "data_collator.joblib" ) ) with open(os.path.join(lowerCamelCase__ , "training_state.json" ) , "r" ) as f: lowerCamelCase_ : Optional[Any] =json.load(lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any ) -> str: lowerCamelCase_ : Dict =num_train_steps - warmup_steps lowerCamelCase_ : Optional[Any] =optax.linear_schedule(init_value=lowerCamelCase__ , end_value=lowerCamelCase__ , transition_steps=lowerCamelCase__ ) lowerCamelCase_ : List[Any] =optax.linear_schedule(init_value=lowerCamelCase__ , end_value=1e-7 , transition_steps=lowerCamelCase__ ) lowerCamelCase_ : Dict =optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) -> List[str]: def weight_decay_mask(lowerCamelCase__ : str ): lowerCamelCase_ : Union[str, Any] =traverse_util.flatten_dict(lowerCamelCase__ ) lowerCamelCase_ : Any ={k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCamelCase__ ) lowerCamelCase_ : Dict =scheduler_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : List[str] =optax.adamw(learning_rate=lowerCamelCase__ , weight_decay=lowerCamelCase__ , mask=lowerCamelCase__ ) return tx, lr
144
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowerCAmelCase__ ( _UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> Dict: """simple docstring""" snake_case = create_tensor(_UpperCamelCase ) snake_case = gather(_UpperCamelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowerCAmelCase__ ( _UpperCamelCase : Any ) -> Any: """simple docstring""" snake_case = [state.process_index] snake_case = gather_object(_UpperCamelCase ) assert len(_UpperCamelCase ) == state.num_processes, f"""{gathered_obj}, {len(_UpperCamelCase )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), f"""{gathered_obj} != {list(range(state.num_processes ) )}""" def lowerCAmelCase__ ( _UpperCamelCase : List[str] ) -> str: """simple docstring""" snake_case = create_tensor(_UpperCamelCase ) snake_case = broadcast(_UpperCamelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> Any: """simple docstring""" if state.is_main_process: snake_case = torch.arange(state.num_processes + 1 ).to(state.device ) else: snake_case = torch.arange(state.num_processes ).to(state.device ) snake_case = pad_across_processes(_UpperCamelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowerCAmelCase__ ( _UpperCamelCase : str ) -> Dict: """simple docstring""" if state.num_processes != 2: return snake_case = create_tensor(_UpperCamelCase ) snake_case = reduce(_UpperCamelCase , 'sum' ) snake_case = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(_UpperCamelCase , _UpperCamelCase ), f"""{reduced_tensor} != {truth_tensor}""" def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return snake_case = create_tensor(_UpperCamelCase ) snake_case = reduce(_UpperCamelCase , 'mean' ) snake_case = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(_UpperCamelCase , _UpperCamelCase ), f"""{reduced_tensor} != {truth_tensor}""" def lowerCAmelCase__ ( _UpperCamelCase : Union[str, Any] ) -> str: """simple docstring""" main() def lowerCAmelCase__ ( ) -> List[Any]: """simple docstring""" snake_case = PartialState() state.print(f"""State: {state}""" ) state.print('testing gather' ) test_gather(_UpperCamelCase ) state.print('testing gather_object' ) test_gather_object(_UpperCamelCase ) state.print('testing broadcast' ) test_broadcast(_UpperCamelCase ) state.print('testing pad_across_processes' ) test_pad_across_processes(_UpperCamelCase ) state.print('testing reduce_sum' ) test_reduce_sum(_UpperCamelCase ) state.print('testing reduce_mean' ) test_reduce_mean(_UpperCamelCase ) if __name__ == "__main__": main()
149
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def lowerCAmelCase__ ( _UpperCamelCase : Any ) -> int: """simple docstring""" snake_case = {} snake_case = job['started_at'] snake_case = job['completed_at'] snake_case = date_parser.parse(_UpperCamelCase ) snake_case = date_parser.parse(_UpperCamelCase ) snake_case = round((end_datetime - start_datetime).total_seconds() / 60.0 ) snake_case = start snake_case = end snake_case = duration_in_min return job_info def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Any=None ) -> Union[str, Any]: """simple docstring""" snake_case = None if token is not None: snake_case = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} snake_case = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" snake_case = requests.get(_UpperCamelCase , headers=_UpperCamelCase ).json() snake_case = {} try: job_time.update({job['name']: extract_time_from_single_job(_UpperCamelCase ) for job in result['jobs']} ) snake_case = math.ceil((result['total_count'] - 1_0_0) / 1_0_0 ) for i in range(_UpperCamelCase ): snake_case = requests.get(url + f"""&page={i + 2}""" , headers=_UpperCamelCase ).json() job_time.update({job['name']: extract_time_from_single_job(_UpperCamelCase ) for job in result['jobs']} ) return job_time except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = get_job_time(args.workflow_run_id) SCREAMING_SNAKE_CASE__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v['duration']}""")
149
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class __lowercase ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @staticmethod @abstractmethod def __A ( A ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError() @abstractmethod def __A ( self ) -> int: '''simple docstring''' raise NotImplementedError()
252
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : List[str] = analyze_text(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. lowerCAmelCase__ : List[Any] = sum(single_char_strings.values() ) # one length string lowerCAmelCase__ : Optional[int] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCAmelCase__ : List[Any] = single_char_strings[ch] lowerCAmelCase__ : List[Any] = my_str / all_sum my_fir_sum += prob * math.loga(UpperCamelCase ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string lowerCAmelCase__ : Dict = sum(two_char_strings.values() ) lowerCAmelCase__ : int = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCAmelCase__ : Union[str, Any] = cha + cha if sequence in two_char_strings: lowerCAmelCase__ : Dict = two_char_strings[sequence] lowerCAmelCase__ : Tuple = int(UpperCamelCase ) / all_sum my_sec_sum += prob * math.loga(UpperCamelCase ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = Counter() # type: ignore lowerCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(UpperCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
37
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A = "pt" elif is_tf_available(): __A = "tf" else: __A = "jax" class SCREAMING_SNAKE_CASE ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ByTaTokenizer A_ = False def __A ( self: Union[str, Any] ) -> Union[str, Any]: super().setUp() _A = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __A ( self: Optional[int] ) -> str: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def __A ( self: Optional[Any] , **__A: Optional[Any] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_a ) def __A ( self: Optional[Any] , __A: Optional[int] , __A: List[Any]=False , __A: Optional[int]=20 , __A: Union[str, Any]=5 ) -> Tuple[str, list]: _A = [] for i in range(len(_a ) ): try: _A = tokenizer.decode([i] , clean_up_tokenization_spaces=_a ) except UnicodeDecodeError: pass toks.append((i, tok) ) _A = list(filter(lambda __A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _a ) ) _A = list(filter(lambda __A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_a ) , _a ) ) if max_length is not None and len(_a ) > max_length: _A = toks[:max_length] if min_length is not None and len(_a ) < min_length and len(_a ) > 0: while len(_a ) < min_length: _A = toks + toks # toks_str = [t[1] for t in toks] _A = [t[0] for t in toks] # Ensure consistency _A = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) if " " not in output_txt and len(_a ) > 1: _A = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_a ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_a ) ) if with_prefix_space: _A = """ """ + output_txt _A = tokenizer.encode(_a , add_special_tokens=_a ) return output_txt, output_ids def __A ( self: Optional[int] ) -> Optional[int]: _A = self.ta_base_tokenizer _A = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) _A = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def __A ( self: List[str] ) -> Dict: _A = self.ta_base_tokenizer _A = """Unicode €.""" _A = tokenizer(_a ) _A = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['''input_ids'''] , _a ) # decoding _A = tokenizer.decode(_a ) self.assertEqual(_a , '''Unicode €.</s>''' ) _A = tokenizer('''e è é ê ë''' ) _A = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['''input_ids'''] , _a ) # decoding _A = tokenizer.decode(_a ) self.assertEqual(_a , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def __A ( self: Optional[int] ) -> Optional[Any]: _A = self.ta_base_tokenizer _A = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off _A = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on _A = tokenizer(_a , padding=_a , return_tensors=_a ) self.assertIsInstance(_a , _a ) if FRAMEWORK != "jax": _A = list(batch.input_ids.numpy()[0] ) else: _A = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_a , _a ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __A ( self: str ) -> Union[str, Any]: _A = self.ta_base_tokenizer _A = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _A = tokenizer(_a , padding=_a , return_tensors=_a ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _a ) self.assertIn('''attention_mask''' , _a ) self.assertNotIn('''decoder_input_ids''' , _a ) self.assertNotIn('''decoder_attention_mask''' , _a ) def __A ( self: Tuple ) -> str: _A = self.ta_base_tokenizer _A = [ """Summary of the text.""", """Another summary.""", ] _A = tokenizer( text_target=_a , max_length=32 , padding='''max_length''' , truncation=_a , return_tensors=_a ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def __A ( self: int ) -> List[Any]: _A = self.ta_base_tokenizer _A = ["""A long paragraph for summarization. </s>"""] _A = ["""Summary of the text. </s>"""] # fmt: off _A = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] _A = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on _A = tokenizer(_a , text_target=_a ) self.assertEqual(_a , batch['''input_ids'''][0] ) self.assertEqual(_a , batch['''labels'''][0] ) def __A ( self: int ) -> List[Any]: _A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _A = tempfile.mkdtemp() _A = """ He is very happy, UNwant\u00E9d,running""" _A = tokenizer.encode(_a , add_special_tokens=_a ) tokenizer.save_pretrained(_a ) _A = tokenizer.__class__.from_pretrained(_a ) _A = after_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) shutil.rmtree(_a ) _A = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _A = tempfile.mkdtemp() _A = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(['''bim''', '''bambam'''] ) _A = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) _A = tokenizer.encode(_a , add_special_tokens=_a ) tokenizer.save_pretrained(_a ) _A = tokenizer.__class__.from_pretrained(_a ) _A = after_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _A = tokenizer.__class__.from_pretrained(_a , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_a ) def __A ( self: List[Any] ) -> Any: _A = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_a ) with open(os.path.join(_a , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: _A = json.load(_a ) with open(os.path.join(_a , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: _A = json.load(_a ) _A = [f"""<extra_id_{i}>""" for i in range(1_25 )] _A = added_tokens_extra_ids + [ """an_additional_special_token""" ] _A = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(_a , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_a , _a ) with open(os.path.join(_a , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_a , _a ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _A = tokenizer_class.from_pretrained( _a , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _A = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_a )] _A = tokenizer_class.from_pretrained( _a , additional_special_tokens=_a , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def __A ( self: Any ) -> Any: _A = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_a ) _A = tokenizer_class.from_pretrained(_a ) self.assertTrue(tokenizer.decode([2_55] ) == '''''' ) def __A ( self: Union[str, Any] ) -> Any: pass def __A ( self: List[str] ) -> int: pass def __A ( self: Union[str, Any] ) -> Tuple: pass def __A ( self: int ) -> List[str]: pass def __A ( self: str ) -> Union[str, Any]: _A = self.get_tokenizers(fast=_a , do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _A = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] _A = tokenizer.convert_tokens_to_string(_a ) self.assertIsInstance(_a , _a ) def __A ( self: Any ) -> Optional[int]: _A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _A = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _A = 0 _A = tokenizer.convert_ids_to_tokens( _a , skip_special_tokens=_a ) for attr in attributes_list: setattr(_a , attr + '''_id''' , _a ) self.assertEqual(getattr(_a , _a ) , _a ) self.assertEqual(getattr(_a , attr + '''_id''' ) , _a ) setattr(_a , attr + '''_id''' , _a ) self.assertEqual(getattr(_a , _a ) , _a ) self.assertEqual(getattr(_a , attr + '''_id''' ) , _a ) setattr(_a , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_a , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_a , '''additional_special_tokens_ids''' ) , [] ) setattr(_a , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_a , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_a , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
362
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __A ( self: Union[str, Any] ) -> Union[str, Any]: _A = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _A = dict(zip(__A , range(len(__A ) ) ) ) _A = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _A = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _A = tempfile.mkdtemp() _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join(self.tmpdirname , __A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) # load decoder from hub _A = '''hf-internal-testing/ngram-beam-search-decoder''' def __A ( self: Tuple , **__A: str ) -> str: _A = self.add_kwargs_tokens_map.copy() kwargs.update(__A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__A ) def __A ( self: Any , **__A: List[Any] ) -> Union[str, Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__A ) def __A ( self: List[Any] , **__A: Union[str, Any] ) -> int: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__A ) def __A ( self: List[str] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __A ( self: List[str] ) -> Optional[Any]: _A = self.get_tokenizer() _A = self.get_feature_extractor() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) processor.save_pretrained(self.tmpdirname ) _A = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __A ) def __A ( self: Optional[int] ) -> Union[str, Any]: _A = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _A = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __A ( self: str ) -> Any: _A = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(__A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=__A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __A ( self: List[str] ) -> str: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = floats_list((3, 10_00) ) _A = feature_extractor(__A , return_tensors='''np''' ) _A = processor(__A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self: Union[str, Any] ) -> Optional[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = '''This is a test string''' _A = processor(text=__A ) _A = tokenizer(__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self: List[str] , __A: Optional[int]=(2, 10, 16) , __A: Optional[int]=77 ) -> List[Any]: np.random.seed(__A ) return np.random.rand(*__A ) def __A ( self: List[Any] ) -> Optional[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _A = processor.decode(__A ) _A = decoder.decode_beams(__A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def __A ( self: str , __A: Any ) -> int: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _A = processor.batch_decode(__A ) else: with get_context(__A ).Pool() as pool: _A = processor.batch_decode(__A , __A ) _A = list(__A ) with get_context('''fork''' ).Pool() as p: _A = decoder.decode_beams_batch(__A , __A ) _A ,_A ,_A = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(__A , decoded_processor.logit_score ) self.assertListEqual(__A , decoded_processor.lm_score ) def __A ( self: Optional[Any] ) -> int: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits() _A = 15 _A = -20.0 _A = -4.0 _A = processor.batch_decode( __A , beam_width=__A , beam_prune_logp=__A , token_min_logp=__A , ) _A = decoded_processor_out.text _A = list(__A ) with get_context('''fork''' ).Pool() as pool: _A = decoder.decode_beams_batch( __A , __A , beam_width=__A , beam_prune_logp=__A , token_min_logp=__A , ) _A = [d[0][0] for d in decoded_decoder_out] _A = [d[0][2] for d in decoded_decoder_out] _A = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__A , __A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , __A ) self.assertTrue(np.array_equal(__A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __A , atol=1e-3 ) ) self.assertTrue(np.array_equal(__A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , __A , atol=1e-3 ) ) def __A ( self: Optional[int] ) -> Dict: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits() _A = 2.0 _A = 5.0 _A = -20.0 _A = True _A = processor.batch_decode( __A , alpha=__A , beta=__A , unk_score_offset=__A , lm_score_boundary=__A , ) _A = decoded_processor_out.text _A = list(__A ) decoder.reset_params( alpha=__A , beta=__A , unk_score_offset=__A , lm_score_boundary=__A , ) with get_context('''fork''' ).Pool() as pool: _A = decoder.decode_beams_batch( __A , __A , ) _A = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__A , __A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , __A ) _A = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __A ) def __A ( self: int ) -> Optional[Any]: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _A = os.listdir(__A ) _A = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__A , __A ) def __A ( self: Tuple ) -> Any: _A = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _A = WavaVecaProcessorWithLM.from_pretrained(__A ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _A = os.listdir(__A ) _A = os.listdir(__A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__A , __A ) def __A ( self: List[str] ) -> Tuple: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = floats_list((3, 10_00) ) _A = processor_wavaveca(__A , return_tensors='''np''' ) _A = processor_auto(__A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) _A = self._get_dummy_logits() _A = processor_wavaveca.batch_decode(__A ) _A = processor_auto.batch_decode(__A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __A ( self: Optional[int] ) -> Any: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def __A ( __A: int , __A: List[str] ) -> Union[str, Any]: _A = [d[key] for d in offsets] return retrieved_list def __A ( self: Optional[Any] ) -> int: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = self._get_dummy_logits()[0] _A = processor.decode(__A , output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__A , __A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def __A ( self: Optional[Any] ) -> Tuple: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = self._get_dummy_logits() _A = processor.batch_decode(__A , output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__A , __A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(__A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __A ( self: Optional[Any] ) -> Optional[Any]: import torch _A = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=__A ) _A = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _A = iter(__A ) _A = next(__A ) _A = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _A = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _A = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _A = model(__A ).logits.cpu().numpy() _A = processor.decode(logits[0] , output_word_offsets=__A ) _A = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _A = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _A = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(__A , '''word''' ) ) , __A ) self.assertEqual(''' '''.join(self.get_from_offsets(__A , '''word''' ) ) , output.text ) # output times _A = torch.tensor(self.get_from_offsets(__A , '''start_time''' ) ) _A = torch.tensor(self.get_from_offsets(__A , '''end_time''' ) ) # fmt: off _A = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) _A = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__A , __A , atol=0.01 ) ) self.assertTrue(torch.allclose(__A , __A , atol=0.01 ) )
75
0
'''simple docstring''' import math def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Tuple = 0 while num > 0: _UpperCAmelCase : List[Any] = num % 8 _UpperCAmelCase : Optional[int] = octal + (remainder * math.floor(math.pow(10 , __lowerCAmelCase ) )) counter += 1 _UpperCAmelCase : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"""0o{int(__lowerCAmelCase )}""" def __lowerCAmelCase (): print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(216 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(512 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
234
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Dict = filter(lambda __lowerCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase : Optional[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCamelCase__ = logging.getLogger(__name__) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if metric == "rouge2": _UpperCAmelCase : List[str] = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _UpperCAmelCase : int = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _UpperCAmelCase : str = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": _UpperCAmelCase : List[Any] = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) _UpperCAmelCase : Any = ModelCheckpoint( dirpath=__lowerCAmelCase , filename=__lowerCAmelCase , monitor=F"""val_{metric}""" , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return EarlyStopping( monitor=F"""val_{metric}""" , mode="min" if "loss" in metric else "max" , patience=__lowerCAmelCase , verbose=__lowerCAmelCase , ) class lowerCAmelCase__ ( pl.Callback ): def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = {F"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCamelCase__ ) @rank_zero_only def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : pl.LightningModule , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any]=True ) ->None: '''simple docstring''' logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _UpperCAmelCase : str = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _UpperCAmelCase : Any = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCAmelCase : List[Any] = od / "test_results.txt" _UpperCAmelCase : Union[str, Any] = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase : Optional[Any] = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _UpperCAmelCase : Dict = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCamelCase__ ) generations_file.parent.mkdir(exist_ok=lowerCamelCase__ ) with open(lowerCamelCase__ , "a+" ) as writer: for key in sorted(lowerCamelCase__ ): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase : Dict = metrics[key] if isinstance(lowerCamelCase__ , torch.Tensor ): _UpperCAmelCase : Tuple = val.item() _UpperCAmelCase : str = F"""{key}: {val:.6f}\n""" writer.write(lowerCamelCase__ ) if not save_generations: return if "preds" in metrics: _UpperCAmelCase : Optional[int] = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(lowerCamelCase__ ) @rank_zero_only def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) ->Any: '''simple docstring''' try: _UpperCAmelCase : Tuple = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase : int = pl_module.model.num_parameters() _UpperCAmelCase : int = count_trainable_parameters(lowerCamelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : pl.LightningModule ) ->int: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCamelCase__ , lowerCamelCase__ , "test" ) @rank_zero_only def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
234
1
"""simple docstring""" a_ = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def a__ ( __lowercase ) -> int: _A = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a_ = [None] * 10_00_00_00 a_ = True a_ = False def a__ ( __lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _A = chain(next_number(__lowercase ) ) _A = number_chain while number < 1000_0000: _A = number_chain number *= 10 return number_chain def a__ ( __lowercase = 1000_0000 ) -> int: for i in range(1 , __lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution() = }''')
163
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class snake_case ( _UpperCamelCase): __UpperCamelCase = 'ctrl' __UpperCamelCase = ['past_key_values'] __UpperCamelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Tuple , a__ : Union[str, Any]=24_65_34 , a__ : int=2_56 , a__ : Any=12_80 , a__ : Optional[int]=81_92 , a__ : Union[str, Any]=48 , a__ : Optional[int]=16 , a__ : List[str]=0.1 , a__ : List[str]=0.1 , a__ : Optional[int]=1E-6 , a__ : Optional[int]=0.0_2 , a__ : Tuple=True , **a__ : List[Any] , ) -> Tuple: '''simple docstring''' _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = dff _A = resid_pdrop _A = embd_pdrop _A = layer_norm_epsilon _A = initializer_range _A = use_cache super().__init__(**a__ )
163
1
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase ( _UpperCAmelCase ): def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase , """width_multiplier""" ) ) class lowercase : def __init__( self , lowercase , lowercase=13 , lowercase=64 , lowercase=2 , lowercase=3 , lowercase="swish" , lowercase=3 , lowercase=32 , lowercase=0.1 , lowercase=0.02 , lowercase=True , lowercase=True , lowercase=10 , lowercase=None , lowercase=0.25 , lowercase=0.0 , lowercase=0.0 , ) -> List[str]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = make_divisible(512 * width_multiplier , divisor=8 ) lowerCAmelCase = hidden_act lowerCAmelCase = conv_kernel_size lowerCAmelCase = output_stride lowerCAmelCase = classifier_dropout_prob lowerCAmelCase = use_labels lowerCAmelCase = is_training lowerCAmelCase = num_labels lowerCAmelCase = initializer_range lowerCAmelCase = scope lowerCAmelCase = width_multiplier lowerCAmelCase = ffn_dropout lowerCAmelCase = attn_dropout def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def _snake_case ( self ) -> List[str]: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = MobileViTVaModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = MobileViTVaForImageClassification(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCAmelCase = self.num_labels lowerCAmelCase = MobileViTVaForSemanticSegmentation(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCAmelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case ( self ) -> str: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> Dict: lowerCAmelCase = MobileViTVaModelTester(self ) lowerCAmelCase = MobileViTVaConfigTester(self , config_class=lowercase , has_text_modality=lowercase ) def _snake_case ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def _snake_case ( self ) -> List[str]: pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def _snake_case ( self ) -> Optional[Any]: pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def _snake_case ( self ) -> Any: pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def _snake_case ( self ) -> str: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(lowercase ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _snake_case ( self ) -> List[str]: def check_hidden_states_output(lowercase , lowercase , lowercase ): lowerCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) lowerCAmelCase = outputs.hidden_states lowerCAmelCase = 5 self.assertEqual(len(lowercase ) , lowercase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCAmelCase = 2 for i in range(len(lowercase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True check_hidden_states_output(lowercase , lowercase , lowercase ) def _snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) def _snake_case ( self ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase ) @slow def _snake_case ( self ) -> Union[str, Any]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = MobileViTVaModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def _snake_case ( self ) -> List[str]: return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def _snake_case ( self ) -> List[Any]: lowerCAmelCase = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( lowercase ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=lowercase , return_tensors="""pt""" ).to(lowercase ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**lowercase ) # verify the logits lowerCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase ) lowerCAmelCase = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) ) @slow def _snake_case ( self ) -> Dict: lowerCAmelCase = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCAmelCase = model.to(lowercase ) lowerCAmelCase = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=lowercase , return_tensors="""pt""" ).to(lowercase ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**lowercase ) lowerCAmelCase = outputs.logits # verify the logits lowerCAmelCase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowercase ) lowerCAmelCase = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowercase , atol=1e-4 ) ) @slow def _snake_case ( self ) -> Dict: lowerCAmelCase = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCAmelCase = model.to(lowercase ) lowerCAmelCase = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=lowercase , return_tensors="""pt""" ).to(lowercase ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**lowercase ) lowerCAmelCase = outputs.logits.detach().cpu() lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=lowercase , target_sizes=[(50, 60)] ) lowerCAmelCase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowercase ) lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=lowercase ) lowerCAmelCase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowercase )
46
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp _UpperCAmelCase = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } _UpperCAmelCase = { """RUCAIBox/mvp""": 1024, } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = ['''input_ids''', '''attention_mask'''] lowerCamelCase_ = MvpTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , lowercase=True , **lowercase , ): """simple docstring""" super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) A_ : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase ) != add_prefix_space: A_ : int = getattr(lowercase , pre_tok_state.pop('type' ) ) A_ : Union[str, Any] = add_prefix_space A_ : Dict = pre_tok_class(**lowercase ) A_ : Union[str, Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A_ : Any = 'post_processor' A_ : List[str] = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: A_ : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : int = tuple(state['sep'] ) if "cls" in state: A_ : Optional[int] = tuple(state['cls'] ) A_ : Tuple = False if state.get('add_prefix_space' , lowercase ) != add_prefix_space: A_ : Union[str, Any] = add_prefix_space A_ : Tuple = True if state.get('trim_offsets' , lowercase ) != trim_offsets: A_ : str = trim_offsets A_ : str = True if changes_to_apply: A_ : List[str] = getattr(lowercase , state.pop('type' ) ) A_ : List[str] = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value A_ : Dict = value def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" A_ : Any = kwargs.get('is_split_into_words' , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase , **lowercase ) def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" A_ : Dict = kwargs.get('is_split_into_words' , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Any = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase=None ): """simple docstring""" A_ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Union[str, Any] = [self.sep_token_id] A_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
140
0
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: __lowerCamelCase : Optional[Any] = int(lowerCamelCase__ ) # Initialize Result __lowerCamelCase : List[str] = [] # Traverse through all denomination for denomination in reversed(lowerCamelCase__ ): # Find denominations while int(lowerCamelCase__ ) >= int(lowerCamelCase__ ): total_value -= int(lowerCamelCase__ ) answer.append(lowerCamelCase__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": a =[] a ="""0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): a =int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) a =input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter a =[1, 2, 5, 10, 20, 50, 100, 500, 2000] a =input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F"""Following is minimal change for {value}: """) a =find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
357
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer a =["""gpt2"""] a ="""gpt2""" if is_tf_available(): class A_ ( tf.Module ): def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : Tuple): super().__init__() __lowerCamelCase : List[Any] = tokenizer __lowerCamelCase : str = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = TFGPTaLMHeadModel.from_config(SCREAMING_SNAKE_CASE__) @tf.function(input_signature=(tf.TensorSpec((None,) ,tf.string ,name='text'),)) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Optional[int]): __lowerCamelCase : str = self.tokenizer(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = tokenized['input_ids'].to_tensor() __lowerCamelCase : List[Any] = tf.cast(input_ids_dense > 0 ,tf.intaa) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __lowerCamelCase : Union[str, Any] = self.model(input_ids=SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__)['logits'] return outputs @require_tf @require_keras_nlp class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[str]): super().setUp() __lowerCamelCase : str = [GPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__) for checkpoint in (TOKENIZER_CHECKPOINTS)] __lowerCamelCase : List[Any] = [TFGPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) __lowerCamelCase : Optional[int] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] __lowerCamelCase : List[str] = list(zip(self.test_sentences ,self.test_sentences[::-1])) def lowerCAmelCase ( self : Optional[int]): for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers): for test_inputs in self.test_sentences: __lowerCamelCase : Union[str, Any] = tokenizer([test_inputs] ,return_tensors='tf') __lowerCamelCase : Dict = tf_tokenizer([test_inputs]) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __lowerCamelCase : List[str] = python_outputs[key].numpy() __lowerCamelCase : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) self.assertTrue(tf.reduce_all(tf.cast(SCREAMING_SNAKE_CASE__ ,tf.intaa) == tf_outputs_values)) @slow def lowerCAmelCase ( self : Optional[Any]): for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase : Dict = tf.function(SCREAMING_SNAKE_CASE__) for test_inputs in self.test_sentences: __lowerCamelCase : Any = tf.constant(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = compiled_tokenizer(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = tf_tokenizer(SCREAMING_SNAKE_CASE__) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def lowerCAmelCase ( self : str): for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase : Any = ModelToSave(tokenizer=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]]) __lowerCamelCase : str = model.serving(SCREAMING_SNAKE_CASE__) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCamelCase : Optional[Any] = Path(SCREAMING_SNAKE_CASE__) / 'saved.model' tf.saved_model.save(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,signatures={'serving_default': model.serving}) __lowerCamelCase : Tuple = tf.saved_model.load(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = loaded_model.signatures['serving_default'](SCREAMING_SNAKE_CASE__)['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output)) @slow def lowerCAmelCase ( self : int): for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]]) __lowerCamelCase : Optional[Any] = tf_tokenizer(SCREAMING_SNAKE_CASE__) # Build model with some sample inputs __lowerCamelCase : str = tf_tokenizer.get_config() __lowerCamelCase : List[str] = TFGPTaTokenizer.from_config(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = model_from_config(SCREAMING_SNAKE_CASE__) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) @slow def lowerCAmelCase ( self : Dict): for tf_tokenizer in self.tf_tokenizers: # for the test to run __lowerCamelCase : List[Any] = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: __lowerCamelCase : Dict = tf.convert_to_tensor([self.test_sentences[0]]) __lowerCamelCase : Union[str, Any] = tf_tokenizer(SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = out['input_ids'].numpy().shape[1] assert out_length == max_length
113
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __UpperCamelCase : Dict = logging.getLogger(__name__) torch.set_grad_enabled(False) __UpperCamelCase : str = "cuda" if torch.cuda.is_available() else "cpu" def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict=100 , SCREAMING_SNAKE_CASE : int=" " ): """simple docstring""" UpperCamelCase__ : List[str] = text.split(snake_case__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(snake_case__ ) , snake_case__ )] def _a ( SCREAMING_SNAKE_CASE : dict ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : List[Any] = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(snake_case__ ): titles.append(title if title is not None else '''''' ) texts.append(snake_case__ ) return {"title": titles, "text": texts} def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : DPRContextEncoder , SCREAMING_SNAKE_CASE : DPRContextEncoderTokenizerFast ): """simple docstring""" UpperCamelCase__ : List[str] = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=snake_case__ , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] UpperCamelCase__ : List[Any] = ctx_encoder(input_ids.to(device=snake_case__ ) , return_dict=snake_case__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _a ( SCREAMING_SNAKE_CASE : "RagExampleArguments" , SCREAMING_SNAKE_CASE : "ProcessingArguments" , SCREAMING_SNAKE_CASE : "IndexHnswArguments" , ): """simple docstring""" logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCamelCase__ : Tuple = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCamelCase__ : List[Any] = dataset.map(snake_case__ , batched=snake_case__ , num_proc=processing_args.num_proc ) # And compute the embeddings UpperCamelCase__ : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=snake_case__ ) UpperCamelCase__ : int = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) UpperCamelCase__ : Tuple = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space UpperCamelCase__ : List[str] = dataset.map( partial(snake_case__ , ctx_encoder=snake_case__ , ctx_tokenizer=snake_case__ ) , batched=snake_case__ , batch_size=processing_args.batch_size , features=snake_case__ , ) # And finally save your dataset UpperCamelCase__ : Dict = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(snake_case__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCamelCase__ : Dict = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=snake_case__ ) # And save the index UpperCamelCase__ : Optional[Any] = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(snake_case__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __magic_name__ : A: str = field( default=str(Path(_lowercase).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv") , metadata={"help": "Path to a tab-separated csv file with columns \'title\' and \'text\'"} , ) A: Optional[str] = field( default=_lowercase , metadata={"help": "Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'."} , ) A: str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\'"} , ) A: str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or" " \'facebook/dpr-ctx_encoder-multiset-base\'" ) } , ) A: Optional[str] = field( default=str(Path(_lowercase).parent / "test_run" / "dummy-kb") , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class __magic_name__ : A: Optional[int] = field( default=_lowercase , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) A: int = field( default=1_6 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class __magic_name__ : A: int = field( default=7_6_8 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) A: int = field( default=1_2_8 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __UpperCamelCase : int = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __UpperCamelCase : List[str] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
146
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,*A_ : List[str] ,**A_ : int ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' ,A_ ,) super().__init__(*A_ ,**A_ )
74
0
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Dict = FlaxAutoencoderKL @property def _lowercase (self : Tuple ): UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = jax.random.PRNGKey(0 ) UpperCAmelCase_ = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _lowercase (self : int ): UpperCAmelCase_ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict
369
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_: Tuple =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[str] ={'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} SCREAMING_SNAKE_CASE_: Union[str, Any] ={ 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } SCREAMING_SNAKE_CASE_: Optional[int] ={ 'abeja/gpt-neox-japanese-2.7b': 20_48, } def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Tuple ) -> Union[str, Any]: '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(snake_case_ ): UpperCAmelCase_ = b UpperCAmelCase_ = idx for wd in b: UpperCAmelCase_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class __A ( UpperCamelCase__ ): a__ : List[str] = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__(self : Any , __a : List[Any] , __a : Dict , __a : int="<|endoftext|>" , __a : Union[str, Any]="<|endoftext|>" , __a : int="<|startoftext|>" , __a : Tuple="<|endoftext|>" , __a : Optional[int]=False , **__a : int , ): super().__init__( unk_token=__a , pad_token=__a , bos_token=__a , eos_token=__a , do_clean_text=__a , **__a , ) if not os.path.isfile(__a ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(__a ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) UpperCAmelCase_ = do_clean_text UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = load_vocab_and_emoji(__a , __a ) UpperCAmelCase_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _lowercase (self : Optional[Any] ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def _lowercase (self : List[Any] ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def _lowercase (self : List[Any] , __a : int ): return self.subword_tokenizer.tokenize(__a , clean=self.do_clean_text ) def _lowercase (self : List[Any] , __a : List[str] ): return self.vocab.get(__a , self.vocab.get(self.unk_token ) ) def _lowercase (self : int , __a : List[Any] ): return self.subword_tokenizer.convert_id_to_token(__a ) def _lowercase (self : Dict , __a : str ): UpperCAmelCase_ = "".join(__a ).strip() return out_string def _lowercase (self : int , __a : "Conversation" ): UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids def _lowercase (self : int , __a : str , __a : Optional[str] = None ): UpperCAmelCase_ = 0 if os.path.isdir(__a ): UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__a , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase_ = token_index writer.write(",".join(__a ) + "\n" ) index += 1 with open(__a , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , __a ) return vocab_file, emoji_file class __A ( UpperCamelCase__ ): def __init__(self : List[Any] , __a : Dict , __a : Any , __a : int ): UpperCAmelCase_ = vocab # same as swe UpperCAmelCase_ = ids_to_tokens # same as bpe UpperCAmelCase_ = emoji UpperCAmelCase_ = np.max([len(__a ) for w in self.vocab.keys()] ) UpperCAmelCase_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) UpperCAmelCase_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) UpperCAmelCase_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) UpperCAmelCase_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) UpperCAmelCase_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" UpperCAmelCase_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" UpperCAmelCase_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__(self : Dict ): return len(self.ids_to_tokens ) def _lowercase (self : str , __a : Union[str, Any] ): UpperCAmelCase_ = self.content_repattera.sub("<URL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<EMAIL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<TEL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<PRICE>" , __a ) UpperCAmelCase_ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def _lowercase (self : Optional[Any] , __a : Union[str, Any] , __a : str=False ): UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace("\r\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\r" , "<BR>" ) UpperCAmelCase_ = text.replace("\t" , "<TAB>" ) UpperCAmelCase_ = text.replace("—" , "ー" ) UpperCAmelCase_ = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase_ = text.replace(__a , __a ) if clean: UpperCAmelCase_ = self.clean_text(__a ) def check_simbol(__a : List[Any] ): UpperCAmelCase_ = x.encode() if len(__a ) == 1 and len(__a ) == 2: UpperCAmelCase_ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2_a1 and c <= 0Xc2_bf) or (c >= 0Xc7_80 and c <= 0Xc7_83) or (c >= 0Xca_b9 and c <= 0Xcb_bf) or (c >= 0Xcc_80 and c <= 0Xcd_a2) ): return True return False def checkuae(__a : Tuple ): UpperCAmelCase_ = x.encode() if len(__a ) == 1 and len(__a ) == 3: UpperCAmelCase_ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe2_80_80 and c <= 0Xe2_b0_7f: return True return False UpperCAmelCase_ = 0 UpperCAmelCase_ = [] while pos < len(__a ): UpperCAmelCase_ = min(len(__a ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 UpperCAmelCase_ = [] # (token_id, token, pos) for e in range(__a , __a , -1 ): UpperCAmelCase_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__a ) > 2: UpperCAmelCase_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__a ) > 0: # the smallest token_id is adopted UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = sorted(__a , key=lambda __a : x[0] )[0] result.append(__a ) UpperCAmelCase_ = e else: UpperCAmelCase_ = pos + 1 UpperCAmelCase_ = text[pos:end] if check_simbol(__a ): result.append("<KIGOU>" ) elif checkuae(__a ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) UpperCAmelCase_ = end return result def _lowercase (self : int , __a : Optional[Any] , __a : Optional[int]="\n" ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__a ) > 0: words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(__a ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(__a ) if len(__a ) > 0: words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = "".join(__a ) return text
106
0
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: """simple docstring""" A__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) A__ = json.loads(open(lowercase_ ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('''.pt''' ): A__ = args.output + '''.pt''' A__ = OrderedDict() with tf.device('''/CPU:0''' ): A__ = tf.train.load_checkpoint(args.tf_model_dir ) A__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): A__ = reader.get_tensor(lowercase_ ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): A__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): A__ = 8 A__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time A__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ = torch.tensor(lowercase_ ) elif key_name.startswith('''model/moe''' ): A__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): A__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player A__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ = torch.tensor(lowercase_ ) elif key_name.endswith('''/softmlp/kernel''' ): A__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player A__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ = torch.tensor(lowercase_ ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): A__ = key_name[-9:-7] for i in range(16 ): A__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) A__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided A__ = torch.tensor(lowercase_ ) elif key_name.startswith('''model/mlp''' ): A__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): A__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player A__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ = torch.tensor(lowercase_ ) elif key_name.endswith('''/p1/bias''' ): A__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player A__ = vnp.copy() # same because it is one dimensional A__ = torch.tensor(lowercase_ ) elif key_name.endswith('''/p2/kernel''' ): A__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player A__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ = torch.tensor(lowercase_ ) elif key_name.endswith('''/p2/bias''' ): A__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player A__ = vnp.copy() # same because it is one dimensional A__ = torch.tensor(lowercase_ ) elif key_name.startswith('''model/ln''' ): A__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): A__ = '''model.blocks.%d.feed_forward.norm.bias''' % player A__ = vnp.copy() # same because it is one dimensional A__ = torch.tensor(lowercase_ ) elif key_name.endswith('''/g''' ): A__ = '''model.blocks.%d.feed_forward.norm.weight''' % player A__ = vnp.copy() # same because it is one dimensional A__ = torch.tensor(lowercase_ ) elif key_name.startswith('''model/att''' ): A__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): A__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum A__ = state[:, 0, :, :] A__ = state[:, 1, :, :] A__ = state[:, 2, :, :] A__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player A__ = torch.tensor(lowercase_ ) A__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player A__ = torch.tensor(lowercase_ ) A__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player A__ = torch.tensor(lowercase_ ) elif key_name.endswith('''/o/kernel''' ): A__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player A__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix A__ = torch.tensor(lowercase_ ) elif key_name.startswith('''model/an''' ): A__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): A__ = '''model.blocks.%d.self_attn.norm.bias''' % player A__ = vnp.copy() # same because it is one dimensional A__ = torch.tensor(lowercase_ ) elif key_name.endswith('''/g''' ): A__ = '''model.blocks.%d.self_attn.norm.weight''' % player A__ = vnp.copy() # same because it is one dimensional A__ = torch.tensor(lowercase_ ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): A__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] A__ = '''model.%s.weight''' % nlayer A__ = vnp.copy() # same in embedded A__ = torch.tensor(lowercase_ ) if key_name.startswith('''model/wte''' ): A__ = '''lm_head.weight''' A__ = vnp.copy() # same in embedded A__ = torch.tensor(lowercase_ ) elif key_name.startswith('''model/wob''' ): A__ = '''final_logits_bias''' A__ = vnp.copy() # same in embedded A__ = state.reshape((1, -1) ) A__ = torch.tensor(lowercase_ ) elif key_name == "model/dense/kernel": A__ = '''model.last_project.weight''' A__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ = torch.tensor(lowercase_ ) elif key_name == "model/dense_1/bias": A__ = '''model.last_project.bias''' A__ = vnp.copy() # same because it is one dimensional A__ = torch.tensor(lowercase_ ) torch.save(lowercase_ , args.output ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") _lowerCamelCase : Any = parser.parse_args() convert_tf_gptsan_to_pt(args)
14
import os import sys import unittest _lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = {'''BertModelTest''': '''BertModelTester'''} A__ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
14
1
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __A = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
371
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] )
348
0
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[int] ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def _snake_case ( UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : int , UpperCamelCase : Optional[Any]=True ): model.train() UpperCAmelCase : str = model(UpperCamelCase ) UpperCAmelCase : Optional[int] = F.mse_loss(UpperCamelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase ) def _snake_case ( UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any]=False ): set_seed(42 ) UpperCAmelCase : Tuple = RegressionModel() UpperCAmelCase : List[Any] = deepcopy(UpperCamelCase ) UpperCAmelCase : Optional[Any] = RegressionDataset(length=80 ) UpperCAmelCase : Union[str, Any] = DataLoader(UpperCamelCase , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase : Union[str, Any] = AdamW(params=model.parameters() , lr=1e-3 ) UpperCAmelCase : List[str] = AdamW(params=ddp_model.parameters() , lr=1e-3 ) UpperCAmelCase : Tuple = LambdaLR(UpperCamelCase , lr_lambda=lambda UpperCamelCase : epoch**0.65 ) UpperCAmelCase : Tuple = LambdaLR(UpperCamelCase , lr_lambda=lambda UpperCamelCase : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = accelerator.prepare(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: UpperCAmelCase , UpperCAmelCase : int = accelerator.prepare(UpperCamelCase , UpperCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _snake_case ( UpperCamelCase : Tuple ): # Test when on a single CPU or GPU that the context manager does nothing UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = get_training_setup(UpperCamelCase ) # Use a single batch UpperCAmelCase , UpperCAmelCase : Optional[int] = next(iter(UpperCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : Optional[Any] = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase ): step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: # Sync grads step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase : List[str] = ddp_input[torch.randperm(len(UpperCamelCase ) )] def _snake_case ( UpperCamelCase : int ): # Test on distributed setup that context manager behaves properly UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = get_training_setup(UpperCamelCase ) # Use a single batch UpperCAmelCase , UpperCAmelCase : Any = next(iter(UpperCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : Any = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : int = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase ): step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: # Sync grads step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase : Optional[int] = ddp_input[torch.randperm(len(UpperCamelCase ) )] def _snake_case ( UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Any=False ): UpperCAmelCase : Union[str, Any] = Accelerator( split_batches=UpperCamelCase , dispatch_batches=UpperCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = get_training_setup(UpperCamelCase ) for iteration, batch in enumerate(UpperCamelCase ): UpperCAmelCase , UpperCAmelCase : Tuple = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : str = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : int = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase ): step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase : str = ddp_input[torch.randperm(len(UpperCamelCase ) )] GradientState._reset_state() def _snake_case ( UpperCamelCase : List[Any]=False , UpperCamelCase : List[Any]=False ): UpperCAmelCase : Optional[Any] = Accelerator( split_batches=UpperCamelCase , dispatch_batches=UpperCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = get_training_setup(UpperCamelCase , UpperCamelCase ) for iteration, batch in enumerate(UpperCamelCase ): UpperCAmelCase , UpperCAmelCase : Any = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : Any = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase ): step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" UpperCAmelCase : List[str] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def _snake_case ( ): UpperCAmelCase : str = Accelerator() UpperCAmelCase : Any = RegressionDataset(length=80 ) UpperCAmelCase : Tuple = DataLoader(UpperCamelCase , batch_size=16 ) UpperCAmelCase : List[Any] = RegressionDataset(length=96 ) UpperCAmelCase : str = DataLoader(UpperCamelCase , batch_size=16 ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = accelerator.prepare(UpperCamelCase , UpperCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase ) if iteration < len(UpperCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase ) if batch_num < len(UpperCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _snake_case ( ): UpperCAmelCase : Dict = Accelerator() UpperCAmelCase : Optional[Any] = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(UpperCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(UpperCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(UpperCamelCase , UpperCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase , UpperCamelCase ) def _snake_case ( UpperCamelCase : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
109
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() A: Optional[int] = logging.get_logger(__name__) A: Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } A: List[str] = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _snake_case ( UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Any ): for attribute in key.split(""".""" ): UpperCAmelCase : Optional[Any] = getattr(UpperCamelCase , UpperCamelCase ) if weight_type is not None: UpperCAmelCase : List[Any] = getattr(UpperCamelCase , UpperCamelCase ).shape else: UpperCAmelCase : str = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Union[str, Any] = value elif weight_type == "bias": UpperCAmelCase : str = value else: UpperCAmelCase : Union[str, Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] ): UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = fairseq_model.state_dict() UpperCAmelCase : Tuple = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : str = False if "conv_layers" in name: load_conv_layer( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase : Dict = True if "*" in mapped_key: UpperCAmelCase : str = name.split(UpperCamelCase )[0].split(""".""" )[-2] UpperCAmelCase : Tuple = mapped_key.replace("""*""" , UpperCamelCase ) if "weight_g" in name: UpperCAmelCase : Any = """weight_g""" elif "weight_v" in name: UpperCAmelCase : Optional[Any] = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: UpperCAmelCase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : str = """weight""" else: UpperCAmelCase : Optional[Any] = None set_recursively(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) continue if not is_used: unused_weights.append(UpperCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : Any ): UpperCAmelCase : str = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase : Dict = name.split(""".""" ) UpperCAmelCase : List[str] = int(items[0] ) UpperCAmelCase : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCAmelCase : Optional[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCAmelCase : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCAmelCase : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCAmelCase : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(UpperCamelCase ) @torch.no_grad() def _snake_case ( UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : List[Any]=None ): # load the pre-trained checkpoints UpperCAmelCase : List[Any] = torch.load(UpperCamelCase ) UpperCAmelCase : List[str] = WavLMConfigOrig(checkpoint["""cfg"""] ) UpperCAmelCase : Optional[int] = WavLMOrig(UpperCamelCase ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: UpperCAmelCase : List[str] = WavLMConfig.from_pretrained(UpperCamelCase ) else: UpperCAmelCase : List[Any] = WavLMConfig() UpperCAmelCase : Any = WavLMModel(UpperCamelCase ) recursively_load_weights(UpperCamelCase , UpperCamelCase ) hf_wavlm.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A: int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A: Tuple = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
109
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __UpperCAmelCase : str = logging.get_logger(__name__) class __snake_case ( __lowerCamelCase ): def __init__( self : Any , A : int , A : int , A : float , **A : Optional[int] ): __snake_case: List[str] = feature_size __snake_case: Optional[int] = sampling_rate __snake_case: Any = padding_value __snake_case: Dict = kwargs.pop("""padding_side""" , """right""" ) __snake_case: Union[str, Any] = kwargs.pop("""return_attention_mask""" , A ) super().__init__(**A ) def UpperCAmelCase__ ( self : Optional[Any] , A : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , A : Union[bool, str, PaddingStrategy] = True , A : Optional[int] = None , A : bool = False , A : Optional[int] = None , A : Optional[bool] = None , A : Optional[Union[str, TensorType]] = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(A , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __snake_case: Optional[int] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f''' to this method that includes {self.model_input_names[0]}, but you provided''' f''' {list(processed_features.keys() )}''' ) __snake_case: List[str] = processed_features[self.model_input_names[0]] __snake_case: Any = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(A ) == 0: if return_attention_mask: __snake_case: Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __snake_case: int = required_input[0] if isinstance(A , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __snake_case: Optional[int] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(A ): __snake_case: Optional[int] = required_input[index][0] if return_tensors is None: if is_tf_tensor(A ): __snake_case: str = """tf""" elif is_torch_tensor(A ): __snake_case: str = """pt""" elif isinstance(A , (int, float, list, tuple, np.ndarray) ): __snake_case: List[str] = """np""" else: raise ValueError( f'''type of {first_element} unknown: {type(A )}. ''' """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __snake_case: List[Any] = to_numpy(A ) else: __snake_case: Union[str, Any] = [to_numpy(A ) for v in value] # Convert padding_strategy in PaddingStrategy __snake_case: Union[str, Any] = self._get_padding_strategies(padding=A , max_length=A ) __snake_case: Any = processed_features[self.model_input_names[0]] __snake_case: int = len(A ) if not all(len(A ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __snake_case: Union[str, Any] = [] for i in range(A ): __snake_case: List[Any] = {k: v[i] for k, v in processed_features.items()} # truncation __snake_case: Tuple = self._truncate( A , max_length=A , pad_to_multiple_of=A , truncation=A , ) truncated_inputs.append(A ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __snake_case: Optional[Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __snake_case: List[str] = PaddingStrategy.MAX_LENGTH __snake_case: List[Any] = {} for i in range(A ): # padding __snake_case: Any = self._pad( truncated_inputs[i] , max_length=A , padding_strategy=A , pad_to_multiple_of=A , return_attention_mask=A , ) for key, value in outputs.items(): if key not in batch_outputs: __snake_case: Optional[Any] = [] if value.dtype is np.dtype(np.floataa ): __snake_case: str = value.astype(np.floataa ) batch_outputs[key].append(A ) return BatchFeature(A , tensor_type=A ) def UpperCAmelCase__ ( self : int , A : Union[Dict[str, np.ndarray], BatchFeature] , A : Optional[int] = None , A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , A : Optional[int] = None , A : Optional[bool] = None , ): __snake_case: List[Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __snake_case: List[str] = len(A ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __snake_case: List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __snake_case: Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(A ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __snake_case: List[str] = np.ones(len(A ) , dtype=np.intaa ) if needs_to_be_padded: __snake_case: Any = max_length - len(A ) if self.padding_side == "right": if return_attention_mask: __snake_case: Optional[int] = np.pad( processed_features["""attention_mask"""] , (0, difference) ) __snake_case: Any = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __snake_case: Union[str, Any] = np.pad( A , A , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __snake_case: Dict = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __snake_case: Union[str, Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __snake_case: str = np.pad( A , A , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def UpperCAmelCase__ ( self : Optional[Any] , A : Union[Dict[str, np.ndarray], BatchFeature] , A : Optional[int] = None , A : Optional[int] = None , A : Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __snake_case: List[str] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __snake_case: List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __snake_case: Tuple = len(A ) > max_length if needs_to_be_truncated: __snake_case: List[Any] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __snake_case: int = processed_features["""attention_mask"""][:max_length] return processed_features def UpperCAmelCase__ ( self : int , A : int=False , A : int=None ): # Get padding strategy if padding is not False: if padding is True: __snake_case: Optional[int] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(A , A ): __snake_case: Optional[int] = PaddingStrategy(A ) elif isinstance(A , A ): __snake_case: Any = padding else: __snake_case: Any = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
358
import argparse from collections import defaultdict import yaml __UpperCAmelCase : int = "docs/source/en/_toctree.yml" def A__ ( SCREAMING_SNAKE_CASE__) -> Dict: __snake_case: Union[str, Any] = defaultdict(SCREAMING_SNAKE_CASE__) for doc in model_doc: counts[doc["local"]] += 1 __snake_case: Dict = [key for key, value in counts.items() if value > 1] __snake_case: Optional[Any] = [] for duplicate_key in duplicates: __snake_case: Tuple = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key}) if len(SCREAMING_SNAKE_CASE__) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""") # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]}) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1]) # Sort return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__: s["title"].lower()) def A__ ( SCREAMING_SNAKE_CASE__=False) -> List[str]: with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""") as f: __snake_case: Optional[int] = yaml.safe_load(f.read()) # Get to the API doc __snake_case: Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 __snake_case: str = content[api_idx]["""sections"""] # Then to the model doc __snake_case: List[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __snake_case: Dict = api_doc[model_idx]["""sections"""] __snake_case: int = [(idx, section) for idx, section in enumerate(SCREAMING_SNAKE_CASE__) if """sections""" in section] __snake_case: Optional[int] = False for idx, modality_doc in modalities_docs: __snake_case: Dict = modality_doc["""sections"""] __snake_case: List[str] = clean_model_doc_toc(SCREAMING_SNAKE_CASE__) if old_modality_doc != new_modality_doc: __snake_case: List[str] = True if overwrite: __snake_case: Dict = new_modality_doc if diff: if overwrite: __snake_case: Dict = model_doc __snake_case: int = api_doc with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""") as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE__ , allow_unicode=SCREAMING_SNAKE_CASE__)) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""") if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __UpperCAmelCase : str = parser.parse_args() check_model_doc(args.fix_and_overwrite)
293
0
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class A ( UpperCamelCase_ ): def __init__( self : Any , lowercase_ : Callable , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[dict] = None , lowercase_ : Optional[int] = None , **lowercase_ : List[Any] , ) -> Dict: """simple docstring""" super().__init__( features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , ) _lowerCamelCase : Optional[int] =Generator( cache_dir=lowercase_ , features=lowercase_ , generator=lowercase_ , gen_kwargs=lowercase_ , **lowercase_ , ) def lowerCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" if self.streaming: _lowerCamelCase : Any =self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: _lowerCamelCase : Union[str, Any] =None _lowerCamelCase : Union[str, Any] =None _lowerCamelCase : Tuple =None _lowerCamelCase : Tuple =None self.builder.download_and_prepare( download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , ) _lowerCamelCase : Optional[Any] =self.builder.as_dataset( split='train' , verification_mode=lowercase_ , in_memory=self.keep_in_memory ) return dataset
199
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def a_ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str=None ): '''simple docstring''' require_version(deps[pkg] , SCREAMING_SNAKE_CASE__ )
199
1
import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
252
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = input("Enter image url: ").strip() print(f"Downloading image from {url} ...") SCREAMING_SNAKE_CASE : Union[str, Any] = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image SCREAMING_SNAKE_CASE : List[str] = soup.find("meta", {"property": "og:image"})["content"] SCREAMING_SNAKE_CASE : str = requests.get(image_url).content SCREAMING_SNAKE_CASE : str = f"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, "wb") as fp: fp.write(image_data) print(f"Done. Image saved to disk as {file_name}.")
252
1
from typing import Any def a__ ( _UpperCamelCase : list ): if not input_list: return [] __lowerCamelCase = [input_list.count(_UpperCamelCase ) for value in input_list] __lowerCamelCase = max(_UpperCamelCase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_UpperCamelCase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
330
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=10 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase="divided_space_time" , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = num_frames __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = attention_type __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __lowerCamelCase = (image_size // patch_size) ** 2 __lowerCamelCase = (num_frames) * self.num_patches_per_frame + 1 def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __lowerCamelCase = self.num_labels return config def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) # verify the logits shape __lowerCamelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCAmelCase__ = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerModelTester(self ) __lowerCamelCase = ConfigTester( self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = copy.deepcopy(__UpperCAmelCase ) if return_labels: if model_class in get_values(__UpperCAmelCase ): __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TimesformerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' if not self.has_attentions: pass else: __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: __lowerCamelCase = self.model_tester.seq_length __lowerCamelCase = self.model_tester.num_frames __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __lowerCamelCase = len(__UpperCAmelCase ) # Check attention is always last and order is fine __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(__UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __lowerCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def a__ ( ): __lowerCamelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' ,filename='''eating_spaghetti.npy''' ,repo_type='''dataset''' ) __lowerCamelCase = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __UpperCAmelCase ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_video() __lowerCamelCase = image_processor(video[:8] , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**__UpperCAmelCase ) # verify the logits __lowerCamelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
1
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __magic_name__ = "\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n" __magic_name__ = "\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n" __magic_name__ = "\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n" def _lowerCAmelCase ( A__: int , A__: Optional[int] ): '''simple docstring''' return float((preds == labels).mean() ) def _lowerCAmelCase ( A__: List[str] , A__: int ): '''simple docstring''' UpperCAmelCase = simple_accuracy(A__ , A__ ) UpperCAmelCase = float(fa_score(y_true=A__ , y_pred=A__ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( A__: Any , A__: Tuple ): '''simple docstring''' UpperCAmelCase = np.array(A__ ) UpperCAmelCase = np.array(A__ ) UpperCAmelCase = en_sentvecs.shape[0] # mean centering UpperCAmelCase = en_sentvecs - np.mean(A__ , axis=0 ) UpperCAmelCase = in_sentvecs - np.mean(A__ , axis=0 ) UpperCAmelCase = cdist(A__ , A__ , '''cosine''' ) UpperCAmelCase = np.array(range(A__ ) ) UpperCAmelCase = sim.argsort(axis=1 )[:, :10] UpperCAmelCase = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): '''simple docstring''' def snake_case_ ( self ) -> int: """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def snake_case_ ( self , _snake_case , _snake_case ) -> Any: """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_snake_case , _snake_case )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_snake_case , _snake_case ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_snake_case , _snake_case )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
152
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap __magic_name__ = "Usage of script: script_name <size_of_canvas:int>" __magic_name__ = [0] * 100 + [1] * 10 random.shuffle(choice) def _lowerCAmelCase ( A__: int ): '''simple docstring''' UpperCAmelCase = [[False for i in range(A__ )] for j in range(A__ )] return canvas def _lowerCAmelCase ( A__: list[list[bool]] ): '''simple docstring''' for i, row in enumerate(A__ ): for j, _ in enumerate(A__ ): UpperCAmelCase = bool(random.getrandbits(1 ) ) def _lowerCAmelCase ( A__: list[list[bool]] ): '''simple docstring''' UpperCAmelCase = np.array(A__ ) UpperCAmelCase = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(A__ ): for c, pt in enumerate(A__ ): UpperCAmelCase = __judge_point( A__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) UpperCAmelCase = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. UpperCAmelCase = current_canvas.tolist() return return_canvas def _lowerCAmelCase ( A__: bool , A__: list[list[bool]] ): '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. UpperCAmelCase = pt if pt: if alive < 2: UpperCAmelCase = False elif alive == 2 or alive == 3: UpperCAmelCase = True elif alive > 3: UpperCAmelCase = False else: if alive == 3: UpperCAmelCase = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) __magic_name__ = int(sys.argv[1]) # main working structure of this module. __magic_name__ = create_canvas(canvas_size) seed(c) __magic_name__ , __magic_name__ = plt.subplots() fig.show() __magic_name__ = ListedColormap(["w", "k"]) try: while True: __magic_name__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
152
1
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _A : int = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class a__ ( a_, unittest.TestCase ): __lowerCAmelCase = DebertaVaTokenizer __lowerCAmelCase = DebertaVaTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def __magic_name__ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase : Any = DebertaVaTokenizer(_a , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , _a ): lowercase : int = "this is a test" lowercase : Tuple = "this is a test" return input_text, output_text def __magic_name__ ( self ): lowercase : List[Any] = "<pad>" lowercase : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __magic_name__ ( self ): lowercase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(_a ) , 30_001 ) def __magic_name__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def __magic_name__ ( self ): # fmt: off lowercase : List[str] = " \tHeLLo!how \n Are yoU? " lowercase : str = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on lowercase : Union[str, Any] = DebertaVaTokenizer(_a , do_lower_case=_a ) lowercase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : str = DebertaVaTokenizerFast(_a , do_lower_case=_a ) lowercase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def __magic_name__ ( self ): pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def __magic_name__ ( self ): pass def __magic_name__ ( self ): # fmt: off lowercase : Optional[Any] = "I was born in 92000, and this is falsé." lowercase : Tuple = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on lowercase : List[Any] = DebertaVaTokenizer(_a , split_by_punct=_a ) lowercase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = DebertaVaTokenizerFast(_a , split_by_punct=_a ) lowercase : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : int = "I was born in 92000, and this is falsé." lowercase : Tuple = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on lowercase : List[str] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : List[Any] = "I was born in 92000, and this is falsé." lowercase : Optional[int] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on lowercase : List[Any] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Optional[int] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : int = "I was born in 92000, and this is falsé." lowercase : Dict = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on lowercase : Union[str, Any] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : Dict = " \tHeLLo!how \n Are yoU? " lowercase : str = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on lowercase : Optional[int] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : List[str] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : str = self.get_tokenizer() lowercase : Dict = self.get_rust_tokenizer() lowercase : str = "I was born in 92000, and this is falsé." lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) lowercase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.encode(_a , add_special_tokens=_a ) lowercase : Dict = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : Optional[int] = self.get_rust_tokenizer() lowercase : Tuple = tokenizer.encode(_a ) lowercase : List[str] = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : str = "This is a test" lowercase : Tuple = [13, 1, 4_398, 25, 21, 1_289] lowercase : Optional[int] = ["▁", "T", "his", "▁is", "▁a", "▁test"] lowercase : Optional[Any] = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] lowercase : Any = DebertaVaTokenizer(_a , keep_accents=_a ) lowercase : Dict = DebertaVaTokenizerFast(_a , keep_accents=_a ) lowercase : str = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) lowercase : int = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : Any = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) # fmt: off lowercase : int = "I was born in 92000, and this is falsé." lowercase : Any = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] lowercase : List[str] = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] lowercase : str = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on lowercase : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : List[Any] = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) lowercase : Optional[int] = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : List[Any] = rust_tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : Optional[int] = DebertaVaTokenizer(_a ) lowercase : List[Any] = tokenizer.encode("sequence builders" ) lowercase : Dict = tokenizer.encode("multi-sequence build" ) lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(_a ) lowercase : Dict = tokenizer.build_inputs_with_special_tokens(_a , _a ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _a ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _a , ) @slow def __magic_name__ ( self ): # fmt: off lowercase : Dict = {"input_ids": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
202
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a__ : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.0_2 , _a=3 , _a=4 , _a=None , _a=1_000 , ): lowercase : Optional[Any] = parent lowercase : Dict = batch_size lowercase : str = seq_length lowercase : List[Any] = is_training lowercase : Dict = use_input_mask lowercase : str = use_token_type_ids lowercase : int = use_labels lowercase : Union[str, Any] = vocab_size lowercase : Dict = hidden_size lowercase : List[str] = num_hidden_layers lowercase : Optional[int] = num_attention_heads lowercase : Tuple = intermediate_size lowercase : List[str] = hidden_act lowercase : int = hidden_dropout_prob lowercase : Any = attention_probs_dropout_prob lowercase : Dict = max_position_embeddings lowercase : Optional[int] = type_vocab_size lowercase : Tuple = type_sequence_label_size lowercase : Optional[int] = initializer_range lowercase : Dict = num_labels lowercase : Optional[int] = num_choices lowercase : List[Any] = scope lowercase : Dict = range_bbox def __magic_name__ ( self ): lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowercase : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase : Any = bbox[i, j, 3] lowercase : Optional[Any] = bbox[i, j, 1] lowercase : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase : Dict = bbox[i, j, 2] lowercase : List[str] = bbox[i, j, 0] lowercase : List[Any] = t lowercase : Any = tf.convert_to_tensor(_a ) lowercase : Dict = None if self.use_input_mask: lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Optional[int] = None if self.use_token_type_ids: lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : Optional[int] = None lowercase : List[Any] = None lowercase : Tuple = None if self.use_labels: lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase : int = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): lowercase : str = TFLayoutLMModel(config=_a ) lowercase : Optional[Any] = model(_a , _a , attention_mask=_a , token_type_ids=_a ) lowercase : Dict = model(_a , _a , token_type_ids=_a ) lowercase : List[str] = model(_a , _a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): lowercase : List[Any] = TFLayoutLMForMaskedLM(config=_a ) lowercase : Union[str, Any] = model(_a , _a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): lowercase : Dict = self.num_labels lowercase : Any = TFLayoutLMForSequenceClassification(config=_a ) lowercase : List[Any] = model(_a , _a , attention_mask=_a , token_type_ids=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): lowercase : int = self.num_labels lowercase : Dict = TFLayoutLMForTokenClassification(config=_a ) lowercase : Tuple = model(_a , _a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ): lowercase : int = TFLayoutLMForQuestionAnswering(config=_a ) lowercase : Any = model(_a , _a , attention_mask=_a , token_type_ids=_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self ): lowercase : Optional[int] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : List[Any] = config_and_inputs lowercase : int = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class a__ ( a_, a_, unittest.TestCase ): __lowerCAmelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __lowerCAmelCase = ( { """feature-extraction""": TFLayoutLMModel, """fill-mask""": TFLayoutLMForMaskedLM, """text-classification""": TFLayoutLMForSequenceClassification, """token-classification""": TFLayoutLMForTokenClassification, """zero-shot""": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = 10 def __magic_name__ ( self ): lowercase : List[Any] = TFLayoutLMModelTester(self ) lowercase : List[Any] = ConfigTester(self , config_class=_a , hidden_size=37 ) def __magic_name__ ( self ): self.config_tester.run_common_tests() def __magic_name__ ( self ): lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __magic_name__ ( self ): lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def __magic_name__ ( self ): lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def __magic_name__ ( self ): lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def __magic_name__ ( self ): lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @slow def __magic_name__ ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[str] = TFLayoutLMModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def __magic_name__ ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowercase : str = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowercase : Union[str, Any] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowercase : Tuple = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowercase : Optional[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowercase : List[Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a__ ( unittest.TestCase ): @slow def __magic_name__ ( self ): lowercase : Dict = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) lowercase , lowercase , lowercase , lowercase , lowercase : Union[str, Any] = prepare_layoutlm_batch_inputs() # forward pass lowercase : Optional[int] = model(input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a ) # test the sequence output on [0, :3, :3] lowercase : Any = tf.convert_to_tensor( [[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _a , atol=1E-3 ) ) # test the pooled output on [1, :3] lowercase : Optional[Any] = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _a , atol=1E-3 ) ) @slow def __magic_name__ ( self ): # initialize model with randomly initialized sequence classification head lowercase : List[Any] = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass lowercase : Optional[Any] = model( input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowercase : Union[str, Any] = outputs.loss lowercase : Union[str, Any] = (2,) self.assertEqual(loss.shape , _a ) # test the shape of the logits lowercase : List[str] = outputs.logits lowercase : Optional[Any] = (2, 2) self.assertEqual(logits.shape , _a ) @slow def __magic_name__ ( self ): # initialize model with randomly initialized token classification head lowercase : Any = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) lowercase , lowercase , lowercase , lowercase , lowercase : str = prepare_layoutlm_batch_inputs() # forward pass lowercase : List[Any] = model( input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=_a ) # test the shape of the logits lowercase : int = outputs.logits lowercase : Optional[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _a ) @slow def __magic_name__ ( self ): # initialize model with randomly initialized token classification head lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) lowercase , lowercase , lowercase , lowercase , lowercase : Tuple = prepare_layoutlm_batch_inputs() # forward pass lowercase : Optional[int] = model(input_ids=_a , bbox=_a , attention_mask=_a , token_type_ids=_a ) # test the shape of the logits lowercase : Any = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _a ) self.assertEqual(outputs.end_logits.shape , _a )
202
1
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __lowerCamelCase = '''sshleifer/mar_enro_6_3_student''' class A__ ( _snake_case ): def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() A_ = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=UpperCamelCase__ , ) A_ = f'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' MarianMTModel.from_pretrained(UpperCamelCase__ ) @slow @require_torch_gpu def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = { """$MAX_LEN""": 64, """$BS""": 64, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script A_ = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() A_ = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): A_ = bash_script.replace(UpperCamelCase__ , str(UpperCamelCase__ ) ) A_ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") A_ = f''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future A_ = ["""finetune.py"""] + bash_script.split() + args with patch.object(UpperCamelCase__ , """argv""" , UpperCamelCase__ ): A_ = argparse.ArgumentParser() A_ = pl.Trainer.add_argparse_args(UpperCamelCase__ ) A_ = SummarizationModule.add_model_specific_args(UpperCamelCase__ , os.getcwd() ) A_ = parser.parse_args() A_ = main(UpperCamelCase__ ) # Check metrics A_ = load_json(model.metrics_save_path ) A_ = metrics["""val"""][0] A_ = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'''val_avg_{model.val_metric}'''] , UpperCamelCase__ ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict A_ = os.listdir(UpperCamelCase__ ) A_ = [x for x in contents if x.endswith(""".ckpt""" )][0] A_ = os.path.join(args.output_dir , UpperCamelCase__ ) A_ = torch.load(UpperCamelCase__ , map_location="""cpu""" ) A_ = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: A_ = {os.path.basename(UpperCamelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class A__ ( _snake_case ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = f'''{self.test_file_dir_str}/test_data/wmt_en_ro''' A_ = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 128, """$BS""": 16, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script A_ = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) A_ = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) A_ = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): A_ = bash_script.replace(UpperCamelCase__ , str(UpperCamelCase__ ) ) A_ = self.get_auto_remove_tmp_dir() A_ = bash_script.replace("""--fp16""" , """""" ) A_ = 6 A_ = ( ["""distillation.py"""] + bash_script.split() + [ f'''--output_dir={output_dir}''', """--gpus=1""", """--learning_rate=1e-3""", f'''--num_train_epochs={epochs}''', """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(UpperCamelCase__ , """argv""" , UpperCamelCase__ ): A_ = argparse.ArgumentParser() A_ = pl.Trainer.add_argparse_args(UpperCamelCase__ ) A_ = SummarizationDistiller.add_model_specific_args(UpperCamelCase__ , os.getcwd() ) A_ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu A_ = distill_main(UpperCamelCase__ ) # Check metrics A_ = load_json(model.metrics_save_path ) A_ = metrics["""val"""][0] A_ = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'''val_avg_{model.val_metric}'''] , UpperCamelCase__ ) # check lightning ckpt can be loaded and has a reasonable statedict A_ = os.listdir(UpperCamelCase__ ) A_ = [x for x in contents if x.endswith(""".ckpt""" )][0] A_ = os.path.join(args.output_dir , UpperCamelCase__ ) A_ = torch.load(UpperCamelCase__ , map_location="""cpu""" ) A_ = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: A_ = {os.path.basename(UpperCamelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
101
'''simple docstring''' from functools import lru_cache @lru_cache def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
101
1
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __lowerCAmelCase ( ) -> List[Any]: __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=UpperCamelCase__ , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=UpperCamelCase__ , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=UpperCamelCase__ , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=UpperCamelCase__ , default=0 , help='''cuda_id.''' , ) __lowerCamelCase = parser.parse_args() return args def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: if not len(UpperCamelCase__ ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) __lowerCamelCase , __lowerCamelCase = imgs[0].size __lowerCamelCase = Image.new('''RGB''' , size=(cols * w, rows * h) ) __lowerCamelCase , __lowerCamelCase = grid.size for i, img in enumerate(UpperCamelCase__ ): grid.paste(UpperCamelCase__ , box=(i % cols * w, i // cols * h) ) return grid def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__="robotic cat with wings" , UpperCamelCase__=7.5 , UpperCamelCase__=50 , UpperCamelCase__=1 , UpperCamelCase__=42 , ) -> List[str]: __lowerCamelCase = torch.Generator(pipeline.device ).manual_seed(UpperCamelCase__ ) __lowerCamelCase = pipeline( UpperCamelCase__ , guidance_scale=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ , generator=UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ , ).images __lowerCamelCase = int(math.sqrt(UpperCamelCase__ ) ) __lowerCamelCase = image_grid(UpperCamelCase__ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCAmelCase =parse_args() # Load models and create wrapper for stable diffusion __UpperCAmelCase =CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") __UpperCAmelCase =CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") __UpperCAmelCase =AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") __UpperCAmelCase =UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") __UpperCAmelCase =StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCAmelCase =lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): __UpperCAmelCase =load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: __UpperCAmelCase =unet.to(torch.device("cuda", args.cuda_id)) __UpperCAmelCase =pipeline.to(unet.device) __UpperCAmelCase , __UpperCAmelCase =generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) __UpperCAmelCase =os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
67
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase ={"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
67
1
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. SCREAMING_SNAKE_CASE__:Dict = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. SCREAMING_SNAKE_CASE__:Tuple = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. SCREAMING_SNAKE_CASE__:Optional[int] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _lowerCamelCase( a , a ): __a = len([g for position, g in enumerate(a ) if g == main_target[position]] ) return (item, float(a )) def _lowerCamelCase( a , a ): __a = random.randint(0 , len(a ) - 1 ) __a = parent_a[:random_slice] + parent_a[random_slice:] __a = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _lowerCamelCase( a , a ): __a = list(a ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __a = random.choice(a ) return "".join(a ) def _lowerCamelCase( a , a , a , ): __a = [] # Generate more children proportionally to the fitness score. __a = int(parent_a[1] * 1_0_0 ) + 1 __a = 1_0 if child_n >= 1_0 else child_n for _ in range(a ): __a = population_score[random.randint(0 , a )][0] __a , __a = crossover(parent_a[0] , a ) # Append new string to the population list. pop.append(mutate(a , a ) ) pop.append(mutate(a , a ) ) return pop def _lowerCamelCase( a , a , a = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __a = F"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(a ) # Verify that the target contains no genes besides the ones inside genes variable. __a = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __a = F"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(a ) # Generate random starting population. __a = [] for _ in range(a ): population.append("".join([random.choice(a ) for i in range(len(a ) )] ) ) # Just some logs to know what the algorithms is doing. __a , __a = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(a ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __a = [evaluate(a , a ) for item in population] # Check if there is a matching evolution. __a = sorted(a , key=lambda a : x[1] , reverse=a ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( F"\nGeneration: {generation}" F"\nTotal Population:{total_population}" F"\nBest score: {population_score[0][1]}" F"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __a = population[: int(N_POPULATION / 3 )] population.clear() population.extend(a ) # Normalize population score to be between 0 and 1. __a = [ (item, score / len(a )) for item, score in population_score ] # This is selection for i in range(a ): population.extend(select(population_score[int(a )] , a , a ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(a ) > N_POPULATION: break if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Union[str, Any] = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) SCREAMING_SNAKE_CASE__:Any = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__:str = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
268
"""simple docstring""" from __future__ import annotations def _lowerCamelCase( a , a , a , a , a , ): __a = len(a ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(a ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , a , a , ) def _lowerCamelCase( a ): __a = [] depth_first_search([] , [] , [] , a , a ) # Print all the boards for board in boards: for column in board: print(a ) print("" ) print(len(a ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
268
1
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) UpperCAmelCase = logging.getLogger(__name__) def lowercase ( a__ : Union[str, Any] , a__ : List[str] ) -> Any: _UpperCamelCase = np.argmax(a__ , axis=1 ) return np.sum(outputs == labels ) def lowercase ( a__ : Union[str, Any] ) -> List[str]: with open(a__ , encoding='''utf_8''' ) as f: _UpperCamelCase = csv.reader(a__ ) _UpperCamelCase = [] next(a__ ) # skip the first line for line in tqdm(a__ ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowercase ( a__ : str , a__ : Any , a__ : Union[str, Any] , a__ : Tuple , a__ : List[Any] , a__ : Dict ) -> str: _UpperCamelCase = [] for dataset in encoded_datasets: _UpperCamelCase = len(a__ ) _UpperCamelCase = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) _UpperCamelCase = np.zeros((n_batch, 2) , dtype=np.intaa ) _UpperCamelCase = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) _UpperCamelCase = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(a__ ): _UpperCamelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _UpperCamelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _UpperCamelCase = with_conta _UpperCamelCase = with_conta _UpperCamelCase = len(a__ ) - 1 _UpperCamelCase = len(a__ ) - 1 _UpperCamelCase = with_conta _UpperCamelCase = with_conta _UpperCamelCase = mc_label _UpperCamelCase = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(a__ ) for t in all_inputs ) ) return tensor_datasets def lowercase ( ) -> int: _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a__ , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=a__ , type=a__ , required=a__ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=a__ , default='''''' ) parser.add_argument('''--eval_dataset''' , type=a__ , default='''''' ) parser.add_argument('''--seed''' , type=a__ , default=42 ) parser.add_argument('''--num_train_epochs''' , type=a__ , default=3 ) parser.add_argument('''--train_batch_size''' , type=a__ , default=8 ) parser.add_argument('''--eval_batch_size''' , type=a__ , default=16 ) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=a__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=a__ , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=a__ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=a__ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=a__ , default=6.25e-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=a__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=a__ , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=a__ , default=0.01 ) parser.add_argument('''--lm_coef''' , type=a__ , default=0.9 ) parser.add_argument('''--n_valid''' , type=a__ , default=374 ) parser.add_argument('''--server_ip''' , type=a__ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=a__ , default='''''' , help='''Can be used for distant debugging.''' ) _UpperCamelCase = parser.parse_args() print(a__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) _UpperCamelCase = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) _UpperCamelCase = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(a__ , a__ ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset _UpperCamelCase = ['''_start_''', '''_delimiter_''', '''_classify_'''] _UpperCamelCase = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(a__ ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(a__ ) _UpperCamelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(a__ ) ) model.to(a__ ) # Load and encode the datasets def tokenize_and_encode(a__ : Optional[int] ): if isinstance(a__ , a__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(a__ ) ) elif isinstance(a__ , a__ ): return obj return [tokenize_and_encode(a__ ) for o in obj] logger.info('''Encoding dataset...''' ) _UpperCamelCase = load_rocstories_dataset(args.train_dataset ) _UpperCamelCase = load_rocstories_dataset(args.eval_dataset ) _UpperCamelCase = (train_dataset, eval_dataset) _UpperCamelCase = tokenize_and_encode(a__ ) # Compute the max input length for the Transformer _UpperCamelCase = model.config.n_positions // 2 - 2 _UpperCamelCase = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) _UpperCamelCase = min(a__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders _UpperCamelCase = pre_process_datasets(a__ , a__ , a__ , *a__ ) _UpperCamelCase , _UpperCamelCase = tensor_datasets[0], tensor_datasets[1] _UpperCamelCase = TensorDataset(*a__ ) _UpperCamelCase = RandomSampler(a__ ) _UpperCamelCase = DataLoader(a__ , sampler=a__ , batch_size=args.train_batch_size ) _UpperCamelCase = TensorDataset(*a__ ) _UpperCamelCase = SequentialSampler(a__ ) _UpperCamelCase = DataLoader(a__ , sampler=a__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: _UpperCamelCase = args.max_steps _UpperCamelCase = args.max_steps // (len(a__ ) // args.gradient_accumulation_steps) + 1 else: _UpperCamelCase = len(a__ ) // args.gradient_accumulation_steps * args.num_train_epochs _UpperCamelCase = list(model.named_parameters() ) _UpperCamelCase = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] _UpperCamelCase = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] _UpperCamelCase = AdamW(a__ , lr=args.learning_rate , eps=args.adam_epsilon ) _UpperCamelCase = get_linear_schedule_with_warmup( a__ , num_warmup_steps=args.warmup_steps , num_training_steps=a__ ) if args.do_train: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = tqdm(a__ , desc='''Training''' ) for step, batch in enumerate(a__ ): _UpperCamelCase = tuple(t.to(a__ ) for t in batch ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = batch _UpperCamelCase = model(a__ , mc_token_ids=a__ , lm_labels=a__ , mc_labels=a__ ) _UpperCamelCase = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() _UpperCamelCase = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 _UpperCamelCase = '''Training loss: {:.2e} lr: {:.2e}'''.format(a__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer _UpperCamelCase = model.module if hasattr(a__ , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` _UpperCamelCase = os.path.join(args.output_dir , a__ ) _UpperCamelCase = os.path.join(args.output_dir , a__ ) torch.save(model_to_save.state_dict() , a__ ) model_to_save.config.to_json_file(a__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned _UpperCamelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) _UpperCamelCase = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(a__ ) if args.do_eval: model.eval() _UpperCamelCase , _UpperCamelCase = 0, 0 _UpperCamelCase , _UpperCamelCase = 0, 0 for batch in tqdm(a__ , desc='''Evaluating''' ): _UpperCamelCase = tuple(t.to(a__ ) for t in batch ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = batch with torch.no_grad(): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = model( a__ , mc_token_ids=a__ , lm_labels=a__ , mc_labels=a__ ) _UpperCamelCase = mc_logits.detach().cpu().numpy() _UpperCamelCase = mc_labels.to('''cpu''' ).numpy() _UpperCamelCase = accuracy(a__ , a__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 _UpperCamelCase = eval_loss / nb_eval_steps _UpperCamelCase = eval_accuracy / nb_eval_examples _UpperCamelCase = tr_loss / nb_tr_steps if args.do_train else None _UpperCamelCase = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} _UpperCamelCase = os.path.join(args.output_dir , '''eval_results.txt''' ) with open(a__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , a__ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
256
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( _lowercase): def __init__( self : List[Any] , __UpperCamelCase : VQModel , __UpperCamelCase : UNetaDModel , __UpperCamelCase : DDIMScheduler ) -> Optional[Any]: super().__init__() self.register_modules(vqvae=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self : List[Any] , __UpperCamelCase : int = 1 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 50 , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , **__UpperCamelCase : Optional[int] , ) -> Union[Tuple, ImagePipelineOutput]: _UpperCamelCase = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__UpperCamelCase , ) _UpperCamelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _UpperCamelCase = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__UpperCamelCase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature _UpperCamelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCamelCase = {} if accepts_eta: _UpperCamelCase = eta for t in self.progress_bar(self.scheduler.timesteps ): _UpperCamelCase = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual _UpperCamelCase = self.unet(__UpperCamelCase , __UpperCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # decode the image latents with the VAE _UpperCamelCase = self.vqvae.decode(__UpperCamelCase ).sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
256
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE : List[Any] = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , ) -> Union[str, Any]: if attention_mask is None: _lowercase : Optional[int] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowercase : List[str] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowercase : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=99, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=32, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=0, lowerCamelCase=0.0_2, ) -> Any: """simple docstring""" _lowercase : Tuple = parent _lowercase : Any = batch_size _lowercase : Dict = seq_length _lowercase : Tuple = is_training _lowercase : Union[str, Any] = use_labels _lowercase : List[Any] = vocab_size _lowercase : Any = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Optional[int] = hidden_act _lowercase : List[Any] = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : Optional[int] = eos_token_id _lowercase : Optional[Any] = pad_token_id _lowercase : Union[str, Any] = bos_token_id _lowercase : int = initializer_range def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Any = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size) _lowercase : Dict = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.intaa)), -1) _lowercase : List[Any] = shift_tokens_right(lowerCamelCase, 1, 2) _lowercase : str = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=lowerCamelCase, ) _lowercase : Dict = prepare_blenderbot_inputs_dict(lowerCamelCase, lowerCamelCase, lowerCamelCase) return config, inputs_dict def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : str = 20 _lowercase : Optional[int] = model_class_name(lowerCamelCase) _lowercase : List[Any] = model.encode(inputs_dict['input_ids']) _lowercase , _lowercase : str = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0], lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype='i4') _lowercase : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) _lowercase : str = model.decode( decoder_input_ids[:, :-1], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) _lowercase : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='i4') _lowercase : Dict = model.decode( decoder_input_ids[:, -1:], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=outputs_cache.past_key_values, decoder_position_ids=lowerCamelCase, ) _lowercase : Tuple = model.decode(lowerCamelCase, lowerCamelCase) _lowercase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : int = 20 _lowercase : int = model_class_name(lowerCamelCase) _lowercase : int = model.encode(inputs_dict['input_ids']) _lowercase , _lowercase : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ], axis=-1, ) _lowercase : Tuple = model.init_cache(decoder_input_ids.shape[0], lowerCamelCase, lowerCamelCase) _lowercase : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) _lowercase : int = model.decode( decoder_input_ids[:, :-1], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) _lowercase : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='i4') _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:], lowerCamelCase, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) _lowercase : List[Any] = model.decode(lowerCamelCase, lowerCamelCase, decoder_attention_mask=lowerCamelCase) _lowercase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''') @require_flax class _lowerCamelCase( unittest.TestCase ): lowercase_ : Optional[Any] = 99 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=np.intaa, ) _lowercase : Any = input_ids.shape[0] _lowercase : str = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase , _lowercase , _lowercase : Any = self._get_config_and_data() _lowercase : List[str] = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase) _lowercase : List[str] = lm_model(input_ids=lowerCamelCase) _lowercase : Optional[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape, lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : List[str] = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) _lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase) _lowercase : int = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.intaa) _lowercase : str = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.intaa) _lowercase : List[Any] = lm_model(input_ids=lowerCamelCase, decoder_input_ids=lowerCamelCase) _lowercase : Dict = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape, lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.intaa) _lowercase : Dict = shift_tokens_right(lowerCamelCase, 1, 2) _lowercase : Union[str, Any] = np.equal(lowerCamelCase, 1).astype(np.floataa).sum() _lowercase : Optional[Any] = np.equal(lowerCamelCase, 1).astype(np.floataa).sum() self.assertEqual(shifted.shape, input_ids.shape) self.assertEqual(lowerCamelCase, n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0], 2).all()) @require_flax class _lowerCamelCase( _a, unittest.TestCase, _a ): lowercase_ : int = True lowercase_ : Optional[Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ : Union[str, Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Union[str, Any] = FlaxBlenderbotSmallModelTester(self) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowercase : List[Any] = self._prepare_for_class(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = model_class(lowerCamelCase) @jax.jit def encode_jitted(lowerCamelCase, lowerCamelCase=None, **lowerCamelCase): return model.encode(input_ids=lowerCamelCase, attention_mask=lowerCamelCase) with self.subTest('JIT Enabled'): _lowercase : List[Any] = encode_jitted(**lowerCamelCase).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): _lowercase : List[str] = encode_jitted(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase)) for jitted_output, output in zip(lowerCamelCase, lowerCamelCase): self.assertEqual(jitted_output.shape, output.shape) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowercase : Union[str, Any] = model_class(lowerCamelCase) _lowercase : Dict = model.encode(inputs_dict['input_ids'], inputs_dict['attention_mask']) _lowercase : str = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase, lowerCamelCase, lowerCamelCase): return model.decode( decoder_input_ids=lowerCamelCase, decoder_attention_mask=lowerCamelCase, encoder_outputs=lowerCamelCase, ) with self.subTest('JIT Enabled'): _lowercase : Any = decode_jitted(**lowerCamelCase).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): _lowercase : Tuple = decode_jitted(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase)) for jitted_output, output in zip(lowerCamelCase, lowerCamelCase): self.assertEqual(jitted_output.shape, output.shape) @slow def UpperCamelCase ( self) -> int: """simple docstring""" for model_class_name in self.all_model_classes: _lowercase : List[str] = model_class_name.from_pretrained('facebook/blenderbot_small-90M') # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowercase : Union[str, Any] = np.ones((1, 1)) * model.config.eos_token_id _lowercase : List[Any] = model(lowerCamelCase) self.assertIsNotNone(lowerCamelCase)
84
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) SCREAMING_SNAKE_CASE : Optional[int] = 299792458 # Symbols SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = symbols("ct x y z") def UpperCamelCase_( lowerCamelCase_ ) -> float: if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def UpperCamelCase_( lowerCamelCase_ ) -> float: return 1 / sqrt(1 - beta(lowerCamelCase_ ) ** 2 ) def UpperCamelCase_( lowerCamelCase_ ) -> np.ndarray: return np.array( [ [gamma(lowerCamelCase_ ), -gamma(lowerCamelCase_ ) * beta(lowerCamelCase_ ), 0, 0], [-gamma(lowerCamelCase_ ) * beta(lowerCamelCase_ ), gamma(lowerCamelCase_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = None ) -> np.ndarray: # Ensure event is not empty if event is None: _lowercase : Union[str, Any] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(lowerCamelCase_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: SCREAMING_SNAKE_CASE : Optional[int] = transform(29979245) print("Example of four vector: ") print(F"ct' = {four_vector[0]}") print(F"x' = {four_vector[1]}") print(F"y' = {four_vector[2]}") print(F"z' = {four_vector[3]}") # Substitute symbols with numerical values SCREAMING_SNAKE_CASE : Tuple = {ct: c, x: 1, y: 1, z: 1} SCREAMING_SNAKE_CASE : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"\n{numerical_vector}")
84
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCAmelCase_ = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCAmelCase_ = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCAmelCase_ = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} lowerCAmelCase : Dict = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } lowerCAmelCase : Dict = { 'allenai/longformer-base-4096': 40_96, 'allenai/longformer-large-4096': 40_96, 'allenai/longformer-large-4096-finetuned-triviaqa': 40_96, 'allenai/longformer-base-4096-extra.pos.embd.only': 40_96, 'allenai/longformer-large-4096-extra.pos.embd.only': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : List[str] = bs[:] SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(a ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : int = [chr(a ) for n in cs] return dict(zip(a , a ) ) def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = set() SCREAMING_SNAKE_CASE_ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : Any = char return pairs class _A ( __magic_name__): SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : int = ['''input_ids''', '''attention_mask'''] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="replace" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else bos_token SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else eos_token SCREAMING_SNAKE_CASE_ : int = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else sep_token SCREAMING_SNAKE_CASE_ : Any = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cls_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else unk_token SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Any = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( errors=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as vocab_handle: SCREAMING_SNAKE_CASE_ : List[str] = json.load(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : int = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as merges_handle: SCREAMING_SNAKE_CASE_ : Optional[int] = merges_handle.read().split('\n' )[1:-1] SCREAMING_SNAKE_CASE_ : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : Dict = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : Tuple = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCAmelCase ( self ): """simple docstring""" return len(self.encoder ) def UpperCAmelCase ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Optional[int] = tuple(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = get_pairs(_SCREAMING_SNAKE_CASE ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : int = min(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_SCREAMING_SNAKE_CASE , float('inf' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = bigram SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : List[Any] = 0 while i < len(_SCREAMING_SNAKE_CASE ): try: SCREAMING_SNAKE_CASE_ : Any = word.index(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : Tuple = j if word[i] == first and i < len(_SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : str = tuple(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = new_word if len(_SCREAMING_SNAKE_CASE ) == 1: break else: SCREAMING_SNAKE_CASE_ : Any = get_pairs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = ' '.join(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = word return word def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [] for token in re.findall(self.pat , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_SCREAMING_SNAKE_CASE ).split(' ' ) ) return bpe_tokens def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.decoder.get(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ''.join(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE , ensure_ascii=_SCREAMING_SNAKE_CASE ) + '\n' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) SCREAMING_SNAKE_CASE_ : List[Any] = token_index writer.write(' '.join(_SCREAMING_SNAKE_CASE ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_SCREAMING_SNAKE_CASE ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : List[Any] = ' ' + text return (text, kwargs)
253
0
def A_ ( A__ , A__ ) -> int: return abs(A__ ) if a == 0 else greatest_common_divisor(b % a , A__ ) def A_ ( A__ , A__ ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. a__ , a__ : str = y, x % y return abs(A__ ) def A_ ( ) -> List[Any]: try: a__ : Any = input('Enter two integers separated by comma (,): ' ).split(',' ) a__ : str = int(nums[0] ) a__ : List[Any] = int(nums[1] ) print( F'greatest_common_divisor({num_a}, {num_a}) = ' F'{greatest_common_divisor(A__ , A__ )}' ) print(F'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(A__ , A__ )}' ) except (IndexError, UnboundLocalError, ValueError): print('Wrong input' ) if __name__ == "__main__": main()
225
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A_ ( A__ , A__ , A__ ) -> Any: # Construct model if gpta_config_file == "": a__ : Optional[int] = GPTaConfig() else: a__ : List[str] = GPTaConfig.from_json_file(A__ ) a__ : List[str] = GPTaModel(A__ ) # Load weights from numpy load_tf_weights_in_gpta(A__ , A__ , A__ ) # Save pytorch-model a__ : Optional[Any] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME a__ : Any = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , A__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) lowercase : int = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
225
1
"""simple docstring""" import math def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0_0 ) -> int: '''simple docstring''' lowercase = sum(i * i for i in range(1 , n + 1 ) ) lowercase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
197
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a_ : Optional[int] = logging.get_logger(__name__) a_ : Dict = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """marian""" _lowerCAmelCase = ["""past_key_values"""] _lowerCAmelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __magic_name__=5_81_01 , __magic_name__=None , __magic_name__=10_24 , __magic_name__=12 , __magic_name__=40_96 , __magic_name__=16 , __magic_name__=12 , __magic_name__=40_96 , __magic_name__=16 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=True , __magic_name__=True , __magic_name__="gelu" , __magic_name__=10_24 , __magic_name__=0.1 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.0_2 , __magic_name__=5_81_00 , __magic_name__=False , __magic_name__=5_81_00 , __magic_name__=0 , __magic_name__=0 , __magic_name__=True , **__magic_name__ , ) -> str: _a = vocab_size _a = decoder_vocab_size or vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True _a = share_encoder_decoder_embeddings super().__init__( pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , decoder_start_token_id=__magic_name__ , forced_eos_token_id=__magic_name__ , **__magic_name__ , ) class a ( _SCREAMING_SNAKE_CASE ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _a = {0: 'batch'} _a = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _a = {0: 'batch', 1: 'decoder_sequence'} _a = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _a , _a = self.num_layers for i in range(__magic_name__ ): _a = {0: 'batch', 2: 'past_sequence + sequence'} _a = {0: 'batch', 2: 'past_sequence + sequence'} else: _a = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(__magic_name__ , self ).outputs if self.use_past: _a , _a = self.num_layers for i in range(__magic_name__ ): _a = {0: 'batch', 2: 'past_sequence + sequence'} _a = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_encoder_and_decoder( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_encoder_and_decoder( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _a = dict(**__magic_name__ , **__magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _a , _a = common_inputs['input_ids'].shape _a = common_inputs['decoder_input_ids'].shape[1] _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(__magic_name__ , __magic_name__ )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a = self.num_layers _a = min(__magic_name__ , __magic_name__ ) _a = max(__magic_name__ , __magic_name__ ) - min_num_layers _a = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(__magic_name__ ): common_inputs["past_key_values"].append( ( torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(__magic_name__ , __magic_name__ ): common_inputs["past_key_values"].append((torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) ) return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_encoder_and_decoder( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _a , _a = common_inputs['input_ids'].shape # Not using the same length for past_key_values _a = seqlen + 2 _a , _a = self.num_layers _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['attention_mask'].dtype _a = torch.cat( [common_inputs['attention_mask'], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) _a = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(__magic_name__ ) ] return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(__magic_name__ ) _a = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence _a = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(__magic_name__ , return_tensors=__magic_name__ ) ) return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) else: _a = self._generate_dummy_inputs_for_causal_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: _a = super(__magic_name__ , self )._flatten_past_key_values_( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @property def __UpperCAmelCase ( self ) -> float: return 1e-4
168
0
"""simple docstring""" class SCREAMING_SNAKE_CASE__ : def __init__( self : List[Any] , lowerCAmelCase_ : list[int]): """simple docstring""" lowercase_ = len(_a) lowercase_ = [0] * len_array if len_array > 0: lowercase_ = array[0] for i in range(1 , _a): lowercase_ = self.prefix_sum[i - 1] + array[i] def _UpperCAmelCase ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int): """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(_a) return False if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" from collections.abc import Sequence def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" ) lowercase_ = 0.0 for num in arr: lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
313
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
78
"""simple docstring""" def _snake_case ( _snake_case : int = 10_00 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
315
0
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _snake_case = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _snake_case = concatenate_datasets _snake_case = DownloadConfig _snake_case = DownloadManager _snake_case = DownloadMode _snake_case = DownloadConfig _snake_case = DownloadMode _snake_case = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
324
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
1
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase__ ( a , a , a , a , a ) -> Union[str, Any]: # Load configuration defined in the metadata file with open(a ) as metadata_file: _A: int = json.load(a ) _A: str = LukeConfig(use_entity_aware_attention=a , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _A: Optional[Any] = torch.load(a , map_location='''cpu''' ) # Load the entity vocab file _A: Tuple = load_entity_vocab(a ) _A: Optional[int] = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _A: int = AddedToken('''<ent>''' , lstrip=a , rstrip=a ) _A: Dict = AddedToken('''<ent2>''' , lstrip=a , rstrip=a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(a ) with open(os.path.join(a , LukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(a , a ) _A: Optional[int] = LukeTokenizer.from_pretrained(a ) # Initialize the embeddings of the special tokens _A: Union[str, Any] = state_dict['''embeddings.word_embeddings.weight'''] _A: Union[str, Any] = word_emb[tokenizer.convert_tokens_to_ids(['''@'''] )[0]].unsqueeze(0 ) _A: Optional[int] = word_emb[tokenizer.convert_tokens_to_ids(['''#'''] )[0]].unsqueeze(0 ) _A: List[Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _A: Optional[Any] = f"""encoder.layer.{layer_index}.attention.self.""" _A: List[Any] = state_dict[prefix + matrix_name] _A: Any = state_dict[prefix + matrix_name] _A: Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _A: str = state_dict['''entity_embeddings.entity_embeddings.weight'''] _A: List[Any] = entity_emb[entity_vocab['''[MASK]''']] _A: Optional[int] = LukeModel(config=a ).eval() _A , _A: Optional[int] = model.load_state_dict(a , strict=a ) if not (len(a ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f"""Missing keys {', '.join(a )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith('''entity_predictions''' ) or key.startswith('''lm_head''' ) for key in unexpected_keys )): raise ValueError( '''Unexpected keys''' f""" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}""" ) # Check outputs _A: Dict = LukeTokenizer.from_pretrained(a , task='''entity_classification''' ) _A: Optional[Any] = ( '''Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the''' ''' new world number one avoid a humiliating second- round exit at Wimbledon .''' ) _A: int = (39, 42) _A: Optional[Any] = tokenizer(a , entity_spans=[span] , add_prefix_space=a , return_tensors='''pt''' ) _A: Any = model(**a ) # Verify word hidden states if model_size == "large": _A: int = torch.Size((1, 42, 10_24) ) _A: Optional[int] = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base _A: Optional[Any] = torch.Size((1, 42, 7_68) ) _A: List[str] = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _A: Optional[int] = torch.Size((1, 1, 10_24) ) _A: Optional[int] = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base _A: Optional[Any] = torch.Size((1, 1, 7_68) ) _A: Union[str, Any] = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , a , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(a ) ) model.save_pretrained(a ) def lowerCamelCase__ ( a ) -> int: _A: Optional[int] = {} with open(a , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(a ): _A , _A: Any = line.rstrip().split('''\t''' ) _A: Tuple = index return entity_vocab if __name__ == "__main__": UpperCAmelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) UpperCAmelCase__ : Union[str, Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
121
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase__ : Dict = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowerCamelCase__ ( a , a , a=8 ) -> List[Any]: _A: int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _A: str = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase__ ( a , a=5_12 , a=5_12 ) -> Dict: _A: Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _A: Tuple = np.array(pil_image.convert('''RGB''' ) ) _A: List[str] = arr.astype(np.floataa ) / 127.5 - 1 _A: Tuple = np.transpose(a , [2, 0, 1] ) _A: Any = torch.from_numpy(a ).unsqueeze(0 ) return image class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : DDPMScheduler , lowerCAmelCase_ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , movq=lowerCAmelCase_ , ) _A: List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" # get the original timestep using init_timestep _A: Union[str, Any] = min(int(num_inference_steps * strength ) , lowerCAmelCase_ ) _A: str = max(num_inference_steps - init_timestep , 0 ) _A: str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if not isinstance(lowerCAmelCase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase_ )}""" ) _A: Optional[int] = image.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) _A: Union[str, Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _A: Optional[int] = image else: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCAmelCase_ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase_ ) ] _A: Optional[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) else: _A: Optional[int] = self.movq.encode(lowerCAmelCase_ ).latent_dist.sample(lowerCAmelCase_ ) _A: int = self.movq.config.scaling_factor * init_latents _A: Optional[Any] = torch.cat([init_latents] , dim=0 ) _A: Any = init_latents.shape _A: Optional[Any] = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) # get latents _A: Union[str, Any] = self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[str] = init_latents return latents def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _A: Any = torch.device(F"""cuda:{gpu_id}""" ) _A: int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Any=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _A: Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowerCAmelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _A: int = None for cpu_offloaded_model in [self.unet, self.movq]: _A , _A: List[Any] = cpu_offload_with_hook(lowerCAmelCase_ , lowerCAmelCase_ , prev_module_hook=lowerCAmelCase_ ) # We'll offload the last model manually. _A: Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __magic_name__ ( self : List[Any] ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase_ ) def __call__( self : Optional[Any] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 1_0_0 , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : float = 0.3 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Any = self._execution_device _A: Any = guidance_scale > 1.0 if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Any = torch.cat(lowerCAmelCase_ , dim=0 ) _A: int = image_embeds.shape[0] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Dict = torch.cat(lowerCAmelCase_ , dim=0 ) if do_classifier_free_guidance: _A: Any = image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) _A: str = negative_image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) _A: Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCAmelCase_ ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: List[str] = [image] if not all(isinstance(lowerCAmelCase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(lowerCAmelCase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _A: List[str] = torch.cat([prepare_image(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for i in image] , dim=0 ) _A: Tuple = image.to(dtype=image_embeds.dtype , device=lowerCAmelCase_ ) _A: Optional[Any] = self.movq.encode(lowerCAmelCase_ )['''latents'''] _A: Optional[int] = latents.repeat_interleave(lowerCAmelCase_ , dim=0 ) self.scheduler.set_timesteps(lowerCAmelCase_ , device=lowerCAmelCase_ ) _A , _A: List[Any] = self.get_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: Dict = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _A , _A: Optional[int] = downscale_height_and_width(lowerCAmelCase_ , lowerCAmelCase_ , self.movq_scale_factor ) _A: Any = self.prepare_latents( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , image_embeds.dtype , lowerCAmelCase_ , lowerCAmelCase_ ) for i, t in enumerate(self.progress_bar(lowerCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance _A: Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A: str = {'''image_embeds''': image_embeds} _A: Optional[int] = self.unet( sample=lowerCAmelCase_ , timestep=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , added_cond_kwargs=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] if do_classifier_free_guidance: _A , _A: str = noise_pred.split(latents.shape[1] , dim=1 ) _A , _A: int = noise_pred.chunk(2 ) _A , _A: int = variance_pred.chunk(2 ) _A: Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _A: List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _A , _A: Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _A: Any = self.scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ , )[0] # post-processing _A: Tuple = self.movq.decode(lowerCAmelCase_ , force_not_quantize=lowerCAmelCase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _A: int = image * 0.5 + 0.5 _A: Any = image.clamp(0 , 1 ) _A: Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A: Union[str, Any] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
121
1
import math def UpperCamelCase( lowercase_ , lowercase_ ) -> float: '''simple docstring''' return math.pow(lowercase_ , 2 ) - a def UpperCamelCase( lowercase_ ) -> float: '''simple docstring''' return 2 * x def UpperCamelCase( lowercase_ ) -> float: '''simple docstring''' snake_case_ = 2.0 while start <= a: snake_case_ = math.pow(lowercase_ , 2 ) return start def UpperCamelCase( lowercase_ , lowercase_ = 9999 , lowercase_ = 0.00_00_00_00_00_00_01 ) -> float: '''simple docstring''' if a < 0: raise ValueError("""math domain error""" ) snake_case_ = get_initial_point(lowercase_ ) for _ in range(lowercase_ ): snake_case_ = value snake_case_ = value - fx(lowercase_ , lowercase_ ) / fx_derivative(lowercase_ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
34
from torch import nn def UpperCamelCase( lowercase_ ) -> Tuple: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
34
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase : Union[str, Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["CLIPFeatureExtractor"] _lowercase : Optional[int] = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
239
from collections.abc import Iterable from typing import Generic, TypeVar A__ = TypeVar("""_T""") class __lowerCAmelCase ( Generic[_T] ): def __init__( self , _snake_case = None ): """simple docstring""" _lowerCAmelCase = list(iterable or [] ) _lowerCAmelCase = [] def __len__( self ): """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self ): """simple docstring""" return F'Queue({tuple(self._stacka[::-1] + self._stacka )})' def snake_case ( self , _snake_case ): """simple docstring""" self._stacka.append(_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self._stacka.pop _lowerCAmelCase = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
82
0
from __future__ import annotations from typing import Any class UpperCamelCase__ : '''simple docstring''' def __init__( self : Any ,lowerCamelCase__ : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = num_of_nodes SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = {} def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : int ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : int ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE = self.find_component(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ,lowerCamelCase__ : list[int] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase__ ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE = self.find_component(lowerCamelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = edge SCREAMING_SNAKE_CASE = self.m_component[u] SCREAMING_SNAKE_CASE = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = edge SCREAMING_SNAKE_CASE = self.m_component[u] SCREAMING_SNAKE_CASE = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 SCREAMING_SNAKE_CASE = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __lowercase ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
193
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Any = BertTokenizer __snake_case : Dict = BertTokenizerFast __snake_case : Tuple = True __snake_case : List[Any] = True __snake_case : Optional[Any] = filter_non_english def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCamelCase__ ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[9, 6, 7, 12, 10, 11] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) # With lower casing SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) ,["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""h\u00E9llo"""] ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer() SCREAMING_SNAKE_CASE = """a\n'll !!to?'d of, can't.""" SCREAMING_SNAKE_CASE = ["""a""", """'""", """ll""", """!""", """!""", """to""", """?""", """'""", """d""", """of""", """,""", """can""", """'""", """t""", """."""] self.assertListEqual(tokenizer.tokenize(lowerCamelCase__ ) ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=lowerCamelCase__ ,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) ,[] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) ,["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) ,["""[UNK]""", """runn""", """##ing"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""bert-base-uncased""" ) SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ,lowerCamelCase__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( lowerCamelCase__ ,return_attention_mask=lowerCamelCase__ ,return_token_type_ids=lowerCamelCase__ ,return_offsets_mapping=lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(lowerCamelCase__ ,"""do_lower_case""" ) else False SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens["""offset_mapping"""] ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] SCREAMING_SNAKE_CASE = """""".join(lowerCamelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCamelCase__ ) ] self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ )
193
1
def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = F"""Input value of [number={number}] must be an integer""" raise TypeError(_SCREAMING_SNAKE_CASE ) if number < 0: return False SCREAMING_SNAKE_CASE = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
296
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : int = "efficientformer" def __init__( self : Optional[int] ,lowerCamelCase__ : List[int] = [3, 2, 6, 4] ,lowerCamelCase__ : List[int] = [48, 96, 224, 448] ,lowerCamelCase__ : List[bool] = [True, True, True, True] ,lowerCamelCase__ : int = 448 ,lowerCamelCase__ : int = 32 ,lowerCamelCase__ : int = 4 ,lowerCamelCase__ : int = 7 ,lowerCamelCase__ : int = 5 ,lowerCamelCase__ : int = 8 ,lowerCamelCase__ : int = 4 ,lowerCamelCase__ : float = 0.0 ,lowerCamelCase__ : int = 16 ,lowerCamelCase__ : int = 3 ,lowerCamelCase__ : int = 3 ,lowerCamelCase__ : int = 3 ,lowerCamelCase__ : int = 2 ,lowerCamelCase__ : int = 1 ,lowerCamelCase__ : float = 0.0 ,lowerCamelCase__ : int = 1 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : float = 1e-5 ,lowerCamelCase__ : str = "gelu" ,lowerCamelCase__ : float = 0.02 ,lowerCamelCase__ : float = 1e-1_2 ,lowerCamelCase__ : int = 224 ,lowerCamelCase__ : float = 1e-0_5 ,**lowerCamelCase__ : str ,) -> None: '''simple docstring''' super().__init__(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_expansion_ratio SCREAMING_SNAKE_CASE = downsamples SCREAMING_SNAKE_CASE = dim SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = resolution SCREAMING_SNAKE_CASE = pool_size SCREAMING_SNAKE_CASE = downsample_patch_size SCREAMING_SNAKE_CASE = downsample_stride SCREAMING_SNAKE_CASE = downsample_pad SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = num_metaad_blocks SCREAMING_SNAKE_CASE = distillation SCREAMING_SNAKE_CASE = use_layer_scale SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = batch_norm_eps
296
1
"""simple docstring""" def snake_case( __magic_name__ ) -> list: '''simple docstring''' if n_term == "": return [] lowercase : list = [] for temp in range(int(__magic_name__ ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": lowerCAmelCase_ = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
363
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _A ( _lowerCamelCase ): _UpperCamelCase : Tuple = (PNDMScheduler,) _UpperCamelCase : Optional[int] = (('''num_inference_steps''', 5_0),) def __a ( self : Union[str, Any] , **_A : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase : List[str] = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_A ) return config def __a ( self : Optional[Any] , _A : Any=0 , **_A : int ) -> Dict: """simple docstring""" lowercase : List[Any] = dict(self.forward_default_kwargs ) lowercase : Union[str, Any] = kwargs.pop('''num_inference_steps''' , _A ) lowercase : Optional[Any] = self.dummy_sample lowercase : str = 0.1 * sample lowercase : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase : Dict = self.get_scheduler_config(**_A ) lowercase : int = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals lowercase : List[str] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) lowercase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals lowercase : int = dummy_past_residuals[:] lowercase : List[str] = scheduler.step_prk(_A , _A , _A , **_A ).prev_sample lowercase : List[Any] = new_scheduler.step_prk(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase : Dict = scheduler.step_plms(_A , _A , _A , **_A ).prev_sample lowercase : List[Any] = new_scheduler.step_plms(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __a ( self : int ) -> List[str]: """simple docstring""" pass def __a ( self : Optional[Any] , _A : Optional[int]=0 , **_A : str ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = dict(self.forward_default_kwargs ) lowercase : Optional[int] = kwargs.pop('''num_inference_steps''' , _A ) lowercase : Union[str, Any] = self.dummy_sample lowercase : Any = 0.1 * sample lowercase : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase : List[str] = self.get_scheduler_config() lowercase : List[str] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) lowercase : Union[str, Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) lowercase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) lowercase : Optional[Any] = dummy_past_residuals[:] lowercase : int = scheduler.step_prk(_A , _A , _A , **_A ).prev_sample lowercase : Tuple = new_scheduler.step_prk(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase : Any = scheduler.step_plms(_A , _A , _A , **_A ).prev_sample lowercase : Union[str, Any] = new_scheduler.step_plms(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __a ( self : Union[str, Any] , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : str = self.scheduler_classes[0] lowercase : Optional[int] = self.get_scheduler_config(**_A ) lowercase : int = scheduler_class(**_A ) lowercase : Any = 10 lowercase : Optional[int] = self.dummy_model() lowercase : Tuple = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.prk_timesteps ): lowercase : List[str] = model(_A , _A ) lowercase : Any = scheduler.step_prk(_A , _A , _A ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowercase : Dict = model(_A , _A ) lowercase : List[Any] = scheduler.step_plms(_A , _A , _A ).prev_sample return sample def __a ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase : int = dict(self.forward_default_kwargs ) lowercase : Union[str, Any] = kwargs.pop('''num_inference_steps''' , _A ) for scheduler_class in self.scheduler_classes: lowercase : Optional[Any] = self.get_scheduler_config() lowercase : List[Any] = scheduler_class(**_A ) lowercase : Dict = self.dummy_sample lowercase : str = 0.1 * sample if num_inference_steps is not None and hasattr(_A , '''set_timesteps''' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A , '''set_timesteps''' ): lowercase : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase : Optional[Any] = dummy_past_residuals[:] lowercase : Optional[int] = scheduler.step_prk(_A , 0 , _A , **_A ).prev_sample lowercase : str = scheduler.step_prk(_A , 1 , _A , **_A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase : Dict = scheduler.step_plms(_A , 0 , _A , **_A ).prev_sample lowercase : Tuple = scheduler.step_plms(_A , 1 , _A , **_A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __a ( self : Any ) -> Optional[Any]: """simple docstring""" for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=_A ) def __a ( self : Tuple ) -> Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_A ) lowercase : str = self.scheduler_classes[0] lowercase : int = self.get_scheduler_config(steps_offset=1 ) lowercase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def __a ( self : int ) -> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __a ( self : List[str] ) -> Tuple: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __a ( self : List[str] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __a ( self : Tuple ) -> str: """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=_A ) def __a ( self : List[Any] ) -> str: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_A ) def __a ( self : str ) -> List[Any]: """simple docstring""" lowercase : str = 27 for scheduler_class in self.scheduler_classes: lowercase : List[str] = self.dummy_sample lowercase : Union[str, Any] = 0.1 * sample lowercase : int = self.get_scheduler_config() lowercase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowercase : Union[str, Any] = scheduler.step_prk(_A , _A , _A ).prev_sample def __a ( self : List[Any] ) -> List[Any]: """simple docstring""" with self.assertRaises(_A ): lowercase : Dict = self.scheduler_classes[0] lowercase : Union[str, Any] = self.get_scheduler_config() lowercase : Optional[int] = scheduler_class(**_A ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __a ( self : str ) -> Dict: """simple docstring""" lowercase : List[str] = self.full_loop() lowercase : List[Any] = torch.sum(torch.abs(_A ) ) lowercase : Any = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 198.1_318 ) < 1E-2 assert abs(result_mean.item() - 0.2_580 ) < 1E-3 def __a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase : List[str] = self.full_loop(prediction_type='''v_prediction''' ) lowercase : Optional[int] = torch.sum(torch.abs(_A ) ) lowercase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 67.3_986 ) < 1E-2 assert abs(result_mean.item() - 0.0_878 ) < 1E-3 def __a ( self : str ) -> Optional[Any]: """simple docstring""" lowercase : Any = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) lowercase : List[str] = torch.sum(torch.abs(_A ) ) lowercase : Optional[int] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 230.0_399 ) < 1E-2 assert abs(result_mean.item() - 0.2_995 ) < 1E-3 def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) lowercase : int = torch.sum(torch.abs(_A ) ) lowercase : int = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 186.9_482 ) < 1E-2 assert abs(result_mean.item() - 0.2_434 ) < 1E-3
116
0
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=6 , _a=17 , _a=23 , _a=11 , _a=True , ): __a = parent __a = batch_size __a = seq_length __a = act_dim __a = state_dim __a = hidden_size __a = max_length __a = is_training def __UpperCAmelCase ( self ): __a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __a = floats_tensor((self.batch_size, self.seq_length, 1) ) __a = floats_tensor((self.batch_size, self.seq_length, 1) ) __a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) __a = random_attention_mask((self.batch_size, self.seq_length) ) __a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __UpperCAmelCase ( self ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , ): __a = DecisionTransformerModel(config=_a ) model.to(_a ) model.eval() __a = model(_a , _a , _a , _a , _a , _a ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = (DecisionTransformerModel,) if is_torch_available() else () __UpperCAmelCase : Union[str, Any] = () __UpperCAmelCase : Any = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __UpperCAmelCase : int = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : int = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False __UpperCAmelCase : int = False __UpperCAmelCase : Dict = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): __a = DecisionTransformerModelTester(self ) __a = ConfigTester(self , config_class=_a , hidden_size=37 ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) @slow def __UpperCAmelCase ( self ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = DecisionTransformerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(_a )] , _a ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ): __a = 2 # number of steps of autoregressive prediction we will perform __a = 10 # defined by the RL environment, may be normalized __a = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) __a = model.to(_a ) __a = model.config torch.manual_seed(0 ) __a = torch.randn(1 , 1 , config.state_dim ).to(device=_a , dtype=torch.floataa ) # env.reset() __a = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=_a ) __a = torch.tensor(_a , device=_a , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __a = state __a = torch.zeros(1 , 0 , config.act_dim , device=_a , dtype=torch.floataa ) __a = torch.zeros(1 , 0 , device=_a , dtype=torch.floataa ) __a = torch.tensor(0 , device=_a , dtype=torch.long ).reshape(1 , 1 ) for step in range(_a ): __a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_a )] , dim=1 ) __a = torch.cat([rewards, torch.zeros(1 , 1 , device=_a )] , dim=1 ) __a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __a , __a , __a = model( states=_a , actions=_a , rewards=_a , returns_to_go=_a , timesteps=_a , attention_mask=_a , return_dict=_a , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) __a , __a , __a , __a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_a , dtype=torch.floataa ), 1.0, False, {}, ) __a = action_pred[0, -1] __a = torch.cat([states, state] , dim=1 ) __a = returns_to_go[0, -1] - reward __a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __a = torch.cat( [timesteps, torch.ones((1, 1) , device=_a , dtype=torch.long ) * (step + 1)] , dim=1 )
45
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : str = ["""image_processor""", """tokenizer"""] a_ : List[str] = """ViTImageProcessor""" a_ : List[str] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : List[str] , a_ : str=None , a_ : Dict=None , **a_ : List[Any] ): lowerCAmelCase_ : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a_ , ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("feature_extractor" ) lowerCAmelCase_ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a_ , a_ ) def __call__( self : Union[str, Any] , a_ : Any=None , a_ : Dict=None , a_ : List[str]=None , a_ : str=None , **a_ : Any ): if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if visual_prompt is not None: lowerCAmelCase_ : Optional[Any] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if images is not None: lowerCAmelCase_ : List[str] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if visual_prompt is not None and images is not None: lowerCAmelCase_ : Union[str, Any] = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ : Dict = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def lowerCamelCase ( self : Optional[int] , *a_ : Optional[Any] , **a_ : List[str] ): return self.tokenizer.batch_decode(*a_ , **a_ ) def lowerCamelCase ( self : Optional[Any] , *a_ : Tuple , **a_ : Tuple ): return self.tokenizer.decode(*a_ , **a_ ) @property def lowerCamelCase ( self : List[Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a_ , ) return self.image_processor_class @property def lowerCamelCase ( self : Dict ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a_ , ) return self.image_processor
241
0
import os import pytest from attr import dataclass A_ : Optional[Any] = 'us-east-1' # defaults region @dataclass class _a : '''simple docstring''' UpperCAmelCase__: str UpperCAmelCase__: Union[str, Any] = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' UpperCAmelCase__: Tuple = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 16, '''per_device_eval_batch_size''': 16, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 5_00, '''save_steps''': 55_00, } UpperCAmelCase__: List[Any] = {**hyperparameters, '''max_steps''': 10_00} @property def __A ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __A ( self ): return F"""{self.framework}-transfromers-test""" @property def __A ( self ): return F"""./tests/sagemaker/scripts/{self.framework}""" @property def __A ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def UpperCamelCase (lowercase_: List[str] ) -> Tuple: A__ : List[str] = SageMakerTestEnvironment(framework=request.cls.framework )
141
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Optional[Any] = '''MCTCTFeatureExtractor''' UpperCAmelCase__: Optional[int] = '''AutoTokenizer''' def __init__( self , A__ , A__ ): super().__init__(A__ , A__ ) A__ : List[str] = self.feature_extractor A__ : Optional[int] = False def __call__( self , *A__ , **A__ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A__ , **A__ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) A__ : Dict = kwargs.pop("""raw_speech""" ) else: A__ : Tuple = kwargs.pop("""audio""" , A__ ) A__ : Union[str, Any] = kwargs.pop("""sampling_rate""" , A__ ) A__ : int = kwargs.pop("""text""" , A__ ) if len(A__ ) > 0: A__ : Optional[int] = args[0] A__ : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: A__ : List[str] = self.feature_extractor(A__ , *A__ , sampling_rate=A__ , **A__ ) if text is not None: A__ : Optional[Any] = self.tokenizer(A__ , **A__ ) if text is None: return inputs elif audio is None: return encodings else: A__ : List[Any] = encodings["""input_ids"""] return inputs def __A ( self , *A__ , **A__ ): return self.tokenizer.batch_decode(*A__ , **A__ ) def __A ( self , *A__ , **A__ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*A__ , **A__ ) A__ : Optional[Any] = kwargs.pop("""input_features""" , A__ ) A__ : Union[str, Any] = kwargs.pop("""labels""" , A__ ) if len(A__ ) > 0: A__ : List[Any] = args[0] A__ : Optional[int] = args[1:] if input_features is not None: A__ : Union[str, Any] = self.feature_extractor.pad(A__ , *A__ , **A__ ) if labels is not None: A__ : List[Any] = self.tokenizer.pad(A__ , **A__ ) if labels is None: return input_features elif input_features is None: return labels else: A__ : Dict = labels["""input_ids"""] return input_features def __A ( self , *A__ , **A__ ): return self.tokenizer.decode(*A__ , **A__ ) @contextmanager def __A ( self ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) A__ : int = True A__ : List[Any] = self.tokenizer yield A__ : Tuple = self.feature_extractor A__ : Dict = False
141
1
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = JukeboxTokenizer lowerCAmelCase_ = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def lowercase (self ) -> List[Any]: import torch _snake_case = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) _snake_case = tokenizer(**self.metas )["""input_ids"""] # fmt: off _snake_case = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowercase (self ) -> int: import torch _snake_case = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) _snake_case = tokenizer(**self.metas )["""input_ids"""] # fmt: off _snake_case = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
341
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 32 , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = [0.4814_5466, 0.457_8275, 0.4082_1073] , _lowerCamelCase = [0.2686_2954, 0.2613_0258, 0.2757_7711] , _lowerCamelCase = True , _lowerCamelCase=7 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=3 , ) -> Union[str, Any]: A_ : Optional[int] = parent A_ : Union[str, Any] = do_resize A_ : Optional[Any] = size if size is not None else {"""shortest_edge""": 288} A_ : Tuple = size_divisor A_ : List[Any] = do_rescale A_ : Dict = rescale_factor A_ : List[Any] = do_normalize A_ : Dict = do_center_crop A_ : Optional[Any] = image_mean A_ : List[str] = image_std A_ : str = do_pad A_ : Any = batch_size A_ : List[str] = num_channels A_ : List[str] = min_resolution A_ : Union[str, Any] = max_resolution def UpperCAmelCase_ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: if not batched: A_ : Union[str, Any] = self.size["""shortest_edge"""] A_ : Dict = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): A_ , A_ : Optional[Any] = image.size else: A_ , A_ : int = image.shape[1], image.shape[2] A_ : Optional[int] = size / min(_lowerCamelCase , _lowerCamelCase ) if h < w: A_ , A_ : Optional[Any] = size, scale * w else: A_ , A_ : Dict = scale * h, size A_ : Union[str, Any] = int((1333 / 800) * size ) if max(_lowerCamelCase , _lowerCamelCase ) > max_size: A_ : str = max_size / max(_lowerCamelCase , _lowerCamelCase ) A_ : Dict = newh * scale A_ : Dict = neww * scale A_ , A_ : str = int(newh + 0.5 ), int(neww + 0.5 ) A_ , A_ : Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] A_ : Tuple = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size_divisor""" ) ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image processor A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image processor A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image processor A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
0
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowercase__ = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowercase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowercase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowercase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Any ) -> Optional[Any]: import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : List[Any]=0.9 , lowercase_ : Tuple=3 , lowercase_ : Optional[Any]=0.5 ) -> Dict: if NLTK_VERSION >= version.Version('3.6.5' ): UpperCAmelCase : Union[str, Any] = [ meteor_score.single_meteor_score( word_tokenize(lowercase_ ) , word_tokenize(lowercase_ ) , alpha=lowercase_ , beta=lowercase_ , gamma=lowercase_ ) for ref, pred in zip(lowercase_ , lowercase_ ) ] else: UpperCAmelCase : Dict = [ meteor_score.single_meteor_score(lowercase_ , lowercase_ , alpha=lowercase_ , beta=lowercase_ , gamma=lowercase_ ) for ref, pred in zip(lowercase_ , lowercase_ ) ] return {"meteor": np.mean(lowercase_ )}
356
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Tuple = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features UpperCAmelCase : int = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Union[str, Any] = TextDatasetReader(UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = tmp_path / 'cache' UpperCAmelCase : Tuple = {'text': 'string'} UpperCAmelCase : List[str] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , split=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = text_path elif issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = [text_path] UpperCAmelCase : List[Any] = tmp_path / 'cache' UpperCAmelCase : Union[str, Any] = {'text': 'string'} UpperCAmelCase : List[Any] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=("train",) ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for split in splits: UpperCAmelCase : Union[str, Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : int = TextDatasetReader({'train': text_path} , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" UpperCAmelCase : Tuple = {'text': 'string'} UpperCAmelCase : Union[str, Any] = features.copy() if features else default_expected_features UpperCAmelCase : int = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : List[Any] = TextDatasetReader({'train': text_path} , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if split: UpperCAmelCase : int = {split: text_path} else: UpperCAmelCase : int = 'train' UpperCAmelCase : Any = {'train': text_path, 'test': text_path} UpperCAmelCase : Dict = tmp_path / 'cache' UpperCAmelCase : Any = {'text': 'string'} UpperCAmelCase : List[str] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
280
0
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Callable , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' UpperCAmelCase__ = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase__ = np.zeros((n + 1,) ) UpperCAmelCase__ = ya UpperCAmelCase__ = xa for k in range(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = y[k] + step_size * ode_func(SCREAMING_SNAKE_CASE__ , y[k] ) UpperCAmelCase__ = y[k] + ( (step_size / 2) * (ode_func(SCREAMING_SNAKE_CASE__ , y[k] ) + ode_func(x + step_size , SCREAMING_SNAKE_CASE__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
346
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase_ = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Path , _UpperCAmelCase : Union[str, None] = None , _UpperCAmelCase : Union[List[str], None] = None , _UpperCAmelCase : Union[str, List[str], None] = None , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = [file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )] if identifier is not None: UpperCAmelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for n_ in n_identifier: UpperCAmelCase__ = [file for file in files if n_ not in file] else: UpperCAmelCase__ = [file for file in files if n_identifier not in file] UpperCAmelCase__ = ignore_files or [] ignore_files.append("""__init__.py""" ) UpperCAmelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , _UpperCAmelCase ) if only_modules: UpperCAmelCase__ = file.split(""".""" )[0] try: UpperCAmelCase__ = getattr(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = doctest.DocTestSuite(_UpperCAmelCase ) UpperCAmelCase__ = unittest.TextTestRunner().run(_UpperCAmelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: UpperCAmelCase__ = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = """modeling""" UpperCAmelCase__ = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase , ignore_files=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = """tokenization""" self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = """configuration""" self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(_UpperCAmelCase , n_identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = Path("""docs/source""" ) UpperCAmelCase__ = ["""favicon.ico"""] self.analyze_directory(_UpperCAmelCase , ignore_files=_UpperCAmelCase , only_modules=_UpperCAmelCase )
346
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
362
import re import string import numpy as np import datasets snake_case : Any = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" snake_case : Optional[Any] = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" snake_case : Union[str, Any] = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a=None , _a=False , _a=False , _a=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: __magic_name__ : Any = np.array([re.sub(_a , "" , _a ) for x in predictions] ) __magic_name__ : Tuple = np.array([re.sub(_a , "" , _a ) for x in references] ) else: __magic_name__ : Union[str, Any] = np.asarray(_a ) __magic_name__ : List[Any] = np.asarray(_a ) if ignore_case: __magic_name__ : List[Any] = np.char.lower(_a ) __magic_name__ : Optional[int] = np.char.lower(_a ) if ignore_punctuation: __magic_name__ : Optional[Any] = string.punctuation.maketrans("" , "" , string.punctuation ) __magic_name__ : int = np.char.translate(_a , table=_a ) __magic_name__ : Optional[Any] = np.char.translate(_a , table=_a ) if ignore_numbers: __magic_name__ : Optional[Any] = string.digits.maketrans("" , "" , string.digits ) __magic_name__ : Any = np.char.translate(_a , table=_a ) __magic_name__ : List[str] = np.char.translate(_a , table=_a ) __magic_name__ : Dict = predictions == references return {"exact_match": np.mean(_a ) * 100}
41
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
177
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class snake_case ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = BlenderbotSmallTokenizer _lowerCamelCase = False def snake_case ( self ): """simple docstring""" super().setUp() lowerCamelCase_ = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] lowerCamelCase_ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) lowerCamelCase_ = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] lowerCamelCase_ = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase ) ) def snake_case ( self , **UpperCamelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = "adapt act apte" lowerCamelCase_ = "adapt act apte" return input_text, output_text def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase_ = "adapt act apte" lowerCamelCase_ = ["adapt", "act", "ap@@", "te"] lowerCamelCase_ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowerCamelCase_ = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1384] lowerCamelCase_ = "I am a small frog." lowerCamelCase_ = tok([src_text] , padding=UpperCamelCase , truncation=UpperCamelCase )["input_ids"] lowerCamelCase_ = tok.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) lowerCamelCase_ = "I am a small frog ." lowerCamelCase_ = "." lowerCamelCase_ = tok(UpperCamelCase )["input_ids"] lowerCamelCase_ = tok(UpperCamelCase )["input_ids"] assert encoded[-1] == encoded_dot[0]
55
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> Tuple: lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a=None , **_a ) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: lowerCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
22
1
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __A : List[str] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) UpperCAmelCase = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = dct.pop(UpperCamelCase__ ) UpperCAmelCase = val def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> List[Any]: '''simple docstring''' if "handwritten" in checkpoint_url: UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase = ViTConfig(image_size=384 , qkv_bias=UpperCamelCase__ ) UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: UpperCAmelCase = 768 elif "large" in checkpoint_url: # use ViT-large encoder UpperCAmelCase = 1024 UpperCAmelCase = 4096 UpperCAmelCase = 24 UpperCAmelCase = 16 UpperCAmelCase = 1024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase = False UpperCAmelCase = '''relu''' UpperCAmelCase = 1024 UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False # load HuggingFace model UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: UpperCAmelCase = val else: UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) UpperCAmelCase = outputs.logits UpperCAmelCase = torch.Size([1, 1, 5_0265] ) if "trocr-base-handwritten" in checkpoint_url: UpperCAmelCase = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: UpperCAmelCase = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: UpperCAmelCase = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: UpperCAmelCase = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A : List[str] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
273
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: UpperCAmelCase = _modexpt(UpperCamelCase__ , exponent // 2 , UpperCamelCase__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(UpperCamelCase__ , exponent - 1 , UpperCamelCase__ )) % modulo_value def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ = 1777 , UpperCamelCase__ = 1855 , UpperCamelCase__ = 8 ) -> int: '''simple docstring''' UpperCAmelCase = base for _ in range(1 , UpperCamelCase__ ): UpperCAmelCase = _modexpt(UpperCamelCase__ , UpperCamelCase__ , 10**digits ) return result if __name__ == "__main__": print(F'{solution() = }')
273
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Optional[Any] = LDMTextToImagePipeline a : Any = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } a : Any = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } a : str = TEXT_TO_IMAGE_BATCH_PARAMS a : int = False def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=_lowerCamelCase ,set_alpha_to_one=_lowerCamelCase ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') ,up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') ,latent_channels=4 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) __lowercase = CLIPTextModel(_lowerCamelCase ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vqvae''': vae, '''bert''': text_encoder, '''tokenizer''': tokenizer, } return components def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=0 ) -> Tuple: '''simple docstring''' if str(_lowerCamelCase ).startswith('''mps''' ): __lowercase = torch.manual_seed(_lowerCamelCase ) else: __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = LDMTextToImagePipeline(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = self.get_dummy_inputs(_lowerCamelCase ) __lowercase = pipe(**_lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __lowercase = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=torch.floataa ,_lowerCamelCase=0 ) -> Any: '''simple docstring''' __lowercase = torch.manual_seed(_lowerCamelCase ) __lowercase = np.random.RandomState(_lowerCamelCase ).standard_normal((1, 4, 32, 32) ) __lowercase = torch.from_numpy(_lowerCamelCase ).to(device=_lowerCamelCase ,dtype=_lowerCamelCase ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = self.get_inputs(_lowerCamelCase ) __lowercase = pipe(**_lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __lowercase = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) __lowercase = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=torch.floataa ,_lowerCamelCase=0 ) -> Any: '''simple docstring''' __lowercase = torch.manual_seed(_lowerCamelCase ) __lowercase = np.random.RandomState(_lowerCamelCase ).standard_normal((1, 4, 32, 32) ) __lowercase = torch.from_numpy(_lowerCamelCase ).to(device=_lowerCamelCase ,dtype=_lowerCamelCase ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = self.get_inputs(_lowerCamelCase ) __lowercase = pipe(**_lowerCamelCase ).images[0] __lowercase = load_numpy( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy''' ) __lowercase = np.abs(expected_image - image ).max() assert max_diff < 1E-3
217
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _lowerCAmelCase ( ): print('''Making key files...''' ) make_key_files('''rsa''' , 1_0_2_4 ) print('''Key files generation successful.''' ) def _lowerCAmelCase ( lowerCamelCase_ : int ): print('''Generating prime p...''' ) __lowercase = rabinMiller.generate_large_prime(lowerCamelCase_ ) print('''Generating prime q...''' ) __lowercase = rabinMiller.generate_large_prime(lowerCamelCase_ ) __lowercase = p * q print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' ) while True: __lowercase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(lowerCamelCase_ , (p - 1) * (q - 1) ) == 1: break print('''Calculating d that is mod inverse of e...''' ) __lowercase = cryptoMath.find_mod_inverse(lowerCamelCase_ , (p - 1) * (q - 1) ) __lowercase = (n, e) __lowercase = (n, d) return (public_key, private_key) def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : int ): if os.path.exists(f"{name}_pubkey.txt" ) or os.path.exists(f"{name}_privkey.txt" ): print('''\nWARNING:''' ) print( f"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() __lowercase , __lowercase = generate_key(lowerCamelCase_ ) print(f"\nWriting public key to file {name}_pubkey.txt..." ) with open(f"{name}_pubkey.txt" , '''w''' ) as out_file: out_file.write(f"{key_size},{public_key[0]},{public_key[1]}" ) print(f"Writing private key to file {name}_privkey.txt..." ) with open(f"{name}_privkey.txt" , '''w''' ) as out_file: out_file.write(f"{key_size},{private_key[0]},{private_key[1]}" ) if __name__ == "__main__": main()
217
1
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _A ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(A__ ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def _A ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def _A ( ): """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(A__ ): http_head('''https://huggingface.co''' )
104
'''simple docstring''' from __future__ import annotations def _A ( A__ ): """simple docstring""" __lowercase = len(A__ ) # We need to create solution object to save path. __lowercase = [[0 for _ in range(A__ )] for _ in range(A__ )] __lowercase = run_maze(A__ , 0 , 0 , A__ ) if solved: print('''\n'''.join(str(A__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = len(A__ ) # Final check point. if i == j == (size - 1): __lowercase = 1 return True __lowercase = (not i < 0) and (not j < 0) # Check lower bounds __lowercase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __lowercase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __lowercase = 1 # check for directions if ( run_maze(A__ , i + 1 , A__ , A__ ) or run_maze(A__ , A__ , j + 1 , A__ ) or run_maze(A__ , i - 1 , A__ , A__ ) or run_maze(A__ , A__ , j - 1 , A__ ) ): return True __lowercase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
104
1
from __future__ import annotations def __lowerCamelCase ( __magic_name__ : list[int] ): a__: List[str] =len(__magic_name__ ) // 2 # choose the middle 3 elements a__: Optional[Any] =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
42
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : List[Any] ): a__: Any =StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) a__: List[str] =sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) sd_pipe.set_scheduler("sample_euler" ) a__: Dict ="A painting of a squirrel eating a burger" a__: List[Any] =torch.manual_seed(0 ) a__: int =sd_pipe([prompt] , generator=_a , guidance_scale=9.0 , num_inference_steps=2_0 , output_type="np" ) a__: int =output.images a__: Optional[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__: Any =np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self : Optional[Any] ): a__: List[Any] =StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) a__: List[str] =sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) sd_pipe.set_scheduler("sample_euler" ) a__: int ="A painting of a squirrel eating a burger" a__: List[Any] =torch.manual_seed(0 ) a__: Optional[int] =sd_pipe([prompt] , generator=_a , guidance_scale=9.0 , num_inference_steps=2_0 , output_type="np" ) a__: List[str] =output.images a__: List[str] =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__: Any =np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def _lowerCamelCase ( self : List[str] ): a__: Optional[Any] =StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) a__: Optional[Any] =sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) a__: Tuple ="A painting of a squirrel eating a burger" a__: Tuple =torch.manual_seed(0 ) a__: Optional[int] =sd_pipe( [prompt] , generator=_a , guidance_scale=7.5 , num_inference_steps=1_5 , output_type="np" , use_karras_sigmas=_a , ) a__: str =output.images a__: str =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__: List[Any] =np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
42
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowercase : str = logging.get_logger(__name__) # General docstring lowercase : int = 'RegNetConfig' # Base docstring lowercase : Tuple = 'facebook/regnet-y-040' lowercase : Any = [1, 1088, 7, 7] # Image classification docstring lowercase : Union[str, Any] = 'facebook/regnet-y-040' lowercase : Any = 'tabby, tabby cat' lowercase : int = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCamelCase__ ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self :Union[str, Any] , a :int , a :int = 3 , a :int = 1 , a :int = 1 , a :Optional[str] = "relu" , **a :Dict , ) -> List[Any]: super().__init__(**a ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __UpperCamelCase : List[str] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __UpperCamelCase : Union[str, Any] = tf.keras.layers.ConvaD( filters=a , kernel_size=a , strides=a , padding="VALID" , groups=a , use_bias=a , name="convolution" , ) __UpperCamelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) __UpperCamelCase : Any = ACTaFN[activation] if activation is not None else tf.identity def _lowerCamelCase ( self :int , a :int ) -> Optional[int]: __UpperCamelCase : List[str] = self.convolution(self.padding(a ) ) __UpperCamelCase : Dict = self.normalization(a ) __UpperCamelCase : Union[str, Any] = self.activation(a ) return hidden_state class lowerCamelCase__ ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self :Any , a :RegNetConfig , **a :int ) -> Any: super().__init__(**a ) __UpperCamelCase : Dict = config.num_channels __UpperCamelCase : str = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def _lowerCamelCase ( self :Dict , a :Optional[Any] ) -> Optional[Any]: __UpperCamelCase : int = shape_list(a )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __UpperCamelCase : List[str] = tf.transpose(a , perm=(0, 2, 3, 1) ) __UpperCamelCase : List[str] = self.embedder(a ) return hidden_state class lowerCamelCase__ ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self :Tuple , a :int , a :int = 2 , **a :Union[str, Any] ) -> Optional[Any]: super().__init__(**a ) __UpperCamelCase : Tuple = tf.keras.layers.ConvaD( filters=a , kernel_size=1 , strides=a , use_bias=a , name="convolution" ) __UpperCamelCase : List[str] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def _lowerCamelCase ( self :Any , a :tf.Tensor , a :bool = False ) -> tf.Tensor: return self.normalization(self.convolution(a ) , training=a ) class lowerCamelCase__ ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self :Any , a :int , a :int , **a :Optional[Any] ) -> List[str]: super().__init__(**a ) __UpperCamelCase : Dict = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a , name="pooler" ) __UpperCamelCase : Tuple = [ tf.keras.layers.ConvaD(filters=a , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=a , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def _lowerCamelCase ( self :Tuple , a :Any ) -> Tuple: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __UpperCamelCase : Optional[int] = self.pooler(a ) for layer_module in self.attention: __UpperCamelCase : str = layer_module(a ) __UpperCamelCase : Union[str, Any] = hidden_state * pooled return hidden_state class lowerCamelCase__ ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self :List[Any] , a :RegNetConfig , a :int , a :int , a :int = 1 , **a :Any ) -> List[Any]: super().__init__(**a ) __UpperCamelCase : Union[str, Any] = in_channels != out_channels or stride != 1 __UpperCamelCase : Union[str, Any] = max(1 , out_channels // config.groups_width ) __UpperCamelCase : Any = ( TFRegNetShortCut(a , stride=a , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __UpperCamelCase : Tuple = [ TFRegNetConvLayer(a , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( a , stride=a , groups=a , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(a , kernel_size=1 , activation=a , name="layer.2" ), ] __UpperCamelCase : List[Any] = ACTaFN[config.hidden_act] def _lowerCamelCase ( self :int , a :List[str] ) -> Optional[Any]: __UpperCamelCase : Optional[int] = hidden_state for layer_module in self.layers: __UpperCamelCase : Any = layer_module(a ) __UpperCamelCase : Optional[Any] = self.shortcut(a ) hidden_state += residual __UpperCamelCase : List[Any] = self.activation(a ) return hidden_state class lowerCamelCase__ ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self :List[Any] , a :RegNetConfig , a :int , a :int , a :int = 1 , **a :str ) -> int: super().__init__(**a ) __UpperCamelCase : Dict = in_channels != out_channels or stride != 1 __UpperCamelCase : Any = max(1 , out_channels // config.groups_width ) __UpperCamelCase : Optional[int] = ( TFRegNetShortCut(a , stride=a , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) __UpperCamelCase : List[Any] = [ TFRegNetConvLayer(a , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( a , stride=a , groups=a , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(a , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(a , kernel_size=1 , activation=a , name="layer.3" ), ] __UpperCamelCase : str = ACTaFN[config.hidden_act] def _lowerCamelCase ( self :Dict , a :Dict ) -> Any: __UpperCamelCase : Union[str, Any] = hidden_state for layer_module in self.layers: __UpperCamelCase : str = layer_module(a ) __UpperCamelCase : str = self.shortcut(a ) hidden_state += residual __UpperCamelCase : List[str] = self.activation(a ) return hidden_state class lowerCamelCase__ ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self :Tuple , a :RegNetConfig , a :int , a :int , a :int = 2 , a :int = 2 , **a :int ) -> List[Any]: super().__init__(**a ) __UpperCamelCase : Optional[int] = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer __UpperCamelCase : Optional[Any] = [ # downsampling is done in the first layer with stride of 2 layer(a , a , a , stride=a , name="layers.0" ), *[layer(a , a , a , name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def _lowerCamelCase ( self :Dict , a :Any ) -> Dict: for layer_module in self.layers: __UpperCamelCase : str = layer_module(a ) return hidden_state class lowerCamelCase__ ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self :List[Any] , a :RegNetConfig , **a :str ) -> List[str]: super().__init__(**a ) __UpperCamelCase : Optional[Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( a , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) __UpperCamelCase : Optional[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(a , config.depths[1:] ) ): self.stages.append(TFRegNetStage(a , a , a , depth=a , name=f'stages.{i+1}' ) ) def _lowerCamelCase ( self :Optional[Any] , a :tf.Tensor , a :bool = False , a :bool = True ) -> TFBaseModelOutputWithNoAttention: __UpperCamelCase : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCamelCase : str = hidden_states + (hidden_state,) __UpperCamelCase : Tuple = stage_module(a ) if output_hidden_states: __UpperCamelCase : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=a , hidden_states=a ) @keras_serializable class lowerCamelCase__ ( tf.keras.layers.Layer): '''simple docstring''' _A = RegNetConfig def __init__( self :str , a :Optional[Any] , **a :int ) -> Optional[Any]: super().__init__(**a ) __UpperCamelCase : Optional[Any] = config __UpperCamelCase : List[str] = TFRegNetEmbeddings(a , name="embedder" ) __UpperCamelCase : str = TFRegNetEncoder(a , name="encoder" ) __UpperCamelCase : int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a , name="pooler" ) @unpack_inputs def _lowerCamelCase ( self :str , a :tf.Tensor , a :Optional[bool] = None , a :Optional[bool] = None , a :bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __UpperCamelCase : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase : Tuple = self.embedder(a , training=a ) __UpperCamelCase : int = self.encoder( a , output_hidden_states=a , return_dict=a , training=a ) __UpperCamelCase : Tuple = encoder_outputs[0] __UpperCamelCase : Tuple = self.pooler(a ) # Change to NCHW output format have uniformity in the modules __UpperCamelCase : List[Any] = tf.transpose(a , perm=(0, 3, 1, 2) ) __UpperCamelCase : int = tf.transpose(a , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __UpperCamelCase : Optional[int] = tuple([tf.transpose(a , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a , pooler_output=a , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = RegNetConfig _A = 'regnet' _A = 'pixel_values' @property def _lowerCamelCase ( self :Optional[Any] ) -> Dict: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} lowercase : int = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowercase : Tuple = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , __lowercase , ) class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :Dict , a :RegNetConfig , *a :Tuple , **a :Dict ) -> Dict: super().__init__(a , *a , **a ) __UpperCamelCase : int = TFRegNetMainLayer(a , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCamelCase ( self :Tuple , a :tf.Tensor , a :Optional[bool] = None , a :Optional[bool] = None , a :Dict=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __UpperCamelCase : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase : str = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase : List[str] = self.regnet( pixel_values=a , output_hidden_states=a , return_dict=a , training=a , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __lowercase , ) class lowerCamelCase__ ( __lowercase , __lowercase): '''simple docstring''' def __init__( self :Tuple , a :RegNetConfig , *a :str , **a :List[Any] ) -> str: super().__init__(a , *a , **a ) __UpperCamelCase : Tuple = config.num_labels __UpperCamelCase : List[Any] = TFRegNetMainLayer(a , name="regnet" ) # classification head __UpperCamelCase : Any = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCamelCase ( self :Tuple , a :tf.Tensor = None , a :tf.Tensor = None , a :bool = None , a :bool = None , a :Optional[Any]=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __UpperCamelCase : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase : str = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase : str = self.regnet( a , output_hidden_states=a , return_dict=a , training=a ) __UpperCamelCase : int = outputs.pooler_output if return_dict else outputs[1] __UpperCamelCase : str = self.classifier[0](a ) __UpperCamelCase : int = self.classifier[1](a ) __UpperCamelCase : Any = None if labels is None else self.hf_compute_loss(labels=a , logits=a ) if not return_dict: __UpperCamelCase : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=a , logits=a , hidden_states=outputs.hidden_states )
232
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowercase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ : '''simple docstring''' def __init__( self :str , a :str = None , a :uuid.UUID = None , a :Tuple=None , a :Optional[Any]=None ) -> str: if not conversation_id: __UpperCamelCase : Dict = uuid.uuida() if past_user_inputs is None: __UpperCamelCase : List[Any] = [] if generated_responses is None: __UpperCamelCase : Any = [] __UpperCamelCase : uuid.UUID = conversation_id __UpperCamelCase : List[str] = past_user_inputs __UpperCamelCase : List[str] = generated_responses __UpperCamelCase : Optional[str] = text def __eq__( self :Optional[int] , a :Optional[int] ) -> Union[str, Any]: if not isinstance(a , a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _lowerCamelCase ( self :Optional[int] , a :str , a :bool = False ) -> str: if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".' ) __UpperCamelCase : Any = text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: __UpperCamelCase : int = text def _lowerCamelCase ( self :List[str] ) -> int: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __UpperCamelCase : Dict = None def _lowerCamelCase ( self :Optional[int] , a :str ) -> Optional[int]: self.generated_responses.append(a ) def _lowerCamelCase ( self :int ) -> Optional[Any]: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self :List[str] ) -> List[Any]: __UpperCamelCase : Any = f'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): __UpperCamelCase : str = "user" if is_user else "bot" output += f'{name} >> {text} \n' return output @add_end_docstrings( __lowercase , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :Tuple , *a :Tuple , **a :List[str] ) -> Tuple: super().__init__(*a , **a ) if self.tokenizer.pad_token_id is None: __UpperCamelCase : int = self.tokenizer.eos_token def _lowerCamelCase ( self :Optional[int] , a :List[Any]=None , a :str=None , a :int=None , **a :str ) -> List[str]: __UpperCamelCase : List[str] = {} __UpperCamelCase : List[str] = {} __UpperCamelCase : str = {} if min_length_for_response is not None: __UpperCamelCase : Optional[Any] = min_length_for_response if minimum_tokens is not None: __UpperCamelCase : List[str] = minimum_tokens if "max_length" in generate_kwargs: __UpperCamelCase : List[Any] = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __UpperCamelCase : List[Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(a ) return preprocess_params, forward_params, postprocess_params def __call__( self :Dict , a :Union[Conversation, List[Conversation]] , a :List[Any]=0 , **a :Any ) -> Union[str, Any]: __UpperCamelCase : Optional[int] = super().__call__(a , num_workers=a , **a ) if isinstance(a , a ) and len(a ) == 1: return outputs[0] return outputs def _lowerCamelCase ( self :Tuple , a :Conversation , a :Dict=3_2 ) -> Dict[str, Any]: if not isinstance(a , a ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( f'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' "Add user inputs with the conversation's `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): __UpperCamelCase : str = self.tokenizer._build_conversation_input_ids(a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __UpperCamelCase : Optional[Any] = self._legacy_parse_and_tokenize(a ) if self.framework == "pt": __UpperCamelCase : Dict = torch.LongTensor([input_ids] ) elif self.framework == "tf": __UpperCamelCase : Any = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _lowerCamelCase ( self :Any , a :List[Any] , a :Optional[Any]=1_0 , **a :Tuple ) -> List[str]: __UpperCamelCase : Union[str, Any] = generate_kwargs.get("max_length" , self.model.config.max_length ) __UpperCamelCase : Dict = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) __UpperCamelCase : Dict = max_length - minimum_tokens __UpperCamelCase : Optional[int] = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: __UpperCamelCase : Dict = model_inputs["attention_mask"][:, -trim:] __UpperCamelCase : List[str] = model_inputs.pop("conversation" ) __UpperCamelCase : Optional[int] = max_length __UpperCamelCase : str = self.model.generate(**a , **a ) if self.model.config.is_encoder_decoder: __UpperCamelCase : List[str] = 1 else: __UpperCamelCase : Optional[int] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _lowerCamelCase ( self :List[Any] , a :str , a :Optional[int]=True ) -> Union[str, Any]: __UpperCamelCase : List[str] = model_outputs["output_ids"] __UpperCamelCase : Any = self.tokenizer.decode( output_ids[0] , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) __UpperCamelCase : int = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(a ) return conversation def _lowerCamelCase ( self :str , a :Conversation ) -> Dict: __UpperCamelCase : int = self.tokenizer.eos_token_id __UpperCamelCase : Any = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(a , add_special_tokens=a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(a , add_special_tokens=a ) ) if len(a ) > self.tokenizer.model_max_length: __UpperCamelCase : Union[str, Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
232
1
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Tuple = ["""image_processor""", """tokenizer"""] _lowerCamelCase : int = """OwlViTImageProcessor""" _lowerCamelCase : Tuple = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Union[str, Any] , snake_case_ : Tuple=None , snake_case_ : str=None , **snake_case_ : Optional[Any] ): _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase_ , ) _UpperCAmelCase = kwargs.pop("feature_extractor" ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __call__( self : Optional[int] , snake_case_ : List[Any]=None , snake_case_ : Optional[Any]=None , snake_case_ : Any=None , snake_case_ : str="max_length" , snake_case_ : Dict="np" , **snake_case_ : str ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(lowerCamelCase_ , lowerCamelCase_ ) or (isinstance(lowerCamelCase_ , lowerCamelCase_ ) and not isinstance(text[0] , lowerCamelCase_ )): _UpperCAmelCase = [self.tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ )] elif isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(text[0] , lowerCamelCase_ ): _UpperCAmelCase = [] # Maximum number of queries across batch _UpperCAmelCase = max([len(lowerCamelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase_ ) != max_num_queries: _UpperCAmelCase = t + [" "] * (max_num_queries - len(lowerCamelCase_ )) _UpperCAmelCase = self.tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) encodings.append(lowerCamelCase_ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _UpperCAmelCase = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCAmelCase = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCAmelCase = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _UpperCAmelCase = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCAmelCase = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _UpperCAmelCase = BatchEncoding() _UpperCAmelCase = input_ids _UpperCAmelCase = attention_mask if query_images is not None: _UpperCAmelCase = BatchEncoding() _UpperCAmelCase = self.image_processor( lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ).pixel_values _UpperCAmelCase = query_pixel_values if images is not None: _UpperCAmelCase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None and images is not None: _UpperCAmelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCAmelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) , tensor_type=lowerCamelCase_ ) def lowercase ( self : Optional[Any] , *snake_case_ : Dict , **snake_case_ : int ): return self.image_processor.post_process(*lowerCamelCase_ , **lowerCamelCase_ ) def lowercase ( self : str , *snake_case_ : Dict , **snake_case_ : Optional[Any] ): return self.image_processor.post_process_object_detection(*lowerCamelCase_ , **lowerCamelCase_ ) def lowercase ( self : Optional[Any] , *snake_case_ : Optional[int] , **snake_case_ : List[str] ): return self.image_processor.post_process_image_guided_detection(*lowerCamelCase_ , **lowerCamelCase_ ) def lowercase ( self : Dict , *snake_case_ : int , **snake_case_ : str ): return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def lowercase ( self : Optional[Any] , *snake_case_ : List[Any] , **snake_case_ : List[str] ): return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def lowercase ( self : List[str] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase_ , ) return self.image_processor_class @property def lowercase ( self : Dict ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase_ , ) return self.image_processor
361
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) def UpperCAmelCase_ ( __lowercase : np.ndarray , __lowercase : Union[int, Iterable[int]] , __lowercase : bool , __lowercase : int ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(__lowercase : Dict , __lowercase : str , __lowercase : Optional[int]=0 , __lowercase : Dict=None ): _UpperCAmelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCAmelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCAmelCase = math.ceil(val / multiple ) * multiple return x _UpperCAmelCase = (output_size, output_size) if isinstance(__lowercase , __lowercase ) else output_size _UpperCAmelCase , _UpperCAmelCase = get_image_size(__lowercase ) _UpperCAmelCase , _UpperCAmelCase = output_size # determine new height and width _UpperCAmelCase = output_height / input_height _UpperCAmelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCAmelCase = scale_width else: # fit height _UpperCAmelCase = scale_height _UpperCAmelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__lowercase ) _UpperCAmelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__lowercase ) return (new_height, new_width) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Any = ["""pixel_values"""] def __init__( self : str , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = PILImageResampling.BILINEAR , snake_case_ : bool = False , snake_case_ : int = 1 , snake_case_ : bool = True , snake_case_ : Union[int, float] = 1 / 2_5_5 , snake_case_ : bool = True , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , **snake_case_ : List[str] , ): super().__init__(**snake_case_ ) _UpperCAmelCase = size if size is not None else {"height": 3_8_4, "width": 3_8_4} _UpperCAmelCase = get_size_dict(snake_case_ ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = keep_aspect_ratio _UpperCAmelCase = ensure_multiple_of _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase ( self : List[str] , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : bool = False , snake_case_ : int = 1 , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : str , ): _UpperCAmelCase = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size( snake_case_ , output_size=(size["height"], size["width"]) , keep_aspect_ratio=snake_case_ , multiple=snake_case_ , ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Tuple , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Any , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Tuple , snake_case_ : np.ndarray , snake_case_ : Union[float, List[float]] , snake_case_ : Union[float, List[float]] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Tuple , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Optional[int] , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : int = None , snake_case_ : bool = None , snake_case_ : int = None , snake_case_ : PILImageResampling = None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : str , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(snake_case_ ) _UpperCAmelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCAmelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(snake_case_ ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] _UpperCAmelCase = {"pixel_values": images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ ) def lowercase ( self : int , snake_case_ : str , snake_case_ : List[Tuple] = None ): _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(snake_case_ ) != len(snake_case_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(snake_case_ ): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(snake_case_ ) ): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=snake_case_ ) _UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(snake_case_ ) else: _UpperCAmelCase = logits.argmax(dim=1 ) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
156
0
"""simple docstring""" import numpy as np class A_ : '''simple docstring''' def __init__( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = (0, 0) UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : int = 0 UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Union[str, Any] = 0 def __eq__( self , lowercase_ ): """simple docstring""" return self.position == cell.position def UpperCamelCase__ ( self ): """simple docstring""" print(self.position ) class A_ : '''simple docstring''' def __init__( self , lowercase_=(5, 5) ): """simple docstring""" UpperCAmelCase_ : List[Any] = np.zeros(a__ ) UpperCAmelCase_ : List[str] = world_size[0] UpperCAmelCase_ : List[str] = world_size[1] def UpperCamelCase__ ( self ): """simple docstring""" print(self.w ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase_ : Optional[Any] = cell.position[0] UpperCAmelCase_ : str = cell.position[1] UpperCAmelCase_ : Any = [] for n in neughbour_cord: UpperCAmelCase_ : List[str] = current_x + n[0] UpperCAmelCase_ : List[str] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase_ : Optional[int] = Cell() UpperCAmelCase_ : List[str] = (x, y) UpperCAmelCase_ : Optional[int] = cell neighbours.append(a__ ) return neighbours def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Any = [] _open.append(_lowerCamelCase ) while _open: UpperCAmelCase_ : List[str] = np.argmin([n.f for n in _open] ) UpperCAmelCase_ : int = _open[min_f] _closed.append(_open.pop(_lowerCamelCase ) ) if current == goal: break for n in world.get_neigbours(_lowerCamelCase ): for c in _closed: if c == n: continue UpperCAmelCase_ : Any = current.g + 1 UpperCAmelCase_ : Tuple = n.position UpperCAmelCase_ : Dict = goal.position UpperCAmelCase_ : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase_ : List[Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowerCamelCase ) UpperCAmelCase_ : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase_ : Union[str, Any] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": _a = Gridworld() # Start position and goal _a = Cell() _a = (0, 0) _a = Cell() _a = (4, 4) print(f"""path from {start.position} to {goal.position}""") _a = astar(world, start, goal) # Just for visual reasons. for i in s: _a = 1 print(world.w)
61
"""simple docstring""" from __future__ import annotations _a : List[str] = 10 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ) -> list[int]: _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Union[str, Any] = max(_lowerCamelCase ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase : list[list] = [[] for _ in range(_lowerCamelCase )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase : Tuple = int((i / placement) % RADIX ) buckets[tmp].append(_lowerCamelCase ) # put each buckets' contents into list_of_ints _lowerCAmelCase : List[str] = 0 for b in range(_lowerCamelCase ): for i in buckets[b]: _lowerCAmelCase : Any = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
44
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
301
1
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging a = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) a = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase () -> int: '''simple docstring''' lowerCAmelCase = """https://pypi.org/pypi/diffusers/json""" lowerCAmelCase = json.loads(request.urlopen(snake_case__ ).read() )["""releases"""].keys() return sorted(snake_case__ , key=lambda snake_case__ : version.Version(snake_case__ ) ) def lowercase () -> List[str]: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase = Path(snake_case__ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def lowercase (snake_case__ : Union[str, os.PathLike] ) -> List[Any]: '''simple docstring''' init_hf_modules() lowerCAmelCase = Path(snake_case__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def lowercase (snake_case__ : Optional[int] ) -> Tuple: '''simple docstring''' with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase = f.read() # Imports of the form `import .xxx` lowerCAmelCase = re.findall("""^\s*import\s+\.(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE ) # Unique-ify return list(set(snake_case__ ) ) def lowercase (snake_case__ : Dict ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = False lowerCAmelCase = [module_file] lowerCAmelCase = [] # Let's recurse through all relative imports while not no_change: lowerCAmelCase = [] for f in files_to_check: new_imports.extend(get_relative_imports(snake_case__ ) ) lowerCAmelCase = Path(snake_case__ ).parent lowerCAmelCase = [str(module_path / m ) for m in new_imports] lowerCAmelCase = [f for f in new_import_files if f not in all_relative_imports] lowerCAmelCase = [f'''{f}.py''' for f in new_import_files] lowerCAmelCase = len(snake_case__ ) == 0 all_relative_imports.extend(snake_case__ ) return all_relative_imports def lowercase (snake_case__ : Optional[int] ) -> int: '''simple docstring''' with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase = f.read() # Imports of the form `import xxx` lowerCAmelCase = re.findall("""^\s*import\s+(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE ) # Only keep the top-level module lowerCAmelCase = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all lowerCAmelCase = list(set(snake_case__ ) ) lowerCAmelCase = [] for imp in imports: try: importlib.import_module(snake_case__ ) except ImportError: missing_packages.append(snake_case__ ) if len(snake_case__ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ f'''{', '.join(snake_case__ )}. Run `pip install {' '.join(snake_case__ )}`''' ) return get_relative_imports(snake_case__ ) def lowercase (snake_case__ : Any , snake_case__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = module_path.replace(os.path.sep , """.""" ) lowerCAmelCase = importlib.import_module(snake_case__ ) if class_name is None: return find_pipeline_class(snake_case__ ) return getattr(snake_case__ , snake_case__ ) def lowercase (snake_case__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' from ..pipelines import DiffusionPipeline lowerCAmelCase = dict(inspect.getmembers(snake_case__ , inspect.isclass ) ) lowerCAmelCase = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , snake_case__ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' f''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' f''' {loaded_module}.''' ) lowerCAmelCase = cls return pipeline_class def lowercase (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , ) -> int: '''simple docstring''' lowerCAmelCase = str(snake_case__ ) lowerCAmelCase = os.path.join(snake_case__ , snake_case__ ) if os.path.isfile(snake_case__ ): lowerCAmelCase = module_file_or_url lowerCAmelCase = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: lowerCAmelCase = get_diffusers_versions() # cut ".dev0" lowerCAmelCase = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: lowerCAmelCase = latest_version if latest_version[1:] in available_versions else """main""" logger.info(f'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: lowerCAmelCase = f'''v{revision}''' elif revision == "main": lowerCAmelCase = revision else: raise ValueError( f'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' f''' {', '.join(available_versions + ['main'] )}.''' ) # community pipeline on GitHub lowerCAmelCase = COMMUNITY_PIPELINES_URL.format(revision=snake_case__ , pipeline=snake_case__ ) try: lowerCAmelCase = cached_download( snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) lowerCAmelCase = """git""" lowerCAmelCase = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(f'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached lowerCAmelCase = hf_hub_download( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) lowerCAmelCase = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(f'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment lowerCAmelCase = check_imports(snake_case__ ) # Now we move the module inside our cached dynamic modules. lowerCAmelCase = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(snake_case__ ) lowerCAmelCase = Path(snake_case__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(snake_case__ , submodule_path / module_file ) for module_needed in modules_needed: lowerCAmelCase = f'''{module_needed}.py''' shutil.copy(os.path.join(snake_case__ , snake_case__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase = use_auth_token elif use_auth_token is True: lowerCAmelCase = HfFolder.get_token() else: lowerCAmelCase = None lowerCAmelCase = model_info(snake_case__ , revision=snake_case__ , token=snake_case__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. lowerCAmelCase = submodule_path / commit_hash lowerCAmelCase = full_submodule + os.path.sep + commit_hash create_dynamic_module(snake_case__ ) if not (submodule_path / module_file).exists(): shutil.copy(snake_case__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( snake_case__ , f'''{module_needed}.py''' , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return os.path.join(snake_case__ , snake_case__ ) def lowercase (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[str] = None , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , **snake_case__ : Any , ) -> int: '''simple docstring''' lowerCAmelCase = get_cached_module_file( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return get_class_in_module(snake_case__ , final_module.replace(""".py""" , """""" ) )
155
"""simple docstring""" from __future__ import annotations def lowercase (snake_case__ : list[int] ) -> list[int]: # This function is recursive '''simple docstring''' lowerCAmelCase = len(snake_case__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCAmelCase = array[0] lowerCAmelCase = False lowerCAmelCase = 1 lowerCAmelCase = [] while not is_found and i < array_length: if array[i] < pivot: lowerCAmelCase = True lowerCAmelCase = [element for element in array[i:] if element >= array[i]] lowerCAmelCase = longest_subsequence(snake_case__ ) if len(snake_case__ ) > len(snake_case__ ): lowerCAmelCase = temp_array else: i += 1 lowerCAmelCase = [element for element in array[1:] if element >= pivot] lowerCAmelCase = [pivot, *longest_subsequence(snake_case__ )] if len(snake_case__ ) > len(snake_case__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
155
1
from __future__ import annotations from scipy.special import comb # type: ignore class lowerCamelCase__ : '''simple docstring''' def __init__( self :Dict , a :Tuple ) -> str: __UpperCamelCase : Optional[int] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __UpperCamelCase : List[Any] = len(lowerCamelCase__ ) - 1 def _lowerCamelCase ( self :List[str] , a :Union[str, Any] ) -> str: assert 0 <= t <= 1, "Time t must be between 0 and 1." __UpperCamelCase : Dict = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , lowerCamelCase__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowerCamelCase__ ) , 5 ) == 1 return output_values def _lowerCamelCase ( self :List[str] , a :List[str] ) -> List[Any]: assert 0 <= t <= 1, "Time t must be between 0 and 1." __UpperCamelCase : Any = self.basis_function(lowerCamelCase__ ) __UpperCamelCase : Tuple = 0.0 __UpperCamelCase : List[str] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _lowerCamelCase ( self :Dict , a :List[Any] = 0.01 ) -> Tuple: from matplotlib import pyplot as plt # type: ignore __UpperCamelCase : Union[str, Any] = [] # x coordinates of points to plot __UpperCamelCase : Any = [] # y coordinates of points to plot __UpperCamelCase : List[str] = 0.0 while t <= 1: __UpperCamelCase : Union[str, Any] = self.bezier_curve_function(lowerCamelCase__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __UpperCamelCase : Optional[Any] = [i[0] for i in self.list_of_points] __UpperCamelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( lowerCamelCase__ , lowerCamelCase__ , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(lowerCamelCase__ , lowerCamelCase__ , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
357
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase__ : '''simple docstring''' _A = None _A = False _A = False _A = False _A = None _A = None _A = False _A = False _A = False _A = True _A = None _A = 1 _A = None _A = False _A = None _A = None def _lowerCamelCase ( self :List[Any] ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(a ) for k, v in self.__dict__.items()} )
151
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} A_ = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } A_ = { '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } A_ = '''▁''' class lowercase( __a ): '''simple docstring''' lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] def __init__( self: List[Any], a_: Tuple, a_: Optional[Any]="<s>", a_: Optional[int]="</s>", a_: Any="</s>", a_: Dict="<s>", a_: Tuple="<unk>", a_: Optional[Any]="<pad>", a_: str="<mask>", a_: Optional[Dict[str, Any]] = None, **a_: Union[str, Any], ): '''simple docstring''' _snake_case : int = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else mask_token _snake_case : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_, eos_token=a_, unk_token=a_, sep_token=a_, cls_token=a_, pad_token=a_, mask_token=a_, sp_model_kwargs=self.sp_model_kwargs, **a_, ) _snake_case : Any = vocab_file _snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a_ ) ) _snake_case : Optional[Any] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} _snake_case : Union[str, Any] = len(self.sp_model ) - 1 _snake_case : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase_ ( self: Optional[Any], a_: List[int], a_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case : str = [self.cls_token_id] _snake_case : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self: List[Any], a_: List[int], a_: Optional[List[int]] = None, a_: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_, token_ids_a=a_, already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] def UpperCamelCase_ ( self: str, a_: List[int], a_: Optional[List[int]] = None ): '''simple docstring''' _snake_case : Union[str, Any] = [self.sep_token_id] _snake_case : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self: int ): '''simple docstring''' return len(self.sp_model ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : str = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self: Dict, a_: str ): '''simple docstring''' return self.sp_model.encode(a_, out_type=a_ ) def UpperCamelCase_ ( self: Union[str, Any], a_: Union[str, Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _snake_case : Optional[int] = self.sp_model.PieceToId(a_ ) return spm_id if spm_id else self.unk_token_id def UpperCamelCase_ ( self: Tuple, a_: Tuple ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(a_ ) def UpperCamelCase_ ( self: Optional[int], a_: int ): '''simple docstring''' _snake_case : List[Any] = [] _snake_case : Dict = """""" _snake_case : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a_ ) + token _snake_case : Optional[int] = True _snake_case : str = [] else: current_sub_tokens.append(a_ ) _snake_case : List[str] = False out_string += self.sp_model.decode(a_ ) return out_string.strip() def __getstate__( self: int ): '''simple docstring''' _snake_case : Optional[Any] = self.__dict__.copy() _snake_case : Optional[Any] = None return state def __setstate__( self: Optional[int], a_: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self, """sp_model_kwargs""" ): _snake_case : Tuple = {} _snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _snake_case : Union[str, Any] = os.path.join( a_, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_, """wb""" ) as fi: _snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
64
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A_ = { '''vocab_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json''' ), }, } A_ = { '''yjernite/retribert-base-uncased''': 5_12, } A_ = { '''yjernite/retribert-base-uncased''': {'''do_lower_case''': True}, } class lowercase( __a ): '''simple docstring''' lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = RetriBertTokenizer lowercase__ = ["input_ids", "attention_mask"] def __init__( self: int, a_: int=None, a_: Dict=None, a_: Any=True, a_: int="[UNK]", a_: Any="[SEP]", a_: List[Any]="[PAD]", a_: List[Any]="[CLS]", a_: str="[MASK]", a_: Dict=True, a_: Optional[int]=None, **a_: Tuple, ): '''simple docstring''' super().__init__( a_, tokenizer_file=a_, do_lower_case=a_, unk_token=a_, sep_token=a_, pad_token=a_, cls_token=a_, mask_token=a_, tokenize_chinese_chars=a_, strip_accents=a_, **a_, ) _snake_case : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""", a_ ) != do_lower_case or normalizer_state.get("""strip_accents""", a_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""", a_ ) != tokenize_chinese_chars ): _snake_case : Dict = getattr(a_, normalizer_state.pop("""type""" ) ) _snake_case : List[Any] = do_lower_case _snake_case : List[str] = strip_accents _snake_case : Tuple = tokenize_chinese_chars _snake_case : Tuple = normalizer_class(**a_ ) _snake_case : List[str] = do_lower_case def UpperCamelCase_ ( self: Any, a_: str, a_: Optional[int]=None ): '''simple docstring''' _snake_case : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self: List[str], a_: List[int], a_: Optional[List[int]] = None ): '''simple docstring''' _snake_case : Union[str, Any] = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self: Dict, a_: str, a_: Optional[str] = None ): '''simple docstring''' _snake_case : Union[str, Any] = self._tokenizer.model.save(a_, name=a_ ) return tuple(a_ )
64
1
def lowerCamelCase_ ( UpperCamelCase__ : int = 10 ): '''simple docstring''' if not isinstance(UpperCamelCase__, UpperCamelCase__ ) or n < 0: raise ValueError('''Invalid input''' ) UpperCamelCase__ = 10**n UpperCamelCase__ = 2_8433 * (pow(2, 783_0457, UpperCamelCase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(1_0) = }')
35
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowercase = logging.get_logger(__name__) class __lowercase ( A ): '''simple docstring''' def __init__( self : List[str] , *_a : Any , **_a : str ): warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
35
1
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCAmelCase__ ( UpperCAmelCase__ ): __a = "EncodecFeatureExtractor" __a = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : str ): super().__init__(snake_case__ , snake_case__ ) _snake_case = self.feature_extractor _snake_case = False def lowercase ( self : List[str] , _lowerCamelCase : Dict=None , _lowerCamelCase : int=None , _lowerCamelCase : List[str]=True ): return self.tokenizer.get_decoder_prompt_ids(task=snake_case__ , language=snake_case__ , no_timestamps=snake_case__ ) def __call__( self : Any , *_lowerCamelCase : List[str] , **_lowerCamelCase : Optional[Any] ): if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) _snake_case = kwargs.pop('''audio''' , snake_case__ ) _snake_case = kwargs.pop('''sampling_rate''' , snake_case__ ) _snake_case = kwargs.pop('''text''' , snake_case__ ) if len(snake_case__ ) > 0: _snake_case = args[0] _snake_case = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: _snake_case = self.tokenizer(snake_case__ , **snake_case__ ) if audio is not None: _snake_case = self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if audio is None: return inputs elif text is None: return audio_inputs else: _snake_case = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: _snake_case = audio_inputs['''padding_mask'''] return inputs def lowercase ( self : int , *_lowerCamelCase : str , **_lowerCamelCase : List[str] ): _snake_case = kwargs.pop('''audio''' , snake_case__ ) _snake_case = kwargs.pop('''padding_mask''' , snake_case__ ) if len(snake_case__ ) > 0: _snake_case = args[0] _snake_case = args[1:] if audio_values is not None: return self._decode_audio(snake_case__ , padding_mask=snake_case__ ) else: return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def lowercase ( self : Any , *_lowerCamelCase : Optional[Any] , **_lowerCamelCase : Optional[Any] ): return self.tokenizer.decode(*snake_case__ , **snake_case__ ) def lowercase ( self : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : Optional = None ): _snake_case = to_numpy(snake_case__ ) _snake_case , _snake_case , _snake_case = audio_values.shape if padding_mask is None: return list(snake_case__ ) _snake_case = to_numpy(snake_case__ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _snake_case = seq_len - padding_mask.shape[-1] _snake_case = 1 - self.feature_extractor.padding_value _snake_case = np.pad(snake_case__ , ((0, 0), (0, difference)) , '''constant''' , constant_values=snake_case__ ) _snake_case = audio_values.tolist() for i in range(snake_case__ ): _snake_case = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _snake_case = sliced_audio.reshape(snake_case__ , -1 ) return audio_values
288
def __SCREAMING_SNAKE_CASE ( snake_case_ = 1000 ): '''simple docstring''' _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
133
0
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp snake_case_ = 5 snake_case_ = 10 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ (__snake_case , unittest.TestCase ): __lowerCamelCase : List[Any] = SpeechaTextTokenizer __lowerCamelCase : Optional[int] = False __lowerCamelCase : Union[str, Any] = True def snake_case_ ( self): super().setUp() lowercase__ : List[Any] = sp.SentencePieceProcessor() spm_model.Load(a) lowercase__ : Optional[Any] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(a))] lowercase__ : Optional[int] = dict(zip(a , range(len(a)))) lowercase__ : Dict = Path(self.tmpdirname) save_json(a , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(a , save_dir / VOCAB_FILES_NAMES['spm_file']) lowercase__ : Union[str, Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def snake_case_ ( self): lowercase__ : Union[str, Any] = '<pad>' lowercase__ : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a) , a) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a) , a) def snake_case_ ( self): lowercase__ : List[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(a) , 1001) def snake_case_ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 1001) def snake_case_ ( self): lowercase__ : Union[str, Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) lowercase__ : Tuple = tokenizer.tokenize('This is a test') self.assertListEqual(a , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(a) , [289, 50, 14, 174, 386] , ) lowercase__ : str = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( a , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) lowercase__ : Tuple = tokenizer.convert_tokens_to_ids(a) self.assertListEqual(a , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8]) lowercase__ : Dict = tokenizer.convert_ids_to_tokens(a) self.assertListEqual( a , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def snake_case_ ( self): # fmt: off lowercase__ : Any = {'input_ids': [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): __lowerCamelCase : int = """valhalla/s2t_mustc_multilinguial_medium""" __lowerCamelCase : str = """C'est trop cool""" __lowerCamelCase : Tuple = """Esto es genial""" @classmethod def snake_case_ ( cls): lowercase__ : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def snake_case_ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def snake_case_ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_0000) def snake_case_ ( self): self.assertIn(a , self.tokenizer.all_special_ids) lowercase__ : Tuple = [ES_CODE, 4, 1601, 47, 7647, 2] lowercase__ : Union[str, Any] = self.tokenizer.decode(a , skip_special_tokens=a) lowercase__ : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a) self.assertEqual(a , a) self.assertNotIn(self.tokenizer.eos_token , a) def snake_case_ ( self): lowercase__ : Any = 'fr' lowercase__ : Union[str, Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , a) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def snake_case_ ( self): lowercase__ : List[str] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) lowercase__ : Any = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
216
def snake_case__ ( SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if edge <= 0 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('Length must be a positive.' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def snake_case__ ( SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if edge <= 0 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('Length must be a positive.' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
216
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : Dict = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''funnel''' lowerCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=[4, 4, 4] , _lowerCamelCase=None , _lowerCamelCase=2 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=64 , _lowerCamelCase=3072 , _lowerCamelCase="gelu_new" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase=None , _lowerCamelCase=1e-9 , _lowerCamelCase="mean" , _lowerCamelCase="relative_shift" , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , **_lowerCamelCase , ) -> Optional[int]: A_ : Optional[Any] = vocab_size A_ : List[str] = block_sizes A_ : str = [1] * len(_lowerCamelCase ) if block_repeats is None else block_repeats assert len(_lowerCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." A_ : str = num_decoder_layers A_ : Tuple = d_model A_ : Dict = n_head A_ : Dict = d_head A_ : Any = d_inner A_ : Dict = hidden_act A_ : int = hidden_dropout A_ : Optional[int] = attention_dropout A_ : Dict = activation_dropout A_ : Tuple = initializer_range A_ : List[str] = initializer_std A_ : int = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." A_ : List[str] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." A_ : str = attention_type A_ : List[str] = separate_cls A_ : Optional[Any] = truncate_seq A_ : Dict = pool_q_only super().__init__(**_lowerCamelCase ) @property def UpperCAmelCase_ ( self ) -> List[Any]: return sum(self.block_sizes ) @num_hidden_layers.setter def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[int]: raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def UpperCAmelCase_ ( self ) -> List[str]: return len(self.block_sizes ) @num_blocks.setter def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Dict: raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
344
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase__ : int = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _lowercase : List[str] = logging.get_logger(__name__) _lowercase : Union[str, Any] = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[Any] = "bart" a__ : List[Any] = ["past_key_values"] a__ : Tuple = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , _lowercase : int=5_02_65 , _lowercase : Union[str, Any]=10_24 , _lowercase : Optional[Any]=12 , _lowercase : Dict=40_96 , _lowercase : List[Any]=16 , _lowercase : Union[str, Any]=12 , _lowercase : Tuple=40_96 , _lowercase : List[str]=16 , _lowercase : List[Any]=0.0 , _lowercase : List[str]=0.0 , _lowercase : List[Any]="gelu" , _lowercase : Any=10_24 , _lowercase : Dict=0.1 , _lowercase : Any=0.0 , _lowercase : Union[str, Any]=0.0 , _lowercase : Optional[int]=0.02 , _lowercase : Union[str, Any]=0.0 , _lowercase : str=False , _lowercase : Dict=True , _lowercase : Optional[Any]=3 , _lowercase : Optional[int]=1 , _lowercase : str=0 , _lowercase : Dict=2 , _lowercase : Dict=True , _lowercase : Union[str, Any]=2 , _lowercase : List[str]=2 , **_lowercase : Union[str, Any] , ): __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = classifier_dropout __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , _lowercase ): __UpperCAmelCase = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' '''The config can simply be saved and uploaded again to be fixed.''' ) class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : Any ): if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCAmelCase = {0: '''batch'''} __UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} __UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCAmelCase , __UpperCAmelCase = self.num_layers for i in range(_lowercase ): __UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} __UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def a ( self : List[str] ): if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase = super().outputs else: __UpperCAmelCase = super(_lowercase , self ).outputs if self.use_past: __UpperCAmelCase , __UpperCAmelCase = self.num_layers for i in range(_lowercase ): __UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} __UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def a ( self : Optional[Any] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): __UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Generate decoder inputs __UpperCAmelCase = seq_length if not self.use_past else 1 __UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) __UpperCAmelCase = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __UpperCAmelCase = dict(**_lowercase , **_lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCAmelCase , __UpperCAmelCase = common_inputs['''input_ids'''].shape __UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] __UpperCAmelCase , __UpperCAmelCase = self.num_attention_heads __UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCAmelCase = decoder_seq_length + 3 __UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowercase , _lowercase )] , dim=1 ) __UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __UpperCAmelCase , __UpperCAmelCase = self.num_layers __UpperCAmelCase = min(_lowercase , _lowercase ) __UpperCAmelCase = max(_lowercase , _lowercase ) - min_num_layers __UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), ) ) # TODO: test this. __UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowercase , _lowercase ): common_inputs["past_key_values"].append((torch.zeros(_lowercase ), torch.zeros(_lowercase )) ) return common_inputs def a ( self : List[Any] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): __UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCAmelCase , __UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCAmelCase = seqlen + 2 __UpperCAmelCase , __UpperCAmelCase = self.num_layers __UpperCAmelCase , __UpperCAmelCase = self.num_attention_heads __UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCAmelCase = common_inputs['''attention_mask'''].dtype __UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) __UpperCAmelCase = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(_lowercase ) ] return common_inputs def a ( self : List[Any] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __UpperCAmelCase = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __UpperCAmelCase = tokenizer.num_special_tokens_to_add(_lowercase ) __UpperCAmelCase = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowercase ) # Generate dummy inputs according to compute batch and sequence __UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __UpperCAmelCase = dict(tokenizer(_lowercase , return_tensors=_lowercase ) ) return common_inputs def a ( self : Tuple , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) elif self.task == "causal-lm": __UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) else: __UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) return common_inputs def a ( self : str , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : Optional[int] ): if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase = super()._flatten_past_key_values_(_lowercase , _lowercase , _lowercase , _lowercase ) else: __UpperCAmelCase = super(_lowercase , self )._flatten_past_key_values_( _lowercase , _lowercase , _lowercase , _lowercase )
86
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _lowercase : Any = True except ImportError: _lowercase : str = False try: from torch.hub import _get_torch_home _lowercase : Any = _get_torch_home() except ImportError: _lowercase : Dict = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) _lowercase : Tuple = os.path.join(torch_cache_home, 'transformers') _lowercase : int = 'https://cdn.huggingface.co' _lowercase : Union[str, Any] = 'https://s3.amazonaws.com/models.huggingface.co/bert' _lowercase : str = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) _lowercase : str = os.path.join(PATH, 'config.yaml') _lowercase : int = os.path.join(PATH, 'attributes.txt') _lowercase : List[str] = os.path.join(PATH, 'objects.txt') _lowercase : Optional[int] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) _lowercase : int = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) _lowercase : Dict = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) _lowercase : Union[str, Any] = 'pytorch_model.bin' _lowercase : List[str] = 'config.yaml' def lowercase__ ( snake_case_ :int=OBJECTS , snake_case_ :Optional[int]=ATTRIBUTES ): __UpperCAmelCase = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) __UpperCAmelCase = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = OrderedDict() with open(snake_case_ , '''rb''' ) as f: __UpperCAmelCase = pkl.load(snake_case_ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): __UpperCAmelCase = ckp.pop(snake_case_ ) if isinstance(snake_case_ , np.ndarray ): __UpperCAmelCase = torch.tensor(snake_case_ ) else: assert isinstance(snake_case_ , torch.tensor ), type(snake_case_ ) __UpperCAmelCase = v return r class _UpperCAmelCase : a__ : Tuple = {} def __init__( self : List[str] , _lowercase : dict , _lowercase : str = "root" , _lowercase : Optional[Any]=0 ): __UpperCAmelCase = name __UpperCAmelCase = level __UpperCAmelCase = {} for k, v in dictionary.items(): if v is None: raise ValueError() __UpperCAmelCase = copy.deepcopy(_lowercase ) __UpperCAmelCase = copy.deepcopy(_lowercase ) if isinstance(_lowercase , _lowercase ): __UpperCAmelCase = Config(_lowercase , name=_lowercase , level=level + 1 ) __UpperCAmelCase = v setattr(self , _lowercase , _lowercase ) __UpperCAmelCase = d def __repr__( self : Any ): return str(list((self._pointer.keys()) ) ) def __setattr__( self : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Dict ): __UpperCAmelCase = val __UpperCAmelCase = val __UpperCAmelCase = key.split('''.''' ) __UpperCAmelCase = len(_lowercase ) - 1 __UpperCAmelCase = self._pointer if len(_lowercase ) > 1: for i, l in enumerate(_lowercase ): if hasattr(self , _lowercase ) and isinstance(getattr(self , _lowercase ) , _lowercase ): setattr(getattr(self , _lowercase ) , '''.'''.join(levels[i:] ) , _lowercase ) if l == last_level: __UpperCAmelCase = val else: __UpperCAmelCase = pointer[l] def a ( self : int ): return self._pointer def a ( self : List[str] , _lowercase : Dict , _lowercase : str ): with open(F'''{file_name}''' , '''w''' ) as stream: dump(_lowercase , _lowercase ) def a ( self : int , _lowercase : Dict , _lowercase : Tuple ): with open(F'''{file_name}''' , '''w''' ) as stream: json.dump(_lowercase , _lowercase ) @staticmethod def a ( _lowercase : str ): with open(_lowercase ) as stream: __UpperCAmelCase = load(_lowercase , Loader=_lowercase ) return data def __str__( self : Dict ): __UpperCAmelCase = ''' ''' if self._name != "root": __UpperCAmelCase = F'''{t * (self._level-1)}{self._name}:\n''' else: __UpperCAmelCase = '''''' __UpperCAmelCase = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_lowercase , _lowercase ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(_lowercase ).__name__})\n''' __UpperCAmelCase = level return r[:-1] @classmethod def a ( cls : str , _lowercase : str , **_lowercase : Any ): __UpperCAmelCase , __UpperCAmelCase = cls.get_config_dict(_lowercase , **_lowercase ) return cls(_lowercase ) @classmethod def a ( cls : Any , _lowercase : str , **_lowercase : str ): __UpperCAmelCase = kwargs.pop('''cache_dir''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''force_download''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''resume_download''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''proxies''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''local_files_only''' , _lowercase ) if os.path.isdir(_lowercase ): __UpperCAmelCase = os.path.join(_lowercase , _lowercase ) elif os.path.isfile(_lowercase ) or is_remote_url(_lowercase ): __UpperCAmelCase = pretrained_model_name_or_path else: __UpperCAmelCase = hf_bucket_url(_lowercase , filename=_lowercase , use_cdn=_lowercase ) try: # Load from URL or cache if already cached __UpperCAmelCase = cached_path( _lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , local_files_only=_lowercase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __UpperCAmelCase = Config.load_yaml(_lowercase ) except EnvironmentError: __UpperCAmelCase = '''Can\'t load config for''' raise EnvironmentError(_lowercase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(_lowercase ), kwargs def lowercase__ ( snake_case_ :List[str] ): __UpperCAmelCase = torch.load('''dump.pt''' , map_location=in_tensor.device ) __UpperCAmelCase = in_tensor.numpy() __UpperCAmelCase = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowercase__ ( snake_case_ :List[str] ): __UpperCAmelCase = urlparse(snake_case_ ) return parsed.scheme in ("http", "https") def lowercase__ ( snake_case_ :str , snake_case_ :str , snake_case_ :List[str]=True ): __UpperCAmelCase = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __UpperCAmelCase = '''/''' not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase__ ( snake_case_ :str , snake_case_ :Tuple , snake_case_ :List[str]=None , snake_case_ :List[str]=0 , snake_case_ :List[Any]=None , ): __UpperCAmelCase = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(snake_case_ , snake_case_ ): ua += "; " + "; ".join('''{}/{}'''.format(snake_case_ , snake_case_ ) for k, v in user_agent.items() ) elif isinstance(snake_case_ , snake_case_ ): ua += "; " + user_agent __UpperCAmelCase = {'''user-agent''': ua} if resume_size > 0: __UpperCAmelCase = '''bytes=%d-''' % (resume_size,) __UpperCAmelCase = requests.get(snake_case_ , stream=snake_case_ , proxies=snake_case_ , headers=snake_case_ ) if response.status_code == 416: # Range not satisfiable return __UpperCAmelCase = response.headers.get('''Content-Length''' ) __UpperCAmelCase = resume_size + int(snake_case_ ) if content_length is not None else None __UpperCAmelCase = tqdm( unit='''B''' , unit_scale=snake_case_ , total=snake_case_ , initial=snake_case_ , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(snake_case_ ) ) temp_file.write(snake_case_ ) progress.close() def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :str=None , snake_case_ :Optional[int]=False , snake_case_ :List[Any]=None , snake_case_ :List[Any]=10 , snake_case_ :Optional[int]=False , snake_case_ :List[str]=None , snake_case_ :Union[str, Any]=False , ): if cache_dir is None: __UpperCAmelCase = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = str(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) __UpperCAmelCase = None if not local_files_only: try: __UpperCAmelCase = requests.head(snake_case_ , allow_redirects=snake_case_ , proxies=snake_case_ , timeout=snake_case_ ) if response.status_code == 200: __UpperCAmelCase = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __UpperCAmelCase = url_to_filename(snake_case_ , snake_case_ ) # get cache path to put the file __UpperCAmelCase = os.path.join(snake_case_ , snake_case_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(snake_case_ ): return cache_path else: __UpperCAmelCase = [ file for file in fnmatch.filter(os.listdir(snake_case_ ) , filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(snake_case_ ) > 0: return os.path.join(snake_case_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(snake_case_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __UpperCAmelCase = cache_path + '''.lock''' with FileLock(snake_case_ ): # If the download just completed while the lock was activated. if os.path.exists(snake_case_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __UpperCAmelCase = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(snake_case_ , '''a+b''' ) as f: yield f __UpperCAmelCase = _resumable_file_manager if os.path.exists(snake_case_ ): __UpperCAmelCase = os.stat(snake_case_ ).st_size else: __UpperCAmelCase = 0 else: __UpperCAmelCase = partial(tempfile.NamedTemporaryFile , dir=snake_case_ , delete=snake_case_ ) __UpperCAmelCase = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , snake_case_ , temp_file.name , ) http_get( snake_case_ , snake_case_ , proxies=snake_case_ , resume_size=snake_case_ , user_agent=snake_case_ , ) os.replace(temp_file.name , snake_case_ ) __UpperCAmelCase = {'''url''': url, '''etag''': etag} __UpperCAmelCase = cache_path + '''.json''' with open(snake_case_ , '''w''' ) as meta_file: json.dump(snake_case_ , snake_case_ ) return cache_path def lowercase__ ( snake_case_ :int , snake_case_ :str=None ): __UpperCAmelCase = url.encode('''utf-8''' ) __UpperCAmelCase = shaaaa(snake_case_ ) __UpperCAmelCase = url_hash.hexdigest() if etag: __UpperCAmelCase = etag.encode('''utf-8''' ) __UpperCAmelCase = shaaaa(snake_case_ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowercase__ ( snake_case_ :Dict , snake_case_ :List[Any]=None , snake_case_ :List[Any]=False , snake_case_ :Optional[int]=None , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=None , snake_case_ :Any=False , snake_case_ :int=False , snake_case_ :Optional[int]=False , ): if cache_dir is None: __UpperCAmelCase = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = str(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = str(snake_case_ ) if is_remote_url(snake_case_ ): # URL, so get it from the cache (downloading if necessary) __UpperCAmelCase = get_from_cache( snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , user_agent=snake_case_ , local_files_only=snake_case_ , ) elif os.path.exists(snake_case_ ): # File, and it exists. __UpperCAmelCase = url_or_filename elif urlparse(snake_case_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(snake_case_ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(snake_case_ ) ) if extract_compressed_file: if not is_zipfile(snake_case_ ) and not tarfile.is_tarfile(snake_case_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __UpperCAmelCase , __UpperCAmelCase = os.path.split(snake_case_ ) __UpperCAmelCase = output_file.replace('''.''' , '''-''' ) + '''-extracted''' __UpperCAmelCase = os.path.join(snake_case_ , snake_case_ ) if os.path.isdir(snake_case_ ) and os.listdir(snake_case_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions __UpperCAmelCase = output_path + '''.lock''' with FileLock(snake_case_ ): shutil.rmtree(snake_case_ , ignore_errors=snake_case_ ) os.makedirs(snake_case_ ) if is_zipfile(snake_case_ ): with ZipFile(snake_case_ , '''r''' ) as zip_file: zip_file.extractall(snake_case_ ) zip_file.close() elif tarfile.is_tarfile(snake_case_ ): __UpperCAmelCase = tarfile.open(snake_case_ ) tar_file.extractall(snake_case_ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(snake_case_ ) ) return output_path_extracted return output_path def lowercase__ ( snake_case_ :List[Any] , snake_case_ :List[Any]="," ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): with open(snake_case_ ) as f: __UpperCAmelCase = eval(f.read() ) else: __UpperCAmelCase = requests.get(snake_case_ ) try: __UpperCAmelCase = requests.json() except Exception: __UpperCAmelCase = req.content.decode() assert data is not None, "could not connect" try: __UpperCAmelCase = eval(snake_case_ ) except Exception: __UpperCAmelCase = data.split('''\n''' ) req.close() return data def lowercase__ ( snake_case_ :Union[str, Any] ): __UpperCAmelCase = requests.get(snake_case_ ) __UpperCAmelCase = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase__ ( snake_case_ :List[str] ): __UpperCAmelCase = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(snake_case_ ) with open(snake_case_ , '''rb''' ) as stream: __UpperCAmelCase = pkl.load(snake_case_ ) __UpperCAmelCase = weights.pop('''model''' ) __UpperCAmelCase = {} for k, v in model.items(): __UpperCAmelCase = torch.from_numpy(snake_case_ ) if "running_var" in k: __UpperCAmelCase = torch.tensor([0] ) __UpperCAmelCase = k.replace('''running_var''' , '''num_batches_tracked''' ) __UpperCAmelCase = zero return new def lowercase__ ( ): print(F'''{os.path.abspath(os.path.join(snake_case_ , os.pardir ) )}/demo.ipynb''' ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :Tuple="RGB" ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): __UpperCAmelCase = cva.imread(snake_case_ ) else: __UpperCAmelCase = get_image_from_url(snake_case_ ) assert img is not None, F'''could not connect to: {im}''' __UpperCAmelCase = cva.cvtColor(snake_case_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": __UpperCAmelCase = img[:, :, ::-1] return img def lowercase__ ( snake_case_ :Any , snake_case_ :int=1 ): return (images[i : i + batch] for i in range(0 , len(snake_case_ ) , snake_case_ ))
86
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __SCREAMING_SNAKE_CASE :List[Any] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class A_ ( unittest.TestCase ): _lowerCamelCase : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCamelCase : Dict = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _lowerCamelCase : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _lowerCamelCase : Any = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def lowercase ( self : Tuple , snake_case_ : List[str] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ): _UpperCAmelCase = ZeroShotClassificationPipeline( model=snake_case_ , tokenizer=snake_case_ , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def lowercase ( self : int , snake_case_ : Tuple , snake_case_ : Optional[int] ): _UpperCAmelCase = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(snake_case_ , {"sequence": ANY(snake_case_ ), "labels": [ANY(snake_case_ )], "scores": [ANY(snake_case_ )]} ) # No kwarg _UpperCAmelCase = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(snake_case_ , {"sequence": ANY(snake_case_ ), "labels": [ANY(snake_case_ )], "scores": [ANY(snake_case_ )]} ) _UpperCAmelCase = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(snake_case_ , {"sequence": ANY(snake_case_ ), "labels": [ANY(snake_case_ )], "scores": [ANY(snake_case_ )]} ) _UpperCAmelCase = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( snake_case_ , {"sequence": ANY(snake_case_ ), "labels": [ANY(snake_case_ ), ANY(snake_case_ )], "scores": [ANY(snake_case_ ), ANY(snake_case_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) _UpperCAmelCase = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( snake_case_ , {"sequence": ANY(snake_case_ ), "labels": [ANY(snake_case_ ), ANY(snake_case_ )], "scores": [ANY(snake_case_ ), ANY(snake_case_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) _UpperCAmelCase = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(snake_case_ , {"sequence": ANY(snake_case_ ), "labels": [ANY(snake_case_ )], "scores": [ANY(snake_case_ )]} ) # https://github.com/huggingface/transformers/issues/13846 _UpperCAmelCase = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( snake_case_ , [ {"sequence": ANY(snake_case_ ), "labels": [ANY(snake_case_ ), ANY(snake_case_ )], "scores": [ANY(snake_case_ ), ANY(snake_case_ )]} for i in range(1 ) ] , ) _UpperCAmelCase = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( snake_case_ , [ {"sequence": ANY(snake_case_ ), "labels": [ANY(snake_case_ ), ANY(snake_case_ )], "scores": [ANY(snake_case_ ), ANY(snake_case_ )]} for i in range(2 ) ] , ) with self.assertRaises(snake_case_ ): classifier("" , candidate_labels="politics" ) with self.assertRaises(snake_case_ ): classifier(snake_case_ , candidate_labels="politics" ) with self.assertRaises(snake_case_ ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(snake_case_ ): classifier("Who are you voting for in 2020?" , candidate_labels=snake_case_ ) with self.assertRaises(snake_case_ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(snake_case_ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=snake_case_ , ) self.run_entailment_id(snake_case_ ) def lowercase ( self : str , snake_case_ : Pipeline ): _UpperCAmelCase = zero_shot_classifier.model.config _UpperCAmelCase = config.labelaid _UpperCAmelCase = zero_shot_classifier.entailment_id _UpperCAmelCase = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _UpperCAmelCase = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _UpperCAmelCase = original_labelaid self.assertEqual(snake_case_ , zero_shot_classifier.entailment_id ) @require_torch def lowercase ( self : Optional[Any] ): _UpperCAmelCase = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 1_0_0 , candidate_labels=["politics", "public health", "science"] ) @require_torch def lowercase ( self : Dict ): _UpperCAmelCase = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) _UpperCAmelCase = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(snake_case_ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def lowercase ( self : str ): _UpperCAmelCase = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) _UpperCAmelCase = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(snake_case_ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def lowercase ( self : List[str] ): _UpperCAmelCase = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) _UpperCAmelCase = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(snake_case_ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) _UpperCAmelCase = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=snake_case_ , ) self.assertEqual( nested_simplify(snake_case_ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def lowercase ( self : Tuple ): _UpperCAmelCase = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) _UpperCAmelCase = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(snake_case_ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) _UpperCAmelCase = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=snake_case_ , ) self.assertEqual( nested_simplify(snake_case_ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
22
'''simple docstring''' import os from datetime import datetime as dt from github import Github __SCREAMING_SNAKE_CASE :str = [ '''good first issue''', '''feature request''', '''wip''', ] def UpperCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = Github(os.environ["GITHUB_TOKEN"] ) _UpperCAmelCase = g.get_repo("huggingface/accelerate" ) _UpperCAmelCase = repo.get_issues(state="open" ) for issue in open_issues: _UpperCAmelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowercase : i.created_at , reverse=__lowercase ) _UpperCAmelCase = comments[0] if len(__lowercase ) > 0 else None _UpperCAmelCase = dt.utcnow() _UpperCAmelCase = (current_time - issue.updated_at).days _UpperCAmelCase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
22
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case ( snake_case ): UpperCamelCase__ = ['image_processor', 'tokenizer'] UpperCamelCase__ = 'BridgeTowerImageProcessor' UpperCamelCase__ = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self , _a , _a ): super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): __magic_name__ : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask __magic_name__ : List[str] = self.image_processor( _a , return_tensors=_a , do_normalize=_a , do_center_crop=_a , **_a ) encoding.update(_a ) return encoding def SCREAMING_SNAKE_CASE ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = self.tokenizer.model_input_names __magic_name__ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
370
from scipy.stats import pearsonr import datasets snake_case : Tuple = "\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n" snake_case : Dict = "\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results['pearsonr'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n ['p-value', 'pearsonr']\n >>> print(round(results['pearsonr'], 2))\n -0.74\n >>> print(round(results['p-value'], 2))\n 0.15\n" snake_case : int = "\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a=False ): if return_pvalue: __magic_name__ : Union[str, Any] = pearsonr(_a , _a ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_a , _a )[0] )}
41
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = StableDiffusionLDMaDPipeline SCREAMING_SNAKE_CASE_ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def __A ( self ) -> Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> int: if str(lowerCAmelCase__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __A ( self ) -> int: SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ldmad_pipe(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.rgb, output.depth SCREAMING_SNAKE_CASE = rgb[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) SCREAMING_SNAKE_CASE = np.array( [0.37_33_81_76, 0.7_02_47, 0.74_20_31_93, 0.51_64_36_04, 0.58_25_67_93, 0.60_93_21_36, 0.4_18_10_95, 0.48_35_58_77, 0.46_53_52_62] ) SCREAMING_SNAKE_CASE = np.array([1_03.4_67_27, 85.81_20_04, 87.84_92_36] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = ldmad_pipe(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.rgb, output.depth SCREAMING_SNAKE_CASE = rgb_slice_a[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = depth_slice_a[0, -3:, -1] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = ldmad_pipe.tokenizer( lowerCAmelCase__ , padding='max_length' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ldmad_pipe.text_encoder(lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = ldmad_pipe(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.rgb, output.depth SCREAMING_SNAKE_CASE = rgb_slice_a[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'french fries' SCREAMING_SNAKE_CASE = ldmad_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.rgb, output.depth SCREAMING_SNAKE_CASE = rgb[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) SCREAMING_SNAKE_CASE = np.array( [0.3_70_44, 0.71_81_15_03, 0.7_22_32_51, 0.48_60_36_75, 0.5_63_83_91, 0.6_36_49_48, 0.42_83_37_04, 0.4_90_13_15, 0.47_92_62_17] ) SCREAMING_SNAKE_CASE = np.array([1_07.8_47_38, 84.6_28_02, 89.96_21_35] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , lowerCAmelCase__ , lowerCAmelCase__="cpu" , lowerCAmelCase__=torch.floataa , lowerCAmelCase__=0 ) -> Tuple: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) SCREAMING_SNAKE_CASE = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ldmad_pipe(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.rgb, output.depth SCREAMING_SNAKE_CASE = rgb[0, -3:, -3:, -1].flatten() SCREAMING_SNAKE_CASE = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) SCREAMING_SNAKE_CASE = np.array( [0.53_80_54_65, 0.56_70_73_05, 0.5_48_65_15, 0.57_01_22_36, 0.5_81_45_11, 0.56_25_34_87, 0.54_84_30_14, 0.55_09_22_63, 0.6_45_97_06] ) SCREAMING_SNAKE_CASE = np.array( [0.9_26_37_81, 0.6_67_86_72, 0.5_48_65_15, 0.92_20_21_45, 0.67_83_11_35, 0.56_25_34_87, 0.9_24_16_94, 0.7_55_14_78, 0.6_45_97_06] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , lowerCAmelCase__ , lowerCAmelCase__="cpu" , lowerCAmelCase__=torch.floataa , lowerCAmelCase__=0 ) -> int: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ldmad_pipe(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.rgb, output.depth SCREAMING_SNAKE_CASE = 0.49_55_86 SCREAMING_SNAKE_CASE = 0.33_79_55_15 SCREAMING_SNAKE_CASE = 1_12.4_85_18 SCREAMING_SNAKE_CASE = 98.48_97_46 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def __A ( self ) -> str: SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ldmad_pipe(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.rgb, output.depth SCREAMING_SNAKE_CASE = 0.4_19_41_27 SCREAMING_SNAKE_CASE = 0.35_37_55_86 SCREAMING_SNAKE_CASE = 0.5_63_85_02 SCREAMING_SNAKE_CASE = 0.34_68_61_03 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
113
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] __UpperCamelCase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = {f'''funnel-transformer/{name}''': 512 for name in _model_names} __UpperCamelCase = {f'''funnel-transformer/{name}''': {'''do_lower_case''': True} for name in _model_names} class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : str = FunnelTokenizer SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : int = 2 def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<sep>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<cls>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__="##" , **lowerCAmelCase__ , ) -> Tuple: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , clean_text=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , wordpieces_prefix=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase__ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = do_lower_case def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[Any]: SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
113
1
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __a: List[Any] = logging.getLogger(__name__) class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> Optional[int]: super().__init__( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , ) lowercase__ : Union[str, Any] = None def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[int]: logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually lowercase__ : List[str] = self._infer_socket_ifname() # avoid clash with the NCCL port lowercase__ : Optional[int] = str(distributed_port + 1 ) lowercase__ : Optional[int] = dist.new_group(ranks=__lowerCAmelCase , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowerCAmelCase( self ) -> List[str]: return dist.get_rank(group=self.process_group ) == 0 def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=torch.floataa ) -> List[str]: lowercase__ : Optional[int] = torch.empty(__lowerCAmelCase , dtype=__lowerCAmelCase ) dist.scatter(__lowerCAmelCase , src=0 , scatter_list=__lowerCAmelCase , group=self.process_group ) return target_tensor def _lowerCAmelCase( self ) -> int: lowercase__ : Optional[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names lowercase__ : Any = next((addr for addr in addrs if addr.startswith('''e''' )) , __lowerCAmelCase ) return ifname def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): lowercase__ , lowercase__ : Optional[int] = self._main_retrieve(__lowerCAmelCase , __lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCAmelCase ) # distributed training lowercase__ : Any = dist.get_world_size(group=self.process_group ) # gather logic lowercase__ : Optional[Any] = None if self._is_main(): lowercase__ : Union[str, Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCAmelCase )] dist.gather(torch.tensor(__lowerCAmelCase ) , dst=0 , gather_list=__lowerCAmelCase , group=self.process_group ) # scatter logic lowercase__ : int = question_hidden_states.shape[0] lowercase__ : List[str] = [] lowercase__ : Tuple = [] if self._is_main(): assert len(__lowerCAmelCase ) == world_size lowercase__ , lowercase__ : Optional[Any] = self._main_retrieve(torch.cat(__lowerCAmelCase ).numpy() , __lowerCAmelCase ) lowercase__ , lowercase__ : Union[str, Any] = torch.tensor(__lowerCAmelCase ), torch.tensor(__lowerCAmelCase ) lowercase__ : List[str] = self._chunk_tensor(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Union[str, Any] = self._chunk_tensor(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : List[str] = self._scattered(__lowerCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) lowercase__ : Union[str, Any] = self._scattered(__lowerCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCAmelCase )
214
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) lowercase__ : Tuple = sorted(string.lower() ) return len(UpperCAmelCase ) == len(set(UpperCAmelCase ) ) if __name__ == "__main__": __a: Union[str, Any] = input("""Enter a string """).strip() __a: Tuple = is_isogram(input_str) print(F'{input_str} is {"an" if isogram else "not an"} isogram.')
214
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=[10, 20, 30, 40] , __UpperCAmelCase=[2, 2, 3, 2] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase=["stage2", "stage3", "stage4"] , __UpperCAmelCase=3 , __UpperCAmelCase=None , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Dict = image_size __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : Dict = num_stages __UpperCAmelCase : str = hidden_sizes __UpperCAmelCase : Optional[Any] = depths __UpperCAmelCase : int = is_training __UpperCAmelCase : str = use_labels __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Optional[int] = out_features __UpperCAmelCase : Tuple = num_labels __UpperCAmelCase : List[str] = scope __UpperCAmelCase : Optional[int] = num_stages def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __A ( self ) -> str: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __A ( self ) -> Tuple: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=__UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : Any = UperNetForSemanticSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[str] = config_and_inputs __UpperCAmelCase : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __A , __A , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = (UperNetForSemanticSegmentation,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : int = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[Any] = False _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Dict = False def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : str = UperNetModelTester(self ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> int: '''simple docstring''' return def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Any = [*signature.parameters.keys()] __UpperCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def __A ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def __A ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`""" ) def __A ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : str = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase ) __UpperCAmelCase : Dict = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def __A ( self ) -> str: '''simple docstring''' pass @slow def __A ( self ) -> List[str]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = UperNetForSemanticSegmentation.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Tuple = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) __UpperCAmelCase : Tuple = Image.open(UpperCamelCase__ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _A ( unittest.TestCase ): def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) __UpperCAmelCase : List[str] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(__UpperCAmelCase ) __UpperCAmelCase : int = prepare_img() __UpperCAmelCase : Tuple = processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) with torch.no_grad(): __UpperCAmelCase : Any = model(**__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Optional[int] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) __UpperCAmelCase : List[str] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(__UpperCAmelCase ) __UpperCAmelCase : List[str] = prepare_img() __UpperCAmelCase : Any = processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) __UpperCAmelCase : int = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
254
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCamelCase__( __A ): lowerCAmelCase__ : torch.FloatTensor class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase=3 ,__UpperCAmelCase=3 ,__UpperCAmelCase=("DownEncoderBlock2D",) ,__UpperCAmelCase=(64,) ,__UpperCAmelCase=2 ,__UpperCAmelCase=32 ,__UpperCAmelCase="silu" ,__UpperCAmelCase=True ,) -> Union[str, Any]: super().__init__() A__ = layers_per_block A__ = torch.nn.Convad( __UpperCAmelCase ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) A__ = None A__ = nn.ModuleList([] ) # down A__ = block_out_channels[0] for i, down_block_type in enumerate(__UpperCAmelCase ): A__ = output_channel A__ = block_out_channels[i] A__ = i == len(__UpperCAmelCase ) - 1 A__ = get_down_block( __UpperCAmelCase ,num_layers=self.layers_per_block ,in_channels=__UpperCAmelCase ,out_channels=__UpperCAmelCase ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=__UpperCAmelCase ,resnet_groups=__UpperCAmelCase ,attention_head_dim=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,) self.down_blocks.append(__UpperCAmelCase ) # mid A__ = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=__UpperCAmelCase ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,) # out A__ = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=__UpperCAmelCase ,eps=1e-6 ) A__ = nn.SiLU() A__ = 2 * out_channels if double_z else out_channels A__ = nn.Convad(block_out_channels[-1] ,__UpperCAmelCase ,3 ,padding=1 ) A__ = False def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[int]: A__ = x A__ = self.conv_in(__UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase ): def custom_forward(*__UpperCAmelCase ): return module(*__UpperCAmelCase ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: A__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) # middle A__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) else: for down_block in self.down_blocks: A__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ) # middle A__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,__UpperCAmelCase ) else: # down for down_block in self.down_blocks: A__ = down_block(__UpperCAmelCase ) # middle A__ = self.mid_block(__UpperCAmelCase ) # post-process A__ = self.conv_norm_out(__UpperCAmelCase ) A__ = self.conv_act(__UpperCAmelCase ) A__ = self.conv_out(__UpperCAmelCase ) return sample class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase=3 ,__UpperCAmelCase=3 ,__UpperCAmelCase=("UpDecoderBlock2D",) ,__UpperCAmelCase=(64,) ,__UpperCAmelCase=2 ,__UpperCAmelCase=32 ,__UpperCAmelCase="silu" ,__UpperCAmelCase="group" ,) -> Any: super().__init__() A__ = layers_per_block A__ = nn.Convad( __UpperCAmelCase ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) A__ = None A__ = nn.ModuleList([] ) A__ = in_channels if norm_type == 'spatial' else None # mid A__ = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=__UpperCAmelCase ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,) # up A__ = list(reversed(__UpperCAmelCase ) ) A__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(__UpperCAmelCase ): A__ = output_channel A__ = reversed_block_out_channels[i] A__ = i == len(__UpperCAmelCase ) - 1 A__ = get_up_block( __UpperCAmelCase ,num_layers=self.layers_per_block + 1 ,in_channels=__UpperCAmelCase ,out_channels=__UpperCAmelCase ,prev_output_channel=__UpperCAmelCase ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=__UpperCAmelCase ,resnet_groups=__UpperCAmelCase ,attention_head_dim=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,resnet_time_scale_shift=__UpperCAmelCase ,) self.up_blocks.append(__UpperCAmelCase ) A__ = output_channel # out if norm_type == "spatial": A__ = SpatialNorm(block_out_channels[0] ,__UpperCAmelCase ) else: A__ = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=__UpperCAmelCase ,eps=1e-6 ) A__ = nn.SiLU() A__ = nn.Convad(block_out_channels[0] ,__UpperCAmelCase ,3 ,padding=1 ) A__ = False def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ) -> Dict: A__ = z A__ = self.conv_in(__UpperCAmelCase ) A__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase ): def custom_forward(*__UpperCAmelCase ): return module(*__UpperCAmelCase ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle A__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,__UpperCAmelCase ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) A__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: A__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) else: # middle A__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,__UpperCAmelCase ,__UpperCAmelCase ) A__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: A__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ,__UpperCAmelCase ) else: # middle A__ = self.mid_block(__UpperCAmelCase ,__UpperCAmelCase ) A__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: A__ = up_block(__UpperCAmelCase ,__UpperCAmelCase ) # post-process if latent_embeds is None: A__ = self.conv_norm_out(__UpperCAmelCase ) else: A__ = self.conv_norm_out(__UpperCAmelCase ,__UpperCAmelCase ) A__ = self.conv_act(__UpperCAmelCase ) A__ = self.conv_out(__UpperCAmelCase ) return sample class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase="random" ,__UpperCAmelCase=False ,__UpperCAmelCase=True ) -> Tuple: super().__init__() A__ = n_e A__ = vq_embed_dim A__ = beta A__ = legacy A__ = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) A__ = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) A__ = self.used.shape[0] A__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A__ = self.re_embed A__ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A__ = n_e A__ = sane_index_shape def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]: A__ = inds.shape assert len(__UpperCAmelCase ) > 1 A__ = inds.reshape(ishape[0] ,-1 ) A__ = self.used.to(__UpperCAmelCase ) A__ = (inds[:, :, None] == used[None, None, ...]).long() A__ = match.argmax(-1 ) A__ = match.sum(2 ) < 1 if self.unknown_index == "random": A__ = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: A__ = self.unknown_index return new.reshape(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]: A__ = inds.shape assert len(__UpperCAmelCase ) > 1 A__ = inds.reshape(ishape[0] ,-1 ) A__ = self.used.to(__UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token A__ = 0 # simply set to zero A__ = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,__UpperCAmelCase ) return back.reshape(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> Dict: # reshape z -> (batch, height, width, channel) and flatten A__ = z.permute(0 ,2 ,3 ,1 ).contiguous() A__ = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A__ = torch.argmin(torch.cdist(__UpperCAmelCase ,self.embedding.weight ) ,dim=1 ) A__ = self.embedding(__UpperCAmelCase ).view(z.shape ) A__ = None A__ = None # compute loss for embedding if not self.legacy: A__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A__ = z + (z_q - z).detach() # reshape back to match original input shape A__ = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: A__ = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis A__ = self.remap_to_used(__UpperCAmelCase ) A__ = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: A__ = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: # shape specifying (batch, height, width, channel) if self.remap is not None: A__ = indices.reshape(shape[0] ,-1 ) # add batch axis A__ = self.unmap_to_all(__UpperCAmelCase ) A__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A__ = self.embedding(__UpperCAmelCase ) if shape is not None: A__ = z_q.view(__UpperCAmelCase ) # reshape back to match original input shape A__ = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Any: A__ = parameters A__ , A__ = torch.chunk(__UpperCAmelCase ,2 ,dim=1 ) A__ = torch.clamp(self.logvar ,-3_0.0 ,2_0.0 ) A__ = deterministic A__ = torch.exp(0.5 * self.logvar ) A__ = torch.exp(self.logvar ) if self.deterministic: A__ = A__ = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def snake_case__ ( self ,__UpperCAmelCase = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype A__ = randn_tensor( self.mean.shape ,generator=__UpperCAmelCase ,device=self.parameters.device ,dtype=self.parameters.dtype ) A__ = self.mean + self.std * sample return x def snake_case__ ( self ,__UpperCAmelCase=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=[1, 2, 3] ) -> List[Any]: if self.deterministic: return torch.Tensor([0.0] ) A__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=__UpperCAmelCase ) def snake_case__ ( self ) -> Optional[Any]: return self.mean
221
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class snake_case__ ( unittest.TestCase ): def A_ ( self : int ) -> List[Any]: '''simple docstring''' __snake_case : Any = tempfile.mkdtemp() # fmt: off __snake_case : List[str] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on __snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __snake_case : List[str] = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } __snake_case : Optional[Any] = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(__a , __a ) def A_ ( self : Optional[int] , **__a : Dict ) -> int: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__a ) def A_ ( self : int , **__a : Dict ) -> Tuple: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__a ) def A_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A_ ( self : str ) -> List[str]: '''simple docstring''' __snake_case : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : List[str] = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Dict = self.get_image_processor() __snake_case : Any = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) processor.save_pretrained(self.tmpdirname ) __snake_case : Any = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def A_ ( self : str ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[Any] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __snake_case : Tuple = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) __snake_case : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def A_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = self.get_image_processor() __snake_case : int = self.get_tokenizer() __snake_case : str = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) __snake_case : int = self.prepare_image_inputs() __snake_case : List[str] = image_processor(__a , return_tensors='np' ) __snake_case : List[str] = processor(images=__a , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' __snake_case : Dict = self.get_image_processor() __snake_case : int = self.get_tokenizer() __snake_case : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) __snake_case : Optional[int] = 'lower newer' __snake_case : Dict = processor(text=__a ) __snake_case : List[Any] = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : Dict = self.get_image_processor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) __snake_case : List[Any] = 'lower newer' __snake_case : Optional[Any] = self.prepare_image_inputs() __snake_case : Union[str, Any] = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(__a ): processor() def A_ ( self : Tuple ) -> Any: '''simple docstring''' __snake_case : Union[str, Any] = self.get_image_processor() __snake_case : Any = self.get_tokenizer() __snake_case : Dict = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) __snake_case : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case : int = processor.batch_decode(__a ) __snake_case : Optional[Any] = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def A_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' __snake_case : List[str] = self.get_image_processor() __snake_case : Dict = self.get_tokenizer() __snake_case : Dict = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) __snake_case : Union[str, Any] = 'lower newer' __snake_case : Tuple = self.prepare_image_inputs() __snake_case : Union[str, Any] = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
0
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = ProphetNetTokenizer A__ = False def A_ ( self : Optional[int] ) -> Dict: '''simple docstring''' super().setUp() __snake_case : Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self : int , __a : Union[str, Any] ) -> List[str]: '''simple docstring''' __snake_case : Optional[int] = 'UNwant\u00E9d,running' __snake_case : List[str] = 'unwanted, running' return input_text, output_text def A_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case : Dict = self.tokenizer_class(self.vocab_file ) __snake_case : List[str] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__a , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] ) def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' __snake_case : List[str] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def A_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case : Optional[int] = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self : Dict ) -> Optional[int]: '''simple docstring''' __snake_case : List[Any] = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def A_ ( self : int ) -> Any: '''simple docstring''' __snake_case : int = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Union[str, Any] = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Dict = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self : Any ) -> List[str]: '''simple docstring''' __snake_case : str = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : List[Any] = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' __snake_case : Optional[Any] = BasicTokenizer(do_lower_case=__a , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def A_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' __snake_case : Any = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __snake_case : List[Any] = {} for i, token in enumerate(__a ): __snake_case : List[str] = i __snake_case : Any = WordpieceTokenizer(vocab=__a , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def A_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' __snake_case : Optional[Any] = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __snake_case : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] __snake_case : Union[str, Any] = tokenizer(__a , padding=__a , return_tensors='pt' ) self.assertIsInstance(__a , __a ) __snake_case : int = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__a , __a ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def A_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def A_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def A_ ( self : List[Any] ) -> int: '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def A_ ( self : str ) -> Optional[int]: '''simple docstring''' __snake_case : str = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __snake_case : Optional[int] = tokenizer.encode('sequence builders' , add_special_tokens=__a ) __snake_case : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) __snake_case : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
0
1
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' for char in word: _UpperCAmelCase = ord(snake_case_ ) if not _is_chinese_char(snake_case_ ): return 0 return 1 def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = set() for token in tokens: _UpperCAmelCase = len(snake_case_ ) > 1 and is_chinese(snake_case_ ) if chinese_word: word_set.add(snake_case_ ) _UpperCAmelCase = list(snake_case_ ) return word_list def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' if not chinese_word_set: return bert_tokens _UpperCAmelCase = max([len(snake_case_ ) for w in chinese_word_set] ) _UpperCAmelCase = bert_tokens _UpperCAmelCase , _UpperCAmelCase = 0, len(snake_case_ ) while start < end: _UpperCAmelCase = True if is_chinese(bert_word[start] ): _UpperCAmelCase = min(end - start , snake_case_ ) for i in range(snake_case_ , 1 , -1 ): _UpperCAmelCase = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _UpperCAmelCase = "##" + bert_word[j] _UpperCAmelCase = start + i _UpperCAmelCase = False break if single_word: start += 1 return bert_word def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = [] for i in range(0 , len(snake_case_ ) , 100 ): _UpperCAmelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0] _UpperCAmelCase = [get_chinese_word(snake_case_ ) for r in res] ltp_res.extend(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) _UpperCAmelCase = [] for i in range(0 , len(snake_case_ ) , 100 ): _UpperCAmelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=snake_case_ , truncation=snake_case_ , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(snake_case_ ) == len(snake_case_ ) _UpperCAmelCase = [] for input_ids, chinese_word in zip(snake_case_ , snake_case_ ): _UpperCAmelCase = [] for id in input_ids: _UpperCAmelCase = bert_tokenizer._convert_id_to_token(snake_case_ ) input_tokens.append(snake_case_ ) _UpperCAmelCase = add_sub_symbol(snake_case_ , snake_case_ ) _UpperCAmelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case_ ): if token[:2] == "##": _UpperCAmelCase = token[2:] # save chinese tokens' pos if len(snake_case_ ) == 1 and _is_chinese_char(ord(snake_case_ ) ): ref_id.append(snake_case_ ) ref_ids.append(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) return ref_ids def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = [line.strip() for line in data if len(snake_case_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCAmelCase = LTP(args.ltp ) # faster in GPU device _UpperCAmelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCAmelCase = prepare_ref(snake_case_ , snake_case_ , snake_case_ ) with open(args.save_path , "w" , encoding="utf-8" ) as f: _UpperCAmelCase = [json.dumps(snake_case_ ) + "\n" for ref in ref_ids] f.writelines(snake_case_ ) if __name__ == "__main__": lowercase_ : List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') lowercase_ : List[str] = parser.parse_args() main(args)
133
def _a ( lowerCamelCase: int = 2_00 ) -> int: '''simple docstring''' __A = [1, 2, 5, 10, 20, 50, 1_00, 2_00] __A = [0] * (pence + 1) __A = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
117
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs UpperCamelCase = imread(r"""digital_image_processing/image_data/lena_small.jpg""") UpperCamelCase = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): A_ : Union[str, Any] = cn.convert_to_negative(__lowerCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(__lowerCAmelCase , 110 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def _SCREAMING_SNAKE_CASE ( ): A_ : Optional[int] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): A_ : int = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ : int = canny.canny(__lowerCAmelCase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): assert gg.gaussian_filter(__lowerCAmelCase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): # laplace diagonals A_ : int = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) A_ : str = conv.img_convolve(__lowerCAmelCase , __lowerCAmelCase ).astype(__lowerCAmelCase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): assert med.median_filter(__lowerCAmelCase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): A_ , A_ : Any = sob.sobel_filter(__lowerCAmelCase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): A_ : Any = sp.make_sepia(__lowerCAmelCase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = "digital_image_processing/image_data/lena_small.jpg" ): A_ : int = bs.Burkes(imread(__lowerCAmelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = "digital_image_processing/image_data/lena_small.jpg" , ): A_ : Dict = rs.NearestNeighbour(imread(__lowerCAmelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): A_ : Optional[int] = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. A_ : str = imread(__lowerCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None A_ : List[Any] = 0 A_ : List[str] = 0 A_ : Dict = image[x_coordinate][y_coordinate] A_ : List[str] = lbp.get_neighbors_pixel( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ : Any = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): A_ : Optional[Any] = lbp.local_binary_value(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert lbp_image.any()
370
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self )->Optional[int]: '''simple docstring''' torch.manual_seed(0 ) A_ : List[Any] = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def _snake_case ( self )->List[Any]: '''simple docstring''' torch.manual_seed(0 ) A_ : Dict = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def _snake_case ( self )->int: '''simple docstring''' torch.manual_seed(0 ) A_ : Optional[int] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) A_ : Tuple = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def _snake_case ( self )->str: '''simple docstring''' A_ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator A_ : Any = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) A_ : Union[str, Any] = DDPMScheduler() A_ : Any = AudioDiffusionPipeline(vqvae=_SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 ) A_ : str = pipe(generator=_SCREAMING_SNAKE_CASE , steps=4 ) A_ : Optional[int] = output.audios[0] A_ : Union[str, Any] = output.images[0] A_ : List[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 ) A_ : Dict = pipe(generator=_SCREAMING_SNAKE_CASE , steps=4 , return_dict=_SCREAMING_SNAKE_CASE ) A_ : Tuple = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) A_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] A_ : List[str] = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] A_ : Optional[Any] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 A_ : Any = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) A_ : Optional[Any] = DDIMScheduler() A_ : Optional[int] = self.dummy_vqvae_and_unet A_ : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) A_ : Tuple = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) np.random.seed(0 ) A_ : Dict = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) A_ : int = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 ) A_ : List[str] = pipe(raw_audio=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) A_ : Optional[Any] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) A_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] A_ : Optional[int] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 A_ : str = self.dummy_unet_condition A_ : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_SCREAMING_SNAKE_CASE , mel=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) np.random.seed(0 ) A_ : str = torch.rand((1, 1, 10) ) A_ : Optional[Any] = pipe(generator=_SCREAMING_SNAKE_CASE , encoding=_SCREAMING_SNAKE_CASE ) A_ : int = output.images[0] A_ : Optional[int] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] A_ : str = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self )->Any: '''simple docstring''' A_ : Optional[int] = torch_device A_ : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) A_ : Dict = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Dict = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 ) A_ : Union[str, Any] = pipe(generator=_SCREAMING_SNAKE_CASE ) A_ : str = output.audios[0] A_ : int = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] A_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] A_ : Tuple = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
65
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __UpperCAmelCase = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } __UpperCAmelCase = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } __UpperCAmelCase = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } __UpperCAmelCase = { '''num_train_timesteps''': 40, '''sigma_min''': 0.0_02, '''sigma_max''': 80.0, } __UpperCAmelCase = { '''num_train_timesteps''': 201, '''sigma_min''': 0.0_02, '''sigma_max''': 80.0, } __UpperCAmelCase = { '''num_train_timesteps''': 151, '''sigma_min''': 0.0_02, '''sigma_max''': 80.0, } def UpperCamelCase ( snake_case__ : Optional[int] ) -> Tuple: if isinstance(snake_case__ , snake_case__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Tuple=False ) -> List[Any]: UpperCamelCase : Union[str, Any] = checkpoint[F"""{old_prefix}.in_layers.0.weight"""] UpperCamelCase : Union[str, Any] = checkpoint[F"""{old_prefix}.in_layers.0.bias"""] UpperCamelCase : Optional[int] = checkpoint[F"""{old_prefix}.in_layers.2.weight"""] UpperCamelCase : int = checkpoint[F"""{old_prefix}.in_layers.2.bias"""] UpperCamelCase : str = checkpoint[F"""{old_prefix}.emb_layers.1.weight"""] UpperCamelCase : int = checkpoint[F"""{old_prefix}.emb_layers.1.bias"""] UpperCamelCase : Dict = checkpoint[F"""{old_prefix}.out_layers.0.weight"""] UpperCamelCase : int = checkpoint[F"""{old_prefix}.out_layers.0.bias"""] UpperCamelCase : Tuple = checkpoint[F"""{old_prefix}.out_layers.3.weight"""] UpperCamelCase : Optional[int] = checkpoint[F"""{old_prefix}.out_layers.3.bias"""] if has_skip: UpperCamelCase : List[Any] = checkpoint[F"""{old_prefix}.skip_connection.weight"""] UpperCamelCase : Any = checkpoint[F"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : List[Any]=None ) -> Tuple: UpperCamelCase , UpperCamelCase , UpperCamelCase : int = checkpoint[F"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) UpperCamelCase , UpperCamelCase , UpperCamelCase : str = checkpoint[F"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) UpperCamelCase : int = checkpoint[F"""{old_prefix}.norm.weight"""] UpperCamelCase : Union[str, Any] = checkpoint[F"""{old_prefix}.norm.bias"""] UpperCamelCase : Union[str, Any] = weight_q.squeeze(-1 ).squeeze(-1 ) UpperCamelCase : int = bias_q.squeeze(-1 ).squeeze(-1 ) UpperCamelCase : str = weight_k.squeeze(-1 ).squeeze(-1 ) UpperCamelCase : str = bias_k.squeeze(-1 ).squeeze(-1 ) UpperCamelCase : List[str] = weight_v.squeeze(-1 ).squeeze(-1 ) UpperCamelCase : Any = bias_v.squeeze(-1 ).squeeze(-1 ) UpperCamelCase : Union[str, Any] = ( checkpoint[F"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) UpperCamelCase : Any = checkpoint[F"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase ( snake_case__ : str , snake_case__ : List[str] ) -> List[Any]: UpperCamelCase : List[Any] = torch.load(snake_case__ , map_location='cpu' ) UpperCamelCase : Dict = {} UpperCamelCase : List[str] = checkpoint['time_embed.0.weight'] UpperCamelCase : Tuple = checkpoint['time_embed.0.bias'] UpperCamelCase : str = checkpoint['time_embed.2.weight'] UpperCamelCase : Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: UpperCamelCase : Any = checkpoint['label_emb.weight'] UpperCamelCase : List[str] = checkpoint['input_blocks.0.0.weight'] UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] UpperCamelCase : Dict = unet_config['down_block_types'] UpperCamelCase : List[Any] = unet_config['layers_per_block'] UpperCamelCase : Optional[Any] = unet_config['attention_head_dim'] UpperCamelCase : Optional[Any] = unet_config['block_out_channels'] UpperCamelCase : Tuple = 1 UpperCamelCase : Dict = channels_list[0] for i, layer_type in enumerate(snake_case__ ): UpperCamelCase : Any = channels_list[i] UpperCamelCase : Dict = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(snake_case__ ): UpperCamelCase : Optional[Any] = F"""down_blocks.{i}.resnets.{j}""" UpperCamelCase : Tuple = F"""input_blocks.{current_layer}.0""" UpperCamelCase : List[str] = True if j == 0 and downsample_block_has_skip else False UpperCamelCase : List[str] = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(snake_case__ ): UpperCamelCase : List[str] = F"""down_blocks.{i}.resnets.{j}""" UpperCamelCase : Optional[Any] = F"""input_blocks.{current_layer}.0""" UpperCamelCase : Union[str, Any] = True if j == 0 and downsample_block_has_skip else False UpperCamelCase : List[Any] = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) UpperCamelCase : Optional[int] = F"""down_blocks.{i}.attentions.{j}""" UpperCamelCase : int = F"""input_blocks.{current_layer}.1""" UpperCamelCase : List[str] = convert_attention( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: UpperCamelCase : Tuple = F"""down_blocks.{i}.downsamplers.0""" UpperCamelCase : int = F"""input_blocks.{current_layer}.0""" UpperCamelCase : str = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) current_layer += 1 UpperCamelCase : Any = current_channels # hardcoded the mid-block for now UpperCamelCase : List[Any] = 'mid_block.resnets.0' UpperCamelCase : Dict = 'middle_block.0' UpperCamelCase : Optional[int] = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase : int = 'mid_block.attentions.0' UpperCamelCase : Optional[int] = 'middle_block.1' UpperCamelCase : List[Any] = convert_attention(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase : Optional[Any] = 'mid_block.resnets.1' UpperCamelCase : Union[str, Any] = 'middle_block.2' UpperCamelCase : str = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase : Optional[int] = 0 UpperCamelCase : str = unet_config['up_block_types'] for i, layer_type in enumerate(snake_case__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): UpperCamelCase : Tuple = F"""up_blocks.{i}.resnets.{j}""" UpperCamelCase : Tuple = F"""output_blocks.{current_layer}.0""" UpperCamelCase : Any = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: UpperCamelCase : Union[str, Any] = F"""up_blocks.{i}.upsamplers.0""" UpperCamelCase : Optional[int] = F"""output_blocks.{current_layer-1}.1""" UpperCamelCase : int = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): UpperCamelCase : Tuple = F"""up_blocks.{i}.resnets.{j}""" UpperCamelCase : Tuple = F"""output_blocks.{current_layer}.0""" UpperCamelCase : int = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) UpperCamelCase : int = F"""up_blocks.{i}.attentions.{j}""" UpperCamelCase : List[Any] = F"""output_blocks.{current_layer}.1""" UpperCamelCase : Tuple = convert_attention( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: UpperCamelCase : List[str] = F"""up_blocks.{i}.upsamplers.0""" UpperCamelCase : Tuple = F"""output_blocks.{current_layer-1}.2""" UpperCamelCase : List[Any] = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase : Union[str, Any] = checkpoint['out.0.weight'] UpperCamelCase : List[str] = checkpoint['out.0.bias'] UpperCamelCase : Optional[Any] = checkpoint['out.2.weight'] UpperCamelCase : List[str] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = strabool(args.class_cond) __UpperCAmelCase = os.path.basename(args.unet_path) print(F"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: __UpperCAmelCase = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __UpperCAmelCase = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __UpperCAmelCase = TEST_UNET_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: __UpperCAmelCase = None __UpperCAmelCase = con_pt_to_diffuser(args.unet_path, unet_config) __UpperCAmelCase = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __UpperCAmelCase = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __UpperCAmelCase = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __UpperCAmelCase = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") __UpperCAmelCase = CMStochasticIterativeScheduler(**scheduler_config) __UpperCAmelCase = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
119
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=[10, 20, 30, 40], SCREAMING_SNAKE_CASE_=[2, 2, 3, 2], SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=["stage2", "stage3", "stage4"], SCREAMING_SNAKE_CASE_=[2, 3, 4], SCREAMING_SNAKE_CASE_=None, ) -> Optional[int]: UpperCamelCase : Dict = parent UpperCamelCase : Optional[Any] = batch_size UpperCamelCase : Union[str, Any] = image_size UpperCamelCase : Union[str, Any] = num_channels UpperCamelCase : List[Any] = num_stages UpperCamelCase : Any = hidden_sizes UpperCamelCase : Optional[int] = depths UpperCamelCase : Optional[int] = is_training UpperCamelCase : List[str] = use_labels UpperCamelCase : Dict = intermediate_size UpperCamelCase : List[Any] = hidden_act UpperCamelCase : Union[str, Any] = num_labels UpperCamelCase : str = initializer_range UpperCamelCase : List[str] = out_features UpperCamelCase : List[str] = out_indices UpperCamelCase : str = scope def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Any = None if self.use_labels: UpperCamelCase : List[Any] = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase : List[Any] = self.get_config() return config, pixel_values, labels def snake_case_ ( self ) -> Any: return ConvNextConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Dict = ConvNextModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : str = model(SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase : Optional[int] = ConvNextForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : int = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase : Any = None UpperCamelCase : List[str] = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def snake_case_ ( self ) -> int: UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = config_and_inputs UpperCamelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : List[Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) UpperCAmelCase__ : Union[str, Any] = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Dict = True UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Tuple = False def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = ConvNextModelTester(self ) UpperCamelCase : int = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def snake_case_ ( self ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def snake_case_ ( self ) -> str: pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def snake_case_ ( self ) -> str: pass def snake_case_ ( self ) -> Any: UpperCamelCase , UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : List[Any] = [*signature.parameters.keys()] UpperCamelCase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase : int = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) UpperCamelCase , UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : str = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> Tuple: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Union[str, Any] = ConvNextModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> int: UpperCamelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def snake_case_ ( self ) -> str: UpperCamelCase : Dict = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : Any = prepare_img() UpperCamelCase : List[str] = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Optional[Any] = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase , a__ ): UpperCAmelCase__ : Tuple = (ConvNextBackbone,) if is_torch_available() else () UpperCAmelCase__ : List[str] = ConvNextConfig UpperCAmelCase__ : Tuple = False def snake_case_ ( self ) -> int: UpperCamelCase : List[Any] = ConvNextModelTester(self )
119
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class a : def __init__( self : Optional[Any] , lowercase_ : Dict , lowercase_ : Optional[int]=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : str=True , lowercase_ : Optional[int]=True , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=True , lowercase_ : List[Any]=99 , lowercase_ : Any=32 , lowercase_ : Dict=2 , lowercase_ : List[str]=4 , lowercase_ : str=37 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : str=512 , lowercase_ : Union[str, Any]=16 , lowercase_ : Tuple=2 , lowercase_ : int=0.02 , lowercase_ : Any=3 , lowercase_ : Any=4 , lowercase_ : Dict=None , ): snake_case_ = parent snake_case_ = 13 snake_case_ = 7 snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = 99 snake_case_ = 32 snake_case_ = 2 snake_case_ = 4 snake_case_ = 37 snake_case_ = '''gelu''' snake_case_ = 0.1 snake_case_ = 0.1 snake_case_ = 512 snake_case_ = 16 snake_case_ = 2 snake_case_ = 0.02 snake_case_ = 3 snake_case_ = 4 snake_case_ = None def A_ ( self : Any ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : int , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Union[str, Any] ): snake_case_ = TFRoFormerModel(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = [input_ids, input_mask] snake_case_ = model(lowercase_ ) snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : List[str] ): snake_case_ = True snake_case_ = TFRoFormerForCausalLM(config=lowercase_ ) snake_case_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } snake_case_ = model(lowercase_ )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A_ ( self : Optional[Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Any ): snake_case_ = TFRoFormerForMaskedLM(config=lowercase_ ) snake_case_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : str , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : int ): snake_case_ = self.num_labels snake_case_ = TFRoFormerForSequenceClassification(config=lowercase_ ) snake_case_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : List[Any] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Dict ): snake_case_ = self.num_choices snake_case_ = TFRoFormerForMultipleChoice(config=lowercase_ ) snake_case_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : Any , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Any , lowercase_ : Dict , lowercase_ : str , lowercase_ : Any ): snake_case_ = self.num_labels snake_case_ = TFRoFormerForTokenClassification(config=lowercase_ ) snake_case_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ): snake_case_ = TFRoFormerForQuestionAnswering(config=lowercase_ ) snake_case_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Any ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def A_ ( self : int , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A_ ( self : List[str] ): snake_case_ = TFRoFormerModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def A_ ( self : Tuple ): self.config_tester.run_common_tests() def A_ ( self : List[str] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def A_ ( self : Any ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def A_ ( self : int ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowercase_ ) def A_ ( self : Dict ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ ) def A_ ( self : List[str] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def A_ ( self : str ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def A_ ( self : int ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def A_ ( self : List[Any] ): snake_case_ = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(lowercase_ ) @require_tf class a ( unittest.TestCase ): @slow def A_ ( self : Optional[Any] ): snake_case_ = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) snake_case_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case_ = model(lowercase_ )[0] # TODO Replace vocab size snake_case_ = 5_0000 snake_case_ = [1, 6, vocab_size] self.assertEqual(output.shape , lowercase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. snake_case_ = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1e-4 ) @require_tf class a ( unittest.TestCase ): snake_case_ = 1e-4 def A_ ( self : Tuple ): snake_case_ = tf.constant([[4, 10]] ) snake_case_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) snake_case_ = emba(input_ids.shape ) snake_case_ = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(lowercase_ , lowercase_ , atol=self.tolerance ) def A_ ( self : Any ): snake_case_ = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) snake_case_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) snake_case_ = emba.weight[:3, :5] tf.debugging.assert_near(lowercase_ , lowercase_ , atol=self.tolerance ) @require_tf class a ( unittest.TestCase ): snake_case_ = 1e-4 def A_ ( self : Optional[int] ): # 2,12,16,64 snake_case_ = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 snake_case_ = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 snake_case_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) snake_case_ = embed_positions([2, 16, 768] )[None, None, :, :] snake_case_ ,snake_case_ = TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowercase_ , lowercase_ , lowercase_ ) snake_case_ = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) snake_case_ = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowercase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowercase_ , atol=self.tolerance )
72
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList a : str = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class a ( _lowerCamelCase ): def __init__( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Optional[int]=None , lowercase_ : str=1 ): snake_case_ = tokenizer snake_case_ = dataset snake_case_ = len(lowercase_ ) if n_tasks is None else n_tasks snake_case_ = n_copies def __iter__( self : Optional[Any] ): snake_case_ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) snake_case_ = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a ( _lowerCamelCase ): def __init__( self : str , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int ): snake_case_ = start_length snake_case_ = eof_strings snake_case_ = tokenizer def __call__( self : List[Any] , lowercase_ : str , lowercase_ : Optional[int] , **lowercase_ : List[str] ): snake_case_ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) snake_case_ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowercase_ ) def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' snake_case_ = re.split('''(%s)''' % '''|'''.join(__UpperCAmelCase ), __UpperCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=20, **__UpperCAmelCase ) -> str: '''simple docstring''' snake_case_ = defaultdict(__UpperCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__UpperCAmelCase ) ): with torch.no_grad(): snake_case_ = batch['''ids'''].shape[-1] snake_case_ = accelerator.unwrap_model(__UpperCAmelCase ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']], num_return_sequences=__UpperCAmelCase, **__UpperCAmelCase ) # each task is generated batch_size times snake_case_ = batch['''task_id'''].repeat(__UpperCAmelCase ) snake_case_ = accelerator.pad_across_processes( __UpperCAmelCase, dim=1, pad_index=tokenizer.pad_token_id ) snake_case_ ,snake_case_ = accelerator.gather((generated_tokens, generated_tasks) ) snake_case_ = generated_tokens.cpu().numpy() snake_case_ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__UpperCAmelCase, __UpperCAmelCase ): gen_token_dict[task].append(__UpperCAmelCase ) snake_case_ = [[] for _ in range(__UpperCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: snake_case_ = tokenizer.decode(__UpperCAmelCase, skip_special_tokens=__UpperCAmelCase, clean_up_tokenization_spaces=__UpperCAmelCase ) code_gens[task].append(remove_last_block(__UpperCAmelCase ) ) return code_gens def __magic_name__ ( ) -> Tuple: '''simple docstring''' snake_case_ = HfArgumentParser(__UpperCAmelCase ) snake_case_ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric snake_case_ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing snake_case_ = '''false''' if args.num_workers is None: snake_case_ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate snake_case_ = Accelerator() set_seed(args.seed, device_specific=__UpperCAmelCase ) # Load model and tokenizer snake_case_ = AutoTokenizer.from_pretrained(args.model_ckpt ) snake_case_ = tokenizer.eos_token snake_case_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings snake_case_ = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0, __UpperCAmelCase, __UpperCAmelCase )] ), } # Load evaluation dataset and metric snake_case_ = load_dataset('''openai_humaneval''' ) snake_case_ = load_metric('''code_eval''' ) snake_case_ = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) snake_case_ = args.n_samples // args.batch_size snake_case_ = TokenizedDataset(__UpperCAmelCase, human_eval['''test'''], n_copies=__UpperCAmelCase, n_tasks=__UpperCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences snake_case_ = DataLoader(__UpperCAmelCase, batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: snake_case_ = code_eval_metric.compute(references=[''''''], predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception snake_case_ ,snake_case_ = accelerator.prepare(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ = complete_code( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, n_tasks=__UpperCAmelCase, batch_size=args.batch_size, **__UpperCAmelCase, ) if accelerator.is_main_process: snake_case_ = [] for task in tqdm(range(__UpperCAmelCase ) ): snake_case_ = human_eval['''test'''][task]['''test'''] snake_case_ = F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric snake_case_ ,snake_case_ = code_eval_metric.compute( references=__UpperCAmelCase, predictions=__UpperCAmelCase, num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file, '''w''' ) as fp: json.dump(__UpperCAmelCase, __UpperCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
72
1
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def UpperCamelCase_ ( A__ : str ): '''simple docstring''' lowerCAmelCase_, lowerCAmelCase_ : int = analyze_text(A__ ) lowerCAmelCase_ : Dict = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. lowerCAmelCase_ : int = sum(single_char_strings.values() ) # one length string lowerCAmelCase_ : List[str] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCAmelCase_ : Dict = single_char_strings[ch] lowerCAmelCase_ : Optional[int] = my_str / all_sum my_fir_sum += prob * math.loga(A__ ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string lowerCAmelCase_ : Union[str, Any] = sum(two_char_strings.values() ) lowerCAmelCase_ : Dict = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCAmelCase_ : Optional[Any] = cha + cha if sequence in two_char_strings: lowerCAmelCase_ : List[Any] = two_char_strings[sequence] lowerCAmelCase_ : List[str] = int(A__ ) / all_sum my_sec_sum += prob * math.loga(A__ ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def UpperCamelCase_ ( A__ : str ): '''simple docstring''' lowerCAmelCase_ : Dict = Counter() # type: ignore lowerCAmelCase_ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(A__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def UpperCamelCase_ ( ): '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
120
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __A : Optional[int] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __A : int = "UperNetConfig" class __snake_case ( nn.Module): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : Union[int, Tuple[int, int]] , lowerCamelCase : Union[int, Tuple[int, int], str] = 0 , lowerCamelCase : bool = False , lowerCamelCase : Union[int, Tuple[int, int]] = 1 , ) -> None: super().__init__() lowerCAmelCase_ : int = nn.Convad( in_channels=lowerCamelCase , out_channels=lowerCamelCase , kernel_size=lowerCamelCase , padding=lowerCamelCase , bias=lowerCamelCase , dilation=lowerCamelCase , ) lowerCAmelCase_ : Dict = nn.BatchNormad(lowerCamelCase ) lowerCAmelCase_ : Dict = nn.ReLU() def __lowercase ( self : Tuple , lowerCamelCase : torch.Tensor ) -> torch.Tensor: lowerCAmelCase_ : Optional[Any] = self.conv(lowerCamelCase ) lowerCAmelCase_ : Tuple = self.batch_norm(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = self.activation(lowerCamelCase ) return output class __snake_case ( nn.Module): """simple docstring""" def __init__( self : List[str] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ) -> None: super().__init__() lowerCAmelCase_ : str = [ nn.AdaptiveAvgPoolad(lowerCamelCase ), UperNetConvModule(lowerCamelCase , lowerCamelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(lowerCamelCase ) , lowerCamelCase ) def __lowercase ( self : List[str] , lowerCamelCase : torch.Tensor ) -> torch.Tensor: lowerCAmelCase_ : List[Any] = input for layer in self.layers: lowerCAmelCase_ : Tuple = layer(lowerCamelCase ) return hidden_state class __snake_case ( nn.Module): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase : Tuple[int, ...] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : bool ) -> None: super().__init__() lowerCAmelCase_ : List[str] = pool_scales lowerCAmelCase_ : Union[str, Any] = align_corners lowerCAmelCase_ : Tuple = in_channels lowerCAmelCase_ : List[str] = channels lowerCAmelCase_ : Tuple = [] for i, pool_scale in enumerate(lowerCamelCase ): lowerCAmelCase_ : Optional[int] = UperNetPyramidPoolingBlock(pool_scale=lowerCamelCase , in_channels=lowerCamelCase , channels=lowerCamelCase ) self.blocks.append(lowerCamelCase ) self.add_module(str(lowerCamelCase ) , lowerCamelCase ) def __lowercase ( self : Optional[Any] , lowerCamelCase : torch.Tensor ) -> List[torch.Tensor]: lowerCAmelCase_ : Any = [] for ppm in self.blocks: lowerCAmelCase_ : Any = ppm(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = nn.functional.interpolate( lowerCamelCase , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(lowerCamelCase ) return ppm_outs class __snake_case ( nn.Module): """simple docstring""" def __init__( self : int , lowerCamelCase : List[str] , lowerCamelCase : List[Any] ) -> Dict: super().__init__() lowerCAmelCase_ : List[Any] = config lowerCAmelCase_ : Any = config.pool_scales # e.g. (1, 2, 3, 6) lowerCAmelCase_ : Dict = in_channels lowerCAmelCase_ : Any = config.hidden_size lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowerCAmelCase_ : Dict = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowerCAmelCase_ : Union[str, Any] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowerCAmelCase_ : Dict = nn.ModuleList() lowerCAmelCase_ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowerCAmelCase_ : List[str] = UperNetConvModule(lowerCamelCase , self.channels , kernel_size=1 ) lowerCAmelCase_ : Optional[int] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(lowerCamelCase ) self.fpn_convs.append(lowerCamelCase ) lowerCAmelCase_ : List[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def __lowercase ( self : List[Any] ) -> Any: self.apply(self._init_weights ) def __lowercase ( self : Optional[int] , lowerCamelCase : str ) -> List[Any]: if isinstance(lowerCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __lowercase ( self : List[str] , lowerCamelCase : Optional[Any] ) -> Any: lowerCAmelCase_ : Union[str, Any] = inputs[-1] lowerCAmelCase_ : List[str] = [x] psp_outs.extend(self.psp_modules(lowerCamelCase ) ) lowerCAmelCase_ : str = torch.cat(lowerCamelCase , dim=1 ) lowerCAmelCase_ : str = self.bottleneck(lowerCamelCase ) return output def __lowercase ( self : Dict , lowerCamelCase : torch.Tensor ) -> torch.Tensor: # build laterals lowerCAmelCase_ : Optional[int] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(lowerCamelCase ) ) # build top-down path lowerCAmelCase_ : Tuple = len(lowerCamelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCAmelCase_ : Union[str, Any] = laterals[i - 1].shape[2:] lowerCAmelCase_ : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=lowerCamelCase , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs lowerCAmelCase_ : Optional[Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCAmelCase_ : Union[str, Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) lowerCAmelCase_ : Dict = torch.cat(lowerCamelCase , dim=1 ) lowerCAmelCase_ : Any = self.fpn_bottleneck(lowerCamelCase ) lowerCAmelCase_ : str = self.classifier(lowerCamelCase ) return output class __snake_case ( nn.Module): """simple docstring""" def __init__( self : List[str] , lowerCamelCase : Dict , lowerCamelCase : int = 2 , lowerCamelCase : int = 3 , lowerCamelCase : Union[int, Tuple[int, int]] = 1 ) -> None: super().__init__() lowerCAmelCase_ : List[Any] = config lowerCAmelCase_ : Dict = config.auxiliary_in_channels lowerCAmelCase_ : Optional[Any] = config.auxiliary_channels lowerCAmelCase_ : Dict = config.auxiliary_num_convs lowerCAmelCase_ : int = config.auxiliary_concat_input lowerCAmelCase_ : List[Any] = in_index lowerCAmelCase_ : List[Any] = (kernel_size // 2) * dilation lowerCAmelCase_ : Tuple = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=lowerCamelCase , padding=lowerCamelCase , dilation=lowerCamelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=lowerCamelCase , padding=lowerCamelCase , dilation=lowerCamelCase ) ) if self.num_convs == 0: lowerCAmelCase_ : Optional[Any] = nn.Identity() else: lowerCAmelCase_ : List[str] = nn.Sequential(*lowerCamelCase ) if self.concat_input: lowerCAmelCase_ : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=lowerCamelCase , padding=kernel_size // 2 ) lowerCAmelCase_ : Any = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def __lowercase ( self : int ) -> List[Any]: self.apply(self._init_weights ) def __lowercase ( self : Union[str, Any] , lowerCamelCase : Optional[Any] ) -> Optional[Any]: if isinstance(lowerCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __lowercase ( self : Any , lowerCamelCase : torch.Tensor ) -> torch.Tensor: # just take the relevant feature maps lowerCAmelCase_ : Dict = encoder_hidden_states[self.in_index] lowerCAmelCase_ : List[str] = self.convs(lowerCamelCase ) if self.concat_input: lowerCAmelCase_ : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowerCAmelCase_ : Union[str, Any] = self.classifier(lowerCamelCase ) return output class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = UperNetConfig lowercase = 'pixel_values' lowercase = True def __lowercase ( self : List[str] , lowerCamelCase : Dict ) -> Optional[Any]: if isinstance(lowerCamelCase , lowerCamelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def __lowercase ( self : Optional[int] ) -> int: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def __lowercase ( self : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Any=False ) -> Optional[int]: if isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : str = value __A : Union[str, Any] = R"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __A : str = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' ,_SCREAMING_SNAKE_CASE ,) class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __init__( self : Any , lowerCamelCase : List[Any] ) -> Union[str, Any]: super().__init__(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowerCAmelCase_ : Optional[Any] = UperNetHead(lowerCamelCase , in_channels=self.backbone.channels ) lowerCAmelCase_ : List[Any] = UperNetFCNHead(lowerCamelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC ) def __lowercase ( self : Any , lowerCamelCase : Optional[torch.Tensor] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[torch.Tensor] = None , lowerCamelCase : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]: lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions lowerCAmelCase_ : Dict = self.backbone.forward_with_filtered_kwargs( lowerCamelCase , output_hidden_states=lowerCamelCase , output_attentions=lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = outputs.feature_maps lowerCAmelCase_ : Dict = self.decode_head(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = nn.functional.interpolate(lowerCamelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=lowerCamelCase ) lowerCAmelCase_ : Tuple = None if self.auxiliary_head is not None: lowerCAmelCase_ : Optional[int] = self.auxiliary_head(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = nn.functional.interpolate( lowerCamelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=lowerCamelCase ) lowerCAmelCase_ : str = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss lowerCAmelCase_ : str = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowerCAmelCase_ : int = loss_fct(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : List[str] = loss_fct(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : str = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowerCAmelCase_ : int = (logits,) + outputs[1:] else: lowerCAmelCase_ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=lowerCamelCase , logits=lowerCamelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
120
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Any = { """xlm-mlm-en-2048""": """https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json""", """xlm-mlm-ende-1024""": """https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json""", """xlm-mlm-enfr-1024""": """https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json""", """xlm-mlm-enro-1024""": """https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json""", """xlm-mlm-tlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json""", """xlm-mlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json""", """xlm-clm-enfr-1024""": """https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json""", """xlm-clm-ende-1024""": """https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json""", """xlm-mlm-17-1280""": """https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json""", """xlm-mlm-100-1280""": """https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : List[str] = "xlm" __lowerCamelCase : Tuple = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self, lowerCamelCase__=3_0145, lowerCamelCase__=2048, lowerCamelCase__=12, lowerCamelCase__=16, lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=True, lowerCamelCase__=False, lowerCamelCase__=False, lowerCamelCase__=False, lowerCamelCase__=1, lowerCamelCase__=True, lowerCamelCase__=512, lowerCamelCase__=2048**-0.5, lowerCamelCase__=1e-12, lowerCamelCase__=0.02, lowerCamelCase__=0, lowerCamelCase__=1, lowerCamelCase__=2, lowerCamelCase__=3, lowerCamelCase__=5, lowerCamelCase__=True, lowerCamelCase__="first", lowerCamelCase__=True, lowerCamelCase__=None, lowerCamelCase__=True, lowerCamelCase__=0.1, lowerCamelCase__=5, lowerCamelCase__=5, lowerCamelCase__=0, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__=0, **lowerCamelCase__, ): A : Dict = vocab_size A : int = emb_dim A : str = n_layers A : Union[str, Any] = n_heads A : Optional[int] = dropout A : Union[str, Any] = attention_dropout A : Optional[Any] = gelu_activation A : Dict = sinusoidal_embeddings A : int = causal A : Optional[Any] = asm A : Any = n_langs A : List[str] = use_lang_emb A : Union[str, Any] = layer_norm_eps A : str = bos_index A : int = eos_index A : Tuple = pad_index A : str = unk_index A : Optional[Any] = mask_index A : Union[str, Any] = is_encoder A : Tuple = max_position_embeddings A : List[str] = embed_init_std A : Tuple = init_std A : Tuple = summary_type A : int = summary_use_proj A : List[Any] = summary_activation A : Optional[Any] = summary_proj_to_labels A : Optional[Any] = summary_first_dropout A : Optional[int] = start_n_top A : Optional[Any] = end_n_top A : List[str] = mask_token_id A : Tuple = lang_id if "n_words" in kwargs: A : List[str] = kwargs["""n_words"""] super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, **lowerCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ): if self.task == "multiple-choice": A : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
115
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Dict = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : int = "altclip_text_model" def __init__( self, lowerCamelCase__=25_0002, lowerCamelCase__=1024, lowerCamelCase__=24, lowerCamelCase__=16, lowerCamelCase__=4096, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=514, lowerCamelCase__=1, lowerCamelCase__=0.02, lowerCamelCase__=0.02, lowerCamelCase__=1e-05, lowerCamelCase__=1, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__="absolute", lowerCamelCase__=True, lowerCamelCase__=768, **lowerCamelCase__, ): super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__, **lowerCamelCase__ ) A : Union[str, Any] = vocab_size A : Dict = hidden_size A : Union[str, Any] = num_hidden_layers A : List[str] = num_attention_heads A : str = hidden_act A : Dict = intermediate_size A : List[str] = hidden_dropout_prob A : Optional[Any] = attention_probs_dropout_prob A : Tuple = max_position_embeddings A : Optional[Any] = type_vocab_size A : Optional[Any] = initializer_range A : Optional[int] = initializer_factor A : Tuple = layer_norm_eps A : List[str] = position_embedding_type A : int = use_cache A : int = project_dim class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[Any] = "altclip_vision_model" def __init__( self, lowerCamelCase__=768, lowerCamelCase__=3072, lowerCamelCase__=512, lowerCamelCase__=12, lowerCamelCase__=12, lowerCamelCase__=3, lowerCamelCase__=224, lowerCamelCase__=32, lowerCamelCase__="quick_gelu", lowerCamelCase__=1e-5, lowerCamelCase__=0.0, lowerCamelCase__=0.02, lowerCamelCase__=1.0, **lowerCamelCase__, ): super().__init__(**lowerCamelCase__ ) A : Optional[Any] = hidden_size A : Optional[int] = intermediate_size A : Union[str, Any] = projection_dim A : str = num_hidden_layers A : int = num_attention_heads A : Optional[Any] = num_channels A : Tuple = patch_size A : List[Any] = image_size A : Optional[int] = initializer_range A : Union[str, Any] = initializer_factor A : List[str] = attention_dropout A : int = layer_norm_eps A : str = hidden_act @classmethod def _lowerCAmelCase ( cls, lowerCamelCase__, **lowerCamelCase__ ): cls._set_token_in_kwargs(lowerCamelCase__ ) A , A : Optional[Any] = cls.get_config_dict(lowerCamelCase__, **lowerCamelCase__ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": A : Any = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase__, **lowerCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : List[Any] = "altclip" __lowerCamelCase : List[Any] = True def __init__( self, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__=768, lowerCamelCase__=2.6592, **lowerCamelCase__ ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). A : Dict = kwargs.pop("""text_config_dict""", lowerCamelCase__ ) A : str = kwargs.pop("""vision_config_dict""", lowerCamelCase__ ) super().__init__(**lowerCamelCase__ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: A : Dict = {} # This is the complete result when using `text_config_dict`. A : str = AltCLIPTextConfig(**lowerCamelCase__ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: A : Optional[Any] = ( f'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' f'''The value `text_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: A : Optional[int] = ( f'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' f'''value `text_config["{key}"]` will be overriden.''' ) logger.warning(lowerCamelCase__ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: A : int = {} # This is the complete result when using `vision_config_dict`. A : Union[str, Any] = AltCLIPVisionConfig(**lowerCamelCase__ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: A : Optional[int] = { str(lowerCamelCase__ ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: A : Optional[int] = ( f'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' f'''values. The value `vision_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: A : Any = ( f'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' f'''The value `vision_config["{key}"]` will be overriden.''' ) logger.warning(lowerCamelCase__ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: A : Tuple = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: A : Union[str, Any] = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) A : Dict = AltCLIPTextConfig(**lowerCamelCase__ ) A : Optional[int] = AltCLIPVisionConfig(**lowerCamelCase__ ) A : List[str] = projection_dim A : Any = logit_scale_init_value A : Tuple = 1.0 @classmethod def _lowerCAmelCase ( cls, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ): return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : str = copy.deepcopy(self.__dict__ ) A : Any = self.text_config.to_dict() A : List[str] = self.vision_config.to_dict() A : Union[str, Any] = self.__class__.model_type return output
115
1
'''simple docstring''' from math import sqrt def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Optional[Any] = 0 for i in range(1 , int(sqrt(_lowerCAmelCase ) + 1 ) ): if n % i == 0 and i != sqrt(_lowerCAmelCase ): total += i + n // i elif i == sqrt(_lowerCAmelCase ): total += i return total - n def __snake_case( _lowerCAmelCase = 10_000 ) -> int: snake_case__ : Optional[Any] = sum( i for i in range(1 , _lowerCAmelCase ) if sum_of_divisors(sum_of_divisors(_lowerCAmelCase ) ) == i and sum_of_divisors(_lowerCAmelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
35
'''simple docstring''' import string from math import logaa def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : List[str] = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) snake_case__ : List[str] = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[int, int]: snake_case__ : Dict = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' snake_case__ : Any = corpus_without_punctuation.split("""\n""" ) snake_case__ : int = term.lower() return (len([doc for doc in docs if term in doc] ), len(_lowerCAmelCase )) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> float: if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> float: return round(tf * idf , 3 )
35
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class A : '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int=13 , __lowerCAmelCase : int=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Union[str, Any]=99 , __lowerCAmelCase : Any=32 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Union[str, Any]=37 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : Optional[int]=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[Any]=0.0_2 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : List[str]=None , ) -> Union[str, Any]: """simple docstring""" A__ = parent A__ = 13 A__ = 7 A__ = True A__ = True A__ = True A__ = True A__ = 99 A__ = 32 A__ = 2 A__ = 4 A__ = 37 A__ = """gelu""" A__ = 0.1 A__ = 0.1 A__ = 5_12 A__ = 16 A__ = 2 A__ = 0.0_2 A__ = 3 A__ = 4 A__ = None def a_ ( self : str ) -> List[Any]: """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int ) -> Tuple: """simple docstring""" A__ = TFRoFormerModel(config=__lowerCAmelCase ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ = [input_ids, input_mask] A__ = model(__lowerCAmelCase ) A__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" A__ = True A__ = TFRoFormerForCausalLM(config=__lowerCAmelCase ) A__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A__ = model(__lowerCAmelCase )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def a_ ( self : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ) -> List[Any]: """simple docstring""" A__ = TFRoFormerForMaskedLM(config=__lowerCAmelCase ) A__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" A__ = self.num_labels A__ = TFRoFormerForSequenceClassification(config=__lowerCAmelCase ) A__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" A__ = self.num_choices A__ = TFRoFormerForMultipleChoice(config=__lowerCAmelCase ) A__ = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) A__ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } A__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str ) -> Tuple: """simple docstring""" A__ = self.num_labels A__ = TFRoFormerForTokenClassification(config=__lowerCAmelCase ) A__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" A__ = TFRoFormerForQuestionAnswering(config=__lowerCAmelCase ) A__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class A (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __lowerCamelCase : Optional[Any] = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[str] = False def a_ ( self : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def a_ ( self : Dict ) -> str: """simple docstring""" A__ = TFRoFormerModelTester(self ) A__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def a_ ( self : str ) -> int: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : Tuple ) -> Dict: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def a_ ( self : Any ) -> Dict: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def a_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__lowerCAmelCase ) def a_ ( self : str ) -> str: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase ) def a_ ( self : Tuple ) -> Any: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def a_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def a_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def a_ ( self : Dict ) -> str: """simple docstring""" A__ = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class A (unittest.TestCase ): '''simple docstring''' @slow def a_ ( self : Optional[int] ) -> str: """simple docstring""" A__ = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) A__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A__ = model(__lowerCAmelCase )[0] # TODO Replace vocab size A__ = 5_00_00 A__ = [1, 6, vocab_size] self.assertEqual(output.shape , __lowerCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. A__ = tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 ) @require_tf class A (unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = 1E-4 def a_ ( self : Dict ) -> Optional[Any]: """simple docstring""" A__ = tf.constant([[4, 10]] ) A__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) A__ = emba(input_ids.shape ) A__ = tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance ) def a_ ( self : Any ) -> Optional[Any]: """simple docstring""" A__ = tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) A__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) A__ = emba.weight[:3, :5] tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance ) @require_tf class A (unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = 1E-4 def a_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" A__ = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 A__ = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 A__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) A__ = embed_positions([2, 16, 7_68] )[None, None, :, :] A__ , A__ = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) A__ = tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance )
355
import unittest import numpy as np def __lowerCamelCase ( __a :np.ndarray , __a :np.ndarray , __a :np.ndarray , __a :np.ndarray | None = None , ) -> np.ndarray: """simple docstring""" A__ = np.shape(__a ) A__ = np.shape(__a ) A__ = np.shape(__a ) if shape_a[0] != shape_b[0]: A__ = ( """Expected the same number of rows for A and B. """ F'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(__a ) if shape_b[1] != shape_c[1]: A__ = ( """Expected the same number of columns for B and C. """ F'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(__a ) A__ = pseudo_inv if a_inv is None: try: A__ = np.linalg.inv(__a ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Union[str, Any] ) -> None: """simple docstring""" A__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ = np.array([[0, 3], [3, 0], [2, 3]] ) A__ = np.array([[2, 1], [6, 3]] ) A__ = schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = np.block([[a, b], [b.T, c]] ) A__ = np.linalg.det(__lowerCAmelCase ) A__ = np.linalg.det(__lowerCAmelCase ) A__ = np.linalg.det(__lowerCAmelCase ) self.assertAlmostEqual(__lowerCAmelCase , det_a * det_s ) def a_ ( self : str ) -> None: """simple docstring""" A__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ = np.array([[0, 3], [3, 0], [2, 3]] ) A__ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__lowerCAmelCase ): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : List[str] ) -> None: """simple docstring""" A__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ = np.array([[0, 3], [3, 0], [2, 3]] ) A__ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__lowerCAmelCase ): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
276
0