code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCAmelCase : Dict = pd.read_csv( '''https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/''' '''position_salaries.csv''' ) UpperCAmelCase : Any = dataset.iloc[:, 1:2].values UpperCAmelCase : Optional[int] = dataset.iloc[:, 2].values UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = train_test_split(X, y, test_size=0.2, random_state=0) UpperCAmelCase : List[str] = PolynomialFeatures(degree=4) UpperCAmelCase : str = poly_reg.fit_transform(X) UpperCAmelCase : Optional[int] = LinearRegression() pol_reg.fit(X_poly, y) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: plt.scatter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color='red' ) plt.plot(_SCREAMING_SNAKE_CASE , pol_reg.predict(poly_reg.fit_transform(_SCREAMING_SNAKE_CASE ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
280
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def a__ ( _SCREAMING_SNAKE_CASE ): # picklable for multiprocessing """simple docstring""" return x.sum() def a__ ( _SCREAMING_SNAKE_CASE ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class _lowerCamelCase : UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 class _lowerCamelCase ( _lowercase ): def snake_case_ (self ) -> Optional[int]: UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 1 UpperCamelCase = [1, 2] UpperCamelCase = {"a": 1, "b": 2} UpperCamelCase = {"a": [1, 2], "b": [3, 4]} UpperCamelCase = {"a": {"1": 1}, "b": 2} UpperCamelCase = {"a": 1, "b": 2, "c": 3, "d": 4} UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 2 UpperCamelCase = [2, 3] UpperCamelCase = {"a": 2, "b": 3} UpperCamelCase = {"a": [2, 3], "b": [4, 5]} UpperCamelCase = {"a": {"1": 2}, "b": 3} UpperCamelCase = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) UpperCamelCase = 2 self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) UpperCamelCase = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} UpperCamelCase = {"a": 2, "b": 0, "c": 2} UpperCamelCase = { "a": np.eye(2 ).astype(__a ), "b": np.zeros(3 ).astype(__a ), "c": np.ones(2 ).astype(__a ), } self.assertEqual(map_nested(__a , __a , map_numpy=__a ) , __a ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__a , __a , map_numpy=__a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(__a , __a , map_numpy=__a , num_proc=__a ) , __a ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__a , __a , map_numpy=__a , num_proc=__a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(__a ): # can't pickle a local lambda map_nested(lambda __a : x + 1 , __a , num_proc=__a ) def snake_case_ (self ) -> Tuple: UpperCamelCase = {"a": 1, "b": 2} UpperCamelCase = {"a": 3, "b": 4} UpperCamelCase = {"a": 5, "b": 6} UpperCamelCase = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__a , __a , __a ) ) , __a ) def snake_case_ (self ) -> Dict: class _lowerCamelCase : UpperCAmelCase_ = "bar" UpperCamelCase = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(__a , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: UpperCamelCase = {F"{i}": i for i in range(_SCREAMING_SNAKE_CASE )} UpperCamelCase = map_nested(lambda _SCREAMING_SNAKE_CASE : x + 10 , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _lowerCamelCase ( _lowercase ): @require_tf def snake_case_ (self ) -> str: import tensorflow as tf from tensorflow.keras import layers UpperCamelCase = layers.Dense(2 ) def gen_random_output(): UpperCamelCase = tf.random.uniform((1, 3) ) return model(__a ).numpy() with temp_seed(42 , set_tensorflow=__a ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_tensorflow=__a ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(__a , __a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def snake_case_ (self ) -> Tuple: import torch def gen_random_output(): UpperCamelCase = torch.nn.Linear(3 , 2 ) UpperCamelCase = torch.rand(1 , 3 ) return model(__a ).detach().numpy() with temp_seed(42 , set_pytorch=__a ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_pytorch=__a ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(__a , __a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def snake_case_ (self ) -> Tuple: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): UpperCamelCase = gen_random_output() with temp_seed(42 ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(__a , __a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = NestedDataStructure(_SCREAMING_SNAKE_CASE ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = NestedDataStructure(_SCREAMING_SNAKE_CASE ).flatten() assert output == expected_output def a__ ( ): """simple docstring""" UpperCamelCase = A(x=1 , y="foobar" ) UpperCamelCase = {"x": 1, "y": "foobar"} assert asdict(_SCREAMING_SNAKE_CASE ) == expected_output UpperCamelCase = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} UpperCamelCase = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(_SCREAMING_SNAKE_CASE ) == expected_output with pytest.raises(_SCREAMING_SNAKE_CASE ): asdict([1, A(x=10 , y="foo" )] ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return text.split() def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def a__ ( ): """simple docstring""" with Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(_SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_SCREAMING_SNAKE_CASE ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(_SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_SCREAMING_SNAKE_CASE ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCamelCase = [] for yield_time, content in iflatmap_unordered( _SCREAMING_SNAKE_CASE , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(_SCREAMING_SNAKE_CASE ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(_SCREAMING_SNAKE_CASE ) == 4
153
0
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : Tuple = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
58
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __snake_case : List[str] = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: List[str] , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[Any]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(_SCREAMING_SNAKE_CASE) def __call__( self: str , _SCREAMING_SNAKE_CASE: Union[str, "Image.Image", List[Dict[str, Any]]] , _SCREAMING_SNAKE_CASE: Union[str, List[str]] = None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> int: """simple docstring""" if "text_queries" in kwargs: __lowerCAmelCase : List[str] = kwargs.pop("text_queries") if isinstance(_SCREAMING_SNAKE_CASE , (str, Image.Image)): __lowerCAmelCase : Any = {"image": image, "candidate_labels": candidate_labels} else: __lowerCAmelCase : Dict = image __lowerCAmelCase : Optional[int] = super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) return results def _SCREAMING_SNAKE_CASE ( self: Any , **_SCREAMING_SNAKE_CASE: Tuple) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[int] = {} if "threshold" in kwargs: __lowerCAmelCase : Optional[int] = kwargs["threshold"] if "top_k" in kwargs: __lowerCAmelCase : int = kwargs["top_k"] return {}, {}, postprocess_params def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Dict) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[str] = load_image(inputs["image"]) __lowerCAmelCase : Union[str, Any] = inputs["candidate_labels"] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[int] = candidate_labels.split(",") __lowerCAmelCase : Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[Any] = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework) __lowerCAmelCase : Dict = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=self.framework) yield { "is_last": i == len(_SCREAMING_SNAKE_CASE) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = model_inputs.pop("target_size") __lowerCAmelCase : Any = model_inputs.pop("candidate_label") __lowerCAmelCase : List[str] = model_inputs.pop("is_last") __lowerCAmelCase : Dict = self.model(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=None) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = [] for model_output in model_outputs: __lowerCAmelCase : Dict = model_output["candidate_label"] __lowerCAmelCase : int = BaseModelOutput(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = self.image_processor.post_process_object_detection( outputs=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): __lowerCAmelCase : Any = outputs["scores"][index].item() __lowerCAmelCase : int = self._get_bounding_box(outputs["boxes"][index][0]) __lowerCAmelCase : List[str] = {"score": score, "label": label, "box": box} results.append(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE: x["score"] , reverse=_SCREAMING_SNAKE_CASE) if top_k: __lowerCAmelCase : str = results[:top_k] return results def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: "torch.Tensor") -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = box.int().tolist() __lowerCAmelCase : Any = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
58
1
'''simple docstring''' # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class a__ ( UpperCAmelCase__ ): lowerCamelCase : torch.FloatTensor lowerCamelCase : Optional[torch.FloatTensor] =None def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__=0.9_9_9 , UpperCamelCase__="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __lowerCamelCase = [] for i in range(UpperCamelCase__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class a__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCamelCase : List[Any] =1 @register_to_config def __init__( self : Union[str, Any] , a : int = 10_00 , a : float = 0.00_01 , a : float = 0.02 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : bool = True , a : bool = True , a : int = 0 , a : str = "epsilon" , a : float = 1.0 , **a : List[str] , ): """simple docstring""" if kwargs.get('''set_alpha_to_one''' , a ) is not None: __lowerCamelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , a , standard_warn=a ) __lowerCamelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: __lowerCamelCase = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(a ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __lowerCamelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __lowerCamelCase = 1.0 # setable values __lowerCamelCase = None __lowerCamelCase = torch.from_numpy(np.arange(0 , a ).copy().astype(np.intaa ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : torch.FloatTensor , a : Optional[int] = None ): """simple docstring""" return sample def SCREAMING_SNAKE_CASE__ ( self : Dict , a : int , a : Union[str, torch.device] = None ): """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:""" f""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle""" f""" maximal {self.config.num_train_timesteps} timesteps.""" ) __lowerCamelCase = num_inference_steps __lowerCamelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , a ) * step_ratio).round().copy().astype(np.intaa ) __lowerCamelCase = torch.from_numpy(a ).to(a ) self.timesteps += self.config.steps_offset def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : torch.FloatTensor , a : int , a : torch.FloatTensor , a : float = 0.0 , a : bool = False , a : Optional[torch.FloatTensor] = None , a : bool = True , ): """simple docstring""" __lowerCamelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __lowerCamelCase = self.alphas_cumprod[timestep] __lowerCamelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __lowerCamelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __lowerCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __lowerCamelCase = model_output elif self.config.prediction_type == "sample": __lowerCamelCase = model_output __lowerCamelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __lowerCamelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __lowerCamelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or""" ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __lowerCamelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=a , pred_original_sample=a ) def __len__( self : str ): """simple docstring""" return self.config.num_train_timesteps
67
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase ={ "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __UpperCAmelCase =["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
67
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer lowercase : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowercase : str = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } lowercase : Optional[int] = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } lowercase : int = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ElectraTokenizer def __init__( self :Any , a :Any=None , a :List[Any]=None , a :Optional[int]=True , a :Optional[int]="[UNK]" , a :Any="[SEP]" , a :List[Any]="[PAD]" , a :str="[CLS]" , a :int="[MASK]" , a :Optional[int]=True , a :List[Any]=None , **a :Dict , ) -> Optional[int]: super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) __UpperCamelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , a ) != do_lower_case or normalizer_state.get("strip_accents" , a ) != strip_accents or normalizer_state.get("handle_chinese_chars" , a ) != tokenize_chinese_chars ): __UpperCamelCase : Any = getattr(a , normalizer_state.pop("type" ) ) __UpperCamelCase : int = do_lower_case __UpperCamelCase : Optional[Any] = strip_accents __UpperCamelCase : Optional[Any] = tokenize_chinese_chars __UpperCamelCase : Dict = normalizer_class(**a ) __UpperCamelCase : List[str] = do_lower_case def _lowerCamelCase ( self :List[Any] , a :List[str] , a :Optional[Any]=None ) -> Dict: __UpperCamelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self :Any , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : Optional[Any] = [self.sep_token_id] __UpperCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self :Optional[int] , a :str , a :Optional[str] = None ) -> Tuple[str]: __UpperCamelCase : Any = self._tokenizer.model.save(a , name=a ) return tuple(a )
151
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : List[Any] = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
151
1
"""simple docstring""" import os def a__ ( SCREAMING_SNAKE_CASE : str = "matrix.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) as in_file: lowerCAmelCase : Any = in_file.read() lowerCAmelCase : Optional[Any] = [[int(SCREAMING_SNAKE_CASE ) for cell in row.split("," )] for row in data.strip().splitlines()] lowerCAmelCase : Union[str, Any] = [[0 for cell in row] for row in grid] lowerCAmelCase : Dict = len(grid[0] ) lowerCAmelCase : Tuple = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] lowerCAmelCase : str = grid[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Union[str, Any] = grid[0][i] + dp[0][i - 1] for i in range(1 , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[int] = grid[i][0] + dp[i - 1][0] for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(1 , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"{solution() = }")
108
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = get_activation("swish" ) self.assertIsInstance(snake_case__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = get_activation("silu" ) self.assertIsInstance(snake_case__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = get_activation("mish" ) self.assertIsInstance(snake_case__ , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = get_activation("gelu" ) self.assertIsInstance(snake_case__ , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
108
1
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } UpperCamelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : int = value elif weight_type == "weight_g": UpperCAmelCase__ : Dict = value elif weight_type == "weight_v": UpperCAmelCase__ : List[str] = value elif weight_type == "bias": UpperCAmelCase__ : Tuple = value else: UpperCAmelCase__ : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Dict = fairseq_model.state_dict() UpperCAmelCase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ : Any = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : str = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ : List[str] = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : str = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Optional[int] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : List[str] = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Dict = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ : Tuple = '''weight''' else: UpperCAmelCase__ : Optional[Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Tuple = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Union[str, Any] = int(items[0] ) UpperCAmelCase__ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ) -> Any: if config_path is not None: UpperCAmelCase__ : Any = UniSpeechSatConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : int = UniSpeechSatConfig() UpperCAmelCase__ : Tuple = '''''' if is_finetuned: UpperCAmelCase__ : Optional[int] = UniSpeechSatForCTC(lowerCAmelCase__ ) else: UpperCAmelCase__ : List[Any] = UniSpeechSatForPreTraining(lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCAmelCase__ : Union[str, Any] = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCamelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
299
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> float: UpperCAmelCase__ : Tuple = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: UpperCAmelCase__ : List[str] = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase__ : List[str] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase__ : Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCamelCase__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
299
1
from __future__ import annotations from math import pi def snake_case__ ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if inductance < 0: raise ValueError('Inductance cannot be negative' ) if frequency < 0: raise ValueError('Frequency cannot be negative' ) if reactance < 0: raise ValueError('Inductive reactance cannot be negative' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
214
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
214
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = '''convbert''' def __init__( self : Any , UpperCAmelCase_ : List[Any]=3_0522 , UpperCAmelCase_ : Optional[int]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : Dict=3072 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : List[str]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Optional[Any]=1E-12 , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Optional[int]=768 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Optional[int]=9 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : int , ): super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : str = embedding_size SCREAMING_SNAKE_CASE : Optional[int] = head_ratio SCREAMING_SNAKE_CASE : List[Any] = conv_kernel_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_groups SCREAMING_SNAKE_CASE : int = classifier_dropout class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @property def _A ( self : List[Any] ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
319
import argparse import os import torch from transformers.utils import WEIGHTS_NAME snake_case = ["""small""", """medium""", """large"""] snake_case = """lm_head.decoder.weight""" snake_case = """lm_head.weight""" def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = torch.load(lowercase ) SCREAMING_SNAKE_CASE : Any = d.pop(lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) torch.save(lowercase , os.path.join(lowercase , lowercase ) ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) snake_case = parser.parse_args() for MODEL in DIALOGPT_MODELS: snake_case = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") snake_case = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
319
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() # fmt: off a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) a = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } a = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[Any] ) ->int: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" a = self.get_tokenizer() a = self.get_image_processor() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
0
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ProphetNetTokenizer __snake_case = False def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" super().setUp() a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->Dict: """simple docstring""" a = '''UNwant\u00E9d,running''' a = '''unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" a = self.tokenizer_class(self.vocab_file ) a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def __lowerCAmelCase ( self : int ) ->Any: """simple docstring""" a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] a = {} for i, token in enumerate(__UpperCAmelCase ): a = i a = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def __lowerCAmelCase ( self : int ) ->int: """simple docstring""" a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] a = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102] a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def __lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase ) a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase ) a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
0
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCAmelCase_ = logging.get_logger(__name__) @dataclass class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **lowerCAmelCase_ ) -> Dict: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _snake_case = deprecated_arg[3:] _snake_case = not kwargs.pop(lowerCAmelCase_ ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) _snake_case = kwargs.pop('tpu_name' , self.tpu_name ) _snake_case = kwargs.pop('device_idx' , self.device_idx ) _snake_case = kwargs.pop('eager_mode' , self.eager_mode ) _snake_case = kwargs.pop('use_xla' , self.use_xla ) super().__init__(**lowerCAmelCase_ ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={'''help''': '''Name of TPU'''} , ) lowerCAmelCase_ = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) lowerCAmelCase_ = field(default=_lowerCamelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def lowerCAmelCase ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['tf'] ) _snake_case = None if self.tpu: try: if self.tpu_name: _snake_case = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _snake_case = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _snake_case = None return tpu @cached_property def lowerCAmelCase ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _snake_case = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) _snake_case = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU _snake_case = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def lowerCAmelCase ( self ) -> bool: requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def lowerCAmelCase ( self ) -> "tf.distribute.Strategy": requires_backends(self , ['tf'] ) return self._setup_strategy @property def lowerCAmelCase ( self ) -> Union[str, Any]: requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def lowerCAmelCase ( self ) -> int: requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowerCAmelCase ( self ) -> bool: return self.n_gpu > 0
295
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase_ = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _snake_case = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) else: _snake_case = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = ProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) _snake_case = ['key_proj', 'value_proj', 'query_proj'] _snake_case = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _snake_case = key.split('.' ) if attributes[0] == "lm_head": _snake_case = prophet _snake_case = prophet_old else: _snake_case = prophet.prophetnet _snake_case = prophet_old.model _snake_case = False for attribute in attributes: if attribute in mapping: _snake_case = mapping[attribute] if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0: _snake_case = attribute elif hasattr(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _snake_case = old_model.weight logger.info(F'''{attribute} is initialized.''' ) _snake_case = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _snake_case = old_model.bias logger.info(F'''{attribute} is initialized''' ) _snake_case = True break elif attribute in special_keys and hasattr(UpperCamelCase__ , 'in_proj_weight' ): _snake_case = old_model.in_proj_weight.shape[0] // 3 _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _snake_case = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _snake_case = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _snake_case = True break if attribute.isdigit(): _snake_case = model[int(UpperCamelCase__ )] _snake_case = old_model[int(UpperCamelCase__ )] else: _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_attribute == "": _snake_case = old_model else: if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
295
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __A = (3, 9, -11, 0, 7, 5, 1, -1) __A = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = 42 snake_case_ = 42 class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ ) -> None: '''simple docstring''' __lowerCamelCase = None for i in sorted(lowerCamelCase__ , reverse=lowerCamelCase__ ): __lowerCamelCase = Node(lowerCamelCase__ , self.head ) def __iter__( self ) -> Iterator[int]: '''simple docstring''' __lowerCamelCase = self.head while node: yield node.data __lowerCamelCase = node.next_node def __len__( self ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self ) -> str: '''simple docstring''' return " -> ".join([str(lowerCamelCase__ ) for node in self] ) def lowerCamelCase_ ( UpperCamelCase__ : SortedLinkedList , UpperCamelCase__ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(UpperCamelCase__ ) + list(UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() __A = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
90
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=9_9 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=3_7 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=1_6 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= intermediate_size __lowercase= hidden_act __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= scope __lowercase= self.vocab_size - 1 def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __lowercase= ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= OpenAIGPTModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , head_mask=lowerCAmelCase ) __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= OpenAIGPTLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= OpenAIGPTDoubleHeadsModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= self.num_labels __lowercase= OpenAIGPTForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Optional[Any] =( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCamelCase_ : Tuple =( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCamelCase_ : List[str] =( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): __lowercase= super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __lowercase= torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase , ) __lowercase= inputs_dict['labels'] __lowercase= inputs_dict['labels'] __lowercase= torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase , ) __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def _A (self ): __lowercase= OpenAIGPTModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , n_embd=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase ) @slow def _A (self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= OpenAIGPTModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(lowerCAmelCase ) __lowercase= torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=lowerCAmelCase ) # the president is __lowercase= [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the __lowercase= model.generate(lowerCAmelCase , do_sample=lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase )
295
0
from manim import * class SCREAMING_SNAKE_CASE ( _A ): """simple docstring""" def __A ( self: Optional[int] ) -> Union[str, Any]: _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) _A = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) _A = VGroup(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) _A = Text('''CPU''' , font_size=24 ) _A = Group(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=__SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__SCREAMING_SNAKE_CASE ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) _A = Text('''GPU''' , font_size=24 ) _A = Group(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=__SCREAMING_SNAKE_CASE ) gpu.move_to([-1, -1, 0] ) self.add(__SCREAMING_SNAKE_CASE ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) _A = Text('''Model''' , font_size=24 ) _A = Group(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=__SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.add(__SCREAMING_SNAKE_CASE ) _A = [] for i, rect in enumerate(__SCREAMING_SNAKE_CASE ): rect.set_stroke(__SCREAMING_SNAKE_CASE ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _A = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__SCREAMING_SNAKE_CASE , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__SCREAMING_SNAKE_CASE ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__SCREAMING_SNAKE_CASE , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__SCREAMING_SNAKE_CASE , buff=0.0 ) self.add(__SCREAMING_SNAKE_CASE ) cpu_targs.append(__SCREAMING_SNAKE_CASE ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) _A = Text('''Loaded Checkpoint''' , font_size=24 ) _A = Group(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , aligned_edge=__SCREAMING_SNAKE_CASE , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _A = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__SCREAMING_SNAKE_CASE , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _A = MarkupText( f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__SCREAMING_SNAKE_CASE ) , Write(__SCREAMING_SNAKE_CASE ) ) self.play(Write(__SCREAMING_SNAKE_CASE , run_time=1 ) , Create(__SCREAMING_SNAKE_CASE , run_time=1 ) ) _A = [] _A = [] for i, rect in enumerate(__SCREAMING_SNAKE_CASE ): _A = fill.copy().set_fill(__SCREAMING_SNAKE_CASE , opacity=0.7 ) target.move_to(__SCREAMING_SNAKE_CASE ) first_animations.append(GrowFromCenter(__SCREAMING_SNAKE_CASE , run_time=1 ) ) _A = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__SCREAMING_SNAKE_CASE , run_time=1.5 ) ) self.play(*__SCREAMING_SNAKE_CASE ) self.play(*__SCREAMING_SNAKE_CASE ) self.wait()
363
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') _A = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(_lowercase ): os.makedirs(_lowercase ) _A = model.state_dict() def to_tf_var_name(_lowercase ): for patt, repl in iter(_lowercase ): _A = name.replace(_lowercase , _lowercase ) return f"""bert/{name}""" def create_tf_var(_lowercase , _lowercase , _lowercase ): _A = tf.dtypes.as_dtype(tensor.dtype ) _A = tf.get_variable(dtype=_lowercase , shape=tensor.shape , name=_lowercase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowercase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _A = to_tf_var_name(_lowercase ) _A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _A = torch_tensor.T _A = create_tf_var(tensor=_lowercase , name=_lowercase , session=_lowercase ) tf.keras.backend.set_value(_lowercase , _lowercase ) _A = session.run(_lowercase ) print(f"""Successfully created {tf_name}: {np.allclose(_lowercase , _lowercase )}""" ) _A = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowercase , os.path.join(_lowercase , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def __A ( _lowercase=None ): '''simple docstring''' _A = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=_lowercase , required=_lowercase , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=_lowercase , default=_lowercase , required=_lowercase , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=_lowercase , required=_lowercase , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=_lowercase , required=_lowercase , help='''Directory in which to save tensorflow model''' ) _A = parser.parse_args(_lowercase ) _A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowercase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
75
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch A =logging.get_logger(__name__) class _a ( __a ): __a : str = ["""pixel_values"""] def __init__( self : Optional[int] , lowercase : bool = True , lowercase : Optional[Dict[str, int]] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCAmelCase = get_resize_output_image_size(lowercase , size=size['''shortest_edge'''] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ): '''simple docstring''' UpperCAmelCase = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase ) def A ( self : Tuple , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Union[str, Any] , ): '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Dict , ): '''simple docstring''' UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(lowercase , param_name='''crop_size''' ) UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowercase ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def A ( self : Tuple , lowercase : str , lowercase : List[Tuple] = None ): '''simple docstring''' UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase ): UpperCAmelCase = target_sizes.numpy() UpperCAmelCase = [] for idx in range(len(lowercase ) ): UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase ) UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: UpperCAmelCase = logits.argmax(dim=1 ) UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
34
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A =logging.get_logger(__name__) A ={ 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _a ( __a ): __a : List[Any] = """marian""" __a : Union[str, Any] = ["""past_key_values"""] __a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = vocab_size UpperCAmelCase = decoder_vocab_size or vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) class _a ( __a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A ( self : int ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A ( self : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super().outputs else: UpperCAmelCase = super(lowercase , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs UpperCAmelCase = seq_length if not self.use_past else 1 UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = decoder_seq_length + 3 UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 ) UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase = min(lowercase , lowercase ) UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = common_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) UpperCAmelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase ) UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase ) @property def A ( self : Any ): '''simple docstring''' return 1E-4
34
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" snake_case__ : Optional[Any] = ViTImageProcessor if is_vision_available() else None @property def UpperCAmelCase_ ( self : str ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = (3, 3_2, 1_2_8) __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on __SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + "\n" ) __SCREAMING_SNAKE_CASE = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 3_2, "width": 1_2_8}, } __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , UpperCAmelCase__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple , **UpperCAmelCase__ : Union[str, Any] ) -> str: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] , **UpperCAmelCase__ : List[Any] ) -> Optional[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> str: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self : List[str] ) -> int: __SCREAMING_SNAKE_CASE = np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta ) __SCREAMING_SNAKE_CASE = Image.fromarray(np.moveaxis(UpperCAmelCase__ , 0 , -1 ) ) return image_input def UpperCAmelCase_ ( self : Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase__ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=UpperCAmelCase__ , padding_value=1.0 ) __SCREAMING_SNAKE_CASE = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(UpperCAmelCase__ , return_tensors="np" ) __SCREAMING_SNAKE_CASE = processor(images=UpperCAmelCase__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = "test" __SCREAMING_SNAKE_CASE = processor(text=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer(UpperCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = "test" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=UpperCAmelCase__ , images=UpperCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase__ ): processor() def UpperCAmelCase_ ( self : Dict ) -> Tuple: __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.char_decode(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=UpperCAmelCase__ , images=UpperCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.randn(1 , 2_7 , 3_8 ) __SCREAMING_SNAKE_CASE = torch.randn(1 , 2_7 , 5_0_2_5_7 ) __SCREAMING_SNAKE_CASE = torch.randn(1 , 2_7 , 3_0_5_2_2 ) __SCREAMING_SNAKE_CASE = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
361
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return " ".join( "".join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
195
0
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''new-model''' if is_tf_available(): class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = NewModelConfig @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = "bert-base-cased" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _A = TFAutoModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = "bert-base-cased" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _A = TFAutoModelForPreTraining.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _A = TFAutoModelForCausalLM.from_pretrained(__UpperCAmelCase ) _A , _A = TFAutoModelForCausalLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _A = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _A = TFAutoModelForMaskedLM.from_pretrained(__UpperCAmelCase ) _A , _A = TFAutoModelForMaskedLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _A = TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) _A , _A = TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _A = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _A = TFAutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowerCAmelCase ( self : Tuple ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _A = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _A = TFAutoModelForQuestionAnswering.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_tensorflow_probability def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: _A = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _A = TFAutoModelForTableQuestionAnswering.from_pretrained(__UpperCAmelCase ) _A , _A = TFAutoModelForTableQuestionAnswering.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 14410 ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 14410 ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _A = copy.deepcopy(model.config ) _A = ["FunnelBaseModel"] _A = TFAutoModel.from_config(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__UpperCAmelCase ) _A = TFAutoModel.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' try: AutoConfig.register("new-model" , __UpperCAmelCase ) _A = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__UpperCAmelCase ): auto_class.register(__UpperCAmelCase , __UpperCAmelCase ) auto_class.register(__UpperCAmelCase , __UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCAmelCase ): auto_class.register(__UpperCAmelCase , __UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _A = BertModelTester(self ).get_config() _A = NewModelConfig(**tiny_config.to_dict() ) _A = auto_class.from_config(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__UpperCAmelCase ) _A = auto_class.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowerCAmelCase ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , "bert-base is not a local folder and is not a valid model identifier" ): _A = TFAutoModel.from_pretrained("bert-base" ) def lowerCAmelCase ( self : str ): '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _A = TFAutoModel.from_pretrained(__UpperCAmelCase , revision="aaaaaa" ) def lowerCAmelCase ( self : Any ): '''simple docstring''' with self.assertRaisesRegex( __UpperCAmelCase , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): _A = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def lowerCAmelCase ( self : Any ): '''simple docstring''' with self.assertRaisesRegex(__UpperCAmelCase , "Use `from_pt=True` to load this model" ): _A = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: _A = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint _A = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: _A = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
79
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCamelCase_ = get_logger(__name__) class _UpperCAmelCase : """simple docstring""" snake_case = '''dummy_data''' snake_case = '''datasets''' snake_case = False def __init__( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : Union[Version, str] , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[List[Callable]] = None , ): '''simple docstring''' _A = 0 _A = dataset_name _A = cache_dir _A = use_local_dummy_data _A = config # download_callbacks take a single url as input _A = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _A = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _A = str(__UpperCAmelCase ) # to be downloaded _A = None _A = None @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' if self._dummy_file is None: _A = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def lowerCAmelCase ( self : int ): '''simple docstring''' return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _A = cached_path( __UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=__UpperCAmelCase , force_extract=__UpperCAmelCase ) return os.path.join(__UpperCAmelCase , self.dummy_file_name ) @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCAmelCase ( self : int ): '''simple docstring''' if self._bucket_url is None: _A = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def lowerCAmelCase ( self : str ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[Any] , *__UpperCAmelCase : Dict ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _A = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _A = self.dummy_file_name # special case when data_url is a dict if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return self.create_dummy_data_dict(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(__UpperCAmelCase , __UpperCAmelCase ) else: return self.create_dummy_data_single(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[int] , *__UpperCAmelCase : Any ): '''simple docstring''' return self.download_and_extract(__UpperCAmelCase ) def lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str ): '''simple docstring''' return self.download_and_extract(__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[int] , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : List[str] ): '''simple docstring''' return path def lowerCAmelCase ( self : str ): '''simple docstring''' return {} def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] ): '''simple docstring''' _A = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): for single_url in single_urls: download_callback(__UpperCAmelCase ) else: _A = single_urls download_callback(__UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = [os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(Path(__UpperCAmelCase ).name ) ) for x in single_urls] else: _A = single_urls _A = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(Path(__UpperCAmelCase ).name ) ) _A = value # make sure that values are unique if all(isinstance(__UpperCAmelCase , __UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _A = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] ): '''simple docstring''' _A = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _A = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , __UpperCAmelCase ) ) for url in data_url ) _A = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _A = [data_url[0]] * len(__UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _A = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__UpperCAmelCase ) return dummy_data_list def lowerCAmelCase ( self : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _A = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass def lowerCAmelCase ( self : Dict ): '''simple docstring''' pass def lowerCAmelCase ( self : Any , __UpperCAmelCase : Optional[Any] ): '''simple docstring''' def _iter_archive_members(__UpperCAmelCase : List[Any] ): # this preserves the order of the members inside the ZIP archive _A = Path(self.dummy_file ).parent _A = path.relative_to(__UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _A = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__UpperCAmelCase ) _A = Path(__UpperCAmelCase ) _A = _iter_archive_members(__UpperCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__UpperCAmelCase ).as_posix(), file_path.open("rb" ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = [paths] for path in paths: if os.path.isfile(__UpperCAmelCase ): if os.path.basename(__UpperCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__UpperCAmelCase ): if os.path.basename(__UpperCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__UpperCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(__UpperCAmelCase , __UpperCAmelCase )
79
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : str =logging.get_logger(__name__) UpperCAmelCase__ : int ={ '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class __A ( a ): __A = """roberta""" def __init__( self , UpperCAmelCase_=50265 , UpperCAmelCase_=768 , UpperCAmelCase_=12 , UpperCAmelCase_=12 , UpperCAmelCase_=3072 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=512 , UpperCAmelCase_=2 , UpperCAmelCase_=0.0_2 , UpperCAmelCase_=1E-12 , UpperCAmelCase_=1 , UpperCAmelCase_=0 , UpperCAmelCase_=2 , UpperCAmelCase_="absolute" , UpperCAmelCase_=True , UpperCAmelCase_=None , **UpperCAmelCase_ , ): super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase =vocab_size lowerCamelCase =hidden_size lowerCamelCase =num_hidden_layers lowerCamelCase =num_attention_heads lowerCamelCase =hidden_act lowerCamelCase =intermediate_size lowerCamelCase =hidden_dropout_prob lowerCamelCase =attention_probs_dropout_prob lowerCamelCase =max_position_embeddings lowerCamelCase =type_vocab_size lowerCamelCase =initializer_range lowerCamelCase =layer_norm_eps lowerCamelCase =position_embedding_type lowerCamelCase =use_cache lowerCamelCase =classifier_dropout class __A ( a ): @property def _snake_case ( self ): if self.task == "multiple-choice": lowerCamelCase ={0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCamelCase ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
262
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCAmelCase__ : Union[str, Any] =subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') UpperCAmelCase__ : List[str] =( subprocess.check_output(F"git diff --diff-filter=d --name-only {fork_point_sha}".split()).decode('''utf-8''').split() ) UpperCAmelCase__ : Tuple ='''|'''.join(sys.argv[1:]) UpperCAmelCase__ : List[str] =re.compile(rF"^({joined_dirs}).*?\.py$") UpperCAmelCase__ : Any =[x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
262
1
"""simple docstring""" def lowercase (_lowerCAmelCase , _lowerCAmelCase ): return x if y == 0 else greatest_common_divisor(_lowerCAmelCase , x % y ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): return (x * y) // greatest_common_divisor(_lowerCAmelCase , _lowerCAmelCase ) def lowercase (_lowerCAmelCase = 20 ): __lowerCAmelCase = 1 for i in range(1 , n + 1 ): __lowerCAmelCase = lcm(_lowerCAmelCase , _lowerCAmelCase ) return g if __name__ == "__main__": print(F"{solution() = }")
301
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
1
def __lowercase ( snake_case_ : str ,snake_case_ : str ) ->Tuple: '''simple docstring''' assert x is not None assert y is not None __A : Any = len(snake_case_ ) __A : Optional[int] = len(snake_case_ ) # declaring the array for storing the dp values __A : List[Any] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 ,m + 1 ): for j in range(1 ,n + 1 ): __A : Optional[Any] = 1 if x[i - 1] == y[j - 1] else 0 __A : Optional[Any] = max(l[i - 1][j] ,l[i][j - 1] ,l[i - 1][j - 1] + match ) __A : Tuple = '''''' __A : List[Any] = m, n while i > 0 and j > 0: __A : Optional[Any] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __A : Optional[int] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": a_ = """AGGTAB""" a_ = """GXTXAYB""" a_ = 4 a_ = """GTAB""" a_ , a_ = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
350
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """sew-d""" def __init__( self , __lowerCamelCase=32 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase=2 , __lowerCamelCase=512 , __lowerCamelCase=256 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=("p2c", "c2p") , __lowerCamelCase="layer_norm" , __lowerCamelCase="gelu_python" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-7 , __lowerCamelCase=1e-5 , __lowerCamelCase="group" , __lowerCamelCase="gelu" , __lowerCamelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __lowerCamelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __lowerCamelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __lowerCamelCase=False , __lowerCamelCase=128 , __lowerCamelCase=16 , __lowerCamelCase=True , __lowerCamelCase=0.0_5 , __lowerCamelCase=10 , __lowerCamelCase=2 , __lowerCamelCase=0.0 , __lowerCamelCase=10 , __lowerCamelCase=0 , __lowerCamelCase="mean" , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=256 , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=2 , **__lowerCamelCase , ): '''simple docstring''' super().__init__(**__lowerCamelCase , pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase ) __A : str = hidden_size __A : List[Any] = feat_extract_norm __A : Tuple = feat_extract_activation __A : Dict = list(__lowerCamelCase ) __A : int = list(__lowerCamelCase ) __A : List[Any] = list(__lowerCamelCase ) __A : Any = conv_bias __A : List[Any] = num_conv_pos_embeddings __A : Any = num_conv_pos_embedding_groups __A : Optional[Any] = len(self.conv_dim ) __A : int = num_hidden_layers __A : Union[str, Any] = intermediate_size __A : Union[str, Any] = squeeze_factor __A : int = max_position_embeddings __A : Tuple = position_buckets __A : Tuple = share_att_key __A : List[str] = relative_attention __A : Optional[Any] = norm_rel_ebd __A : Dict = list(__lowerCamelCase ) __A : str = hidden_act __A : List[str] = num_attention_heads __A : Union[str, Any] = hidden_dropout __A : Optional[int] = attention_dropout __A : Optional[Any] = activation_dropout __A : List[str] = feat_proj_dropout __A : str = final_dropout __A : Tuple = layer_norm_eps __A : int = feature_layer_norm_eps __A : Optional[int] = initializer_range __A : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : int = apply_spec_augment __A : Any = mask_time_prob __A : Optional[int] = mask_time_length __A : Any = mask_time_min_masks __A : int = mask_feature_prob __A : Tuple = mask_feature_length __A : Dict = mask_feature_min_masks # ctc loss __A : Tuple = ctc_loss_reduction __A : Union[str, Any] = ctc_zero_infinity # sequence classification __A : Tuple = use_weighted_layer_sum __A : List[str] = classifier_proj_size @property def UpperCamelCase__( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
291
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} __A = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } __A = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off __A = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Any = VOCAB_FILES_NAMES __magic_name__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ :List[str] = ["""input_ids""", """attention_mask"""] __magic_name__ :Optional[Any] = MBartTokenizer __magic_name__ :List[int] = [] __magic_name__ :List[int] = [] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ :int = vocab_file lowerCAmelCase__ :int = False if not self.vocab_file else True lowerCAmelCase__ :int = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCAmelCase__ :Tuple = { lang_code: self.convert_tokens_to_ids(__UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCAmelCase__ :Optional[int] = src_lang if src_lang is not None else 'en_XX' lowerCAmelCase__ :Tuple = self.convert_tokens_to_ids(self._src_lang ) lowerCAmelCase__ :Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def snake_case ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :int = [self.sep_token_id] lowerCAmelCase__ :Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCAmelCase__ :Optional[Any] = src_lang lowerCAmelCase__ :Dict = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :Any = self.convert_tokens_to_ids(__UpperCAmelCase ) lowerCAmelCase__ :str = tgt_lang_id return inputs def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = "en_XX" , __UpperCAmelCase = None , __UpperCAmelCase = "ro_RO" , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :str = src_lang lowerCAmelCase__ :str = tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def snake_case ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.convert_tokens_to_ids(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = [] lowerCAmelCase__ :Any = [self.eos_token_id, self.cur_lang_code] lowerCAmelCase__ :Dict = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase__ :Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase__ :str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = self.convert_tokens_to_ids(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = [] lowerCAmelCase__ :Tuple = [self.eos_token_id, self.cur_lang_code] lowerCAmelCase__ :List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase__ :Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase__ :List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return lowerCAmelCase__ :str = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
293
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] __A = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] __A = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): __A = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
293
1
"""simple docstring""" from __future__ import annotations def lowercase__ ( __snake_case : Tuple , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : List[str] = set(SCREAMING_SNAKE_CASE__ ), [start] while stack: UpperCAmelCase_ : Dict = stack.pop() explored.add(SCREAMING_SNAKE_CASE__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(SCREAMING_SNAKE_CASE__ ) return explored __UpperCAmelCase = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
367
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Dict = '''layoutlmv3''' def __init__( self , _UpperCamelCase=5_0_2_6_5 , _UpperCamelCase=7_6_8 , _UpperCamelCase=1_2 , _UpperCamelCase=1_2 , _UpperCamelCase=3_0_7_2 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=5_1_2 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1E-5 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , _UpperCamelCase=1_0_2_4 , _UpperCamelCase=1_2_8 , _UpperCamelCase=1_2_8 , _UpperCamelCase=True , _UpperCamelCase=3_2 , _UpperCamelCase=1_2_8 , _UpperCamelCase=6_4 , _UpperCamelCase=2_5_6 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=2_2_4 , _UpperCamelCase=3 , _UpperCamelCase=1_6 , _UpperCamelCase=None , **_UpperCamelCase , ) -> Optional[Any]: super().__init__( vocab_size=_UpperCamelCase , hidden_size=_UpperCamelCase , num_hidden_layers=_UpperCamelCase , num_attention_heads=_UpperCamelCase , intermediate_size=_UpperCamelCase , hidden_act=_UpperCamelCase , hidden_dropout_prob=_UpperCamelCase , attention_probs_dropout_prob=_UpperCamelCase , max_position_embeddings=_UpperCamelCase , type_vocab_size=_UpperCamelCase , initializer_range=_UpperCamelCase , layer_norm_eps=_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : str = max_ad_position_embeddings UpperCAmelCase_ : Union[str, Any] = coordinate_size UpperCAmelCase_ : Union[str, Any] = shape_size UpperCAmelCase_ : str = has_relative_attention_bias UpperCAmelCase_ : Tuple = rel_pos_bins UpperCAmelCase_ : Dict = max_rel_pos UpperCAmelCase_ : Any = has_spatial_attention_bias UpperCAmelCase_ : Optional[Any] = rel_ad_pos_bins UpperCAmelCase_ : List[str] = max_rel_ad_pos UpperCAmelCase_ : List[str] = text_embed UpperCAmelCase_ : Dict = visual_embed UpperCAmelCase_ : Optional[int] = input_size UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : List[Any] = patch_size UpperCAmelCase_ : Union[str, Any] = classifier_dropout class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Tuple = version.parse('''1.12''' ) @property def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def __UpperCAmelCase ( self ) -> float: return 1E-5 @property def __UpperCAmelCase ( self ) -> int: return 1_2 def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = -1 , _UpperCamelCase = -1 , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = 3 , _UpperCamelCase = 4_0 , _UpperCamelCase = 4_0 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , _UpperCamelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : Optional[int] = compute_effective_axis_dimension( _UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : Any = processor.tokenizer.num_special_tokens_to_add(_UpperCamelCase ) UpperCAmelCase_ : Any = compute_effective_axis_dimension( _UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : Tuple = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase_ : List[str] = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase_ : str = self._generate_dummy_images(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : List[str] = dict( processor( _UpperCamelCase , text=_UpperCamelCase , boxes=_UpperCamelCase , return_tensors=_UpperCamelCase , ) ) return inputs
145
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict=7 , __UpperCAmelCase : Any=3 , __UpperCAmelCase : Tuple=18 , __UpperCAmelCase : Tuple=30 , __UpperCAmelCase : int=400 , __UpperCAmelCase : int=True , __UpperCAmelCase : List[Any]=32 , __UpperCAmelCase : List[Any]=True , ): '''simple docstring''' _A = parent _A = batch_size _A = num_channels _A = image_size _A = min_resolution _A = max_resolution _A = do_resize _A = size_divisor _A = do_rescale def lowerCAmelCase ( self : str ): '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class _UpperCAmelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = GLPNImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = GLPNImageProcessingTester(self ) @property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "size_divisor" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "resample" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "do_rescale" ) ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) _A = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) _A = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) _A = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
79
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] , __UpperCAmelCase : bool , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None ): '''simple docstring''' super().__init__() _A = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _A = torch.zeros(__UpperCAmelCase , __UpperCAmelCase ) else: _A = None _A = torch.nn.Parameter(__UpperCAmelCase ) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 def __init__( self : Any , __UpperCAmelCase : VQModel , __UpperCAmelCase : CLIPTextModel , __UpperCAmelCase : CLIPTokenizer , __UpperCAmelCase : TransformeraDModel , __UpperCAmelCase : VQDiffusionScheduler , __UpperCAmelCase : LearnedClassifierFreeSamplingEmbeddings , ): '''simple docstring''' super().__init__() self.register_modules( vqvae=__UpperCAmelCase , transformer=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , scheduler=__UpperCAmelCase , learned_classifier_free_sampling_embeddings=__UpperCAmelCase , ) def lowerCAmelCase ( self : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any ): '''simple docstring''' _A = len(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else 1 # get prompt text embeddings _A = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) _A = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _A = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _A = text_input_ids[:, : self.tokenizer.model_max_length] _A = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _A = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _A = prompt_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _A = self.learned_classifier_free_sampling_embeddings.embeddings _A = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCAmelCase , 1 , 1 ) else: _A = [""] * batch_size _A = text_input_ids.shape[-1] _A = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="pt" , ) _A = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _A = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _A = negative_prompt_embeds.shape[1] _A = negative_prompt_embeds.repeat(1 , __UpperCAmelCase , 1 ) _A = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Optional[Any] , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : int = 100 , __UpperCAmelCase : float = 5.0 , __UpperCAmelCase : float = 1.0 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = 1 elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = len(__UpperCAmelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}''' ) _A = batch_size * num_images_per_prompt _A = guidance_scale > 1.0 _A = self._encode_prompt(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__UpperCAmelCase )}.''' ) # get the initial completely masked latents unless the user supplied it _A = (batch_size, self.transformer.num_latent_pixels) if latents is None: _A = self.transformer.num_vector_embeds - 1 _A = torch.full(__UpperCAmelCase , __UpperCAmelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) _A = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCAmelCase , device=self.device ) _A = self.scheduler.timesteps.to(self.device ) _A = latents for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the sample if we are doing classifier free guidance _A = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _A = self.transformer(__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , timestep=__UpperCAmelCase ).sample if do_classifier_free_guidance: _A , _A = model_output.chunk(2 ) _A = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCAmelCase , dim=1 , keepdim=__UpperCAmelCase ) _A = self.truncate(__UpperCAmelCase , __UpperCAmelCase ) # remove `log(0)`'s (`-inf`s) _A = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step(__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _A = self.vqvae.config.vq_embed_dim _A = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _A = self.vqvae.quantize.get_codebook_entry(__UpperCAmelCase , shape=__UpperCAmelCase ) _A = self.vqvae.decode(__UpperCAmelCase , force_not_quantize=__UpperCAmelCase ).sample _A = (image / 2 + 0.5).clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : float ): '''simple docstring''' _A , _A = torch.sort(__UpperCAmelCase , 1 , descending=__UpperCAmelCase ) _A = torch.exp(__UpperCAmelCase ) _A = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _A = torch.full_like(keep_mask[:, 0:1, :] , __UpperCAmelCase ) _A = torch.cat((all_true, keep_mask) , dim=1 ) _A = keep_mask[:, :-1, :] _A = keep_mask.gather(1 , indices.argsort(1 ) ) _A = log_p_x_0.clone() _A = -torch.inf # -inf = log(0) return rv
79
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Any = logging.get_logger(__name__) __a :Optional[int] = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = 'swinv2' _lowerCamelCase : Any = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Union[str, Any] , UpperCAmelCase : Dict=224 , UpperCAmelCase : Dict=4 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=96 , UpperCAmelCase : Optional[Any]=[2, 2, 6, 2] , UpperCAmelCase : int=[3, 6, 12, 24] , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : Any=4.0 , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[int]=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : Tuple=False , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Any=1E-5 , UpperCAmelCase : Optional[int]=32 , **UpperCAmelCase : Any , ): super().__init__(**UpperCAmelCase ) A_ = image_size A_ = patch_size A_ = num_channels A_ = embed_dim A_ = depths A_ = len(UpperCAmelCase ) A_ = num_heads A_ = window_size A_ = mlp_ratio A_ = qkv_bias A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = drop_path_rate A_ = hidden_act A_ = use_absolute_embeddings A_ = layer_norm_eps A_ = initializer_range A_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ = int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) ) A_ = (0, 0, 0, 0)
329
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : """simple docstring""" @staticmethod def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ): pass @is_pipeline_test @require_vision class _a ( unittest.TestCase ): """simple docstring""" @require_torch def __A ( self : List[str] ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCAmelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @require_tf def __A ( self : int ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @slow @require_torch def __A ( self : Any ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def __A ( self : Optional[Any] ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
329
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : int = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = ['''MaskFormerFeatureExtractor'''] __UpperCamelCase : Dict = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] __UpperCamelCase : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
106
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : str = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : Tuple = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Optional[Any] = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") __lowerCamelCase : List[str] = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def A_ ( _lowerCAmelCase ) -> List[str]: UpperCamelCase : Optional[Any] = None # source code of `config_class` UpperCamelCase : Tuple = inspect.getsource(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = _re_checkpoint.findall(_lowerCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): UpperCamelCase : Dict = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase : Any = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: UpperCamelCase : List[Any] = ckpt_name break return checkpoint def A_ ( ) -> List[str]: UpperCamelCase : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCamelCase : Union[str, Any] = get_checkpoint_from_config_class(_lowerCAmelCase ) UpperCamelCase : Optional[int] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCamelCase : Any = "\n".join(sorted(_lowerCAmelCase ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
52
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = ["image_processor", "tokenizer"] __UpperCAmelCase : str = "OwlViTImageProcessor" __UpperCAmelCase : Dict = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : str , lowerCamelCase : Any=None , lowerCamelCase : Any=None , **lowerCamelCase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self : Union[str, Any] , lowerCamelCase : Tuple=None , lowerCamelCase : int=None , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : List[str]="max_length" , lowerCamelCase : Dict="np" , **lowerCamelCase : str ) -> List[Any]: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(lowerCamelCase , lowerCamelCase ) or (isinstance(lowerCamelCase , lowerCamelCase ) and not isinstance(text[0] , lowerCamelCase )): __snake_case : Union[str, Any] = [self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase )] elif isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(text[0] , lowerCamelCase ): __snake_case : Tuple = [] # Maximum number of queries across batch __snake_case : str = max([len(lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase ) != max_num_queries: __snake_case : Dict = t + [" "] * (max_num_queries - len(lowerCamelCase )) __snake_case : int = self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) encodings.append(lowerCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": __snake_case : Any = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Tuple = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __snake_case : List[Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Any = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __snake_case : int = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) __snake_case : int = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __snake_case : int = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Dict = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) __snake_case : Any = BatchEncoding() __snake_case : Tuple = input_ids __snake_case : int = attention_mask if query_images is not None: __snake_case : List[Any] = BatchEncoding() __snake_case : Union[str, Any] = self.image_processor( lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ).pixel_values __snake_case : str = query_pixel_values if images is not None: __snake_case : Optional[int] = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __snake_case : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase ) , tensor_type=lowerCamelCase ) def __snake_case ( self : Dict , *lowerCamelCase : List[Any] , **lowerCamelCase : Union[str, Any] ) -> str: return self.image_processor.post_process(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Union[str, Any] , *lowerCamelCase : str , **lowerCamelCase : List[str] ) -> Tuple: return self.image_processor.post_process_object_detection(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Optional[Any] , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Optional[Any] ) -> Any: return self.image_processor.post_process_image_guided_detection(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : List[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Optional[int] ) -> str: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Union[str, Any] , *lowerCamelCase : Tuple , **lowerCamelCase : List[Any] ) -> Tuple: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Any ) -> Dict: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase , ) return self.image_processor_class @property def __snake_case ( self : List[str] ) -> Union[str, Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase , ) return self.image_processor
361
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return x if y == 0 else greatest_common_divisor(__lowerCamelCase , x % y ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return (x * y) // greatest_common_divisor(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase = 2_0 ): __snake_case : Optional[Any] = 1 for i in range(1 , n + 1 ): __snake_case : Any = lcm(__lowerCamelCase , __lowerCamelCase ) return g if __name__ == "__main__": print(f'''{solution() = }''')
134
0
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): A_ : str = parent A_ : int = batch_size A_ : Dict = seq_length A_ : Any = is_training A_ : List[str] = use_input_mask A_ : Any = use_token_type_ids A_ : int = use_labels A_ : str = vocab_size A_ : Any = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : Dict = num_attention_heads A_ : Dict = intermediate_size A_ : Optional[int] = hidden_act A_ : int = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : Any = type_sequence_label_size A_ : Tuple = initializer_range A_ : int = num_labels A_ : Optional[int] = num_choices A_ : Optional[int] = scope def _a (self ): A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : List[str] = None if self.use_input_mask: A_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A_ : int = None if self.use_token_type_ids: A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Tuple = None A_ : List[str] = None A_ : List[str] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a (self ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : List[Any] = BioGptModel(config=lowercase ) model.to(lowercase ) model.eval() A_ : List[Any] = model(lowercase , attention_mask=lowercase ) A_ : str = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): A_ : List[Any] = BioGptForCausalLM(config=lowercase ) model.to(lowercase ) model.eval() A_ : Dict = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ): A_ : Optional[Any] = BioGptModel(config=lowercase ) model.to(lowercase ) model.eval() # create attention mask A_ : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase ) A_ : Optional[Any] = self.seq_length // 2 A_ : List[Any] = 0 # first forward pass A_, A_ : List[str] = model(lowercase , attention_mask=lowercase ).to_tuple() # create hypothetical next token and extent to next_input_ids A_ : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids A_ : Union[str, Any] = ids_tensor((1,) , lowercase ).item() + 1 A_ : List[str] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) A_ : Optional[int] = random_other_next_tokens # append to next input_ids and attn_mask A_ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ : Any = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase )] , dim=1 , ) # get two different outputs A_ : List[Any] = model(lowercase , attention_mask=lowercase )["""last_hidden_state"""] A_ : Optional[int] = model(lowercase , past_key_values=lowercase , attention_mask=lowercase )["""last_hidden_state"""] # select random slice A_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ : int = output_from_no_past[:, -1, random_slice_idx].detach() A_ : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1E-3 ) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ): A_ : Optional[int] = BioGptModel(config=lowercase ).to(lowercase ).eval() A_ : Union[str, Any] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase ) # first forward pass A_ : int = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) A_, A_ : int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids A_ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ : str = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and A_ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ : int = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) A_ : List[str] = model(lowercase , attention_mask=lowercase )["""last_hidden_state"""] A_ : Tuple = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[ """last_hidden_state""" ] # select random slice A_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() A_ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1E-3 ) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase , lowercase=False ): A_ : Union[str, Any] = BioGptForCausalLM(lowercase ) model.to(lowercase ) if gradient_checkpointing: model.gradient_checkpointing_enable() A_ : Dict = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _a (self , lowercase , *lowercase ): A_ : Union[str, Any] = BioGptModel(lowercase ) A_ : str = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ): A_ : Union[str, Any] = self.num_labels A_ : Optional[int] = BioGptForTokenClassification(lowercase ) model.to(lowercase ) model.eval() A_ : Dict = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a (self ): A_ : List[Any] = self.prepare_config_and_inputs() ( ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ) : Dict = config_and_inputs A_ : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : int = (BioGptForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Optional[Any] = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : List[str] = False def _a (self ): A_ : Tuple = BioGptModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def _a (self ): self.config_tester.run_common_tests() def _a (self ): A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : int = type self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase ) def _a (self ): A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase , gradient_checkpointing=lowercase ) def _a (self ): A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase ) def _a (self ): A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase ) def _a (self ): A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase ) @slow def _a (self ): A_ : str = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(lowercase ) A_ : List[str] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A_ : List[str] = """left""" # Define PAD Token = EOS Token = 50256 A_ : Any = tokenizer.eos_token A_ : Dict = model.config.eos_token_id # use different length sentences to test batching A_ : List[Any] = [ """Hello, my dog is a little""", """Today, I""", ] A_ : List[str] = tokenizer(lowercase , return_tensors="""pt""" , padding=lowercase ) A_ : List[str] = inputs["""input_ids"""].to(lowercase ) A_ : List[Any] = model.generate( input_ids=lowercase , attention_mask=inputs["""attention_mask"""].to(lowercase ) , ) A_ : List[str] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(lowercase ) A_ : List[Any] = model.generate(input_ids=lowercase ) A_ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() A_ : Union[str, Any] = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(lowercase ) A_ : Any = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) A_ : List[str] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) A_ : str = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) A_ : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) A_ : Union[str, Any] = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) @slow def _a (self ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = BioGptModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def _a (self ): A_, A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[Any] = 3 A_ : Union[str, Any] = input_dict["""input_ids"""] A_ : List[Any] = input_ids.ne(1 ).to(lowercase ) A_ : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A_ : Union[str, Any] = BioGptForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() A_ : Tuple = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a (self ): A_, A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = 3 A_ : Dict = """multi_label_classification""" A_ : List[Any] = input_dict["""input_ids"""] A_ : Tuple = input_ids.ne(1 ).to(lowercase ) A_ : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A_ : Dict = BioGptForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() A_ : int = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): @slow def _a (self ): A_ : Dict = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) A_ : Optional[Any] = torch.tensor([[2, 4805, 9, 656, 21]] ) A_ : Dict = model(lowercase )[0] A_ : Any = 42384 A_ : Union[str, Any] = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , lowercase ) A_ : Union[str, Any] = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) ) @slow def _a (self ): A_ : Union[str, Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A_ : Dict = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(lowercase ) torch.manual_seed(0 ) A_ : Dict = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(lowercase ) A_ : Optional[int] = model.generate( **lowercase , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=lowercase , ) A_ : Union[str, Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase ) A_ : Any = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(lowercase , lowercase )
206
'''simple docstring''' from __future__ import annotations import math def a ( lowerCamelCase__ ): '''simple docstring''' if num <= 0: A_ : List[Any] = f'{num}: Invalid input, please enter a positive integer.' raise ValueError(lowerCamelCase__ ) A_ : Dict = [True] * (num + 1) A_ : List[Any] = [] A_ : Tuple = 2 A_ : Optional[int] = int(math.sqrt(lowerCamelCase__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCamelCase__ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCamelCase__ ): if sieve[i] is True: A_ : List[Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCamelCase__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
206
1
import os def __UpperCamelCase ( lowerCAmelCase__ : str = "input.txt" ): with open(os.path.join(os.path.dirname(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) as input_file: __a : Any = [ [int(lowerCAmelCase__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] __a : List[str] = len(lowerCAmelCase__ ) __a : Optional[Any] = len(matrix[0] ) __a : Dict = [[-1 for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): __a : List[Any] = matrix[i][0] for j in range(1 , lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): __a : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowerCAmelCase__ ): __a : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
90
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase__ ='bert-base-cased' lowercase__ ='google/pegasus-xsum' lowercase__ =[' Sam ate lunch today.', 'Sams lunch ingredients.'] lowercase__ =['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] lowercase__ ='patrickvonplaten/t5-tiny-random' lowercase__ ='sshleifer/bart-tiny-random' lowercase__ ='sshleifer/tiny-mbart' lowercase__ ='sshleifer/tiny-marian-en-de' def __UpperCamelCase ( lowerCAmelCase__ : Path , lowerCAmelCase__ : list ): __a : List[Any] = '''\n'''.join(lowerCAmelCase__ ) Path(lowerCAmelCase__ ).open('''w''' ).writelines(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : int ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowerCAmelCase__ , f"{split}.source" ) , lowerCAmelCase__ ) _dump_articles(os.path.join(lowerCAmelCase__ , f"{split}.target" ) , lowerCAmelCase__ ) return tmp_dir class UpperCamelCase__ ( __lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def lowerCAmelCase (self : int , snake_case_ : int ): __a : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ ) __a : Optional[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __a : Union[str, Any] = max(len(tokenizer.encode(snake_case_ ) ) for a in ARTICLES ) __a : str = max(len(tokenizer.encode(snake_case_ ) ) for a in SUMMARIES ) __a : str = 4 __a : Dict = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __a , __a : Any = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. __a : List[Any] = SeqaSeqDataset( snake_case_ , data_dir=snake_case_ , type_path='''train''' , max_source_length=snake_case_ , max_target_length=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ , ) __a : Dict = DataLoader(snake_case_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(snake_case_ , snake_case_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __a : Dict = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : str ): __a : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case_ ) __a : str = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __a : Any = max(len(tokenizer.encode(snake_case_ ) ) for a in ARTICLES ) __a : Any = max(len(tokenizer.encode(snake_case_ ) ) for a in SUMMARIES ) __a : Dict = 4 __a : Optional[int] = LegacySeqaSeqDataset( snake_case_ , data_dir=snake_case_ , type_path='''train''' , max_source_length=2_0 , max_target_length=snake_case_ , ) __a : Optional[Any] = DataLoader(snake_case_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowerCAmelCase (self : List[str] ): __a : int = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) __a : Any = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __a : Optional[int] = tmp_dir.joinpath('''train.source''' ).open().readlines() __a : List[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(snake_case_ , snake_case_ , 1_2_8 , snake_case_ ) __a : Optional[Any] = {x.name for x in tmp_dir.iterdir()} __a : Union[str, Any] = {x.name for x in save_dir.iterdir()} __a : str = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(snake_case_ ) < len(snake_case_ ) assert len(snake_case_ ) == 1 assert len(packed_examples[0] ) == sum(len(snake_case_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def lowerCAmelCase (self : Any ): if not FAIRSEQ_AVAILABLE: return __a , __a , __a : Any = self._get_dataset(max_len=6_4 ) __a : int = 6_4 __a : List[str] = ds.make_dynamic_sampler(snake_case_ , required_batch_size_multiple=snake_case_ ) __a : List[str] = [len(snake_case_ ) for x in batch_sampler] assert len(set(snake_case_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(snake_case_ ) == len(snake_case_ ) # no dropped or added examples __a : Union[str, Any] = DataLoader(snake_case_ , batch_sampler=snake_case_ , collate_fn=ds.collate_fn , num_workers=2 ) __a : Tuple = [] __a : Union[str, Any] = [] for batch in data_loader: __a : Any = batch['''input_ids'''].shape __a : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __a : Optional[Any] = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(snake_case_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(snake_case_ ) assert num_src_per_batch[0] == max(snake_case_ ) if failures: raise AssertionError(f"too many tokens in {len(snake_case_ )} batches" ) def lowerCAmelCase (self : int ): __a , __a , __a : Optional[int] = self._get_dataset(max_len=5_1_2 ) __a : Union[str, Any] = 2 __a : str = ds.make_sortish_sampler(snake_case_ , shuffle=snake_case_ ) __a : Tuple = DataLoader(snake_case_ , batch_size=snake_case_ , collate_fn=ds.collate_fn , num_workers=2 ) __a : Tuple = DataLoader(snake_case_ , batch_size=snake_case_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=snake_case_ ) __a : Optional[int] = tokenizer.pad_token_id def count_pad_tokens(snake_case_ : Union[str, Any] , snake_case_ : List[str]="input_ids" ): return [batch[k].eq(snake_case_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(snake_case_ , k='''labels''' ) ) < sum(count_pad_tokens(snake_case_ , k='''labels''' ) ) assert sum(count_pad_tokens(snake_case_ ) ) < sum(count_pad_tokens(snake_case_ ) ) assert len(snake_case_ ) == len(snake_case_ ) def lowerCAmelCase (self : int , snake_case_ : int=1_0_0_0 , snake_case_ : Optional[Any]=1_2_8 ): if os.getenv('''USE_REAL_DATA''' , snake_case_ ): __a : Optional[int] = '''examples/seq2seq/wmt_en_ro''' __a : List[Any] = max_len * 2 * 6_4 if not Path(snake_case_ ).joinpath('''train.len''' ).exists(): save_len_file(snake_case_ , snake_case_ ) else: __a : int = '''examples/seq2seq/test_data/wmt_en_ro''' __a : List[str] = max_len * 4 save_len_file(snake_case_ , snake_case_ ) __a : str = AutoTokenizer.from_pretrained(snake_case_ ) __a : Optional[int] = SeqaSeqDataset( snake_case_ , data_dir=snake_case_ , type_path='''train''' , max_source_length=snake_case_ , max_target_length=snake_case_ , n_obs=snake_case_ , ) return ds, max_tokens, tokenizer def lowerCAmelCase (self : List[str] ): __a , __a , __a : str = self._get_dataset() __a : Optional[Any] = set(DistributedSortishSampler(snake_case_ , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=snake_case_ ) ) __a : Tuple = set(DistributedSortishSampler(snake_case_ , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=snake_case_ ) ) assert idsa.intersection(snake_case_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def lowerCAmelCase (self : str , snake_case_ : Union[str, Any] ): __a : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case_ , use_fast=snake_case_ ) if tok_name == MBART_TINY: __a : Any = SeqaSeqDataset( snake_case_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) __a : Tuple = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __a : Optional[Any] = SeqaSeqDataset( snake_case_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) __a : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(snake_case_ ) == 1 if tok_name == BART_TINY else len(snake_case_ ) == 0
90
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'canine' def __init__( self : str ,lowercase__ : Any=7_6_8 ,lowercase__ : List[str]=1_2 ,lowercase__ : Tuple=1_2 ,lowercase__ : List[Any]=3_0_7_2 ,lowercase__ : List[str]="gelu" ,lowercase__ : Optional[Any]=0.1 ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : Dict=1_6_3_8_4 ,lowercase__ : Tuple=1_6 ,lowercase__ : Any=0.0_2 ,lowercase__ : str=1e-1_2 ,lowercase__ : str=0 ,lowercase__ : Tuple=0xe_000 ,lowercase__ : Optional[int]=0xe_001 ,lowercase__ : List[str]=4 ,lowercase__ : List[str]=4 ,lowercase__ : List[Any]=8 ,lowercase__ : Optional[int]=1_6_3_8_4 ,lowercase__ : Union[str, Any]=1_2_8 ,**lowercase__ : List[str] ,): super().__init__(pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = type_vocab_size __lowercase = layer_norm_eps # Character config: __lowercase = downsampling_rate __lowercase = upsampling_kernel_size __lowercase = num_hash_functions __lowercase = num_hash_buckets __lowercase = local_transformer_stride
104
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str: if isinstance(snake_case__ , snake_case__ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if isinstance(snake_case__ , snake_case__ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if num == 0: return "0b0" lowerCAmelCase = False if num < 0: lowerCAmelCase = True lowerCAmelCase = -num lowerCAmelCase = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(snake_case__ ) for e in binary ) return "0b" + "".join(str(snake_case__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
338
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __lt__( self : Dict , lowercase_ : Optional[int]) -> Any: """simple docstring""" return self[-1] < other[-1] def __eq__( self : Any , lowercase_ : Any) -> List[Any]: """simple docstring""" return self[-1] == other[-1] def lowerCAmelCase__ ( a__ ) ->list: '''simple docstring''' _UpperCamelCase = [] # sort into stacks for element in collection: _UpperCamelCase = Stack([element] ) _UpperCamelCase = bisect_left(a__ , a__ ) if i != len(a__ ): stacks[i].append(a__ ) else: stacks.append(a__ ) # use a heap-based merge to merge stack efficiently _UpperCamelCase = merge(*(reversed(a__ ) for stack in stacks) ) return collection if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
63
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = ['''image_processor''', '''tokenizer'''] __A = '''BridgeTowerImageProcessor''' __A = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : List[Any] , lowercase_ : Dict , lowercase_ : List[Any]) -> List[str]: """simple docstring""" super().__init__(lowercase_ , lowercase_) def __call__( self : Any , lowercase_ : List[Any] , lowercase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ : bool = True , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Union[bool, str, TruncationStrategy] = None , lowercase_ : Optional[int] = None , lowercase_ : int = 0 , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[Union[str, TensorType]] = None , **lowercase_ : str , ) -> BatchEncoding: """simple docstring""" _UpperCamelCase = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel_values + pixel_mask _UpperCamelCase = self.image_processor( lowercase_ , return_tensors=lowercase_ , do_normalize=lowercase_ , do_center_crop=lowercase_ , **lowercase_) encoding.update(lowercase_) return encoding def __UpperCAmelCase ( self : Union[str, Any] , *lowercase_ : List[str] , **lowercase_ : int) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def __UpperCAmelCase ( self : Optional[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def __UpperCAmelCase ( self : str) -> Dict: """simple docstring""" _UpperCamelCase = self.tokenizer.model_input_names _UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
63
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=19 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ) -> Tuple: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=_UpperCAmelCase , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = EsmForProteinFolding(config=_UpperCAmelCase ).float() model.to(_UpperCAmelCase ) model.eval() __lowerCamelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) __lowerCamelCase = model(_UpperCAmelCase ) __lowerCamelCase = model(_UpperCAmelCase ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( __lowerCamelCase ) = config_and_inputs __lowerCamelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" snake_case_ = False snake_case_ = (EsmForProteinFolding,) if is_torch_available() else () snake_case_ = () snake_case_ = {} if is_torch_available() else {} snake_case_ = False def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = EsmFoldModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) @unittest.skip('Does not support attention outputs' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase_ ( self ) -> int: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('ESMFold does not support passing input embeds!' ) def lowercase_ ( self ) -> str: '''simple docstring''' pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self ) -> int: '''simple docstring''' pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def lowercase_ ( self ) -> str: '''simple docstring''' pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def lowercase_ ( self ) -> str: '''simple docstring''' pass @unittest.skip('ESMFold only has one output format.' ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip('ESMFold does not support input chunking.' ) def lowercase_ ( self ) -> int: '''simple docstring''' pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase_ ( self ) -> int: '''simple docstring''' pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def lowercase_ ( self ) -> int: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch class __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() __lowerCamelCase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowerCamelCase = model(_UpperCAmelCase )["positions"] __lowerCamelCase = torch.tensor([2.58_28, 0.79_93, -10.93_34] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , _UpperCAmelCase , atol=1e-4 ) )
90
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _lowerCAmelCase = '''src/transformers''' _lowerCAmelCase = '''docs/source/en/tasks''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): with open(snake_case__ , "r" , encoding="utf-8" , newline="\n" ) as f: __UpperCamelCase : str = f.readlines() # Find the start prompt. __UpperCamelCase : Dict = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 __UpperCamelCase : Dict = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) _lowerCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _lowerCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Optional[Any] = TASK_GUIDE_TO_MODELS[task_guide] __UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) __UpperCamelCase : Union[str, Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def __lowerCAmelCase ( snake_case__ , snake_case__=False ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) __UpperCamelCase : List[str] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowerCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
298
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ = 16 a_ = 32 def __lowercase ( lowerCamelCase : Accelerator , lowerCamelCase : int = 16 ): UpperCamelCase_ : int = AutoTokenizer.from_pretrained('bert-base-cased' ) UpperCamelCase_ : Union[str, Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCamelCase : Tuple ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ : List[str] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase , max_length=lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase_ : Optional[int] = datasets.map( lowerCamelCase , batched=lowerCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase_ : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase_ : str = 16 elif accelerator.mixed_precision != "no": UpperCamelCase_ : Any = 8 else: UpperCamelCase_ : str = None return tokenizer.pad( lowerCamelCase , padding='longest' , max_length=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase_ : Tuple = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) UpperCamelCase_ : List[str] = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ = mocked_dataloaders # noqa: F811 def __lowercase ( lowerCamelCase : Tuple , lowerCamelCase : List[Any] ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowerCamelCase ) == "1": UpperCamelCase_ : Any = 2 # New Code # UpperCamelCase_ : Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator UpperCamelCase_ : List[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCamelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ : Optional[Any] = config['lr'] UpperCamelCase_ : List[Any] = int(config['num_epochs'] ) UpperCamelCase_ : str = int(config['seed'] ) UpperCamelCase_ : Any = int(config['batch_size'] ) UpperCamelCase_ : Union[str, Any] = evaluate.load('glue' , 'mrpc' ) set_seed(lowerCamelCase ) UpperCamelCase_, UpperCamelCase_ : str = get_dataloaders(lowerCamelCase , lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ : Tuple = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase_ : str = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase_ : List[Any] = AdamW(params=model.parameters() , lr=lowerCamelCase ) # Instantiate scheduler UpperCamelCase_ : Tuple = get_linear_schedule_with_warmup( optimizer=lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ : Tuple = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Now we train the model for epoch in range(lowerCamelCase ): model.train() for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCamelCase ): UpperCamelCase_ : str = model(**lowerCamelCase ) UpperCamelCase_ : Optional[Any] = output.loss accelerator.backward(lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase_ : str = model(**lowerCamelCase ) UpperCamelCase_ : List[Any] = outputs.logits.argmax(dim=-1 ) UpperCamelCase_, UpperCamelCase_ : int = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCamelCase , references=lowerCamelCase , ) UpperCamelCase_ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , lowerCamelCase ) def __lowercase ( ): UpperCamelCase_ : Tuple = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCamelCase , default=lowerCamelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=lowerCamelCase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) UpperCamelCase_ : List[str] = parser.parse_args() UpperCamelCase_ : str = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": main()
50
from __future__ import annotations import numpy as np def __lowercase ( lowerCamelCase : list[float] ): return np.maximum(0 , lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
50
1
"""simple docstring""" import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowercase_ = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_8000, 'sample_size': 6_5536, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_8000, 'sample_size': 6_5536, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_8000, 'sample_size': 13_1072, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_6000, 'sample_size': 6_5536, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_6000, 'sample_size': 6_5536, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_6000, 'sample_size': 6_5536, }, } def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return torch.atana(__UpperCamelCase , __UpperCamelCase ) / math.pi * 2 def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = torch.sin(t * math.pi / 2 ) ** 2 __A = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(__UpperCamelCase , __UpperCamelCase ) class snake_case ( snake_case_ ): '''simple docstring''' pass class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : str, _lowerCamelCase : Optional[int] ): '''simple docstring''' super().__init__() __A = DiffusionAttnUnetaD(_lowerCamelCase, n_attn_layers=4 ) __A = deepcopy(self.diffusion ) __A = torch.quasirandom.SobolEngine(1, scramble=_lowerCamelCase ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = MODELS_MAP[model_name]['''url'''] os.system(f'wget {url} ./' ) return f'./{model_name}.ckpt' lowercase_ = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } lowercase_ = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } lowercase_ = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } lowercase_ = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } lowercase_ = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } lowercase_ = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(f'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" for key, value in ATTN_MAP.items(): if name.startswith(__UpperCamelCase ) and not isinstance(__UpperCamelCase , __UpperCamelCase ): return name.replace(__UpperCamelCase , __UpperCamelCase ) elif name.startswith(__UpperCamelCase ): return [name.replace(__UpperCamelCase , __UpperCamelCase ) for v in value] raise ValueError(f'Attn error with {name}' ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=1_3 ): """simple docstring""" __A = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) __A = 0 if string.startswith('''net.3.''' ): depth += 1 __A = string[6:] elif string.startswith('''net.''' ): __A = string[4:] while string.startswith('''main.7.''' ): depth += 1 __A = string[7:] if string.startswith('''main.''' ): __A = string[5:] # mid block if string[:2].isdigit(): __A = string[:2] __A = string[2:] else: __A = string[0] __A = string[1:] if depth == max_depth: __A = MID_NUM_TO_LAYER[layer_num] __A = '''mid_block''' elif depth > 0 and int(__UpperCamelCase ) < 7: __A = DOWN_NUM_TO_LAYER[layer_num] __A = f'down_blocks.{depth}' elif depth > 0 and int(__UpperCamelCase ) > 7: __A = UP_NUM_TO_LAYER[layer_num] __A = f'up_blocks.{max_depth - depth - 1}' elif depth == 0: __A = DEPTH_0_TO_LAYER[layer_num] __A = f'up_blocks.{max_depth - 1}' if int(__UpperCamelCase ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(f'Naming error with {input_string} and string_left: {string_left}.' ) __A = string_left[1:] if "resnets" in new_layer: __A = convert_resconv_naming(__UpperCamelCase ) elif "attentions" in new_layer: __A = convert_attn_naming(__UpperCamelCase ) __A = new_string_left if not isinstance(__UpperCamelCase , __UpperCamelCase ): __A = prefix + '''.''' + new_layer + '''.''' + string_left else: __A = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue __A = rename(__UpperCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(__UpperCamelCase , __UpperCamelCase ): __A = transform_conv_attns(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: __A = v return new_state_dict def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if len(__UpperCamelCase ) == 1: if len(v.shape ) == 3: # weight __A = v[:, :, 0] else: # bias __A = v else: # qkv matrices __A = v.shape[0] __A = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: __A = v[i * single_shape : (i + 1) * single_shape, :, 0] else: __A = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) __A = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'Make sure to provide one of the official model names {MODELS_MAP.keys()}' __A = download(__UpperCamelCase ) __A = MODELS_MAP[model_name]['''sample_rate'''] __A = MODELS_MAP[model_name]['''sample_size'''] __A = Object() __A = sample_size __A = sample_rate __A = 0 __A = UNetaDModel(sample_size=__UpperCamelCase , sample_rate=__UpperCamelCase ) __A = diffusers_model.state_dict() __A = DiffusionUncond(__UpperCamelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=__UpperCamelCase )['''state_dict'''] ) __A = orig_model.diffusion_ema.eval() __A = orig_model.state_dict() __A = rename_orig_weights(__UpperCamelCase ) __A = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) __A = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(__UpperCamelCase ) == 0, f'Problem with {renamed_minus_diffusers}' assert all(k.endswith('''kernel''' ) for k in list(__UpperCamelCase ) ), f'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": __A = value.squeeze() __A = value diffusers_model.load_state_dict(__UpperCamelCase ) __A = 1_0_0 __A = 3_3 __A = IPNDMScheduler(num_train_timesteps=__UpperCamelCase ) __A = torch.manual_seed(__UpperCamelCase ) __A = torch.randn([1, 2, config.sample_size] , generator=__UpperCamelCase ).to(__UpperCamelCase ) __A = torch.linspace(1 , 0 , steps + 1 , device=__UpperCamelCase )[:-1] __A = get_crash_schedule(__UpperCamelCase ) __A = DanceDiffusionPipeline(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) __A = torch.manual_seed(3_3 ) __A = pipe(num_inference_steps=__UpperCamelCase , generator=__UpperCamelCase ).audios __A = sampling.iplms_sample(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , {} ) __A = generated.clamp(-1 , 1 ) __A = (generated - audio).abs().sum() __A = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , __UpperCamelCase ) print('''Diff max''' , __UpperCamelCase ) assert diff_max < 1e-3, f'Diff max: {diff_max} is too much :-/' print(f'Conversion for {model_name} successful!' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') lowercase_ = parser.parse_args() main(args)
266
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __a :Dict = get_logger(__name__) __a :Union[str, Any] = Path(__file__).parent / 'model_card_template.md' __a :Tuple = uuida().hex __a :List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES __a :Union[str, Any] = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES __a :Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def __snake_case ( __UpperCamelCase : Union[Dict, str, None] = None ): """simple docstring""" A_ = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" ,"" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent return ua def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if token is None: A_ = HfFolder.get_token() if organization is None: A_ = whoami(__UpperCamelCase )["name"] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__UpperCamelCase ,"local_rank" ) and args.local_rank not in [-1, 0]: return A_ = args.hub_token if hasattr(__UpperCamelCase ,"hub_token" ) else None A_ = get_full_repo_name(__UpperCamelCase ,token=__UpperCamelCase ) A_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" ,license="apache-2.0" ,library_name="diffusers" ,tags=[] ,datasets=args.dataset_name ,metrics=[] ,) ,template_path=__UpperCamelCase ,model_name=__UpperCamelCase ,repo_name=__UpperCamelCase ,dataset_name=args.dataset_name if hasattr(__UpperCamelCase ,"dataset_name" ) else None ,learning_rate=args.learning_rate ,train_batch_size=args.train_batch_size ,eval_batch_size=args.eval_batch_size ,gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCamelCase ,"gradient_accumulation_steps" ) else None ) ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta1" ) else None ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta2" ) else None ,adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCamelCase ,"adam_weight_decay" ) else None ,adam_epsilon=args.adam_epsilon if hasattr(__UpperCamelCase ,"adam_epsilon" ) else None ,lr_scheduler=args.lr_scheduler if hasattr(__UpperCamelCase ,"lr_scheduler" ) else None ,lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCamelCase ,"lr_warmup_steps" ) else None ,ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCamelCase ,"ema_inv_gamma" ) else None ,ema_power=args.ema_power if hasattr(__UpperCamelCase ,"ema_power" ) else None ,ema_max_decay=args.ema_max_decay if hasattr(__UpperCamelCase ,"ema_max_decay" ) else None ,mixed_precision=args.mixed_precision ,) A_ = os.path.join(args.output_dir ,"README.md" ) model_card.save(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash A_ = str(Path(__UpperCamelCase ).as_posix() ) A_ = re.search(R"snapshots/([^/]+)/" ,__UpperCamelCase ) if search is None: return None A_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __a :str = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) __a :List[Any] = os.path.join(hf_cache_home, 'diffusers') def __snake_case ( __UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if new_cache_dir is None: A_ = DIFFUSERS_CACHE if old_cache_dir is None: A_ = old_diffusers_cache A_ = Path(__UpperCamelCase ).expanduser() A_ = Path(__UpperCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): A_ = new_cache_dir / old_blob_path.relative_to(__UpperCamelCase ) new_blob_path.parent.mkdir(parents=__UpperCamelCase ,exist_ok=__UpperCamelCase ) os.replace(__UpperCamelCase ,__UpperCamelCase ) try: os.symlink(__UpperCamelCase ,__UpperCamelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __a :Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): __a :Optional[int] = 0 else: with open(cache_version_file) as f: try: __a :Dict = int(f.read()) except ValueError: __a :str = 0 if cache_version < 1: __a :Optional[Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: __a :Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " 'the directory exists and can be written to.' ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if variant is not None: A_ = weights_name.split("." ) A_ = splits[:-1] + [variant] + splits[-1:] A_ = ".".join(__UpperCamelCase ) return weights_name def __snake_case ( __UpperCamelCase : Optional[Any] ,*, __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Any ,__UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : str ,__UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int]=None ,): """simple docstring""" A_ = str(__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCamelCase ): if os.path.isfile(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ): # Load from a PyTorch checkpoint A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ): A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse("0.20.0" ) ): try: A_ = hf_hub_download( __UpperCamelCase ,filename=_add_variant(__UpperCamelCase ,__UpperCamelCase ) ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' ,__UpperCamelCase ,) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCamelCase ,__UpperCamelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCamelCase ,__UpperCamelCase )}\' so that the correct variant file can be added.''' ,__UpperCamelCase ,) try: # 2. Load model file as usual A_ = hf_hub_download( __UpperCamelCase ,filename=__UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' "this model name. Check the model page at " f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
312
0
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _A = get_logger(__name__) class lowerCamelCase : def __init__(self : List[Any] , _A : Optional[str] = None ) -> List[str]: snake_case = ( os.path.join(_A , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case = Extractor def UpperCAmelCase(self : Optional[int] , _A : str ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case = os.path.abspath(_A ) return os.path.join(self.extract_dir , hash_url_to_filename(_A ) ) def UpperCAmelCase(self : Optional[int] , _A : str , _A : bool ) -> bool: return force_extract or ( not os.path.isfile(_A ) and not (os.path.isdir(_A ) and os.listdir(_A )) ) def UpperCAmelCase(self : Union[str, Any] , _A : str , _A : bool = False ) -> str: snake_case = self.extractor.infer_extractor_format(_A ) if not extractor_format: return input_path snake_case = self._get_output_path(_A ) if self._do_extract(_A , _A ): self.extractor.extract(_A , _A , _A ) return output_path class lowerCamelCase ( A_ ): @classmethod @abstractmethod def UpperCAmelCase(cls : Optional[Any] , _A : Union[Path, str] , **_A : int ) -> bool: ... @staticmethod @abstractmethod def UpperCAmelCase(_A : Union[Path, str] , _A : Union[Path, str] ) -> None: ... class lowerCamelCase ( A_ , A_ ): UpperCAmelCase__ : List[bytes] = [] @staticmethod def UpperCAmelCase(_A : Union[Path, str] , _A : int ) -> int: with open(_A , "rb" ) as f: return f.read(_A ) @classmethod def UpperCAmelCase(cls : Any , _A : Union[Path, str] , _A : bytes = b"" ) -> bool: if not magic_number: snake_case = max(len(_A ) for cls_magic_number in cls.magic_numbers ) try: snake_case = cls.read_magic_number(_A , _A ) except OSError: return False return any(magic_number.startswith(_A ) for cls_magic_number in cls.magic_numbers ) class lowerCamelCase ( A_ ): @classmethod def UpperCAmelCase(cls : Dict , _A : Union[Path, str] , **_A : str ) -> bool: return tarfile.is_tarfile(_A ) @staticmethod def UpperCAmelCase(_A : Optional[Any] , _A : List[str] ) -> Tuple: def resolved(_A : str ) -> str: return os.path.realpath(os.path.abspath(_A ) ) def badpath(_A : str , _A : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_A , _A ) ).startswith(_A ) def badlink(_A : int , _A : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case = resolved(os.path.join(_A , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_A ) snake_case = resolved(_A ) for finfo in members: if badpath(finfo.name , _A ): logger.error(f'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(_A , _A ): logger.error(f'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(_A , _A ): logger.error(f'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def UpperCAmelCase(_A : Union[Path, str] , _A : Union[Path, str] ) -> None: os.makedirs(_A , exist_ok=_A ) snake_case = tarfile.open(_A ) tar_file.extractall(_A , members=TarExtractor.safemembers(_A , _A ) ) tar_file.close() class lowerCamelCase ( A_ ): UpperCAmelCase__ : str = [B"\x1F\x8B"] @staticmethod def UpperCAmelCase(_A : Union[Path, str] , _A : Union[Path, str] ) -> None: with gzip.open(_A , "rb" ) as gzip_file: with open(_A , "wb" ) as extracted_file: shutil.copyfileobj(_A , _A ) class lowerCamelCase ( A_ ): UpperCAmelCase__ : Union[str, Any] = [ B"PK\x03\x04", B"PK\x05\x06", # empty archive B"PK\x07\x08", # spanned archive ] @classmethod def UpperCAmelCase(cls : int , _A : Union[Path, str] , _A : bytes = b"" ) -> bool: if super().is_extractable(_A , magic_number=_A ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_A , "rb" ) as fp: snake_case = _EndRecData(_A ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case = fp.read(_A ) # CD is where we expect it to be if len(_A ) == sizeCentralDir: snake_case = struct.unpack(_A , _A ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def UpperCAmelCase(_A : Union[Path, str] , _A : Union[Path, str] ) -> None: os.makedirs(_A , exist_ok=_A ) with zipfile.ZipFile(_A , "r" ) as zip_file: zip_file.extractall(_A ) zip_file.close() class lowerCamelCase ( A_ ): UpperCAmelCase__ : Union[str, Any] = [B"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def UpperCAmelCase(_A : Union[Path, str] , _A : Union[Path, str] ) -> None: with lzma.open(_A ) as compressed_file: with open(_A , "wb" ) as extracted_file: shutil.copyfileobj(_A , _A ) class lowerCamelCase ( A_ ): UpperCAmelCase__ : Tuple = [B"Rar!\x1a\x07\x00", B"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def UpperCAmelCase(_A : Union[Path, str] , _A : Union[Path, str] ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(_A , exist_ok=_A ) snake_case = rarfile.RarFile(_A ) rf.extractall(_A ) rf.close() class lowerCamelCase ( A_ ): UpperCAmelCase__ : str = [B"\x28\xb5\x2F\xFD"] @staticmethod def UpperCAmelCase(_A : Union[Path, str] , _A : Union[Path, str] ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd snake_case = zstd.ZstdDecompressor() with open(_A , "rb" ) as ifh, open(_A , "wb" ) as ofh: dctx.copy_stream(_A , _A ) class lowerCamelCase ( A_ ): UpperCAmelCase__ : str = [B"\x42\x5A\x68"] @staticmethod def UpperCAmelCase(_A : Union[Path, str] , _A : Union[Path, str] ) -> None: with bza.open(_A , "rb" ) as compressed_file: with open(_A , "wb" ) as extracted_file: shutil.copyfileobj(_A , _A ) class lowerCamelCase ( A_ ): UpperCAmelCase__ : List[str] = [B"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def UpperCAmelCase(_A : Union[Path, str] , _A : Union[Path, str] ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(_A , exist_ok=_A ) with pyazr.SevenZipFile(_A , "r" ) as archive: archive.extractall(_A ) class lowerCamelCase ( A_ ): UpperCAmelCase__ : Optional[int] = [B"\x04\x22\x4D\x18"] @staticmethod def UpperCAmelCase(_A : Union[Path, str] , _A : Union[Path, str] ) -> None: if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(_A , "rb" ) as compressed_file: with open(_A , "wb" ) as extracted_file: shutil.copyfileobj(_A , _A ) class lowerCamelCase : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) UpperCAmelCase__ : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def UpperCAmelCase(cls : str ) -> Optional[int]: return max( len(_A ) for extractor in cls.extractors.values() if issubclass(_A , _A ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def UpperCAmelCase(_A : Union[Path, str] , _A : int ) -> Any: try: return MagicNumberBaseExtractor.read_magic_number(_A , magic_number_length=_A ) except OSError: return b"" @classmethod def UpperCAmelCase(cls : Optional[int] , _A : Union[Path, str] , _A : bool = False ) -> bool: warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead." , category=_A , ) snake_case = cls.infer_extractor_format(_A ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def UpperCAmelCase(cls : str , _A : Union[Path, str] ) -> str: # <Added version="2.4.0"/> snake_case = cls._get_magic_number_max_length() snake_case = cls._read_magic_number(_A , _A ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_A , magic_number=_A ): return extractor_format @classmethod def UpperCAmelCase(cls : int , _A : Union[Path, str] , _A : Union[Path, str] , _A : Optional[str] = None , _A : Optional[BaseExtractor] = "deprecated" , ) -> None: os.makedirs(os.path.dirname(_A ) , exist_ok=_A ) # Prevent parallel extractions snake_case = str(Path(_A ).with_suffix(".lock" ) ) with FileLock(_A ): shutil.rmtree(_A , ignore_errors=_A ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_A , _A ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead." , category=_A , ) snake_case = extractor if extractor != "deprecated" else extractor_format else: snake_case = cls.extractors[extractor_format] return extractor.extract(_A , _A ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0." , category=_A , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_A ): return extractor.extract(_A , _A )
369
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
137
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : List[str] ={'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a__ : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
53
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowercase__ : List[Any] = logging.getLogger(__name__) def UpperCamelCase_ ( ) -> Dict: """simple docstring""" lowerCAmelCase_ : Tuple = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=lowerCAmelCase__ , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=lowerCAmelCase__ , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=lowerCAmelCase__ , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=lowerCAmelCase__ , default=1000 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=lowerCAmelCase__ , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=lowerCAmelCase__ , default=512 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=lowerCAmelCase__ , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase_ : List[Any] = parser.parse_args() return args def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> Union[str, Any]: """simple docstring""" def fn(lowerCAmelCase__ : Optional[Any] ): return tokenizer(examples['text'] ) return fn def UpperCamelCase_ ( lowerCAmelCase__ : Tuple ) -> Dict: """simple docstring""" lowerCAmelCase_ : int = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase_ : Tuple = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase_ : Union[str, Any] = tf.train.Features(feature=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = tf.train.Example(features=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = example.SerializeToString() records.append(lowerCAmelCase__ ) return records def UpperCamelCase_ ( lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : str = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase_ : Tuple = min(len(lowerCAmelCase__ ) , args.limit ) lowerCAmelCase_ : Any = dataset.select(range(lowerCAmelCase__ ) ) print(f"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase_ : int = os.path.join(args.output_dir , args.split ) if not os.path.exists(lowerCAmelCase__ ): os.makedirs(lowerCAmelCase__ ) else: lowerCAmelCase_ : Dict = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase_ : Dict = tokenize_function(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = dataset.map(lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(lowerCAmelCase__ : List[Any] ): # Concatenate all texts. lowerCAmelCase_ : int = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase_ : Any = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase_ : Union[str, Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase_ : Optional[Any] = { k: [t[i : i + args.max_length] for i in range(0 , lowerCAmelCase__ , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase_ : Optional[int] = dataset_tokenized.map(lowerCAmelCase__ , batched=lowerCAmelCase__ , batch_size=1000 , num_proc=4 ) lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Optional[Any] = 0 for shard in range(0 , len(lowerCAmelCase__ ) , args.shard_size ): lowerCAmelCase_ : Dict = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase_ : Tuple = len(dataset_snapshot['input_ids'] ) lowerCAmelCase_ : Optional[Any] = os.path.join(lowerCAmelCase__ , f"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase_ : Tuple = get_serialized_examples(lowerCAmelCase__ ) with tf.io.TFRecordWriter(lowerCAmelCase__ ) as out_file: for i in range(len(lowerCAmelCase__ ) ): lowerCAmelCase_ : Dict = serialized_examples[i] out_file.write(lowerCAmelCase__ ) print('Wrote file {} containing {} records'.format(lowerCAmelCase__ , lowerCAmelCase__ ) ) shard_count += 1 total_records += records_containing with open(f"split-{args.split}-records-count.txt" , 'w' ) as f: print(f"Total {args.split} records: {total_records}" , file=lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ : int = parse_args() main(args)
224
0
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = WavaVecaPhonemeCTCTokenizer __snake_case = False def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' super().setUp() A__ : Optional[Any] =( """<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː """ """ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː """ """ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 """ """oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ """ """pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ """ """yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ """ """əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ """ """ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ """ """ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ """ """uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ """ """ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ """ """ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ """ """ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4""" ).split(""" """ ) A__ : Dict =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : int ={"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""} A__ : str =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Any=20 , lowerCAmelCase_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' A__ : Optional[Any] =[(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase_ )) for i in range(len(lowerCAmelCase_ ) )] A__ : Union[str, Any] =list(filter(lambda lowerCAmelCase_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowerCAmelCase_ ) , lowerCAmelCase_ ) ) if max_length is not None and len(lowerCAmelCase_ ) > max_length: A__ : str =toks[:max_length] if min_length is not None and len(lowerCAmelCase_ ) < min_length and len(lowerCAmelCase_ ) > 0: while len(lowerCAmelCase_ ) < min_length: A__ : Tuple =toks + toks # toks_str = [t[1] for t in toks] A__ : Any =[t[0] for t in toks] # Ensure consistency A__ : Dict =tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) if " " not in output_txt and len(lowerCAmelCase_ ) > 1: A__ : Optional[int] =( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase_ ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase_ ) ) if with_prefix_space: A__ : Dict =""" """ + output_txt A__ : Dict =tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) return output_txt, output_ids def lowercase__ ( self : List[Any] , **lowerCAmelCase_ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) A__ : Optional[Any] =tokenizer("""m xxx ɪ""" , do_phonemize=lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) A__ : Optional[Any] =tokenizer("""m aaa ɪ ccc""" , do_phonemize=lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa A__ : List[Any] =tokenizer("""maɪ c""" , do_phonemize=lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , [3, 2_00] ) # mai should be <unk> (=3) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : int =self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) A__ : Any ="""Hello how are you""" A__ : Optional[int] =tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(lowerCAmelCase_ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ : Dict =self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) A__ : Optional[Any] ="""Hello how are you""" A__ : List[str] =tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(lowerCAmelCase_ ).input_ids , tokenizer(lowerCAmelCase_ , do_phonemize=lowerCAmelCase_ ).input_ids ) def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' A__ : List[Any] =self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) A__ : Optional[Any] ="""Hello how are you""" A__ : Dict =tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) A__ : Any =tokenizer.decode(tokenizer(lowerCAmelCase_ ).input_ids ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[int] =self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) A__ : int =[ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] A__ : int =tokenizer.decode(sample_ids[0] ) A__ : int =tokenizer.batch_decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , batch_tokens[0] ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Dict =self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) A__ : List[str] ="""Hello how are you""" A__ : List[str] =tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(lowerCAmelCase_ , """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" ) def lowercase__ ( self : str ) -> str: '''simple docstring''' A__ : Optional[Any] =self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) A__ : Union[str, Any] ="""Hello how are you""" A__ : Dict =tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(lowerCAmelCase_ ).input_ids , tokenizer(lowerCAmelCase_ , do_phonemize=lowerCAmelCase_ ).input_ids ) def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : List[str] =self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off A__ : List[str] =[ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter A__ : str =tokenizer.decode(sample_ids[0] ) A__ : List[str] =tokenizer.batch_decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , batch_tokens[0] ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) # decode with no word_del_token filter A__ : str =tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowerCAmelCase_ ) A__ : Optional[int] =tokenizer.batch_decode(lowerCAmelCase_ , filter_word_delimiter_token=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , batch_tokens[0] ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] ) def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' A__ : Tuple =self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) A__ : Union[str, Any] ="""Hello how are you""" A__ : Optional[int] =tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) A__ : int =tokenizer.decode(tokenizer(lowerCAmelCase_ ).input_ids , filter_word_delimiter_token=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) A__ : str ="""Hello how are you""" A__ : Tuple =tokenizer.phonemize(lowerCAmelCase_ , phonemizer_lang="""en-us""" ) A__ : Dict =tokenizer.decode(tokenizer(lowerCAmelCase_ ).input_ids , filter_word_delimiter_token=lowerCAmelCase_ ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip() , lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : List[Any] =self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token=lowerCAmelCase_ ) A__ : Optional[int] ="""Hello how are you""" A__ : Any =tokenizer(lowerCAmelCase_ , phonemizer_lang="""en-us""" ).input_ids A__ : List[str] =tokenizer(lowerCAmelCase_ , phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : int =tokenizer.decode(lowerCAmelCase_ ) A__ : str =tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) self.assertEqual(lowerCAmelCase_ , """ɛ l o h aʊ a ʁ j u""" ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) A__ : Tuple ="""Hello how Are you""" A__ : List[Any] ="""hello how are you""" A__ : Optional[Any] =tokenizer(lowerCAmelCase_ ).input_ids A__ : Tuple =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' A__ : Tuple =self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off A__ : List[str] =[ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on A__ : List[str] =tokenizer.batch_decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] ) @staticmethod def lowercase__ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' A__ : int =[d[key] for d in offsets] return retrieved_list def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' A__ : Optional[int] =self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" A__ : int =[11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on A__ : List[Any] =tokenizer.decode(lowerCAmelCase_ , output_char_offsets=lowerCAmelCase_ , filter_word_delimiter_token=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) , ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """start_offset""" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """end_offset""" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : List[Any] =self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict ): self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertTrue(isinstance(outputs_list[0] , lowerCAmelCase_ ) ) # transform list to ModelOutput A__ : Any =WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""] , outputs_batch_a["""text"""] ) def recursive_check(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): [recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) for la, la in zip(lowerCAmelCase_ , lowerCAmelCase_ )] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""] , outputs_batch_a["""char_offsets"""] ) # fmt: off A__ : Optional[int] =[ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char A__ : Union[str, Any] =tokenizer.batch_decode(lowerCAmelCase_ , output_char_offsets=lowerCAmelCase_ ) A__ : int =[tokenizer.decode(lowerCAmelCase_ , output_char_offsets=lowerCAmelCase_ ) for ids in sample_ids] check_list_tuples_equal(lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' A__ : Union[str, Any] =self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): A__ : Optional[int] =tokenizer.vocab_size A__ : Optional[int] =len(lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A__ : Union[str, Any] =["""aaaaa bbbbbb""", """cccccccccdddddddd"""] A__ : Dict =tokenizer.add_tokens(lowerCAmelCase_ ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Any =len(lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , 0 ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) self.assertEqual(lowerCAmelCase_ , all_size + len(lowerCAmelCase_ ) ) A__ : List[Any] =tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=lowerCAmelCase_ ) self.assertGreaterEqual(len(lowerCAmelCase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) A__ : Optional[Any] ={"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} A__ : Union[str, Any] =tokenizer.add_special_tokens(lowerCAmelCase_ ) A__ : str =tokenizer.vocab_size A__ : Any =len(lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , 0 ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) self.assertEqual(lowerCAmelCase_ , all_size_a + len(lowerCAmelCase_ ) ) A__ : int =tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=lowerCAmelCase_ ) self.assertGreaterEqual(len(lowerCAmelCase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def lowercase__ ( self : str ) -> Any: '''simple docstring''' pass @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' pass def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' A__ : List[Any] =self.get_tokenizers(fast=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): A__ : Optional[Any] =["""ð""", """ɪ""", """s""", """ɪ""", """z""", """ɐ""", """t""", """ɛ""", """k""", """s""", """t"""] A__ : Union[str, Any] =tokenizer.convert_tokens_to_string(lowerCAmelCase_ ) self.assertIsInstance(output["""text"""] , lowerCAmelCase_ )
363
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : int =tempfile.mkdtemp() # fmt: off A__ : Optional[int] =["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A__ : List[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Tuple =["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] A__ : int ={"""unk_token""": """<unk>"""} A__ : Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : int =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase_ ) ) A__ : Dict ={ """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } A__ : Dict =os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , **lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , **lowerCAmelCase_ : str ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A__ : Dict =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ : int =[Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' A__ : int =self.get_tokenizer() A__ : Optional[int] =self.get_rust_tokenizer() A__ : Any =self.get_image_processor() A__ : int =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) A__ : Dict =CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase_ ) A__ : int =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) A__ : Optional[int] =CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : List[str] =CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ : List[Any] =self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A__ : Union[str, Any] =self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) A__ : Optional[int] =CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> str: '''simple docstring''' A__ : Optional[Any] =self.get_image_processor() A__ : int =self.get_tokenizer() A__ : Optional[int] =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Dict =self.prepare_image_inputs() A__ : List[Any] =image_processor(lowerCAmelCase_ , return_tensors="""np""" ) A__ : List[Any] =processor(images=lowerCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ : Any =self.get_image_processor() A__ : Optional[Any] =self.get_tokenizer() A__ : int =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Any ="""lower newer""" A__ : Optional[int] =processor(text=lowerCAmelCase_ ) A__ : Optional[int] =tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' A__ : Any =self.get_image_processor() A__ : Optional[Any] =self.get_tokenizer() A__ : Union[str, Any] =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Optional[Any] ="""lower newer""" A__ : List[str] =self.prepare_image_inputs() A__ : Optional[Any] =processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Optional[Any] =self.get_image_processor() A__ : List[str] =self.get_tokenizer() A__ : Optional[int] =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Tuple =self.prepare_image_inputs() A__ : str =self.prepare_image_inputs() A__ : int =processor(images=lowerCAmelCase_ , visual_prompt=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """conditional_pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.get_image_processor() A__ : Optional[int] =self.get_tokenizer() A__ : Any =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : List[Any] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ : Tuple =processor.batch_decode(lowerCAmelCase_ ) A__ : List[Any] =tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
136
0
from functools import reduce lowercase_ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( A__ : str = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda A__ , A__ : str(int(A__ ) * int(A__ ) ) , n[i : i + 13] ) ) for i in range(len(A__ ) - 12 ) ) if __name__ == "__main__": print(f"{solution() = }")
205
from __future__ import annotations def a ( A__ : list[int] ) -> int: """simple docstring""" if not nums: return 0 _lowercase =nums[0] _lowercase =0 for num in nums[1:]: _lowercase , _lowercase =( max_excluding + num, max(A__ , A__ ), ) return max(A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod()
205
1
def SCREAMING_SNAKE_CASE_ ( __A : list[int] ) -> list[int]: """simple docstring""" a_ : List[str] = len(__A ) for i in range(__A ): for j in range(i + 1 , __A ): if numbers[j] < numbers[i]: a_ : Any = numbers[j], numbers[i] return numbers if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Union[str, Any] = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
120
0
"""simple docstring""" import re def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = re.compile(r"^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$" ) if match := re.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
153
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase_ = KandinskyVaaControlnetPipeline UpperCAmelCase_ = ["image_embeds", "negative_image_embeds", "hint"] UpperCAmelCase_ = ["image_embeds", "negative_image_embeds", "hint"] UpperCAmelCase_ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase_ = False @property def snake_case_ (self ) -> Tuple: return 32 @property def snake_case_ (self ) -> Optional[int]: return 32 @property def snake_case_ (self ) -> int: return self.time_input_dim @property def snake_case_ (self ) -> Dict: return self.time_input_dim * 4 @property def snake_case_ (self ) -> List[str]: return 1_00 @property def snake_case_ (self ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCamelCase = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase = UNetaDConditionModel(**__a ) return model @property def snake_case_ (self ) -> Dict: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case_ (self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = self.dummy_unet UpperCamelCase = self.dummy_movq UpperCamelCase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__a , set_alpha_to_one=__a , steps_offset=1 , prediction_type="epsilon" , thresholding=__a , ) UpperCamelCase = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def snake_case_ (self , __a , __a=0 ) -> Any: UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__a ) ).to(__a ) UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __a ) # create hint UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith("mps" ): UpperCamelCase = torch.manual_seed(__a ) else: UpperCamelCase = torch.Generator(device=__a ).manual_seed(__a ) UpperCamelCase = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def snake_case_ (self ) -> int: UpperCamelCase = "cpu" UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**__a ) UpperCamelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCamelCase = pipe(**self.get_dummy_inputs(__a ) ) UpperCamelCase = output.images UpperCamelCase = pipe( **self.get_dummy_inputs(__a ) , return_dict=__a , )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ (self ) -> Dict: UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy" ) UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) UpperCamelCase = torch.from_numpy(np.array(__a ) ).float() / 255.0 UpperCamelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCamelCase = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__a ) UpperCamelCase = KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) UpperCamelCase = pipeline.to(__a ) pipeline.set_progress_bar_config(disable=__a ) UpperCamelCase = "A robot, 4k photo" UpperCamelCase = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase , UpperCamelCase = pipe_prior( __a , generator=__a , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase = pipeline( image_embeds=__a , negative_image_embeds=__a , hint=__a , generator=__a , num_inference_steps=1_00 , output_type="np" , ) UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__a , __a )
153
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE : Dict = {"""configuration_beit""": ["""BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BeitConfig""", """BeitOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["""BeitFeatureExtractor"""] SCREAMING_SNAKE_CASE : Any = ["""BeitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = [ """BEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BeitForImageClassification""", """BeitForMaskedImageModeling""", """BeitForSemanticSegmentation""", """BeitModel""", """BeitPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ """FlaxBeitForImageClassification""", """FlaxBeitForMaskedImageModeling""", """FlaxBeitModel""", """FlaxBeitPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A_ : @staticmethod def _lowercase ( *_A , **_A ): '''simple docstring''' pass @is_pipeline_test @require_vision class A_ (unittest.TestCase ): @require_torch def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCAmelCase = image_classifier(_A , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_A ) , [ [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}], [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''c'''}, {'''score''': 0.3_33, '''label''': '''b'''}], ] , ) UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_A ) , [ [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], ] , ) @require_tf def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCAmelCase = image_classifier(_A , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(_A ) , [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}] , ) UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_A ) , [ [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], ] , ) @slow @require_torch def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCAmelCase = image_classifier(_A , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_A ) , [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ] , ) UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_A ) , [ [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCAmelCase = image_classifier(_A , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_A ) , [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ] , ) UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_A ) , [ [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ], ] * 5 , )
273
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : int = logging.get_logger(__name__) __A : Tuple = { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json", "google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json", "google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class A_ (a_ ): UpperCAmelCase__ = '''big_bird''' def __init__( self , _A=5_0_3_5_8 , _A=7_6_8 , _A=1_2 , _A=1_2 , _A=3_0_7_2 , _A="gelu_new" , _A=0.1 , _A=0.1 , _A=4_0_9_6 , _A=2 , _A=0.02 , _A=1E-12 , _A=True , _A=0 , _A=1 , _A=2 , _A=6_6 , _A="block_sparse" , _A=True , _A=False , _A=6_4 , _A=3 , _A=None , **_A , ): '''simple docstring''' super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , sep_token_id=_A , **_A , ) UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = type_vocab_size UpperCAmelCase = layer_norm_eps UpperCAmelCase = use_cache UpperCAmelCase = rescale_embeddings UpperCAmelCase = attention_type UpperCAmelCase = use_bias UpperCAmelCase = block_size UpperCAmelCase = num_random_blocks UpperCAmelCase = classifier_dropout class A_ (a_ ): @property def _lowercase ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
273
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
370
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed SCREAMING_SNAKE_CASE__ = "true" def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=8_2 , _UpperCamelCase : int=1_6 ) -> str: """simple docstring""" set_seed(4_2 ) snake_case = RegressionModel() snake_case = deepcopy(_UpperCamelCase ) snake_case = RegressionDataset(length=_UpperCamelCase ) snake_case = DataLoader(_UpperCamelCase , batch_size=_UpperCamelCase ) model.to(accelerator.device ) snake_case ,snake_case = accelerator.prepare(_UpperCamelCase , _UpperCamelCase ) return model, ddp_model, dataloader def lowerCAmelCase__ ( _UpperCamelCase : Accelerator , _UpperCamelCase : Optional[Any]=False ) -> List[str]: """simple docstring""" snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) snake_case = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(_UpperCamelCase : Optional[Any] ): snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCamelCase , max_length=_UpperCamelCase ) return outputs with accelerator.main_process_first(): snake_case = dataset.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_UpperCamelCase : Optional[Any] ): if use_longest: return tokenizer.pad(_UpperCamelCase , padding='longest' , return_tensors='pt' ) return tokenizer.pad(_UpperCamelCase , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return DataLoader(_UpperCamelCase , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=1_6 ) def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : Any ) -> List[Any]: """simple docstring""" snake_case = Accelerator(dispatch_batches=_UpperCamelCase , split_batches=_UpperCamelCase ) snake_case = get_dataloader(_UpperCamelCase , not dispatch_batches ) snake_case = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=_UpperCamelCase ) snake_case ,snake_case = accelerator.prepare(_UpperCamelCase , _UpperCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] ) -> Dict: """simple docstring""" snake_case = [] for batch in dataloader: snake_case ,snake_case = batch.values() with torch.no_grad(): snake_case = model(_UpperCamelCase ) snake_case ,snake_case = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) snake_case ,snake_case = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCamelCase ) targs.append(_UpperCamelCase ) snake_case ,snake_case = torch.cat(_UpperCamelCase ), torch.cat(_UpperCamelCase ) return logits, targs def lowerCAmelCase__ ( _UpperCamelCase : Accelerator , _UpperCamelCase : Tuple=8_2 , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : int=False , _UpperCamelCase : List[str]=1_6 ) -> Optional[Any]: """simple docstring""" snake_case ,snake_case ,snake_case = get_basic_setup(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case ,snake_case = generate_predictions(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert ( len(_UpperCamelCase ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCamelCase )}""" def lowerCAmelCase__ ( _UpperCamelCase : bool = False , _UpperCamelCase : bool = False ) -> Tuple: """simple docstring""" snake_case = evaluate.load('glue' , 'mrpc' ) snake_case ,snake_case = get_mrpc_setup(_UpperCamelCase , _UpperCamelCase ) # First do baseline snake_case ,snake_case ,snake_case = setup['no'] model.to(_UpperCamelCase ) model.eval() for batch in dataloader: batch.to(_UpperCamelCase ) with torch.inference_mode(): snake_case = model(**_UpperCamelCase ) snake_case = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_UpperCamelCase , references=batch['labels'] ) snake_case = metric.compute() # Then do distributed snake_case ,snake_case ,snake_case = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): snake_case = model(**_UpperCamelCase ) snake_case = outputs.logits.argmax(dim=-1 ) snake_case = batch['labels'] snake_case ,snake_case = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_UpperCamelCase , references=_UpperCamelCase ) snake_case = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def lowerCAmelCase__ ( ) -> Tuple: """simple docstring""" snake_case = Accelerator(split_batches=_UpperCamelCase , dispatch_batches=_UpperCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(_UpperCamelCase , _UpperCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: snake_case = Accelerator(split_batches=_UpperCamelCase , dispatch_batches=_UpperCamelCase ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(_UpperCamelCase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) snake_case = Accelerator() test_torch_metrics(_UpperCamelCase , 5_1_2 ) accelerator.state._reset_state() def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> str: """simple docstring""" main() if __name__ == "__main__": main()
149
0
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : str , _a : Any , _a : List[str]=13 , _a : Union[str, Any]=7 , _a : List[Any]=True , _a : Optional[int]=True , _a : Tuple=True , _a : Optional[Any]=True , _a : Optional[int]=99 , _a : str=24 , _a : str=2 , _a : Union[str, Any]=6 , _a : Union[str, Any]=37 , _a : Any="gelu" , _a : Any=0.1 , _a : List[Any]=0.1 , _a : List[str]=512 , _a : Tuple=16 , _a : List[str]=2 , _a : int=0.02 , _a : Optional[int]=3 , _a : Any=None , _a : int=1000 , ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =seq_length _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_input_mask _SCREAMING_SNAKE_CASE =use_token_type_ids _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =type_vocab_size _SCREAMING_SNAKE_CASE =type_sequence_label_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =scope _SCREAMING_SNAKE_CASE =range_bbox def A ( self : int ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _SCREAMING_SNAKE_CASE =bbox[i, j, 3] _SCREAMING_SNAKE_CASE =bbox[i, j, 1] _SCREAMING_SNAKE_CASE =t if bbox[i, j, 2] < bbox[i, j, 0]: _SCREAMING_SNAKE_CASE =bbox[i, j, 2] _SCREAMING_SNAKE_CASE =bbox[i, j, 0] _SCREAMING_SNAKE_CASE =t _SCREAMING_SNAKE_CASE =None if self.use_input_mask: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _SCREAMING_SNAKE_CASE =None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def A ( self : int , _a : Any , _a : str , _a : Union[str, Any] , _a : Any , _a : Tuple , _a : List[Any] , _a : Dict , ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =LiltModel(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , bbox=_a , attention_mask=_a , token_type_ids=_a ) _SCREAMING_SNAKE_CASE =model(_a , bbox=_a , token_type_ids=_a ) _SCREAMING_SNAKE_CASE =model(_a , bbox=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : Optional[int] , _a : Tuple , _a : List[str] , _a : Optional[Any] , _a : Any , _a : Tuple , _a : Any , _a : Optional[int] , ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =LiltForTokenClassification(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model( _a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Tuple , _a : str , _a : List[str] , _a : Optional[Any] , _a : Union[str, Any] , _a : Dict , _a : List[Any] , _a : str , ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =LiltForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model( _a , bbox=_a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Dict ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) =config_and_inputs _SCREAMING_SNAKE_CASE ={ 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class A__ ( A__ , A__ , A__ , unittest.TestCase ): A__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A__ = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) A__ = False A__ = False def A ( self : Tuple , _a : Union[str, Any] , _a : int , _a : List[Any] , _a : Optional[int] , _a : int ) -> Optional[Any]: '''simple docstring''' return True def A ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =LiltModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , hidden_size=37 ) def A ( self : Dict ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE =type self.model_tester.create_and_check_model(*_a ) def A ( self : int ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def A ( self : List[Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @slow def A ( self : Optional[int] ) -> Dict: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =LiltModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch @slow class A__ ( unittest.TestCase ): def A ( self : Dict ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(_a ) _SCREAMING_SNAKE_CASE =torch.tensor([[1, 2]] , device=_a ) _SCREAMING_SNAKE_CASE =torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_a ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(input_ids=_a , bbox=_a ) _SCREAMING_SNAKE_CASE =torch.Size([1, 2, 768] ) _SCREAMING_SNAKE_CASE =torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=_a , ) self.assertTrue(outputs.last_hidden_state.shape , _a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _a , atol=1e-3 ) )
47
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets lowerCamelCase : List[Any] = "\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n" lowerCamelCase : Optional[Any] = "\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n" lowerCamelCase : int = "\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n" def _lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Tuple ) -> List[Any]: """simple docstring""" return float((preds == labels).mean() ) def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =simple_accuracy(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =float(fa_score(y_true=_UpperCamelCase , y_pred=_UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : int ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =np.array(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =np.array(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =en_sentvecs.shape[0] # mean centering _SCREAMING_SNAKE_CASE =en_sentvecs - np.mean(_UpperCamelCase , axis=0 ) _SCREAMING_SNAKE_CASE =in_sentvecs - np.mean(_UpperCamelCase , axis=0 ) _SCREAMING_SNAKE_CASE =cdist(_UpperCamelCase , _UpperCamelCase , 'cosine' ) _SCREAMING_SNAKE_CASE =np.array(range(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =sim.argsort(axis=1 )[:, :10] _SCREAMING_SNAKE_CASE =np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def A ( self : Any ) -> List[str]: '''simple docstring''' if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), 'references': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' if self.config_name != 'cvit-mkb-clsr' else None , ) def A ( self : List[str] , _a : Tuple , _a : Optional[int] ) -> int: '''simple docstring''' if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_a , _a )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_a , _a ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' )
47
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ : Dict = logging.get_logger(__name__) def _snake_case ( lowerCamelCase__ : List[str] , lowerCamelCase__ : str=False ) -> Dict: lowerCamelCase_ : Any =[] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase_ : Optional[int] =[(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any]=False ) -> List[Any]: for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase_ : Optional[int] ="" else: lowerCamelCase_ : List[str] ="vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ : Tuple =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase_ : Union[str, Any] =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ : Optional[Any] =in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_ : List[Any] =in_proj_bias[: config.hidden_size] lowerCamelCase_ : str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ : Any =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ : str =in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ : Dict =in_proj_bias[-config.hidden_size :] def _snake_case ( lowerCamelCase__ : int ) -> Dict: lowerCamelCase_ : Optional[int] =["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] ) -> str: lowerCamelCase_ : List[Any] =dct.pop(lowerCamelCase__ ) lowerCamelCase_ : Optional[int] =val def _snake_case ( ) -> str: lowerCamelCase_ : Union[str, Any] ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ : Any =Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def _snake_case ( lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=False ) -> Any: lowerCamelCase_ : List[Any] =BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=lowerCamelCase__ , ) lowerCamelCase_ : Optional[Any] =ViTHybridConfig(backbone_config=lowerCamelCase__ , image_size=384 , num_labels=1_000 ) lowerCamelCase_ : Optional[Any] =False # load original model from timm lowerCamelCase_ : Optional[int] =timm.create_model(lowerCamelCase__ , pretrained=lowerCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase_ : str =timm_model.state_dict() if base_model: remove_classification_head_(lowerCamelCase__ ) lowerCamelCase_ : Tuple =create_rename_keys(lowerCamelCase__ , lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] ="huggingface/label-files" lowerCamelCase_ : Optional[Any] ="imagenet-1k-id2label.json" lowerCamelCase_ : Any =json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ : Optional[int] ={int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ : List[Any] =idalabel lowerCamelCase_ : List[str] ={v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase_ : Any =ViTHybridModel(lowerCamelCase__ ).eval() else: lowerCamelCase_ : Dict =ViTHybridForImageClassification(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) # create image processor lowerCamelCase_ : Tuple =create_transform(**resolve_data_config({} , model=lowerCamelCase__ ) ) lowerCamelCase_ : Dict =transform.transforms lowerCamelCase_ : Any ={ "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } lowerCamelCase_ : Dict =ViTHybridImageProcessor( do_resize=lowerCamelCase__ , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCamelCase__ , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=lowerCamelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase_ : Dict =prepare_img() lowerCamelCase_ : Optional[Any] =transform(lowerCamelCase__ ).unsqueeze(0 ) lowerCamelCase_ : Dict =processor(lowerCamelCase__ , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ ) # verify logits with torch.no_grad(): lowerCamelCase_ : str =model(lowerCamelCase__ ) lowerCamelCase_ : List[Any] =outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: lowerCamelCase_ : List[Any] =timm_model.forward_features(lowerCamelCase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCamelCase__ , outputs.pooler_output , atol=1e-3 ) else: lowerCamelCase_ : Dict =timm_model(lowerCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase__ , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(F"""ybelkada/{vit_name}""" ) processor.push_to_hub(F"""ybelkada/{vit_name}""" ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) A__ : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : List[Any] = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
209
0
def snake_case_ ( snake_case ) -> None: lowercase__: List[str] = generate_pascal_triangle(snake_case ) for row_idx in range(snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def snake_case_ ( snake_case ) -> list[list[int]]: if not isinstance(snake_case , snake_case ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) lowercase__: list[list[int]] = [] for current_row_idx in range(snake_case ): lowercase__: Tuple = populate_current_row(snake_case , snake_case ) triangle.append(snake_case ) return triangle def snake_case_ ( snake_case , snake_case ) -> list[int]: lowercase__: Dict = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowercase__ , lowercase__: List[Any] = 1, 1 for current_col_idx in range(1 , snake_case ): calculate_current_element( snake_case , snake_case , snake_case , snake_case ) return current_row def snake_case_ ( snake_case , snake_case , snake_case , snake_case , ) -> None: lowercase__: List[str] = triangle[current_row_idx - 1][current_col_idx - 1] lowercase__: List[Any] = triangle[current_row_idx - 1][current_col_idx] lowercase__: List[Any] = above_to_left_elt + above_to_right_elt def snake_case_ ( snake_case ) -> list[list[int]]: if not isinstance(snake_case , snake_case ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) lowercase__: list[list[int]] = [[1]] for row_index in range(1 , snake_case ): lowercase__: Any = [0] + result[-1] + [0] lowercase__: Union[str, Any] = row_index + 1 # Calculate the number of distinct elements in a row lowercase__: str = sum(divmod(snake_case , 2 ) ) lowercase__: str = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] lowercase__: Optional[Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowercase__: Union[str, Any] = row_first_half + row_second_half result.append(snake_case ) return result def snake_case_ ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case , snake_case ) -> None: lowercase__: str = f'{func.__name__}({value})' lowercase__: List[Any] = timeit(f'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
196
import unittest from knapsack import knapsack as k class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: List[Any] = 0 lowercase__: List[Any] = [0] lowercase__: str = [0] lowercase__: Tuple = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) lowercase__: Optional[Any] = [60] lowercase__: Dict = [10] lowercase__: str = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = 3 lowercase__: List[str] = [1, 2, 3] lowercase__: Union[str, Any] = [3, 2, 1] lowercase__: Union[str, Any] = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 5 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Optional[Any] = 50 lowercase__: str = [60, 100, 120] lowercase__: Any = [10, 20, 30] lowercase__: List[Any] = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 220 ) if __name__ == "__main__": unittest.main()
196
1
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __lowercase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) __lowercase = [] __lowercase = [] __lowercase = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} __lowercase = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": f'''🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results''', """emoji""": True, }, } ] __lowercase = 0 for log in Path().glob("""*.log"""): __lowercase = 0 with open(log, """r""") as f: for line in f: __lowercase = json.loads(line) if line.get("""nodeid""", """""") != "": __lowercase = line["""nodeid"""] if line.get("""duration""", None) is not None: __lowercase = f'''{line['duration']:.4f}''' if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __lowercase = [] log.unlink() __lowercase = """""" __lowercase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" __lowercase = [] __lowercase = {} for test in failed_tests: __lowercase = test[0].split("""::""") __lowercase = data[0].split("""/""")[-1] if data[0] not in filesafailed: __lowercase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __lowercase = [test[0] for test in failed_table] __lowercase = list(set(files)) # Count number of instances in failed_tests __lowercase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __lowercase = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: __lowercase = """Too many failed tests, please see the full report in the Action results.""" __lowercase = len(err) + 10 __lowercase = message[: 3000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: __lowercase = """No failed tests! 🤗""" print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient __lowercase = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": __lowercase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) __lowercase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": f'''https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } payload.append(action_button) __lowercase = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": f'''Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}''', } ], } payload.append(date_report) __lowercase = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) __lowercase = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __lowercase = """""" for i, row in enumerate(test_failures): if row[0] != test_class: __lowercase = row[0] else: __lowercase = """""" __lowercase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```''', }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
226
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __lowercase = True except ImportError: __lowercase = False try: from torch.hub import _get_torch_home __lowercase = _get_torch_home() except ImportError: __lowercase = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) __lowercase = os.path.join(torch_cache_home, """transformers""") __lowercase = """https://cdn.huggingface.co""" __lowercase = """https://s3.amazonaws.com/models.huggingface.co/bert""" __lowercase = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) __lowercase = os.path.join(PATH, """config.yaml""") __lowercase = os.path.join(PATH, """attributes.txt""") __lowercase = os.path.join(PATH, """objects.txt""") __lowercase = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) __lowercase = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) __lowercase = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) __lowercase = """pytorch_model.bin""" __lowercase = """config.yaml""" def lowercase ( A_=OBJECTS , A_=ATTRIBUTES )-> Union[str, Any]: '''simple docstring''' a : Optional[Any] = [] with open(A_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) a : Union[str, Any] = [] with open(A_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Dict = OrderedDict() with open(A_ , "rb" ) as f: a : Optional[Any] = pkl.load(A_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): a : Dict = ckp.pop(A_ ) if isinstance(A_ , np.ndarray ): a : Optional[Any] = torch.tensor(A_ ) else: assert isinstance(A_ , torch.tensor ), type(A_ ) a : int = v return r class _A : """simple docstring""" UpperCAmelCase : int = {} def __init__( self : Any , __UpperCAmelCase : dict , __UpperCAmelCase : str = "root" , __UpperCAmelCase : Optional[int]=0): a : List[str] = name a : Tuple = level a : int = {} for k, v in dictionary.items(): if v is None: raise ValueError() a : List[Any] = copy.deepcopy(__UpperCAmelCase) a : int = copy.deepcopy(__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : Union[str, Any] = Config(__UpperCAmelCase , name=__UpperCAmelCase , level=level + 1) a : Dict = v setattr(self , __UpperCAmelCase , __UpperCAmelCase) a : Tuple = d def __repr__( self : List[str]): return str(list((self._pointer.keys()))) def __setattr__( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Tuple): a : Optional[Any] = val a : Tuple = val a : Dict = key.split(".") a : Union[str, Any] = len(__UpperCAmelCase) - 1 a : Optional[int] = self._pointer if len(__UpperCAmelCase) > 1: for i, l in enumerate(__UpperCAmelCase): if hasattr(self , __UpperCAmelCase) and isinstance(getattr(self , __UpperCAmelCase) , __UpperCAmelCase): setattr(getattr(self , __UpperCAmelCase) , ".".join(levels[i:]) , __UpperCAmelCase) if l == last_level: a : int = val else: a : str = pointer[l] def __snake_case ( self : str): return self._pointer def __snake_case ( self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any]): with open(f'''{file_name}''' , "w") as stream: dump(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : int): with open(f'''{file_name}''' , "w") as stream: json.dump(__UpperCAmelCase , __UpperCAmelCase) @staticmethod def __snake_case ( __UpperCAmelCase : Dict): with open(__UpperCAmelCase) as stream: a : List[str] = load(__UpperCAmelCase , Loader=__UpperCAmelCase) return data def __str__( self : Tuple): a : str = " " if self._name != "root": a : List[str] = f'''{t * (self._level-1)}{self._name}:\n''' else: a : Optional[Any] = "" a : List[Any] = self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(__UpperCAmelCase , __UpperCAmelCase): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(__UpperCAmelCase).__name__})\n''' a : Tuple = level return r[:-1] @classmethod def __snake_case ( cls : str , __UpperCAmelCase : str , **__UpperCAmelCase : List[Any]): a , a : Tuple = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase) return cls(__UpperCAmelCase) @classmethod def __snake_case ( cls : Union[str, Any] , __UpperCAmelCase : str , **__UpperCAmelCase : List[str]): a : int = kwargs.pop("cache_dir" , __UpperCAmelCase) a : List[Any] = kwargs.pop("force_download" , __UpperCAmelCase) a : Optional[int] = kwargs.pop("resume_download" , __UpperCAmelCase) a : Tuple = kwargs.pop("proxies" , __UpperCAmelCase) a : int = kwargs.pop("local_files_only" , __UpperCAmelCase) if os.path.isdir(__UpperCAmelCase): a : Union[str, Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase) elif os.path.isfile(__UpperCAmelCase) or is_remote_url(__UpperCAmelCase): a : List[Any] = pretrained_model_name_or_path else: a : int = hf_bucket_url(__UpperCAmelCase , filename=__UpperCAmelCase , use_cdn=__UpperCAmelCase) try: # Load from URL or cache if already cached a : Optional[Any] = cached_path( __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError a : Union[str, Any] = Config.load_yaml(__UpperCAmelCase) except EnvironmentError: a : str = "Can't load config for" raise EnvironmentError(__UpperCAmelCase) if resolved_config_file == config_file: print("loading configuration file from path") else: print("loading configuration file cache") return Config.load_yaml(__UpperCAmelCase), kwargs def lowercase ( A_ )-> str: '''simple docstring''' a : Tuple = torch.load("dump.pt" , map_location=in_tensor.device ) a : Any = in_tensor.numpy() a : Optional[int] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(A_ , A_ , rtol=0.0_1 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(A_ , A_ , rtol=0.0_1 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Optional[Any] = urlparse(A_ ) return parsed.scheme in ("http", "https") def lowercase ( A_ , A_ , A_=True )-> str: '''simple docstring''' a : List[Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX a : str = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase ( A_ , A_ , A_=None , A_=0 , A_=None , )-> List[str]: '''simple docstring''' a : Optional[int] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(A_ , A_ ): ua += "; " + "; ".join("{}/{}".format(A_ , A_ ) for k, v in user_agent.items() ) elif isinstance(A_ , A_ ): ua += "; " + user_agent a : str = {"user-agent": ua} if resume_size > 0: a : List[Any] = "bytes=%d-" % (resume_size,) a : str = requests.get(A_ , stream=A_ , proxies=A_ , headers=A_ ) if response.status_code == 416: # Range not satisfiable return a : Optional[int] = response.headers.get("Content-Length" ) a : List[Any] = resume_size + int(A_ ) if content_length is not None else None a : List[Any] = tqdm( unit="B" , unit_scale=A_ , total=A_ , initial=A_ , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(A_ ) ) temp_file.write(A_ ) progress.close() def lowercase ( A_ , A_=None , A_=False , A_=None , A_=10 , A_=False , A_=None , A_=False , )-> str: '''simple docstring''' if cache_dir is None: a : List[Any] = TRANSFORMERS_CACHE if isinstance(A_ , A_ ): a : Tuple = str(A_ ) os.makedirs(A_ , exist_ok=A_ ) a : Optional[Any] = None if not local_files_only: try: a : Dict = requests.head(A_ , allow_redirects=A_ , proxies=A_ , timeout=A_ ) if response.status_code == 200: a : int = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass a : List[str] = url_to_filename(A_ , A_ ) # get cache path to put the file a : List[str] = os.path.join(A_ , A_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(A_ ): return cache_path else: a : Any = [ file for file in fnmatch.filter(os.listdir(A_ ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(A_ ) > 0: return os.path.join(A_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(A_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. a : Dict = cache_path + ".lock" with FileLock(A_ ): # If the download just completed while the lock was activated. if os.path.exists(A_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: a : Optional[Any] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(A_ , "a+b" ) as f: yield f a : Tuple = _resumable_file_manager if os.path.exists(A_ ): a : Optional[Any] = os.stat(A_ ).st_size else: a : Optional[int] = 0 else: a : Union[str, Any] = partial(tempfile.NamedTemporaryFile , dir=A_ , delete=A_ ) a : Dict = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , A_ , temp_file.name , ) http_get( A_ , A_ , proxies=A_ , resume_size=A_ , user_agent=A_ , ) os.replace(temp_file.name , A_ ) a : List[str] = {"url": url, "etag": etag} a : Tuple = cache_path + ".json" with open(A_ , "w" ) as meta_file: json.dump(A_ , A_ ) return cache_path def lowercase ( A_ , A_=None )-> Any: '''simple docstring''' a : Dict = url.encode("utf-8" ) a : Optional[Any] = shaaaa(A_ ) a : Any = url_hash.hexdigest() if etag: a : Union[str, Any] = etag.encode("utf-8" ) a : Tuple = shaaaa(A_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowercase ( A_ , A_=None , A_=False , A_=None , A_=False , A_=None , A_=False , A_=False , A_=False , )-> Tuple: '''simple docstring''' if cache_dir is None: a : Union[str, Any] = TRANSFORMERS_CACHE if isinstance(A_ , A_ ): a : List[Any] = str(A_ ) if isinstance(A_ , A_ ): a : int = str(A_ ) if is_remote_url(A_ ): # URL, so get it from the cache (downloading if necessary) a : Optional[Any] = get_from_cache( A_ , cache_dir=A_ , force_download=A_ , proxies=A_ , resume_download=A_ , user_agent=A_ , local_files_only=A_ , ) elif os.path.exists(A_ ): # File, and it exists. a : Union[str, Any] = url_or_filename elif urlparse(A_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(A_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(A_ ) ) if extract_compressed_file: if not is_zipfile(A_ ) and not tarfile.is_tarfile(A_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" a , a : Dict = os.path.split(A_ ) a : List[str] = output_file.replace("." , "-" ) + "-extracted" a : Optional[Any] = os.path.join(A_ , A_ ) if os.path.isdir(A_ ) and os.listdir(A_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions a : Tuple = output_path + ".lock" with FileLock(A_ ): shutil.rmtree(A_ , ignore_errors=A_ ) os.makedirs(A_ ) if is_zipfile(A_ ): with ZipFile(A_ , "r" ) as zip_file: zip_file.extractall(A_ ) zip_file.close() elif tarfile.is_tarfile(A_ ): a : List[str] = tarfile.open(A_ ) tar_file.extractall(A_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(A_ ) ) return output_path_extracted return output_path def lowercase ( A_ , A_="," )-> Union[str, Any]: '''simple docstring''' assert isinstance(A_ , A_ ) if os.path.isfile(A_ ): with open(A_ ) as f: a : str = eval(f.read() ) else: a : List[Any] = requests.get(A_ ) try: a : Any = requests.json() except Exception: a : Any = req.content.decode() assert data is not None, "could not connect" try: a : Optional[Any] = eval(A_ ) except Exception: a : Any = data.split("\n" ) req.close() return data def lowercase ( A_ )-> str: '''simple docstring''' a : Optional[int] = requests.get(A_ ) a : List[str] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( A_ )-> Any: '''simple docstring''' a : List[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(A_ ) with open(A_ , "rb" ) as stream: a : Any = pkl.load(A_ ) a : List[str] = weights.pop("model" ) a : Dict = {} for k, v in model.items(): a : List[str] = torch.from_numpy(A_ ) if "running_var" in k: a : Dict = torch.tensor([0] ) a : Any = k.replace("running_var" , "num_batches_tracked" ) a : List[Any] = zero return new def lowercase ( )-> Optional[int]: '''simple docstring''' print(F'''{os.path.abspath(os.path.join(A_ , os.pardir ) )}/demo.ipynb''' ) def lowercase ( A_ , A_="RGB" )-> Any: '''simple docstring''' assert isinstance(A_ , A_ ) if os.path.isfile(A_ ): a : Dict = cva.imread(A_ ) else: a : Union[str, Any] = get_image_from_url(A_ ) assert img is not None, F'''could not connect to: {im}''' a : int = cva.cvtColor(A_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": a : List[str] = img[:, :, ::-1] return img def lowercase ( A_ , A_=1 )-> int: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(A_ ) , A_ ))
226
1
from ..utils import DummyObject, requires_backends class A ( metaclass=__UpperCAmelCase ): __snake_case = ['speech'] def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(self, ['''speech'''] ) class A ( metaclass=__UpperCAmelCase ): __snake_case = ['speech'] def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" requires_backends(self, ['''speech'''] )
278
def __UpperCamelCase ( _A = 1000000 ): lowerCAmelCase_ = 1 lowerCAmelCase_ = 1 lowerCAmelCase_ = {1: 1} for inputa in range(2 , _A ): lowerCAmelCase_ = 0 lowerCAmelCase_ = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCAmelCase_ = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCAmelCase_ = counter if counter > pre_counter: lowerCAmelCase_ = inputa lowerCAmelCase_ = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
278
1
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _lowerCAmelCase : Optional[int] = get_logger(__name__) _lowerCAmelCase : Optional[Any] = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class lowerCAmelCase__ : @add_start_docstrings(snake_case__ ) def __call__( self : Any , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): '''simple docstring''' raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCAmelCase__ : @add_start_docstrings(snake_case__ ) def __call__( self : str , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): '''simple docstring''' raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCAmelCase__ ( __magic_name__ ): @add_start_docstrings(snake_case__ ) def __call__( self : List[Any] , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int , **snake_case__ : List[Any] ): '''simple docstring''' for processor in self: UpperCAmelCase__ : Optional[Any] = inspect.signature(processor.__call__ ).parameters if len(snake_case__ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys() )} for ' f'{processor.__class__} are passed to the logits processor.' ) UpperCAmelCase__ : Dict = processor(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ) else: UpperCAmelCase__ : int = processor(snake_case__ , snake_case__ , snake_case__ ) return scores class lowerCAmelCase__ ( __magic_name__ ): def __init__( self : List[Any] , snake_case__ : float ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}' ) UpperCAmelCase__ : str = temperature def __call__( self : Dict , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : Dict = scores / self.temperature return scores class lowerCAmelCase__ ( __magic_name__ ): def __init__( self : Union[str, Any] , snake_case__ : float , snake_case__ : float = -float("Inf" ) , snake_case__ : int = 1 ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(snake_case__ , snake_case__ ) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) UpperCAmelCase__ : Tuple = top_p UpperCAmelCase__ : int = filter_value UpperCAmelCase__ : Any = min_tokens_to_keep def __call__( self : List[Any] , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = lax.top_k(snake_case__ , scores.shape[-1] ) UpperCAmelCase__ : str = jnp.full_like(snake_case__ , self.filter_value ) UpperCAmelCase__ : List[str] = jax.nn.softmax(snake_case__ , axis=-1 ).cumsum(axis=-1 ) UpperCAmelCase__ : int = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCAmelCase__ : str = jnp.roll(snake_case__ , 1 ) score_mask |= score_mask.at[:, 0].set(snake_case__ ) # min tokens to keep UpperCAmelCase__ : Dict = score_mask.at[:, : self.min_tokens_to_keep].set(snake_case__ ) UpperCAmelCase__ : int = jnp.where(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase__ : int = jax.lax.sort_key_val(snake_case__ , snake_case__ )[-1] return next_scores class lowerCAmelCase__ ( __magic_name__ ): def __init__( self : Optional[Any] , snake_case__ : int , snake_case__ : float = -float("Inf" ) , snake_case__ : int = 1 ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}' ) UpperCAmelCase__ : List[str] = max(snake_case__ , snake_case__ ) UpperCAmelCase__ : str = filter_value def __call__( self : List[str] , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = scores.shape UpperCAmelCase__ : Union[str, Any] = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCAmelCase__ : Optional[int] = min(self.top_k , scores.shape[-1] ) # Safety check UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = lax.top_k(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = jnp.broadcast_to((jnp.arange(snake_case__ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCAmelCase__ : str = topk_scores.flatten() UpperCAmelCase__ : Optional[int] = topk_indices.flatten() + shift UpperCAmelCase__ : Dict = next_scores_flat.at[topk_indices_flat].set(snake_case__ ) UpperCAmelCase__ : Tuple = next_scores_flat.reshape(snake_case__ , snake_case__ ) return next_scores class lowerCAmelCase__ ( __magic_name__ ): def __init__( self : Union[str, Any] , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = bos_token_id def __call__( self : Optional[int] , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : str = jnp.full(scores.shape , -float("inf" ) ) UpperCAmelCase__ : List[str] = 1 - jnp.bool_(cur_len - 1 ) UpperCAmelCase__ : Optional[int] = jnp.where(snake_case__ , new_scores.at[:, self.bos_token_id].set(0 ) , snake_case__ ) return scores class lowerCAmelCase__ ( __magic_name__ ): def __init__( self : int , snake_case__ : int , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = max_length UpperCAmelCase__ : int = eos_token_id def __call__( self : Union[str, Any] , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : Dict = jnp.full(scores.shape , -float("inf" ) ) UpperCAmelCase__ : Optional[int] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCAmelCase__ : Dict = jnp.where(snake_case__ , new_scores.at[:, self.eos_token_id].set(0 ) , snake_case__ ) return scores class lowerCAmelCase__ ( __magic_name__ ): def __init__( self : Optional[int] , snake_case__ : int , snake_case__ : int ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(snake_case__ , snake_case__ ) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) UpperCAmelCase__ : Dict = min_length UpperCAmelCase__ : Optional[Any] = eos_token_id def __call__( self : Dict , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ): '''simple docstring''' # create boolean flag to decide if min length penalty should be applied UpperCAmelCase__ : Any = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCAmelCase__ : List[str] = jnp.where(snake_case__ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , snake_case__ ) return scores class lowerCAmelCase__ ( __magic_name__ ): def __init__( self : Tuple , snake_case__ : List[str] , snake_case__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = list(snake_case__ ) UpperCAmelCase__ : List[Any] = begin_index def __call__( self : Any , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : str = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCAmelCase__ : Tuple = jnp.where(snake_case__ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , snake_case__ ) return scores class lowerCAmelCase__ ( __magic_name__ ): def __init__( self : Optional[Any] , snake_case__ : list ): '''simple docstring''' UpperCAmelCase__ : Any = list(snake_case__ ) def __call__( self : Union[str, Any] , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : Dict = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class lowerCAmelCase__ ( __magic_name__ ): def __init__( self : List[Any] , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : str = dict(snake_case__ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCAmelCase__ : List[Any] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCAmelCase__ : str = force_token_array.at[index].set(snake_case__ ) UpperCAmelCase__ : str = jnp.intaa(snake_case__ ) def __call__( self : Dict , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ): '''simple docstring''' def _force_token(snake_case__ : Union[str, Any] ): UpperCAmelCase__ : List[Any] = scores.shape[0] UpperCAmelCase__ : Union[str, Any] = self.force_token_array[generation_idx] UpperCAmelCase__ : Any = jnp.ones_like(snake_case__ , dtype=scores.dtype ) * -float("inf" ) UpperCAmelCase__ : str = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCAmelCase__ : Dict = lax.dynamic_update_slice(snake_case__ , snake_case__ , (0, current_token) ) return new_scores UpperCAmelCase__ : List[Any] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(snake_case__ ) , lambda: scores , ) , ) return scores class lowerCAmelCase__ ( __magic_name__ ): def __init__( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = generate_config.eos_token_id UpperCAmelCase__ : str = generate_config.no_timestamps_token_id UpperCAmelCase__ : int = generate_config.no_timestamps_token_id + 1 UpperCAmelCase__ : Union[str, Any] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(snake_case__ , "max_initial_timestamp_index" ): UpperCAmelCase__ : Dict = generate_config.max_initial_timestamp_index else: UpperCAmelCase__ : int = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCAmelCase__ : Union[str, Any] = model_config.vocab_size def __call__( self : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : List[str] ): '''simple docstring''' # suppress <|notimestamps|> which is handled by without_timestamps UpperCAmelCase__ : int = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] ): UpperCAmelCase__ : Optional[int] = jnp.where((cur_len - self.begin_index) >= 1 , snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , snake_case__ , ) UpperCAmelCase__ : List[Any] = jnp.where((cur_len - self.begin_index) < 2 , snake_case__ , snake_case__ ) UpperCAmelCase__ : int = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , snake_case__ , snake_case__ , ) return jnp.where( snake_case__ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , snake_case__ , ) UpperCAmelCase__ : Tuple = jax.vmap(snake_case__ )(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[int] = jnp.where(cur_len == self.begin_index , snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , snake_case__ , ) UpperCAmelCase__ : str = self.timestamp_begin + self.max_initial_timestamp_index UpperCAmelCase__ : Optional[int] = jnp.where( snake_case__ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , snake_case__ , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCAmelCase__ : int = jax.nn.log_softmax(snake_case__ , axis=-1 ) def handle_cumulative_probs(snake_case__ : Dict , snake_case__ : List[Any] ): UpperCAmelCase__ : Optional[int] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCAmelCase__ : List[Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , snake_case__ , ) UpperCAmelCase__ : List[Any] = jax.vmap(snake_case__ )(snake_case__ , snake_case__ ) return scores
298
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=1_3 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=9_9 , snake_case__ : List[Any]=1_6 , snake_case__ : Any=3_6 , snake_case__ : Union[str, Any]=6 , snake_case__ : Tuple=6 , snake_case__ : List[str]=6 , snake_case__ : List[str]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : int=None , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : int = seq_length UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Union[str, Any] = use_input_mask UpperCAmelCase__ : Optional[Any] = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Any = embedding_size UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : int = num_hidden_groups UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Tuple = num_labels UpperCAmelCase__ : List[str] = num_choices UpperCAmelCase__ : Union[str, Any] = scope def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[int] = None if self.use_input_mask: UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Any ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = AlbertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AlbertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : int = AlbertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : Any = AlbertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_choices UpperCAmelCase__ : Optional[Any] = AlbertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =True def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=False ): '''simple docstring''' UpperCAmelCase__ : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) UpperCAmelCase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = AlbertModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : Dict = type self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained("albert-base-v2" ) UpperCAmelCase__ : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase__ : Dict = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
298
1
def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] snake_case_ = 6 snake_case_ = 1 snake_case_ = 1901 snake_case_ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 snake_case_ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 snake_case_ = day - 29 else: if day > days_per_month[month - 1]: month += 1 snake_case_ = day - days_per_month[month - 2] if month > 12: year += 1 snake_case_ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
187
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
0
"""simple docstring""" from __future__ import annotations from collections import deque class _SCREAMING_SNAKE_CASE : def __init__( self , __A ) -> Any: lowerCAmelCase_ :list[dict] = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(__A ) self.set_fail_transitions() def __lowerCAmelCase ( self , __A , __A ) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def __lowerCAmelCase ( self , __A ) -> None: lowerCAmelCase_ :int = 0 for character in keyword: lowerCAmelCase_ :Optional[int] = self.find_next_state(__A , __A ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowerCAmelCase_ :int = len(self.adlist ) - 1 else: lowerCAmelCase_ :str = next_state self.adlist[current_state]["output"].append(__A ) def __lowerCAmelCase ( self ) -> None: lowerCAmelCase_ :deque = deque() for node in self.adlist[0]["next_states"]: q.append(__A ) lowerCAmelCase_ :Optional[int] = 0 while q: lowerCAmelCase_ :Union[str, Any] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__A ) lowerCAmelCase_ :List[Any] = self.adlist[r]["""fail_state"""] while ( self.find_next_state(__A , self.adlist[child]["""value"""] ) is None and state != 0 ): lowerCAmelCase_ :Tuple = self.adlist[state]["""fail_state"""] lowerCAmelCase_ :Optional[Any] = self.find_next_state( __A , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: lowerCAmelCase_ :List[Any] = 0 lowerCAmelCase_ :Any = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def __lowerCAmelCase ( self , __A ) -> dict[str, list[int]]: lowerCAmelCase_ :dict = {} # returns a dict with keywords and list of its occurrences lowerCAmelCase_ :Union[str, Any] = 0 for i in range(len(__A ) ): while ( self.find_next_state(__A , string[i] ) is None and current_state != 0 ): lowerCAmelCase_ :str = self.adlist[current_state]["""fail_state"""] lowerCAmelCase_ :List[str] = self.find_next_state(__A , string[i] ) if next_state is None: lowerCAmelCase_ :Optional[int] = 0 else: lowerCAmelCase_ :Optional[Any] = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowerCAmelCase_ :int = [] result[key].append(i - len(__A ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
1
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> None: '''simple docstring''' warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
319
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors SCREAMING_SNAKE_CASE__ : Dict = logging.getLogger(__name__) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Optional[int] = """sequence-classification""" def __init__( self , UpperCamelCase__ ) -> List[Any]: if type(UpperCamelCase__ ) == dict: lowerCamelCase : int = Namespace(**UpperCamelCase__ ) lowerCamelCase : str = glue_output_modes[hparams.task] lowerCamelCase : int = glue_tasks_num_labels[hparams.task] super().__init__(UpperCamelCase__ , UpperCamelCase__ , self.mode ) def _lowercase ( self , **UpperCamelCase__ ) -> Tuple: return self.model(**UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: lowerCamelCase : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCamelCase : List[str] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None lowerCamelCase : Optional[int] = self(**UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = outputs[0] lowerCamelCase : str = self.trainer.lr_schedulers[0]["scheduler"] lowerCamelCase : Optional[int] = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _lowercase ( self ) -> str: lowerCamelCase : Any = self.hparams lowerCamelCase : Union[str, Any] = processors[args.task]() lowerCamelCase : Optional[int] = processor.get_labels() for mode in ["train", "dev"]: lowerCamelCase : Optional[Any] = self._feature_file(UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , UpperCamelCase__ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowerCamelCase : List[str] = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) lowerCamelCase : Dict = convert_examples_to_features( UpperCamelCase__ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , UpperCamelCase__ ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> DataLoader: lowerCamelCase : str = "dev" if mode == "test" else mode lowerCamelCase : int = self._feature_file(UpperCamelCase__ ) logger.info("Loading features from cached file %s" , UpperCamelCase__ ) lowerCamelCase : str = torch.load(UpperCamelCase__ ) lowerCamelCase : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCamelCase : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) lowerCamelCase : List[str] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": lowerCamelCase : Any = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": lowerCamelCase : Union[str, Any] = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , batch_size=UpperCamelCase__ , shuffle=UpperCamelCase__ , ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: lowerCamelCase : Dict = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCamelCase : Tuple = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None lowerCamelCase : Dict = self(**UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : Any = outputs[:2] lowerCamelCase : Union[str, Any] = logits.detach().cpu().numpy() lowerCamelCase : Optional[Any] = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowercase ( self , UpperCamelCase__ ) -> tuple: lowerCamelCase : Union[str, Any] = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() lowerCamelCase : Optional[int] = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": lowerCamelCase : Union[str, Any] = np.argmax(UpperCamelCase__ , axis=1 ) elif self.hparams.glue_output_mode == "regression": lowerCamelCase : str = np.squeeze(UpperCamelCase__ ) lowerCamelCase : List[Any] = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowerCamelCase : List[str] = [[] for _ in range(out_label_ids.shape[0] )] lowerCamelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] lowerCamelCase : Dict = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , UpperCamelCase__ , UpperCamelCase__ )} lowerCamelCase : List[str] = dict(results.items() ) lowerCamelCase : Optional[int] = results return ret, preds_list, out_label_list def _lowercase ( self , UpperCamelCase__ ) -> dict: lowerCamelCase , lowerCamelCase , lowerCamelCase : Union[str, Any] = self._eval_end(UpperCamelCase__ ) lowerCamelCase : str = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowercase ( self , UpperCamelCase__ ) -> dict: lowerCamelCase , lowerCamelCase , lowerCamelCase : str = self._eval_end(UpperCamelCase__ ) lowerCamelCase : str = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowercase ( UpperCamelCase__ , UpperCamelCase__ ) -> int: BaseTransformer.add_model_specific_args(UpperCamelCase__ , UpperCamelCase__ ) parser.add_argument( "--max_seq_length" , default=128 , type=UpperCamelCase__ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=UpperCamelCase__ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def A ( ) -> int: lowerCamelCase : int = argparse.ArgumentParser() add_generic_args(_SCREAMING_SNAKE_CASE ,os.getcwd() ) lowerCamelCase : str = GLUETransformer.add_model_specific_args(_SCREAMING_SNAKE_CASE ,os.getcwd() ) lowerCamelCase : str = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowerCamelCase : int = os.path.join( "./results" ,f'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' ,) os.makedirs(args.output_dir ) lowerCamelCase : int = GLUETransformer(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Dict = generic_train(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowerCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir ,"checkpoint-epoch=*.ckpt" ) ,recursive=_SCREAMING_SNAKE_CASE ) ) lowerCamelCase : Tuple = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
48
0
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) __lowerCamelCase = str(bin(UpperCamelCase__ ) ) binary_number += "0" * shift_amount return binary_number def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) __lowerCamelCase = str(bin(UpperCamelCase__ ) )[2:] if shift_amount >= len(UpperCamelCase__ ): return "0b0" __lowerCamelCase = binary_number[: len(UpperCamelCase__ ) - shift_amount] return "0b" + shifted_binary_number def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number __lowerCamelCase = '0' + str(bin(UpperCamelCase__ ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number __lowerCamelCase = len(bin(UpperCamelCase__ )[3:] ) # Find 2's complement of number __lowerCamelCase = bin(abs(UpperCamelCase__ ) - (1 << binary_number_length) )[3:] __lowerCamelCase = ( '1' + '0' * (binary_number_length - len(UpperCamelCase__ )) + binary_number ) if shift_amount >= len(UpperCamelCase__ ): return "0b" + binary_number[0] * len(UpperCamelCase__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(UpperCamelCase__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
348
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''philschmid/bart-large-cnn-samsum''' snake_case_ = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) snake_case_ = '''summarizer''' snake_case_ = AutoTokenizer snake_case_ = AutoModelForSeqaSeqLM snake_case_ = ['''text'''] snake_case_ = ['''text'''] def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.pre_processor(lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' return self.model.generate(**lowerCamelCase__ )[0] def lowercase_ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
348
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =ShapEPipeline __a =['prompt'] __a =['prompt'] __a =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] __a =False @property def UpperCamelCase__ ( self : Optional[Any] ): return 32 @property def UpperCamelCase__ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase__ ( self : List[Any] ): return self.time_input_dim * 4 @property def UpperCamelCase__ ( self : Optional[Any] ): return 8 @property def UpperCamelCase__ ( self : Any ): _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def UpperCamelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(__a ) @property def UpperCamelCase__ ( self : int ): torch.manual_seed(0 ) _a = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } _a = PriorTransformer(**__a ) return model @property def UpperCamelCase__ ( self : Any ): torch.manual_seed(0 ) _a = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } _a = ShapERenderer(**__a ) return model def UpperCamelCase__ ( self : Tuple ): _a = self.dummy_prior _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_renderer _a = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=10_24 , prediction_type="sample" , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , ) _a = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def UpperCamelCase__ ( self : int , __a : List[str] , __a : str=0 ): if str(__a ).startswith("mps" ): _a = torch.manual_seed(__a ) else: _a = torch.Generator(device=__a ).manual_seed(__a ) _a = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def UpperCamelCase__ ( self : Dict ): _a = "cpu" _a = self.get_dummy_components() _a = self.pipeline_class(**__a ) _a = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = pipe(**self.get_dummy_inputs(__a ) ) _a = output.images[0] _a = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _a = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self : List[str] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ ( self : str ): _a = torch_device == "cpu" _a = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__a , relax_max_difference=__a , ) def UpperCamelCase__ ( self : Tuple ): _a = self.get_dummy_components() _a = self.pipeline_class(**__a ) _a = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = 1 _a = 2 _a = self.get_dummy_inputs(__a ) for key in inputs.keys(): if key in self.batch_params: _a = batch_size * [inputs[key]] _a = pipe(**__a , num_images_per_prompt=__a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : int ): _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) _a = ShapEPipeline.from_pretrained("openai/shap-e" ) _a = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = torch.Generator(device=__a ).manual_seed(0 ) _a = pipe( "a shark" , generator=__a , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__a , __a )
63
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase_ : Any = get_tests_dir('fixtures') lowerCAmelCase_ : Union[str, Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCAmelCase_ : Dict = get_tests_dir('fixtures/dummy-config.json') class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): _a = 0 def UpperCamelCase__ ( self : str ): _a = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Tuple ): _a = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: _a = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _a = AutoFeatureExtractor.from_pretrained(__a ).to_dict() config_dict.pop("feature_extractor_type" ) _a = WavaVecaFeatureExtractor(**__a ) # save in new folder model_config.save_pretrained(__a ) config.save_pretrained(__a ) _a = AutoFeatureExtractor.from_pretrained(__a ) # make sure private variable is not incorrectly saved _a = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Tuple ): _a = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] ): with self.assertRaisesRegex( __a , "bert-base is not a local folder and is not a valid model identifier" ): _a = AutoFeatureExtractor.from_pretrained("bert-base" ) def UpperCamelCase__ ( self : Optional[Any] ): with self.assertRaisesRegex( __a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _a = AutoFeatureExtractor.from_pretrained(__a , revision="aaaaaa" ) def UpperCamelCase__ ( self : List[Any] ): with self.assertRaisesRegex( __a , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): _a = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def UpperCamelCase__ ( self : List[Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__a ): _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) _a = AutoFeatureExtractor.from_pretrained(__a , trust_remote_code=__a ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def UpperCamelCase__ ( self : Any ): try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoFeatureExtractor.register(__a , __a ) # Now that the config is registered, it can be used as any other config with the auto-API _a = CustomFeatureExtractor.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) _a = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self : Tuple ): class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =True try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # If remote code is not set, the default is to use local _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(__a , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
63
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } UpperCamelCase = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowercase_ ( ): lowercase__ : int = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowercase__ : str = bs[:] lowercase__ : List[str] = 0 for b in range(2**8): if b not in bs: bs.append(_lowerCamelCase) cs.append(2**8 + n) n += 1 lowercase__ : int = [chr(_lowerCamelCase) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase)) def lowercase_ ( _lowerCamelCase : Dict): lowercase__ : Optional[Any] = set() lowercase__ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowercase__ : Tuple = char return pairs class snake_case_ ( __A ): __A : int = VOCAB_FILES_NAMES __A : int = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : int = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : int="replace" , lowercase_ : Optional[int]="<s>" , lowercase_ : Optional[Any]="</s>" , lowercase_ : int="</s>" , lowercase_ : str="<s>" , lowercase_ : int="<unk>" , lowercase_ : int="<pad>" , lowercase_ : Union[str, Any]="<mask>" , lowercase_ : List[str]=False , **lowercase_ : List[str] , ) -> int: lowercase__ : List[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token lowercase__ : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token lowercase__ : int = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token lowercase__ : List[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token lowercase__ : Dict = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else unk_token lowercase__ : List[str] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ : List[str] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: lowercase__ : List[str] = json.load(lowercase_ ) lowercase__ : Optional[int] = {v: k for k, v in self.encoder.items()} lowercase__ : Optional[int] = errors # how to handle errors in decoding lowercase__ : str = bytes_to_unicode() lowercase__ : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowercase_ , encoding="utf-8" ) as merges_handle: lowercase__ : Any = merges_handle.read().split("\n" )[1:-1] lowercase__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowercase__ : List[str] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase__ : int = {} lowercase__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__ : Tuple = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Dict ) -> Optional[int]: return len(self.encoder ) def __UpperCamelCase ( self : Tuple ) -> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self : Dict , lowercase_ : Dict ) -> List[str]: if token in self.cache: return self.cache[token] lowercase__ : Union[str, Any] = tuple(lowercase_ ) lowercase__ : List[Any] = get_pairs(lowercase_ ) if not pairs: return token while True: lowercase__ : Any = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase__ : Union[str, Any] = bigram lowercase__ : Optional[Any] = [] lowercase__ : str = 0 while i < len(lowercase_ ): try: lowercase__ : str = word.index(lowercase_ , lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ : Any = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : List[Any] = tuple(lowercase_ ) lowercase__ : str = new_word if len(lowercase_ ) == 1: break else: lowercase__ : int = get_pairs(lowercase_ ) lowercase__ : List[str] = " ".join(lowercase_ ) lowercase__ : Tuple = word return word def __UpperCamelCase ( self : str , lowercase_ : Optional[int] ) -> List[Any]: lowercase__ : Optional[Any] = [] for token in re.findall(self.pat , lowercase_ ): lowercase__ : Optional[Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase_ ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[Any] ) -> Optional[int]: return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Dict , lowercase_ : List[str] ) -> Union[str, Any]: return self.decoder.get(lowercase_ ) def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: lowercase__ : Dict = "".join(lowercase_ ) lowercase__ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ : Optional[Any] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) lowercase__ : Optional[Any] = 0 with open(lowercase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowercase__ : str = token_index writer.write(" ".join(lowercase_ ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def __UpperCamelCase ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: lowercase__ : List[Any] = [self.sep_token_id] lowercase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : List[Any] , lowercase_ : Tuple , lowercase_ : str=False , **lowercase_ : Union[str, Any] ) -> Union[str, Any]: lowercase__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase_ ) > 0 and not text[0].isspace()): lowercase__ : Optional[Any] = " " + text return (text, kwargs) def __UpperCamelCase ( self : Dict , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> str: return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : List[str] , lowercase_ : "Conversation" ) -> List[int]: lowercase__ : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(lowercase_ ) lowercase__ : Optional[Any] = " ".join(lowercase_ ) lowercase__ : int = self.encode(lowercase_ ) if len(lowercase_ ) > self.model_max_length: lowercase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
361
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { "Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json", "Salesforce/blip-vqa-capfit-large": ( "https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json" ), "Salesforce/blip-image-captioning-base": ( "https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json" ), "Salesforce/blip-image-captioning-large": ( "https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json" ), "Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json", "Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json", "Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json", "Salesforce/blip-itm-large-flikr": ( "https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "blip_text_model" def __init__( self : Optional[Any] ,lowercase_ : List[str]=3_0_5_2_4 ,lowercase_ : Tuple=7_6_8 ,lowercase_ : str=7_6_8 ,lowercase_ : List[Any]=3_0_7_2 ,lowercase_ : int=7_6_8 ,lowercase_ : str=1_2 ,lowercase_ : Optional[Any]=8 ,lowercase_ : Optional[int]=5_1_2 ,lowercase_ : Dict="gelu" ,lowercase_ : Any=1E-12 ,lowercase_ : Tuple=0.0 ,lowercase_ : Union[str, Any]=0.0 ,lowercase_ : Dict=0.02 ,lowercase_ : Tuple=3_0_5_2_2 ,lowercase_ : List[str]=2 ,lowercase_ : List[str]=0 ,lowercase_ : Optional[int]=1_0_2 ,lowercase_ : Any=True ,lowercase_ : Dict=True ,**lowercase_ : List[Any] ,): super().__init__( pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,sep_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) lowerCAmelCase__ : List[Any] = vocab_size lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : Tuple = encoder_hidden_size lowerCAmelCase__ : str = intermediate_size lowerCAmelCase__ : Optional[Any] = projection_dim lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : Dict = num_attention_heads lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : List[Any] = layer_norm_eps lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Union[str, Any] = initializer_range lowerCAmelCase__ : List[str] = attention_probs_dropout_prob lowerCAmelCase__ : List[Any] = is_decoder lowerCAmelCase__ : str = use_cache @classmethod def __lowerCAmelCase ( cls : List[Any] ,lowercase_ : Optional[Any] ,**lowercase_ : str ): cls._set_token_in_kwargs(lowerCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = cls.get_config_dict(lowerCamelCase_ ,**lowerCamelCase_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": lowerCAmelCase__ : int = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowerCamelCase_ ,**lowerCamelCase_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "blip_vision_model" def __init__( self : Optional[Any] ,lowercase_ : int=7_6_8 ,lowercase_ : Dict=3_0_7_2 ,lowercase_ : int=5_1_2 ,lowercase_ : Union[str, Any]=1_2 ,lowercase_ : int=1_2 ,lowercase_ : Any=3_8_4 ,lowercase_ : List[Any]=1_6 ,lowercase_ : Tuple="gelu" ,lowercase_ : Tuple=1E-5 ,lowercase_ : List[str]=0.0 ,lowercase_ : List[Any]=1E-10 ,**lowercase_ : str ,): super().__init__(**lowerCamelCase_ ) lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[Any] = intermediate_size lowerCAmelCase__ : List[Any] = projection_dim lowerCAmelCase__ : Union[str, Any] = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : int = patch_size lowerCAmelCase__ : Union[str, Any] = image_size lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : Any = attention_dropout lowerCAmelCase__ : Union[str, Any] = layer_norm_eps lowerCAmelCase__ : Union[str, Any] = hidden_act @classmethod def __lowerCAmelCase ( cls : str ,lowercase_ : int ,**lowercase_ : int ): cls._set_token_in_kwargs(lowerCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = cls.get_config_dict(lowerCamelCase_ ,**lowerCamelCase_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": lowerCAmelCase__ : Optional[int] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowerCamelCase_ ,**lowerCamelCase_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "blip" lowercase__ = True def __init__( self : Optional[Any] ,lowercase_ : Optional[int]=None ,lowercase_ : Any=None ,lowercase_ : Optional[Any]=5_1_2 ,lowercase_ : Any=2.6592 ,lowercase_ : Union[str, Any]=2_5_6 ,**lowercase_ : Optional[Any] ,): super().__init__(**lowerCamelCase_ ) if text_config is None: lowerCAmelCase__ : Union[str, Any] = {} logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' ) if vision_config is None: lowerCAmelCase__ : Optional[int] = {} logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' ) lowerCAmelCase__ : List[str] = BlipTextConfig(**lowerCamelCase_ ) lowerCAmelCase__ : int = BlipVisionConfig(**lowerCamelCase_ ) lowerCAmelCase__ : int = self.vision_config.hidden_size lowerCAmelCase__ : str = projection_dim lowerCAmelCase__ : Union[str, Any] = logit_scale_init_value lowerCAmelCase__ : Optional[int] = 1.0 lowerCAmelCase__ : Optional[Any] = 0.02 lowerCAmelCase__ : Optional[int] = image_text_hidden_size @classmethod def __lowerCAmelCase ( cls : List[Any] ,lowercase_ : Any ,lowercase_ : Any ,**lowercase_ : Tuple ): return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**lowerCamelCase_ ) def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : List[str] = self.text_config.to_dict() lowerCAmelCase__ : Dict = self.vision_config.to_dict() lowerCAmelCase__ : str = self.__class__.model_type return output
106
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def a( A : List[str] ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowercase ( nn.Module ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" super().__init__() a = module a = nn.Sequential( nn.Linear(module.in_features , lowerCamelCase_ , bias=lowerCamelCase_ ) , nn.Linear(lowerCamelCase_ , module.out_features , bias=lowerCamelCase_ ) , ) a = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCamelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCamelCase_ (self , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return self.module(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) + self.adapter(lowerCamelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): """simple docstring""" # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module __A = "bigscience/bloom-1b7" # Constant values __A = 2.109_659_552_692_574 __A = "Hello my name is" __A = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) __A = 10 def UpperCamelCase_ (self ): """simple docstring""" a = AutoTokenizer.from_pretrained(self.model_name ) class _lowercase ( lowerCAmelCase ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" super().setUp() # Models and tokenizer a = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) a = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase_ , device_map="auto" ) def UpperCamelCase_ (self ): """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ (self ): """simple docstring""" a = self.model_abit.config self.assertTrue(hasattr(lowerCamelCase_ , "quantization_config" ) ) a = config.to_dict() a = config.to_diff_dict() a = config.to_json_string() def UpperCamelCase_ (self ): """simple docstring""" from bitsandbytes.nn import Paramsabit a = self.model_fpaa.get_memory_footprint() a = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) a = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCamelCase_ (self ): """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCamelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCamelCase_ (self ): """simple docstring""" a = self.tokenizer(self.input_text , return_tensors="pt" ) a = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase_ ) , self.EXPECTED_OUTPUTS ) def UpperCamelCase_ (self ): """simple docstring""" a = BitsAndBytesConfig() a = True a = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase_ , device_map="auto" ) a = self.tokenizer(self.input_text , return_tensors="pt" ) a = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase_ ) , self.EXPECTED_OUTPUTS ) def UpperCamelCase_ (self ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = BitsAndBytesConfig() with self.assertRaises(lowerCamelCase_ ): a = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase_ , load_in_abit=lowerCamelCase_ , device_map="auto" , bnb_abit_quant_type="nf4" , ) def UpperCamelCase_ (self ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(lowerCamelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCamelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(lowerCamelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCamelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything a = self.tokenizer(self.input_text , return_tensors="pt" ) a = self.model_fpaa.to(torch.floataa ) a = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error a = self.model_fpaa.to("cpu" ) # Check this does not throw an error a = self.model_fpaa.half() # Check this does not throw an error a = self.model_fpaa.float() def UpperCamelCase_ (self ): """simple docstring""" a = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=lowerCamelCase_ , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): """simple docstring""" @classmethod def UpperCamelCase_ (cls ): """simple docstring""" a = "t5-small" a = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense a = AutoTokenizer.from_pretrained(cls.model_name ) a = "Translate in German: Hello, my dog is cute" def UpperCamelCase_ (self ): """simple docstring""" gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ (self ): """simple docstring""" from transformers import TaForConditionalGeneration a = TaForConditionalGeneration._keep_in_fpaa_modules a = None # test with `t5-small` a = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase_ , device_map="auto" ) a = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a = model.generate(**lowerCamelCase_ ) # test with `flan-t5-small` a = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase_ , device_map="auto" ) a = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a = model.generate(**lowerCamelCase_ ) a = modules def UpperCamelCase_ (self ): """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` a = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase_ , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) a = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a = model.generate(**lowerCamelCase_ ) # test with `flan-t5-small` a = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase_ , device_map="auto" ) a = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a = model.generate(**lowerCamelCase_ ) class _lowercase ( lowerCAmelCase ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" super().setUp() # model_name a = "bigscience/bloom-560m" a = "t5-small" # Different types of model a = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCamelCase_ , device_map="auto" ) # Sequence classification model a = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCamelCase_ , device_map="auto" ) # CausalLM model a = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase_ , device_map="auto" ) # Seq2seq model a = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCamelCase_ , device_map="auto" ) def UpperCamelCase_ (self ): """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ (self ): """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowercase ( lowerCAmelCase ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" super().setUp() def UpperCamelCase_ (self ): """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ (self ): """simple docstring""" a = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass a = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowercase ( lowerCAmelCase ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" super().setUp() def UpperCamelCase_ (self ): """simple docstring""" a = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCamelCase_ , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model a = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch a = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCamelCase_ ) , self.EXPECTED_OUTPUTS ) class _lowercase ( lowerCAmelCase ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" a = "facebook/opt-350m" super().setUp() def UpperCamelCase_ (self ): """simple docstring""" if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters a = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): a = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability a = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCamelCase_ ) ): a = LoRALayer(module.q_proj , rank=16 ) a = LoRALayer(module.k_proj , rank=16 ) a = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch a = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): a = model.forward(**lowerCamelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCamelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = "gpt2-xl" __A = 3.3_191_854_854_152_187
227
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def UpperCamelCase_( snake_case__: Tuple ) -> Union[str, Any]: UpperCAmelCase__ = torch.load(__a , map_location='cpu' ) if "model" in sd.keys(): UpperCAmelCase__ = torch.load(__a , map_location='cpu' )['model'] # pop unnecessary weights UpperCAmelCase__ = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(__a ) UpperCAmelCase__ = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase__ = sd.pop(__a ) UpperCAmelCase__ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase__ = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase__ = key.replace('.qkv_proj.' , '.q_proj.' ) UpperCAmelCase__ = key.replace('.qkv_proj.' , '.k_proj.' ) UpperCAmelCase__ = key.replace('.qkv_proj.' , '.v_proj.' ) UpperCAmelCase__ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase__ = torch.split(__a , depth // 3 , dim=0 ) UpperCAmelCase__ = q UpperCAmelCase__ = k UpperCAmelCase__ = v del sd[key] return sd @torch.no_grad() def UpperCamelCase_( snake_case__: int , snake_case__: Union[str, Any] , snake_case__: Tuple=None ) -> Optional[Any]: UpperCAmelCase__ = load_checkpoint(__a ) if config is not None: UpperCAmelCase__ = OPTConfig.from_pretrained(__a ) else: UpperCAmelCase__ = OPTConfig() UpperCAmelCase__ = OPTModel(__a ).half().eval() model.load_state_dict(__a ) # Check results Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _UpperCamelCase = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
350
class lowercase : # Public class to implement a graph '''simple docstring''' def __init__(self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = row UpperCAmelCase__ = col UpperCAmelCase__ = graph def UpperCamelCase__ (self , __a , __a , __a ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a ) def UpperCamelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__a , __a , __a ) count += 1 return count
335
0
from math import factorial def lowerCamelCase_ ( _a : int , _a : int ): '''simple docstring''' if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(snake_case_ ) // (factorial(snake_case_ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', F"fifty-two card deck is: {combinations(52, 5)}\n", ) print( '''If a class of 40 students must be arranged into groups of''', F"4 for group projects, there are {combinations(40, 4)} ways", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', F"are {combinations(10, 3)} ways that first, second and", '''third place can be awarded.''', )
345
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = 'vit_msn' def __init__(self : Union[str, Any] , a__ : Optional[Any]=768 , a__ : Optional[Any]=12 , a__ : Optional[int]=12 , a__ : Optional[int]=3072 , a__ : Union[str, Any]="gelu" , a__ : str=0.0 , a__ : int=0.0 , a__ : Optional[Any]=0.0_2 , a__ : List[Any]=1E-06 , a__ : Optional[int]=224 , a__ : str=16 , a__ : Optional[Any]=3 , a__ : int=True , **a__ : List[Any] , ): """simple docstring""" super().__init__(**a__ ) __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = qkv_bias
24
0
'''simple docstring''' import argparse import os import re import packaging.version __SCREAMING_SNAKE_CASE :Any = '''examples/''' __SCREAMING_SNAKE_CASE :str = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __SCREAMING_SNAKE_CASE :str = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } __SCREAMING_SNAKE_CASE :Optional[int] = '''README.md''' def UpperCAmelCase_ ( __lowercase : Union[str, Any] , __lowercase : Dict , __lowercase : Tuple ) -> str: '''simple docstring''' with open(__lowercase , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCAmelCase = f.read() _UpperCAmelCase , _UpperCAmelCase = REPLACE_PATTERNS[pattern] _UpperCAmelCase = replace.replace("VERSION" , __lowercase ) _UpperCAmelCase = re_pattern.sub(__lowercase , __lowercase ) with open(__lowercase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(__lowercase ) def UpperCAmelCase_ ( __lowercase : Union[str, Any] ) -> Tuple: '''simple docstring''' for folder, directories, fnames in os.walk(__lowercase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(__lowercase , __lowercase ) , __lowercase , pattern="examples" ) def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : str=False ) -> Tuple: '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowercase , __lowercase , __lowercase ) if not patch: update_version_in_examples(__lowercase ) def UpperCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = "🤗 Transformers currently provides the following architectures" _UpperCAmelCase = "1. Want to contribute a new model?" with open(__lowercase , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCAmelCase = f.readlines() # Find the start of the list. _UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): _UpperCAmelCase = lines[index].replace( "https://huggingface.co/docs/diffusers/main/model_doc" , "https://huggingface.co/docs/diffusers/model_doc" , ) index += 1 with open(__lowercase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(__lowercase ) def UpperCAmelCase_ ( ) -> int: '''simple docstring''' with open(REPLACE_FILES["init"] , "r" ) as f: _UpperCAmelCase = f.read() _UpperCAmelCase = REPLACE_PATTERNS["init"][0].search(__lowercase ).groups()[0] return packaging.version.parse(__lowercase ) def UpperCAmelCase_ ( __lowercase : Optional[Any]=False ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: _UpperCAmelCase = default_version.base_version elif patch: _UpperCAmelCase = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: _UpperCAmelCase = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. _UpperCAmelCase = input(f'Which version are you releasing? [{default_version}]' ) if len(__lowercase ) == 0: _UpperCAmelCase = default_version print(f'Updating version to {version}.' ) global_version_update(__lowercase , patch=__lowercase ) def UpperCAmelCase_ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = get_version() _UpperCAmelCase = f'{current_version.major}.{current_version.minor + 1}.0.dev0' _UpperCAmelCase = current_version.base_version # Check with the user we got that right. _UpperCAmelCase = input(f'Which version are we developing now? [{dev_version}]' ) if len(__lowercase ) == 0: _UpperCAmelCase = dev_version print(f'Updating version to {version}.' ) global_version_update(__lowercase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __SCREAMING_SNAKE_CASE :Dict = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
156
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : list ) -> list: '''simple docstring''' _UpperCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping _UpperCAmelCase = True for i in range(0 , len(__lowercase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: _UpperCAmelCase , _UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCAmelCase = False for i in range(1 , len(__lowercase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: _UpperCAmelCase , _UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCAmelCase = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') __SCREAMING_SNAKE_CASE :Optional[Any] = [int(x) for x in input().split()] # inputing elements of the list in one line __SCREAMING_SNAKE_CASE :List[str] = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
156
1
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase_ (UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' __UpperCamelCase: List[Any] = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : Tuple , A : int , A : int , A : Optional[int] = None , A : int = 50257 , A : int = 1024 , A : int = 768 , A : int = 12 , A : int = 12 , A : Optional[int] = None , A : str = "gelu_new" , A : float = 0.1 , A : float = 0.1 , A : float = 0.1 , A : float = 1E-5 , A : float = 0.02 , A : bool = True , A : bool = True , A : bool = False , A : bool = False , ): super().__init__() _UpperCAmelCase : Union[str, Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" F""" `n_embd`: {n_embd} are not equal.""" ) _UpperCAmelCase : List[str] = prefix_inner_dim _UpperCAmelCase : Optional[int] = prefix_hidden_dim _UpperCAmelCase : Dict = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) _UpperCAmelCase : Tuple = ( nn.Linear(self.prefix_hidden_dim , __lowerCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) _UpperCAmelCase : List[str] = GPTaConfig( vocab_size=__lowerCamelCase , n_positions=__lowerCamelCase , n_embd=__lowerCamelCase , n_layer=__lowerCamelCase , n_head=__lowerCamelCase , n_inner=__lowerCamelCase , activation_function=__lowerCamelCase , resid_pdrop=__lowerCamelCase , embd_pdrop=__lowerCamelCase , attn_pdrop=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , initializer_range=__lowerCamelCase , scale_attn_weights=__lowerCamelCase , use_cache=__lowerCamelCase , scale_attn_by_inverse_layer_idx=__lowerCamelCase , reorder_and_upcast_attn=__lowerCamelCase , ) _UpperCAmelCase : Any = GPTaLMHeadModel(__lowerCamelCase ) def _A ( self : int , A : torch.Tensor , A : torch.Tensor , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , ): _UpperCAmelCase : Optional[int] = self.transformer.transformer.wte(__lowerCamelCase ) _UpperCAmelCase : Dict = self.encode_prefix(__lowerCamelCase ) _UpperCAmelCase : List[Any] = self.decode_prefix(__lowerCamelCase ) _UpperCAmelCase : str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: _UpperCAmelCase : Union[str, Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) _UpperCAmelCase : Any = torch.cat((dummy_token, input_ids) , dim=1 ) _UpperCAmelCase : str = self.transformer(inputs_embeds=__lowerCamelCase , labels=__lowerCamelCase , attention_mask=__lowerCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def _A ( self : Any , A : int , A : torch.device ): return torch.zeros(__lowerCamelCase , self.prefix_length , dtype=torch.intaa , device=__lowerCamelCase ) def _A ( self : Union[str, Any] , A : List[Any] ): return self.encode_prefix(__lowerCamelCase ) @torch.no_grad() def _A ( self : List[str] , A : Dict , A : Any , A : List[str] ): _UpperCAmelCase : Any = torch.split(__lowerCamelCase , 1 , dim=0 ) _UpperCAmelCase : Dict = [] _UpperCAmelCase : Union[str, Any] = [] for feature in features: _UpperCAmelCase : Tuple = self.decode_prefix(feature.to(__lowerCamelCase ) ) # back to the clip feature # Only support beam search for now _UpperCAmelCase : List[Any] = self.generate_beam( input_embeds=__lowerCamelCase , device=__lowerCamelCase , eos_token_id=__lowerCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) _UpperCAmelCase : str = torch.stack(__lowerCamelCase ) _UpperCAmelCase : str = torch.stack(__lowerCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def _A ( self : str , A : Optional[Any]=None , A : Optional[int]=None , A : Dict=None , A : int = 5 , A : int = 67 , A : float = 1.0 , A : Optional[int] = None , ): _UpperCAmelCase : Tuple = eos_token_id _UpperCAmelCase : List[str] = None _UpperCAmelCase : Any = None _UpperCAmelCase : Optional[int] = torch.ones(__lowerCamelCase , device=__lowerCamelCase , dtype=torch.int ) _UpperCAmelCase : Dict = torch.zeros(__lowerCamelCase , device=__lowerCamelCase , dtype=torch.bool ) if input_embeds is not None: _UpperCAmelCase : Dict = input_embeds else: _UpperCAmelCase : Optional[int] = self.transformer.transformer.wte(__lowerCamelCase ) for i in range(__lowerCamelCase ): _UpperCAmelCase : Union[str, Any] = self.transformer(inputs_embeds=__lowerCamelCase ) _UpperCAmelCase : Tuple = outputs.logits _UpperCAmelCase : Dict = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _UpperCAmelCase : List[str] = logits.softmax(-1 ).log() if scores is None: _UpperCAmelCase : Union[str, Any] = logits.topk(__lowerCamelCase , -1 ) _UpperCAmelCase : str = generated.expand(__lowerCamelCase , *generated.shape[1:] ) _UpperCAmelCase : Dict = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: _UpperCAmelCase : int = next_tokens else: _UpperCAmelCase : Optional[int] = tokens.expand(__lowerCamelCase , *tokens.shape[1:] ) _UpperCAmelCase : str = torch.cat((tokens, next_tokens) , dim=1 ) else: _UpperCAmelCase : Optional[Any] = -float(np.inf ) _UpperCAmelCase : Any = 0 _UpperCAmelCase : List[str] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _UpperCAmelCase : Any = scores_sum / seq_lengths[:, None] _UpperCAmelCase : Union[str, Any] = scores_sum_average.view(-1 ).topk(__lowerCamelCase , -1 ) _UpperCAmelCase : Dict = next_tokens // scores_sum.shape[1] _UpperCAmelCase : Optional[int] = seq_lengths[next_tokens_source] _UpperCAmelCase : int = next_tokens % scores_sum.shape[1] _UpperCAmelCase : Optional[int] = next_tokens.unsqueeze(1 ) _UpperCAmelCase : Tuple = tokens[next_tokens_source] _UpperCAmelCase : Tuple = torch.cat((tokens, next_tokens) , dim=1 ) _UpperCAmelCase : List[Any] = generated[next_tokens_source] _UpperCAmelCase : int = scores_sum_average * seq_lengths _UpperCAmelCase : Dict = is_stopped[next_tokens_source] _UpperCAmelCase : List[str] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) _UpperCAmelCase : Any = torch.cat((generated, next_token_embed) , dim=1 ) _UpperCAmelCase : Union[str, Any] = is_stopped + next_tokens.eq(__lowerCamelCase ).squeeze() if is_stopped.all(): break _UpperCAmelCase : Optional[Any] = scores / seq_lengths _UpperCAmelCase : int = scores.argsort(descending=__lowerCamelCase ) # tokens tensors are already padded to max_seq_length _UpperCAmelCase : Dict = [tokens[i] for i in order] _UpperCAmelCase : Any = torch.stack(__lowerCamelCase , dim=0 ) _UpperCAmelCase : int = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
31
import os from datetime import datetime as dt from github import Github A__: int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def lowerCAmelCase_ ( ): UpperCamelCase__: Dict = Github(os.environ["GITHUB_TOKEN"]) UpperCamelCase__: Union[str, Any] = g.get_repo("huggingface/diffusers") UpperCamelCase__: str = repo.get_issues(state="open") for issue in open_issues: UpperCamelCase__: Union[str, Any] = sorted(issue.get_comments() ,key=lambda A_: i.created_at ,reverse=A_) UpperCamelCase__: Tuple = comments[0] if len(A_) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed") elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open") issue.remove_from_labels("stale") elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored.") issue.add_to_labels("stale") if __name__ == "__main__": main()
149
0
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class a ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case = 1.0 , _snake_case = None , ): """simple docstring""" super().__init__() lowerCAmelCase = initial_learning_rate lowerCAmelCase = warmup_steps lowerCAmelCase = power lowerCAmelCase = decay_schedule_fn lowerCAmelCase = name def __call__( self , _snake_case ): """simple docstring""" with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase = tf.cast(_snake_case , tf.floataa ) lowerCAmelCase = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase = global_step_float / warmup_steps_float lowerCAmelCase = self.initial_learning_rate * tf.math.pow(_snake_case , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_snake_case , ) def UpperCamelCase__ ( self ): """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : float , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : float = 0.9 , _UpperCAmelCase : float = 0.999 , _UpperCAmelCase : float = 1e-8 , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : Optional[List[str]] = None , ): lowerCAmelCase = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_UpperCAmelCase , ) if num_warmup_steps: lowerCAmelCase = WarmUp( initial_learning_rate=_UpperCAmelCase , decay_schedule_fn=_UpperCAmelCase , warmup_steps=_UpperCAmelCase , ) if weight_decay_rate > 0.0: lowerCAmelCase = AdamWeightDecay( learning_rate=_UpperCAmelCase , weight_decay_rate=_UpperCAmelCase , beta_a=_UpperCAmelCase , beta_a=_UpperCAmelCase , epsilon=_UpperCAmelCase , clipnorm=_UpperCAmelCase , global_clipnorm=_UpperCAmelCase , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=_UpperCAmelCase , ) else: lowerCAmelCase = tf.keras.optimizers.Adam( learning_rate=_UpperCAmelCase , beta_a=_UpperCAmelCase , beta_a=_UpperCAmelCase , epsilon=_UpperCAmelCase , clipnorm=_UpperCAmelCase , global_clipnorm=_UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class a ( a__ ): def __init__( self , _snake_case = 0.001 , _snake_case = 0.9 , _snake_case = 0.999 , _snake_case = 1E-7 , _snake_case = False , _snake_case = 0.0 , _snake_case = None , _snake_case = None , _snake_case = "AdamWeightDecay" , **_snake_case , ): """simple docstring""" super().__init__(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case ) lowerCAmelCase = weight_decay_rate lowerCAmelCase = include_in_weight_decay lowerCAmelCase = exclude_from_weight_decay @classmethod def UpperCamelCase__ ( cls , _snake_case ): """simple docstring""" lowerCAmelCase = {'WarmUp': WarmUp} return super(_snake_case , cls ).from_config(_snake_case , custom_objects=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" super(_snake_case , self )._prepare_local(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCamelCase__ ( self , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = list(zip(*_snake_case ) ) return super(_snake_case , self ).apply_gradients(zip(_snake_case , _snake_case ) , name=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase = apply_state or {} lowerCAmelCase = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase = self._fallback_apply_state(_snake_case , _snake_case ) lowerCAmelCase = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self._get_lr(var.device , var.dtype.base_dtype , _snake_case ) lowerCAmelCase = self._decay_weights_op(_snake_case , _snake_case , _snake_case ) with tf.control_dependencies([decay] ): return super(_snake_case , self )._resource_apply_dense(_snake_case , _snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self._get_lr(var.device , var.dtype.base_dtype , _snake_case ) lowerCAmelCase = self._decay_weights_op(_snake_case , _snake_case , _snake_case ) with tf.control_dependencies([decay] ): return super(_snake_case , self )._resource_apply_sparse(_snake_case , _snake_case , _snake_case , **_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_snake_case , _snake_case ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_snake_case , _snake_case ) is not None: return False return True class a ( a__ ): def __init__( self ): """simple docstring""" lowerCAmelCase = [] lowerCAmelCase = None @property def UpperCamelCase__ ( self ): """simple docstring""" if self._accum_steps is None: lowerCAmelCase = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_snake_case , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCamelCase__ ( self ): """simple docstring""" if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , _snake_case ): """simple docstring""" if not self._gradients: lowerCAmelCase = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_snake_case ) , trainable=_snake_case , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_snake_case ) != len(self._gradients ): raise ValueError(F'Expected {len(self._gradients )} gradients, but got {len(_snake_case )}' ) for accum_gradient, gradient in zip(self._gradients , _snake_case ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_snake_case ) self._accum_steps.assign_add(1 ) def UpperCamelCase__ ( self ): """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_snake_case ) )
309
"""simple docstring""" import os from datetime import datetime as dt from github import Github __UpperCamelCase : int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] ) lowerCAmelCase = g.get_repo('huggingface/diffusers' ) lowerCAmelCase = repo.get_issues(state='open' ) for issue in open_issues: lowerCAmelCase = sorted(issue.get_comments() , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase ) lowerCAmelCase = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
309
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_: List[Any] ={ 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: List[str] =[ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Optional[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = " " ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = 0 for index, char in enumerate(_SCREAMING_SNAKE_CASE ): if char == separator: split_words.append(string[last_index:index] ) _UpperCAmelCase = index + 1 elif index + 1 == len(_SCREAMING_SNAKE_CASE ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
260
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __A( a ): snake_case_ = CustomTokenizer pass
33
import os import numpy import onnx def __lowerCAmelCase ( a__ , a__ ) -> List[str]: __a = a.name __a = b.name __a = '''''' __a = '''''' __a = a == b __a = name_a __a = name_b return res def __lowerCAmelCase ( a__ , a__ , a__ ) -> Optional[Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a__ , a__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) _graph_replace_input_with(node_proto.attribute[1].g , a__ , a__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> str: for n in graph_proto.node: _node_replace_input_with(a__ , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> Union[str, Any]: __a = list(model.graph.initializer ) __a = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __a = inits[i].name __a = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a__ , a__ ) def __lowerCAmelCase ( a__ ) -> str: __a = os.path.dirname(a__ ) __a = os.path.basename(a__ ) __a = onnx.load(os.path.join(a__ , a__ ) ) __a = list(model.graph.initializer ) __a = set() __a = {} __a = [] __a = 0 for i in range(len(a__ ) ): if i in dup_set: continue for j in range(i + 1 , len(a__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(a__ ) dup_set.add(a__ ) __a = inits[j].data_type __a = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , a__ ) total_reduced_size += mem_size __a = inits[i].name __a = inits[j].name if name_i in dup_map: dup_map[name_i].append(a__ ) else: __a = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' ) __a = sorted(a__ ) _remove_dup_initializers_from_model(a__ , a__ , a__ ) __a = '''optimized_''' + model_file_name __a = os.path.join(a__ , a__ ) onnx.save(a__ , a__ ) return new_model
33
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 100 ) -> int: _lowerCAmelCase : Tuple = set() _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : int = n + 1 # maximum limit for a in range(2 ,_lowerCamelCase ): for b in range(2 ,_lowerCamelCase ): _lowerCAmelCase : Dict = a**b # calculates the current power collect_powers.add(_lowerCamelCase ) # adds the result to the set return len(_lowerCamelCase ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
44
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _a : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): super().__init__(*a__ , **a__ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __A ( self , a__=None , a__=None , a__=None ): _lowerCAmelCase : List[str] = {} _lowerCAmelCase : Union[str, Any] = {} if prompt is not None: _lowerCAmelCase : List[Any] = prompt if generate_kwargs is not None: _lowerCAmelCase : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _lowerCAmelCase : str = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) _lowerCAmelCase : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , a__ , **a__ ): return super().__call__(a__ , **a__ ) def __A ( self , a__ , a__=None ): _lowerCAmelCase : Tuple = load_image(a__ ) if prompt is not None: if not isinstance(a__ , a__ ): raise ValueError( F"Received an invalid text input, got - {type(a__ )} - but expected a single string. " """Note also that one single text can be provided for conditional image to text generation.""" ) _lowerCAmelCase : Optional[int] = self.model.config.model_type if model_type == "git": _lowerCAmelCase : Optional[Any] = self.image_processor(images=a__ , return_tensors=self.framework ) _lowerCAmelCase : List[str] = self.tokenizer(text=a__ , add_special_tokens=a__ ).input_ids _lowerCAmelCase : Union[str, Any] = [self.tokenizer.cls_token_id] + input_ids _lowerCAmelCase : Dict = torch.tensor(a__ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": _lowerCAmelCase : Tuple = self.image_processor(images=a__ , header_text=a__ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _lowerCAmelCase : Optional[int] = self.image_processor(images=a__ , return_tensors=self.framework ) _lowerCAmelCase : Optional[int] = self.tokenizer(a__ , return_tensors=self.framework ) model_inputs.update(a__ ) else: raise ValueError(F"Model type {model_type} does not support conditional text generation" ) else: _lowerCAmelCase : Any = self.image_processor(images=a__ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _lowerCAmelCase : Union[str, Any] = None return model_inputs def __A ( self , a__ , a__=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , a__ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): _lowerCAmelCase : Optional[int] = None if generate_kwargs is None: _lowerCAmelCase : List[str] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _lowerCAmelCase : Tuple = model_inputs.pop(self.model.main_input_name ) _lowerCAmelCase : Union[str, Any] = self.model.generate(a__ , **a__ , **a__ ) return model_outputs def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = [] for output_ids in model_outputs: _lowerCAmelCase : Any = { """generated_text""": self.tokenizer.decode( a__ , skip_special_tokens=a__ , ) } records.append(a__ ) return records
44
1
class __snake_case : # Public class to implement a graph def __init__( self : Union[str, Any] , _snake_case : int , _snake_case : int , _snake_case : int): """simple docstring""" UpperCAmelCase_ = row UpperCAmelCase_ = col UpperCAmelCase_ = graph def lowerCamelCase ( self : List[str] , _snake_case : str , _snake_case : Optional[Any] , _snake_case : Tuple): """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCamelCase ( self : int , _snake_case : Optional[int] , _snake_case : int , _snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase_ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase_ = True # Make those cells visited for k in range(8): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _snake_case): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _snake_case) def lowerCamelCase ( self : List[str]): # And finally, count all islands. """simple docstring""" UpperCAmelCase_ = [[False for j in range(self.COL)] for i in range(self.ROW)] UpperCAmelCase_ = 0 for i in range(self.ROW): for j in range(self.COL): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_snake_case , _snake_case , _snake_case) count += 1 return count
367
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A (__A : BertModel , __A : str , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase_ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__A ): os.makedirs(__A ) UpperCAmelCase_ = model.state_dict() def to_tf_var_name(__A : str ): for patt, repl in iter(__A ): UpperCAmelCase_ = name.replace(__A , __A ) return F"""bert/{name}""" def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ): UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ = to_tf_var_name(__A ) UpperCAmelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ = torch_tensor.T UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A ) tf.keras.backend.set_value(__A , __A ) UpperCAmelCase_ = session.run(__A ) print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" ) UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A (__A : Any=None ) -> str: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ = parser.parse_args(__A ) UpperCAmelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
7
0
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __UpperCamelCase ( __lowerCAmelCase ): lowerCamelCase : Any ="segformer" def __init__( self , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=[2, 2, 2, 2] , lowerCAmelCase__=[8, 4, 2, 1] , lowerCAmelCase__=[32, 64, 160, 256] , lowerCAmelCase__=[7, 3, 3, 3] , lowerCAmelCase__=[4, 2, 2, 2] , lowerCAmelCase__=[1, 2, 5, 8] , lowerCAmelCase__=[4, 4, 4, 4] , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1E-6 , lowerCAmelCase__=256 , lowerCAmelCase__=255 , **lowerCAmelCase__ , ) -> Any: super().__init__(**lowerCamelCase__ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , lowerCamelCase__ , ) a : str = num_channels a : Any = num_encoder_blocks a : Optional[int] = depths a : Optional[Any] = sr_ratios a : Dict = hidden_sizes a : Union[str, Any] = patch_sizes a : Optional[Any] = strides a : Union[str, Any] = mlp_ratios a : str = num_attention_heads a : Optional[Any] = hidden_act a : List[Any] = hidden_dropout_prob a : Dict = attention_probs_dropout_prob a : str = classifier_dropout_prob a : List[Any] = initializer_range a : List[str] = drop_path_rate a : str = layer_norm_eps a : Any = decoder_hidden_size a : List[str] = kwargs.get("reshape_last_stage" , lowerCamelCase__ ) a : int = semantic_loss_ignore_index class __UpperCamelCase ( __lowerCAmelCase ): lowerCamelCase : Optional[Any] =version.parse("""1.11""" ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __a ( self ) -> float: return 1E-4 @property def __a ( self ) -> int: return 12
105
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: str = XLMTokenizer A: Optional[Any] = False def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ : Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCamelCase__ : Optional[int] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) UpperCamelCase__ : Optional[Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Dict ) -> Tuple: '''simple docstring''' UpperCamelCase__ : int = '''lower newer''' UpperCamelCase__ : List[str] = '''lower newer''' return input_text, output_text def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase__ : Tuple = '''lower''' UpperCamelCase__ : Dict = ['''low''', '''er</w>'''] UpperCamelCase__ : Optional[int] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Dict = tokens + ['''<unk>'''] UpperCamelCase__ : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Any = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) UpperCamelCase__ : List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) UpperCamelCase__ : Any = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
146
0
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _lowerCamelCase( a ): if isinstance(a , collections.abc.Iterable ): return x return (x, x) @require_tf class snake_case__ : def a__ ( self , lowerCamelCase , lowerCamelCase ): pass def a__ ( self ): pass def a__ ( self ): pass def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , **lowerCamelCase ): __a = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase , lowerCamelCase ) __a = TFVisionTextDualEncoderModel(lowerCamelCase ) __a = model(input_ids=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , **lowerCamelCase ): __a , __a = self.get_vision_text_model(lowerCamelCase , lowerCamelCase ) __a = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase , text_model=lowerCamelCase ) __a = model(input_ids=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , **lowerCamelCase ): __a , __a = self.get_vision_text_model(lowerCamelCase , lowerCamelCase ) __a = {"vision_model": vision_model, "text_model": text_model} __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase ) __a = model(input_ids=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , **lowerCamelCase ): __a , __a = self.get_vision_text_model(lowerCamelCase , lowerCamelCase ) __a = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase , text_model=lowerCamelCase ) __a = model(input_ids=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase ) __a = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) __a = TFVisionTextDualEncoderModel.from_pretrained(lowerCamelCase ) __a = model(input_ids=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase ) __a = after_output[0].numpy() __a = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1E-5 ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , **lowerCamelCase ): __a , __a = self.get_vision_text_model(lowerCamelCase , lowerCamelCase ) __a = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase , text_model=lowerCamelCase ) __a = model( input_ids=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase , output_attentions=lowerCamelCase ) __a = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __a = to_atuple(vision_model.config.image_size ) __a = to_atuple(vision_model.config.patch_size ) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __a = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = np.abs((a - b) ).max() self.assertLessEqual(lowerCamelCase , lowerCamelCase , F"Difference between torch and flax is {diff} (>= {tol})." ) def a__ ( self ): __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowerCamelCase ) def a__ ( self ): __a = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase ) def a__ ( self ): __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase ) def a__ ( self ): __a = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase ) def a__ ( self ): __a = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase ) @slow def a__ ( self ): __a , __a = self.get_pretrained_model_and_inputs() __a = model_a(**lowerCamelCase ) __a = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase ) __a = TFVisionTextDualEncoderModel.from_pretrained(lowerCamelCase ) __a = model_a(**lowerCamelCase ) __a = after_outputs[0].numpy() __a = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1E-5 ) @require_tf class snake_case__ ( snake_case_, unittest.TestCase ): def a__ ( self ): __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __a = random_attention_mask([batch_size, 4] ) __a = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = TFViTModel(lowerCamelCase , name="vision_model" ) __a = TFBertModel(lowerCamelCase , name="text_model" ) return vision_model, text_model def a__ ( self ): __a = TFViTModelTester(self ) __a = TFBertModelTester(self ) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class snake_case__ ( snake_case_, unittest.TestCase ): def a__ ( self ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __a = random_attention_mask([batch_size, 4] ) __a = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , **lowerCamelCase ): __a , __a = self.get_vision_text_model(lowerCamelCase , lowerCamelCase ) __a = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase , text_model=lowerCamelCase ) __a = model( input_ids=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase , output_attentions=lowerCamelCase ) __a = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __a = to_atuple(vision_model.config.image_size ) __a = to_atuple(vision_model.config.patch_size ) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __a = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = TFDeiTModel(lowerCamelCase , name="vision_model" ) __a = TFRobertaModel(lowerCamelCase , name="text_model" ) return vision_model, text_model def a__ ( self ): __a = TFDeiTModelTester(self ) __a = TFRobertaModelTester(self ) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class snake_case__ ( snake_case_, unittest.TestCase ): def a__ ( self ): __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __a = random_attention_mask([batch_size, 4] ) __a = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = TFCLIPVisionModel(lowerCamelCase , name="vision_model" ) __a = TFBertModel(lowerCamelCase , name="text_model" ) return vision_model, text_model def a__ ( self ): __a = TFCLIPVisionModelTester(self ) __a = TFBertModelTester(self ) __a = clip_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class snake_case__ ( unittest.TestCase ): @slow def a__ ( self ): __a = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=lowerCamelCase ) __a = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) __a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __a = processor( text=["una foto di un gatto", "una foto di un cane"] , images=lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ) __a = model(**lowerCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __a = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , lowerCamelCase , atol=1E-3 ) )
350
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__) class snake_case__ ( snake_case_ ): _snake_case : Optional[Any] = ["""pixel_values"""] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): super().__init__(**lowerCamelCase ) __a = size if size is not None else {"shortest_edge": 384} __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __a = do_resize __a = size # Default value set here for backwards compatibility where the value in config is None __a = crop_pct if crop_pct is not None else 224 / 256 __a = resample __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BICUBIC , lowerCamelCase = None , **lowerCamelCase , ): __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}" ) __a = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __a = int(shortest_edge / crop_pct ) __a = get_resize_output_image_size(lowerCamelCase , size=lowerCamelCase , default_to_square=lowerCamelCase ) __a = resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase , size=(shortest_edge, shortest_edge) , data_format=lowerCamelCase , **lowerCamelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase , size=(shortest_edge, shortest_edge) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ): __a = do_resize if do_resize is not None else self.do_resize __a = crop_pct if crop_pct is not None else self.crop_pct __a = resample if resample is not None else self.resample __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __a = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __a = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: __a = [self.resize(image=lowerCamelCase , size=lowerCamelCase , crop_pct=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: __a = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: __a = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] __a = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] __a = {"pixel_values": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
268
0
'''simple docstring''' from __future__ import annotations from collections import deque class __A : def __init__(self : List[Any] , __a : list[str] ): UpperCAmelCase_ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(__a ) self.set_fail_transitions() def _lowercase (self : Union[str, Any] , __a : int , __a : str ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _lowercase (self : Optional[Any] , __a : str ): UpperCAmelCase_ = 0 for character in keyword: UpperCAmelCase_ = self.find_next_state(__a , __a ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase_ = len(self.adlist ) - 1 else: UpperCAmelCase_ = next_state self.adlist[current_state]["output"].append(__a ) def _lowercase (self : int ): UpperCAmelCase_ = deque() for node in self.adlist[0]["next_states"]: q.append(__a ) UpperCAmelCase_ = 0 while q: UpperCAmelCase_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__a ) UpperCAmelCase_ = self.adlist[r]["fail_state"] while ( self.find_next_state(__a , self.adlist[child]["value"] ) is None and state != 0 ): UpperCAmelCase_ = self.adlist[state]["fail_state"] UpperCAmelCase_ = self.find_next_state( __a , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase_ = 0 UpperCAmelCase_ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def _lowercase (self : Dict , __a : str ): UpperCAmelCase_ = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase_ = 0 for i in range(len(__a ) ): while ( self.find_next_state(__a , string[i] ) is None and current_state != 0 ): UpperCAmelCase_ = self.adlist[current_state]["fail_state"] UpperCAmelCase_ = self.find_next_state(__a , string[i] ) if next_state is None: UpperCAmelCase_ = 0 else: UpperCAmelCase_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase_ = [] result[key].append(i - len(__a ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
1
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __A ( UpperCamelCase__ ): def __init__(self : int , __a : Distribution , __a : Dict=None , __a : int=None , __a : Any=0 ): UpperCAmelCase_ = 1.0 if scale is None else scale UpperCAmelCase_ = 0.0 if loc is None else loc super().__init__(__a , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__a )] ) @property def _lowercase (self : Union[str, Any] ): return self.base_dist.mean * self.scale + self.loc @property def _lowercase (self : List[Any] ): return self.base_dist.variance * self.scale**2 @property def _lowercase (self : List[Any] ): return self.variance.sqrt() class __A ( nn.Module ): def __init__(self : Optional[int] , __a : int , __a : Dict[str, int] , __a : Callable[..., Tuple[torch.Tensor]] , **__a : List[str] ): super().__init__(**__a ) UpperCAmelCase_ = args_dim UpperCAmelCase_ = nn.ModuleList([nn.Linear(__a , __a ) for dim in args_dim.values()] ) UpperCAmelCase_ = domain_map def _lowercase (self : List[str] , __a : torch.Tensor ): UpperCAmelCase_ = [proj(__a ) for proj in self.proj] return self.domain_map(*__a ) class __A ( nn.Module ): def __init__(self : Union[str, Any] , __a : List[str] ): super().__init__() UpperCAmelCase_ = function def _lowercase (self : Optional[int] , __a : List[str] , *__a : Optional[int] ): return self.function(__a , *__a ) class __A : a__ : type a__ : int a__ : Dict[str, int] def __init__(self : List[Any] , __a : int = 1 ): UpperCAmelCase_ = dim UpperCAmelCase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def _lowercase (self : Any , __a : Any ): if self.dim == 1: return self.distribution_class(*__a ) else: return Independent(self.distribution_class(*__a ) , 1 ) def _lowercase (self : List[str] , __a : Union[str, Any] , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , ): UpperCAmelCase_ = self._base_distribution(__a ) if loc is None and scale is None: return distr else: return AffineTransformed(__a , loc=__a , scale=__a , event_dim=self.event_dim ) @property def _lowercase (self : Any ): return () if self.dim == 1 else (self.dim,) @property def _lowercase (self : Dict ): return len(self.event_shape ) @property def _lowercase (self : Tuple ): return 0.0 def _lowercase (self : List[str] , __a : int ): return ParameterProjection( in_features=__a , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _lowercase (self : Optional[int] , *__a : torch.Tensor ): raise NotImplementedError() @staticmethod def _lowercase (__a : torch.Tensor ): return (x + torch.sqrt(torch.square(__a ) + 4.0 )) / 2.0 class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} a__ : type = StudentT @classmethod def _lowercase (cls : Union[str, Any] , __a : torch.Tensor , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCAmelCase_ = 2.0 + cls.squareplus(__a ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"loc": 1, "scale": 1} a__ : type = Normal @classmethod def _lowercase (cls : Tuple , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"total_count": 1, "logits": 1} a__ : type = NegativeBinomial @classmethod def _lowercase (cls : Optional[Any] , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _lowercase (self : List[str] , __a : str ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=__a , logits=__a ) else: return Independent(self.distribution_class(total_count=__a , logits=__a ) , 1 ) def _lowercase (self : Optional[Any] , __a : int , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
1
1
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Any ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a_ ( self : Any ) -> int: """simple docstring""" torch.manual_seed(0 ) A__ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def a_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" torch.manual_seed(0 ) A__ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=10 , ) return model @property def a_ ( self : Any ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) A__ = AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) A__ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def a_ ( self : Optional[int] ) -> int: """simple docstring""" A__ = """cpu""" # ensure determinism for the device-dependent torch.Generator A__ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) A__ = DDPMScheduler() A__ = AudioDiffusionPipeline(vqvae=__lowerCAmelCase , unet=self.dummy_unet , mel=__lowerCAmelCase , scheduler=__lowerCAmelCase ) A__ = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) A__ = torch.Generator(device=__lowerCAmelCase ).manual_seed(42 ) A__ = pipe(generator=__lowerCAmelCase , steps=4 ) A__ = output.audios[0] A__ = output.images[0] A__ = torch.Generator(device=__lowerCAmelCase ).manual_seed(42 ) A__ = pipe(generator=__lowerCAmelCase , steps=4 , return_dict=__lowerCAmelCase ) A__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) A__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] A__ = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:10] A__ = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 A__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) A__ = DDIMScheduler() A__ = self.dummy_vqvae_and_unet A__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__lowerCAmelCase , scheduler=__lowerCAmelCase ) A__ = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) np.random.seed(0 ) A__ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) A__ = torch.Generator(device=__lowerCAmelCase ).manual_seed(42 ) A__ = pipe(raw_audio=__lowerCAmelCase , generator=__lowerCAmelCase , start_step=5 , steps=10 ) A__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) A__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] A__ = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 A__ = self.dummy_unet_condition A__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__lowerCAmelCase , mel=__lowerCAmelCase , scheduler=__lowerCAmelCase ) A__ = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) np.random.seed(0 ) A__ = torch.rand((1, 1, 10) ) A__ = pipe(generator=__lowerCAmelCase , encoding=__lowerCAmelCase ) A__ = output.images[0] A__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] A__ = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : int ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self : List[str] ) -> Optional[int]: """simple docstring""" A__ = torch_device A__ = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) A__ = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) A__ = torch.Generator(device=__lowerCAmelCase ).manual_seed(42 ) A__ = pipe(generator=__lowerCAmelCase ) A__ = output.audios[0] A__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] A__ = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] A__ = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
276
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Optional[int] = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = '''roberta''' def __init__( self : Any , __lowerCAmelCase : Tuple=5_02_65 , __lowerCAmelCase : Optional[int]=7_68 , __lowerCAmelCase : Union[str, Any]=12 , __lowerCAmelCase : Dict=12 , __lowerCAmelCase : Optional[Any]=30_72 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : int=2 , __lowerCAmelCase : List[str]=0.0_2 , __lowerCAmelCase : Dict=1e-12 , __lowerCAmelCase : Optional[int]=1 , __lowerCAmelCase : Tuple=0 , __lowerCAmelCase : int=2 , __lowerCAmelCase : Dict="absolute" , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Union[str, Any]=None , **__lowerCAmelCase : str , ) -> str: """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def a_ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": A__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
276
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Optional[Any] = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _UpperCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
304
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
1
from collections.abc import Iterable from typing import Generic, TypeVar UpperCAmelCase__ : List[Any] = TypeVar('_T') class UpperCAmelCase ( Generic[_T] ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : str = None ): """simple docstring""" _A: Optional[int] = list(iterable or [] ) _A: Optional[Any] = [] def __len__( self : int ): """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self : int ): """simple docstring""" return F"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def __magic_name__ ( self : Dict , lowerCAmelCase_ : Any ): """simple docstring""" self._stacka.append(lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Any = self._stacka.pop _A: Dict = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
366
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase (a_ ): '''simple docstring''' lowercase__ = ["image_processor", "tokenizer"] lowercase__ = "ChineseCLIPImageProcessor" lowercase__ = ("BertTokenizer", "BertTokenizerFast") def __init__( self , snake_case__=None , snake_case__=None , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _lowerCAmelCase , ) UpperCamelCase_ = kwargs.pop("feature_extractor" ) UpperCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase_ = self.image_processor def __call__( self , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ): '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: UpperCamelCase_ = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if images is not None: UpperCamelCase_ = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and images is not None: UpperCamelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def _lowerCamelCase ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def _lowerCamelCase ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.tokenizer.model_input_names UpperCamelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCamelCase ( self ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _lowerCAmelCase , ) return self.image_processor_class
128
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = FunnelConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = FunnelBaseModel(SCREAMING_SNAKE_CASE_ ) if base_model else FunnelModel(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
158
0
import os # Precomputes a list of the 100 first triangular numbers A_ : Tuple = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def snake_case () -> str: UpperCamelCase_: Tuple = os.path.dirname(os.path.realpath(__a ) ) UpperCamelCase_: int = os.path.join(__a , 'words.txt' ) UpperCamelCase_: Union[str, Any] = '' with open(__a ) as f: UpperCamelCase_: Dict = f.readline() UpperCamelCase_: Tuple = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] UpperCamelCase_: str = [ word for word in [sum(ord(__a ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__a ) if __name__ == "__main__": print(solution())
355
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ : int = logging.get_logger(__name__) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : str =['''pixel_values'''] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = 1 / 2_5_5 , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: Any = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} UpperCamelCase_: Any = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Any = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} UpperCamelCase_: List[Any] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase , param_name='crop_size' ) UpperCamelCase_: Optional[int] = do_resize UpperCamelCase_: Tuple = do_rescale UpperCamelCase_: Dict = do_normalize UpperCamelCase_: Optional[int] = do_center_crop UpperCamelCase_: Tuple = crop_size UpperCamelCase_: Optional[int] = size UpperCamelCase_: Dict = resample UpperCamelCase_: Tuple = rescale_factor UpperCamelCase_: Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase_: Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = get_size_dict(_lowerCamelCase ) if "shortest_edge" in size: UpperCamelCase_: str = get_resize_output_image_size(_lowerCamelCase , size=size['shortest_edge'] , default_to_square=_lowerCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCamelCase_: Any = (size['height'], size['width']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: List[str] = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_lowerCamelCase , size=(size['height'], size['width']) , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase ): return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCamelCase_: List[str] = do_resize if do_resize is not None else self.do_resize UpperCamelCase_: str = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_: Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_: Optional[Any] = crop_size if crop_size is not None else self.crop_size UpperCamelCase_: List[str] = get_size_dict(_lowerCamelCase , param_name='crop_size' , default_to_square=_lowerCamelCase ) UpperCamelCase_: Tuple = resample if resample is not None else self.resample UpperCamelCase_: str = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_: Dict = image_mean if image_mean is not None else self.image_mean UpperCamelCase_: Dict = image_std if image_std is not None else self.image_std UpperCamelCase_: Any = size if size is not None else self.size UpperCamelCase_: Optional[Any] = get_size_dict(_lowerCamelCase ) if not is_batched(_lowerCamelCase ): UpperCamelCase_: Dict = [images] if not valid_images(_lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. UpperCamelCase_: List[str] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCamelCase_: List[str] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_center_crop: UpperCamelCase_: List[str] = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase ) for image in images] if do_rescale: UpperCamelCase_: int = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) for image in images] UpperCamelCase_: List[str] = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCamelCase_: Optional[int] = {'pixel_values': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
292
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=64 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Optional[int]: UpperCAmelCase : List[Any] = parent UpperCAmelCase : Optional[int] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[Any] = is_training UpperCAmelCase : Dict = use_input_mask UpperCAmelCase : str = use_token_type_ids UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : Optional[int] = num_attention_heads UpperCAmelCase : int = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : int = initializer_range UpperCAmelCase : str = num_labels UpperCAmelCase : Optional[int] = num_choices UpperCAmelCase : Dict = scope UpperCAmelCase : Union[str, Any] = vocab_size - 1 def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Any = None if self.use_input_mask: UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : List[str] = None if self.use_labels: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[int] = self.get_config() return config, input_ids, input_mask, token_labels def _lowercase( self ) -> Optional[Any]: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase : Any = True return config, input_ids, input_mask, token_labels def _lowercase( self , A , A , A ) -> int: UpperCAmelCase : str = GPTNeoXModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A , attention_mask=A ) UpperCAmelCase : List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A ) -> Optional[int]: UpperCAmelCase : str = True UpperCAmelCase : Optional[Any] = GPTNeoXModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A ) -> List[str]: UpperCAmelCase : Tuple = GPTNeoXForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : str = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A ) -> Tuple: UpperCAmelCase : List[str] = self.num_labels UpperCAmelCase : Any = GPTNeoXForQuestionAnswering(A ) model.to(A ) model.eval() UpperCAmelCase : str = model(A , attention_mask=A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase( self , A , A , A , A ) -> int: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : List[str] = GPTNeoXForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A , A ) -> str: UpperCAmelCase : List[Any] = self.num_labels UpperCAmelCase : Tuple = GPTNeoXForTokenClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase( self , A , A , A ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : str = GPTNeoXForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , use_cache=A ) UpperCAmelCase : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : Any = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : Dict = model(A , attention_mask=A , output_hidden_states=A ) UpperCAmelCase : Any = output_from_no_past["""hidden_states"""][0] UpperCAmelCase : List[str] = model( A , attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowercase = (GPTNeoXForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : str = GPTNeoXModelTester(self ) UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=A , hidden_size=64 , num_attention_heads=8 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A , A , A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(A , A , A ) def _lowercase( self ) -> Optional[Any]: # This regression test was failing with PyTorch < 1.3 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(A , A , A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(A , A , A ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _lowercase( self ) -> Optional[int]: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Dict = GPTNeoXModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : Any = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = GPTNeoXModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : Optional[Any] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[Any] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : str = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: UpperCAmelCase : int = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(A ) UpperCAmelCase : List[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(A ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCAmelCase : List[str] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" UpperCAmelCase : Union[str, Any] = model.generate(**A , do_sample=A , max_new_tokens=20 ) UpperCAmelCase : Tuple = tokenizer.batch_decode(A )[0] self.assertEqual(A , A )
265
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder a : List[Any] = """__DUMMY_TRANSFORMERS_USER__""" a : Tuple = """Dummy User""" a : Optional[Any] = """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""" a : Optional[Any] = """https://hub-ci.huggingface.co""" a : List[Any] = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" a : Tuple = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" a : str = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def __lowerCamelCase ( _lowercase ) -> Optional[int]: monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , _lowercase ) @pytest.fixture def __lowerCamelCase ( _lowercase ) -> List[str]: monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , _lowercase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , _lowercase ) @pytest.fixture def __lowerCamelCase ( _lowercase ) -> Any: monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , _lowercase ) @pytest.fixture def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: HfFolder.save_token(_lowercase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> str: return HfApi(endpoint=_lowercase ) @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : str = HfFolder.get_token() HfFolder.save_token(_lowercase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_lowercase ) @pytest.fixture def __lowerCamelCase ( _lowercase ) -> Any: def _cleanup_repo(_lowercase ): hf_api.delete_repo(_lowercase , token=_lowercase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __lowerCamelCase ( _lowercase ) -> List[str]: @contextmanager def _temporary_repo(_lowercase ): try: yield repo_id finally: cleanup_repo(_lowercase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : str = F'''repo_txt_data-{int(time.time() * 10e3 )}''' UpperCAmelCase : List[Any] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_lowercase , token=_lowercase , repo_type="""dataset""" , private=_lowercase ) hf_api.upload_file( token=_lowercase , path_or_fileobj=str(_lowercase ) , path_in_repo="""data/text_data.txt""" , repo_id=_lowercase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(_lowercase , token=_lowercase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[int] = F'''repo_zipped_txt_data-{int(time.time() * 10e3 )}''' UpperCAmelCase : Optional[int] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_lowercase , token=_lowercase , repo_type="""dataset""" , private=_lowercase ) hf_api.upload_file( token=_lowercase , path_or_fileobj=str(_lowercase ) , path_in_repo="""data.zip""" , repo_id=_lowercase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(_lowercase , token=_lowercase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Tuple: UpperCAmelCase : List[Any] = F'''repo_zipped_img_data-{int(time.time() * 10e3 )}''' UpperCAmelCase : List[str] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_lowercase , token=_lowercase , repo_type="""dataset""" , private=_lowercase ) hf_api.upload_file( token=_lowercase , path_or_fileobj=str(_lowercase ) , path_in_repo="""data.zip""" , repo_id=_lowercase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(_lowercase , token=_lowercase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: return hf_private_dataset_repo_zipped_img_data_
265
1
from __future__ import annotations def lowerCamelCase__ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[str] ) -> List[Any]: # noqa: E741 '''simple docstring''' while r - l > 1: _snake_case = (l + r) // 2 if v[m] >= key: _snake_case = m else: _snake_case = m # noqa: E741 return r def lowerCamelCase__ ( UpperCamelCase__ : list[int] ) -> Union[str, Any]: '''simple docstring''' if len(__lowerCAmelCase ) == 0: return 0 _snake_case = [0] * len(__lowerCAmelCase ) _snake_case = 1 _snake_case = v[0] for i in range(1 , len(__lowerCAmelCase ) ): if v[i] < tail[0]: _snake_case = v[i] elif v[i] > tail[length - 1]: _snake_case = v[i] length += 1 else: _snake_case = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
371
def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' _snake_case = [0 for i in range(r + 1 )] # nc0 = 1 _snake_case = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _snake_case = min(UpperCamelCase__ , UpperCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
295
0
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase( __UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : str ,__UpperCamelCase : Tuple ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowerCAmelCase_ : str = ksize + 1 lowerCAmelCase_ : List[str] = np.zeros((ksize, ksize) ,dtype=np.floataa ) # each value for y in range(__lowerCAmelCase ): for x in range(__lowerCAmelCase ): # distance from center lowerCAmelCase_ : Any = x - ksize // 2 lowerCAmelCase_ : Optional[int] = y - ksize // 2 # degree to radiant lowerCAmelCase_ : str = theta / 180 * np.pi lowerCAmelCase_ : List[Any] = np.cos(_theta ) lowerCAmelCase_ : int = np.sin(_theta ) # get kernel x lowerCAmelCase_ : str = cos_theta * px + sin_theta * py # get kernel y lowerCAmelCase_ : str = -sin_theta * px + cos_theta * py # fill kernel lowerCAmelCase_ : Tuple = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A__ : int = imread('''../image_data/lena.jpg''') # turn image in gray scale value A__ : Tuple = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A__ : int = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: A__ : Union[str, Any] = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A__ : Dict = out / out.max() * 255 A__ : Tuple = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
103
'''simple docstring''' def __lowerCAmelCase (): return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __lowerCAmelCase (__lowerCAmelCase ): assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid ) assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Any = 0 _UpperCAmelCase : str = len(__lowerCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _UpperCAmelCase : Union[str, Any] = (left + right) // 2 _UpperCAmelCase : List[str] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _UpperCAmelCase : Tuple = mid + 1 else: _UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = 0 _UpperCAmelCase : int = len(grid[0] ) for i in range(len(__lowerCAmelCase ) ): _UpperCAmelCase : Dict = find_negative_index(grid[i][:bound] ) total += bound return (len(__lowerCAmelCase ) * len(grid[0] )) - total def __lowerCAmelCase (__lowerCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = 0 for row in grid: for i, number in enumerate(__lowerCAmelCase ): if number < 0: total += len(__lowerCAmelCase ) - i break return total def __lowerCAmelCase (): from timeit import timeit print("Running benchmarks" ) _UpperCAmelCase : Tuple = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _UpperCAmelCase : str = timeit(F"""{func}(grid=grid)""" , setup=__lowerCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
234
0
"""simple docstring""" import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __magic_name__ ( __UpperCAmelCase ): def __init__( self : List[str] , snake_case__ : int ): '''simple docstring''' lowercase :List[str] = data def __iter__( self : Dict ): '''simple docstring''' for element in self.data: yield element def lowerCamelCase (a_ :Optional[Any]=True) -> Any: lowercase :Tuple = Accelerator(even_batches=a_) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def lowerCamelCase (a_ :Accelerator , a_ :int , a_ :int , a_ :bool = False) -> List[str]: if iterable: lowercase :List[str] = DummyIterableDataset(torch.as_tensor(range(a_))) else: lowercase :List[Any] = TensorDataset(torch.as_tensor(range(a_))) lowercase :Any = DataLoader(a_ , batch_size=a_) lowercase :Dict = accelerator.prepare(a_) return dl def lowerCamelCase (a_ :Accelerator , a_ :int , a_ :int , a_ :List[int] , a_ :List[int] , ) -> Union[str, Any]: lowercase :List[Any] = create_dataloader(accelerator=a_ , dataset_size=a_ , batch_size=a_) lowercase :List[Any] = [len(batch[0]) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def lowerCamelCase () -> Optional[Any]: lowercase :List[Any] = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( a_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( a_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def lowerCamelCase () -> Any: lowercase :Any = create_accelerator(even_batches=a_) verify_dataloader_batch_sizes( a_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( a_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def lowerCamelCase () -> Dict: lowercase :Optional[int] = create_accelerator(even_batches=a_) lowercase :Union[str, Any] = torch.nn.Linear(1 , 1) lowercase :int = accelerator.prepare(a_) lowercase :Any = create_dataloader(a_ , dataset_size=3 , batch_size=1) lowercase :Tuple = [] with accelerator.join_uneven_inputs([ddp_model]): for batch_idx, batch in enumerate(a_): lowercase :str = ddp_model(batch[0].float()) lowercase :Optional[Any] = output.sum() loss.backward() batch_idxs.append(a_) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def lowerCamelCase (a_ :int) -> Optional[Any]: with warnings.catch_warnings(record=a_) as w: with accelerator.join_uneven_inputs([Mock()]): pass assert issubclass(w[-1].category , a_) assert "only supported for multi-GPU" in str(w[-1].message) def lowerCamelCase () -> int: lowercase :Union[str, Any] = True lowercase :Dict = False lowercase :Any = create_accelerator(even_batches=a_) lowercase :Tuple = torch.nn.Linear(1 , 1) lowercase :Tuple = accelerator.prepare(a_) lowercase :Optional[Any] = create_dataloader(a_ , dataset_size=3 , batch_size=1) lowercase :str = create_dataloader(a_ , dataset_size=3 , batch_size=1) with accelerator.join_uneven_inputs([ddp_model] , even_batches=a_): lowercase :str = train_dl.batch_sampler.even_batches lowercase :Tuple = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase () -> int: lowercase :Any = True lowercase :List[str] = False lowercase :Dict = create_accelerator(even_batches=a_) lowercase :Any = torch.nn.Linear(1 , 1) lowercase :Dict = accelerator.prepare(a_) create_dataloader(a_ , dataset_size=3 , batch_size=1 , iterable=a_) lowercase :List[str] = create_dataloader(a_ , dataset_size=3 , batch_size=1) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''') try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=a_): lowercase :Dict = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase () -> List[Any]: lowercase :str = create_accelerator() lowercase :int = torch.nn.Linear(1 , 1) lowercase :List[Any] = accelerator.prepare(a_) create_dataloader(a_ , dataset_size=3 , batch_size=1 , iterable=a_) with warnings.catch_warnings(record=a_) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=a_): pass assert issubclass(w[-1].category , a_) assert "only supported for map-style datasets" in str(w[-1].message) def lowerCamelCase () -> Union[str, Any]: lowercase :List[Any] = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''') test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''') test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''') test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''') test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''') test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''') test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''') lowercase :Dict = accelerator.state.distributed_type lowercase :Any = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(a_) lowercase :Dict = original_state if __name__ == "__main__": main()
350
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __magic_name__ ( __UpperCAmelCase ): __A : UNetaDModel __A : ScoreSdeVeScheduler def __init__( self : List[Any] , snake_case__ : UNetaDModel , snake_case__ : ScoreSdeVeScheduler ): '''simple docstring''' super().__init__() self.register_modules(unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self : Optional[Any] , snake_case__ : int = 1 , snake_case__ : int = 2_0_0_0 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , **snake_case__ : Optional[Any] , ): '''simple docstring''' lowercase :List[str] = self.unet.config.sample_size lowercase :Optional[int] = (batch_size, 3, img_size, img_size) lowercase :Optional[Any] = self.unet lowercase :Dict = randn_tensor(snake_case__ , generator=snake_case__ ) * self.scheduler.init_noise_sigma lowercase :Any = sample.to(self.device ) self.scheduler.set_timesteps(snake_case__ ) self.scheduler.set_sigmas(snake_case__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase :Union[str, Any] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase :Union[str, Any] = self.unet(snake_case__ , snake_case__ ).sample lowercase :Union[str, Any] = self.scheduler.step_correct(snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample # prediction step lowercase :List[str] = model(snake_case__ , snake_case__ ).sample lowercase :Optional[int] = self.scheduler.step_pred(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ) lowercase , lowercase :Optional[int] = output.prev_sample, output.prev_sample_mean lowercase :List[Any] = sample_mean.clamp(0 , 1 ) lowercase :Optional[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase :Dict = self.numpy_to_pil(snake_case__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=snake_case__ )
172
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a =logging.get_logger(__name__) a ={ """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Tuple = '''poolformer''' def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int]=3 ,SCREAMING_SNAKE_CASE__ : Any=1_6 ,SCREAMING_SNAKE_CASE__ : Tuple=1_6 ,SCREAMING_SNAKE_CASE__ : List[Any]=3 ,SCREAMING_SNAKE_CASE__ : Optional[int]=4.0 ,SCREAMING_SNAKE_CASE__ : int=[2, 2, 6, 2] ,SCREAMING_SNAKE_CASE__ : Dict=[6_4, 1_2_8, 3_2_0, 5_1_2] ,SCREAMING_SNAKE_CASE__ : Tuple=[7, 3, 3, 3] ,SCREAMING_SNAKE_CASE__ : int=[4, 2, 2, 2] ,SCREAMING_SNAKE_CASE__ : int=[2, 1, 1, 1] ,SCREAMING_SNAKE_CASE__ : Optional[Any]=4 ,SCREAMING_SNAKE_CASE__ : Any=0.0 ,SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : str=1E-5 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.02 ,**SCREAMING_SNAKE_CASE__ : Tuple ,): __lowerCamelCase : str = num_channels __lowerCamelCase : Any = patch_size __lowerCamelCase : Optional[int] = stride __lowerCamelCase : List[str] = padding __lowerCamelCase : List[str] = pool_size __lowerCamelCase : str = hidden_sizes __lowerCamelCase : List[Any] = mlp_ratio __lowerCamelCase : Optional[int] = depths __lowerCamelCase : Optional[int] = patch_sizes __lowerCamelCase : Union[str, Any] = strides __lowerCamelCase : Any = num_encoder_blocks __lowerCamelCase : Tuple = drop_path_rate __lowerCamelCase : Any = hidden_act __lowerCamelCase : List[Any] = use_layer_scale __lowerCamelCase : List[str] = layer_scale_init_value __lowerCamelCase : str = initializer_range super().__init__(**SCREAMING_SNAKE_CASE__) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[str] = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : Dict): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def lowerCAmelCase ( self : Optional[Any]): return 2E-3
73
from __future__ import annotations from scipy.special import comb # type: ignore class A_ : def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : list[tuple[float, float]]): __lowerCamelCase : Union[str, Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowerCamelCase : int = len(SCREAMING_SNAKE_CASE__) - 1 def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : float): assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( comb(self.degree ,SCREAMING_SNAKE_CASE__) * ((1 - t) ** (self.degree - i)) * (t**i)) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(SCREAMING_SNAKE_CASE__) ,5) == 1 return output_values def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : float): assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowerCamelCase : Tuple = self.basis_function(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = 0.0 __lowerCamelCase : Optional[Any] = 0.0 for i in range(len(self.list_of_points)): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : float = 0.01): from matplotlib import pyplot as plt # type: ignore __lowerCamelCase : list[float] = [] # x coordinates of points to plot __lowerCamelCase : list[float] = [] # y coordinates of points to plot __lowerCamelCase : Any = 0.0 while t <= 1: __lowerCamelCase : List[Any] = self.bezier_curve_function(SCREAMING_SNAKE_CASE__) to_plot_x.append(value[0]) to_plot_y.append(value[1]) t += step_size __lowerCamelCase : Optional[Any] = [i[0] for i in self.list_of_points] __lowerCamelCase : List[str] = [i[1] for i in self.list_of_points] plt.plot( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,color='blue' ,label='Curve of Degree ' + str(self.degree) ,) plt.scatter(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,color='red' ,label='Control Points') plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
73
1
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __snake_case = '''\ ''' __snake_case = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' __snake_case = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 16 , UpperCamelCase_ = True , UpperCamelCase_=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCamelCase__ :List[Any] = '''cuda''' else: UpperCamelCase__ :List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCamelCase__ :str = AutoModelForCausalLM.from_pretrained(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = model.to(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCamelCase__ :List[str] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(UpperCamelCase_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCamelCase__ :Dict = model.config.max_length - 1 else: UpperCamelCase__ :Union[str, Any] = model.config.max_length UpperCamelCase__ :List[Any] = tokenizer( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors='''pt''' , return_attention_mask=UpperCamelCase_ , ).to(UpperCamelCase_ ) UpperCamelCase__ :List[str] = encodings['''input_ids'''] UpperCamelCase__ :str = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCamelCase__ :Optional[int] = [] UpperCamelCase__ :Optional[Any] = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ) ): UpperCamelCase__ :Optional[int] = min(start_index + batch_size , len(UpperCamelCase_ ) ) UpperCamelCase__ :str = encoded_texts[start_index:end_index] UpperCamelCase__ :str = attn_masks[start_index:end_index] if add_start_token: UpperCamelCase__ :Optional[Any] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(UpperCamelCase_ ) UpperCamelCase__ :List[Any] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCamelCase__ :Dict = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(UpperCamelCase_ ), attn_mask] , dim=1 ) UpperCamelCase__ :Optional[Any] = encoded_batch with torch.no_grad(): UpperCamelCase__ :str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ).logits UpperCamelCase__ :Any = out_logits[..., :-1, :].contiguous() UpperCamelCase__ :List[Any] = labels[..., 1:].contiguous() UpperCamelCase__ :List[str] = attn_mask[..., 1:].contiguous() UpperCamelCase__ :Any = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , UpperCamelCase_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(UpperCamelCase_ )}
369
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( A__ ): """simple docstring""" _a = (DDIMParallelScheduler,) _a = (('eta', 0.0), ('num_inference_steps', 50)) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :str = self.scheduler_classes[0] UpperCamelCase__ :Optional[Any] = self.get_scheduler_config(**UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = scheduler_class(**UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ :Optional[int] = 10, 0.0 UpperCamelCase__ :List[str] = self.dummy_model() UpperCamelCase__ :List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase_ ) for t in scheduler.timesteps: UpperCamelCase__ :Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample return sample def lowerCAmelCase__ ( self ): '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.scheduler_classes[0] UpperCamelCase__ :List[str] = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase__ :str = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=UpperCamelCase_ , eta=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = self.scheduler_classes[0] UpperCamelCase__ :List[str] = self.get_scheduler_config() UpperCamelCase__ :int = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.scheduler_classes[0] UpperCamelCase__ :Dict = self.get_scheduler_config() UpperCamelCase__ :Any = scheduler_class(**UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ :List[str] = 10, 0.0 scheduler.set_timesteps(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = self.dummy_model() UpperCamelCase__ :List[Any] = self.dummy_sample_deter UpperCamelCase__ :int = self.dummy_sample_deter + 0.1 UpperCamelCase__ :List[str] = self.dummy_sample_deter - 0.1 UpperCamelCase__ :str = samplea.shape[0] UpperCamelCase__ :Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase__ :List[Any] = torch.arange(UpperCamelCase_ )[0:3, None].repeat(1 , UpperCamelCase_ ) UpperCamelCase__ :Dict = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase__ :Any = scheduler.batch_step_no_noise(UpperCamelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , UpperCamelCase_ ) UpperCamelCase__ :Dict = torch.sum(torch.abs(UpperCamelCase_ ) ) UpperCamelCase__ :Any = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = self.full_loop() UpperCamelCase__ :List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) UpperCamelCase__ :Any = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self.full_loop(prediction_type='''v_prediction''' ) UpperCamelCase__ :Dict = torch.sum(torch.abs(UpperCamelCase_ ) ) UpperCamelCase__ :str = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.01 ) UpperCamelCase__ :str = torch.sum(torch.abs(UpperCamelCase_ ) ) UpperCamelCase__ :int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.01 ) UpperCamelCase__ :Dict = torch.sum(torch.abs(UpperCamelCase_ ) ) UpperCamelCase__ :List[str] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
219
0
"""simple docstring""" from __future__ import annotations from random import choice def _snake_case ( lowerCamelCase__ : Any ) -> Optional[Any]: return choice(SCREAMING_SNAKE_CASE__ ) def _snake_case ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> int: lowerCamelCase_ : List[str] =random_pivot(SCREAMING_SNAKE_CASE__ ) # partition based on pivot # linear time lowerCamelCase_ : Optional[int] =[e for e in lst if e < pivot] lowerCamelCase_ : Union[str, Any] =[e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(SCREAMING_SNAKE_CASE__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(SCREAMING_SNAKE_CASE__ ) < k - 1: return kth_number(SCREAMING_SNAKE_CASE__ , k - len(SCREAMING_SNAKE_CASE__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
144
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a (unittest.TestCase ): def __init__( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple=3 , __magic_name__ : Tuple=32 , __magic_name__ : Optional[int]=3 , __magic_name__ : Optional[Any]=10 , __magic_name__ : str=[10, 20, 30, 40] , __magic_name__ : str=[1, 1, 2, 1] , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Dict="relu" , __magic_name__ : Any=3 , __magic_name__ : List[str]=None , ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : str = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Optional[int] = num_channels UpperCAmelCase_ : Any = embeddings_size UpperCAmelCase_ : Union[str, Any] = hidden_sizes UpperCAmelCase_ : Optional[Any] = depths UpperCAmelCase_ : Any = is_training UpperCAmelCase_ : Optional[Any] = use_labels UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : List[str] = num_labels UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : int = len(__magic_name__ ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : str ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = FlaxRegNetModel(config=__magic_name__ ) UpperCAmelCase_ : Optional[Any] = model(__magic_name__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.num_labels UpperCAmelCase_ : str = FlaxRegNetForImageClassification(config=__magic_name__ ) UpperCAmelCase_ : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ : str = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __a (lowerCamelCase , unittest.TestCase ): __a : Optional[Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __a : int = False __a : str = False __a : List[str] = False def UpperCAmelCase__ ( self : List[Any] ) -> None: """simple docstring""" UpperCAmelCase_ : Optional[int] = FlaxRegNetModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" return def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" pass def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[int] = model_class(__magic_name__ ) UpperCAmelCase_ : List[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Dict = [*signature.parameters.keys()] UpperCAmelCase_ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __magic_name__ ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" def check_hidden_states_output(__magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ): UpperCAmelCase_ : Optional[int] = model_class(__magic_name__ ) UpperCAmelCase_ : str = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) UpperCAmelCase_ : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : str = self.model_tester.num_stages self.assertEqual(len(__magic_name__ ) , expected_num_stages + 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Any = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Any = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : str = self._prepare_for_class(__magic_name__ , __magic_name__ ) UpperCAmelCase_ : Optional[int] = model_class(__magic_name__ ) @jax.jit def model_jitted(__magic_name__ : Optional[int] , **__magic_name__ : Optional[Any] ): return model(pixel_values=__magic_name__ , **__magic_name__ ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase_ : Dict = model_jitted(**__magic_name__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase_ : Any = model_jitted(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) ) for jitted_output, output in zip(__magic_name__ , __magic_name__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase_ ( ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __a (unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Dict = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : Union[str, Any] = image_processor(images=__magic_name__ , return_tensors='''np''' ) UpperCAmelCase_ : int = model(**__magic_name__ ) # verify the logits UpperCAmelCase_ : int = (1, 10_00) self.assertEqual(outputs.logits.shape , __magic_name__ ) UpperCAmelCase_ : Optional[int] = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
125
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _snake_case ( _lowercase ): lowerCamelCase__: Any = "naver-clova-ix/donut-base-finetuned-docvqa" lowerCamelCase__: Union[str, Any] = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) lowerCamelCase__: int = "document_qa" lowerCamelCase__: List[str] = AutoProcessor lowerCamelCase__: List[str] = VisionEncoderDecoderModel lowerCamelCase__: str = ["image", "text"] lowerCamelCase__: Union[str, Any] = ["text"] def __init__( self: str , *__lowerCamelCase: List[Any] , **__lowerCamelCase: Optional[int] ) -> List[str]: if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: "Image" , __lowerCamelCase: str ) -> int: __UpperCAmelCase : Optional[int] = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" __UpperCAmelCase : Union[str, Any] = task_prompt.replace("{user_input}" , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.pre_processor.tokenizer( __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors="pt" ).input_ids __UpperCAmelCase : Union[str, Any] = self.pre_processor(__lowerCamelCase , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _lowerCamelCase ( self: Any , __lowerCamelCase: List[str] ) -> Optional[Any]: return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowerCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowerCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowerCamelCase , ).sequences def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Any ) -> Union[str, Any]: __UpperCAmelCase : str = self.pre_processor.batch_decode(__lowerCamelCase )[0] __UpperCAmelCase : Tuple = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) __UpperCAmelCase : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) __UpperCAmelCase : Optional[Any] = re.sub(R"<.*?>" , "" , __lowerCamelCase , count=1 ).strip() # remove first task start token __UpperCAmelCase : Union[str, Any] = self.pre_processor.tokenajson(__lowerCamelCase ) return sequence["answer"]
342
import numpy as np import datasets _snake_case = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _snake_case = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _snake_case = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]: # convert to numpy arrays __UpperCAmelCase : int = np.array(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __UpperCAmelCase : str = X - np.mean(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: __UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: __UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
342
1
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _SCREAMING_SNAKE_CASE : def __lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) lowerCAmelCase_ :int = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :List[Any] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase_ :str = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=__A , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) lowerCAmelCase_ :int = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __lowerCAmelCase ( self ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase_ :Dict = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase_ :str = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=__A , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[int] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , ) torch.manual_seed(0 ) lowerCAmelCase_ :Dict = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Dict = self.get_dummy_components() lowerCAmelCase_ :Tuple = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Any = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Optional[int] = inputs["""prompt"""] lowerCAmelCase_ :Optional[int] = inputs["""generator"""] lowerCAmelCase_ :Any = inputs["""num_inference_steps"""] lowerCAmelCase_ :Optional[int] = inputs["""output_type"""] if "image" in inputs: lowerCAmelCase_ :List[Any] = inputs["""image"""] else: lowerCAmelCase_ :int = None if "mask_image" in inputs: lowerCAmelCase_ :List[Any] = inputs["""mask_image"""] else: lowerCAmelCase_ :int = None if "original_image" in inputs: lowerCAmelCase_ :List[Any] = inputs["""original_image"""] else: lowerCAmelCase_ :List[Any] = None lowerCAmelCase_ , lowerCAmelCase_ :int = pipe.encode_prompt(__A ) # inputs with prompt converted to embeddings lowerCAmelCase_ :List[str] = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: lowerCAmelCase_ :int = image if mask_image is not None: lowerCAmelCase_ :Tuple = mask_image if original_image is not None: lowerCAmelCase_ :Optional[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__A , __A , __A ) lowerCAmelCase_ :Optional[int] = pipe(**__A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__A ) lowerCAmelCase_ :Optional[int] = self.pipeline_class.from_pretrained(__A ) pipe_loaded.to(__A ) pipe_loaded.set_progress_bar_config(disable=__A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__A , __A ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) lowerCAmelCase_ :Dict = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Union[str, Any] = inputs["""generator"""] lowerCAmelCase_ :Any = inputs["""num_inference_steps"""] lowerCAmelCase_ :Tuple = inputs["""output_type"""] # inputs with prompt converted to embeddings lowerCAmelCase_ :Tuple = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: lowerCAmelCase_ :Optional[int] = image if mask_image is not None: lowerCAmelCase_ :str = mask_image if original_image is not None: lowerCAmelCase_ :Tuple = original_image lowerCAmelCase_ :Union[str, Any] = pipe_loaded(**__A )[0] lowerCAmelCase_ :Dict = np.abs(to_np(__A ) - to_np(__A ) ).max() self.assertLess(__A , 1E-4 ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Any = self.get_dummy_components() lowerCAmelCase_ :Optional[int] = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Optional[int] = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Dict = pipe(**__A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__A ) lowerCAmelCase_ :Any = self.pipeline_class.from_pretrained(__A ) pipe_loaded.to(__A ) pipe_loaded.set_progress_bar_config(disable=__A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowerCAmelCase_ :List[Any] = self.get_dummy_inputs(__A ) lowerCAmelCase_ :str = pipe_loaded(**__A )[0] lowerCAmelCase_ :Dict = np.abs(to_np(__A ) - to_np(__A ) ).max() self.assertLess(__A , 1E-4 )
84
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ = 0 A__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None A__ = sorted_collection[point] if current_item == item: return point else: if point < left: A__ = left A__ = point elif point > right: A__ = right A__ = point else: if item < current_item: A__ = point - 1 else: A__ = point + 1 return None def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif point > right: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point - 1 ) else: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point + 1 , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: '''simple docstring''' if collection != sorted(SCREAMING_SNAKE_CASE__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys lowercase_ = 0 if debug == 1: lowercase_ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") lowercase_ = 67 lowercase_ = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
7
0
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) _snake_case = img _snake_case = img.shape[1] _snake_case = img.shape[0] _snake_case = dst_width _snake_case = dst_height _snake_case = self.src_w / self.dst_w _snake_case = self.src_h / self.dst_h _snake_case = _snake_case = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def lowercase (self ) -> List[Any]: for i in range(self.dst_h ): for j in range(self.dst_w ): _snake_case = self.img[self.get_y(UpperCAmelCase )][self.get_x(UpperCAmelCase )] def lowercase (self , UpperCAmelCase ) -> int: return int(self.ratio_x * x ) def lowercase (self , UpperCAmelCase ) -> int: return int(self.ratio_y * y ) if __name__ == "__main__": __lowerCAmelCase , __lowerCAmelCase = 800, 600 __lowerCAmelCase = imread('image_data/lena.jpg', 1) __lowerCAmelCase = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
270
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any]) -> Tuple: '''simple docstring''' __UpperCamelCase : List[Any] = filter(lambda _lowerCamelCase: p.requires_grad , model.parameters()) __UpperCamelCase : Dict = sum([np.prod(p.size()) for p in model_parameters]) return params lowercase : int = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : Optional[int]) -> Union[str, Any]: '''simple docstring''' if metric == "rouge2": __UpperCamelCase : Optional[int] = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": __UpperCamelCase : Optional[Any] = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": __UpperCamelCase : List[Any] = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": __UpperCamelCase : int = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function.") __UpperCamelCase : List[str] = ModelCheckpoint( dirpath=A__ , filename=A__ , monitor=F'val_{metric}' , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict) -> int: '''simple docstring''' return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=A__ , verbose=A__ , ) class lowerCamelCase__ ( pl.Callback): '''simple docstring''' def _lowerCamelCase ( self :Optional[int] , a :Dict , a :Any ) -> Dict: __UpperCamelCase : List[str] = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase_ ) @rank_zero_only def _lowerCamelCase ( self :Union[str, Any] , a :pl.Trainer , a :pl.LightningModule , a :str , a :Optional[Any]=True ) -> None: logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) __UpperCamelCase : Dict = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results __UpperCamelCase : str = Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCamelCase : str = od / "test_results.txt" __UpperCamelCase : Optional[int] = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase : Optional[int] = od / f'{type_path}_results/{trainer.global_step:05d}.txt' __UpperCamelCase : Optional[Any] = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) with open(lowerCAmelCase_ , "a+" ) as writer: for key in sorted(lowerCAmelCase_ ): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase : List[Any] = metrics[key] if isinstance(lowerCAmelCase_ , torch.Tensor ): __UpperCamelCase : str = val.item() __UpperCamelCase : Tuple = f'{key}: {val:.6f}\n' writer.write(lowerCAmelCase_ ) if not save_generations: return if "preds" in metrics: __UpperCamelCase : Union[str, Any] = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(lowerCAmelCase_ ) @rank_zero_only def _lowerCamelCase ( self :List[str] , a :List[Any] , a :Optional[Any] ) -> Tuple: try: __UpperCamelCase : Tuple = pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase : Optional[int] = pl_module.model.num_parameters() __UpperCamelCase : Dict = count_trainable_parameters(lowerCAmelCase_ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def _lowerCamelCase ( self :List[str] , a :pl.Trainer , a :pl.LightningModule ) -> Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase_ , lowerCAmelCase_ , "test" ) @rank_zero_only def _lowerCamelCase ( self :Optional[Any] , a :pl.Trainer , a :Dict ) -> List[str]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
232
"""simple docstring""" lowerCamelCase_ = [ (1000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def snake_case ( A__ ): UpperCAmelCase_ : List[str] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 1_00, "D": 5_00, "M": 10_00} UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Tuple = 0 while place < len(A__ ): if (place + 1 < len(A__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def snake_case ( A__ ): UpperCAmelCase_ : Union[str, Any] = [] for arabic, roman in ROMAN: ((UpperCAmelCase_) , (UpperCAmelCase_)) : str = divmod(A__ ,A__ ) result.append(roman * factor ) if number == 0: break return "".join(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
268
0
from random import randint, random def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : int = 5 , ): SCREAMING_SNAKE_CASE = [[-1] * number_of_cells] # Create a highway without any car SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = max(UpperCAmelCase__ , 0 ) while i < number_of_cells: SCREAMING_SNAKE_CASE = ( randint(0 , UpperCAmelCase__ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def __lowerCamelCase (UpperCAmelCase__ : list , UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = highway_now[car_index + 1 :] for cell in range(len(UpperCAmelCase__ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(UpperCAmelCase__ , -1 ) def __lowerCamelCase (UpperCAmelCase__ : list , UpperCAmelCase__ : float , UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) # Beforce calculations, the highway is empty SCREAMING_SNAKE_CASE = [-1] * number_of_cells for car_index in range(UpperCAmelCase__ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed SCREAMING_SNAKE_CASE = min(highway_now[car_index] + 1 , UpperCAmelCase__ ) # Number of empty cell before the next car SCREAMING_SNAKE_CASE = get_distance(UpperCAmelCase__ , UpperCAmelCase__ ) - 1 # We can't have the car causing an accident SCREAMING_SNAKE_CASE = min(next_highway[car_index] , UpperCAmelCase__ ) if random() < probability: # Randomly, a driver will slow down SCREAMING_SNAKE_CASE = max(next_highway[car_index] - 1 , 0 ) return next_highway def __lowerCamelCase (UpperCAmelCase__ : list , UpperCAmelCase__ : int , UpperCAmelCase__ : float , UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = len(highway[0] ) for i in range(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = update(highway[i] , UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = [-1] * number_of_cells for car_index in range(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) SCREAMING_SNAKE_CASE = (car_index + speed) % number_of_cells # Commit the change of position SCREAMING_SNAKE_CASE = speed highway.append(UpperCAmelCase__ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
206
def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : int ): while b: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = b, a % b return a def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : int ): return a if b == 0 else euclidean_gcd_recursive(UpperCAmelCase__ , a % b ) def __lowerCamelCase (): print(F"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(F"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(F"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(F"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(F"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(F"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(F"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(F"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
206
1
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _SCREAMING_SNAKE_CASE ( ctypes.Structure ): # _fields is a specific attr expected by ctypes snake_case__ : Union[str, Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: """simple docstring""" if os.name == "nt": UpperCamelCase :Any = CursorInfo() UpperCamelCase :Any = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__magic_name__ , ctypes.byref(__magic_name__ ) ) UpperCamelCase :Union[str, Any] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__magic_name__ , ctypes.byref(__magic_name__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: """simple docstring""" if os.name == "nt": UpperCamelCase :Tuple = CursorInfo() UpperCamelCase :int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__magic_name__ , ctypes.byref(__magic_name__ ) ) UpperCamelCase :List[str] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__magic_name__ , ctypes.byref(__magic_name__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
38
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any=13 , __lowerCamelCase : Dict=3 , __lowerCamelCase : int=224 , __lowerCamelCase : Any=30 , __lowerCamelCase : Tuple=400 , __lowerCamelCase : int=True , __lowerCamelCase : List[str]=None , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=[0.5, 0.5, 0.5] , __lowerCamelCase : List[Any]=[0.5, 0.5, 0.5] , ): UpperCamelCase :List[Any] = size if size is not None else {"""height""": 18, """width""": 18} UpperCamelCase :str = parent UpperCamelCase :Optional[int] = batch_size UpperCamelCase :Dict = num_channels UpperCamelCase :str = image_size UpperCamelCase :Dict = min_resolution UpperCamelCase :str = max_resolution UpperCamelCase :Union[str, Any] = do_resize UpperCamelCase :Optional[Any] = size UpperCamelCase :Any = do_normalize UpperCamelCase :Optional[Any] = image_mean UpperCamelCase :Tuple = image_std def _A ( self : int ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : List[Any] = ViTImageProcessor if is_vision_available() else None def _A ( self : str ): UpperCamelCase :Tuple = EfficientFormerImageProcessorTester(self ) @property def _A ( self : List[str] ): return self.image_proc_tester.prepare_image_processor_dict() def _A ( self : int ): UpperCamelCase :List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size""" ) ) def _A ( self : Optional[int] ): pass def _A ( self : str ): # Initialize image_processor UpperCamelCase :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase :Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input UpperCamelCase :List[str] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched UpperCamelCase :List[Any] = image_processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _A ( self : Union[str, Any] ): # Initialize image_processor UpperCamelCase :Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase :List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input UpperCamelCase :Dict = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched UpperCamelCase :Tuple = image_processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _A ( self : List[Any] ): # Initialize image_processor UpperCamelCase :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase :Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase :List[Any] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched UpperCamelCase :str = image_processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
38
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] ="Wav2Vec2FeatureExtractor" a : str ="AutoTokenizer" def __init__( self , snake_case__ , snake_case__ ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = self.feature_extractor lowerCAmelCase : Dict = False @classmethod def lowercase__ ( cls , snake_case__ , **snake_case__ ): """simple docstring""" try: return super().from_pretrained(snake_case__ , **snake_case__ ) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , snake_case__ , ) lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(snake_case__ , **snake_case__ ) lowerCAmelCase : str = WavaVecaCTCTokenizer.from_pretrained(snake_case__ , **snake_case__ ) return cls(feature_extractor=snake_case__ , tokenizer=snake_case__ ) def __call__( self , *snake_case__ , **snake_case__ ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCAmelCase : Tuple = kwargs.pop("raw_speech" ) else: lowerCAmelCase : Dict = kwargs.pop("audio" , snake_case__ ) lowerCAmelCase : List[Any] = kwargs.pop("sampling_rate" , snake_case__ ) lowerCAmelCase : Dict = kwargs.pop("text" , snake_case__ ) if len(snake_case__ ) > 0: lowerCAmelCase : Tuple = args[0] lowerCAmelCase : int = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCAmelCase : Any = self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if text is not None: lowerCAmelCase : Optional[Any] = self.tokenizer(snake_case__ , **snake_case__ ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase : Union[str, Any] = encodings["input_ids"] return inputs def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*snake_case__ , **snake_case__ ) lowerCAmelCase : int = kwargs.pop("input_features" , snake_case__ ) lowerCAmelCase : Any = kwargs.pop("labels" , snake_case__ ) if len(snake_case__ ) > 0: lowerCAmelCase : List[Any] = args[0] lowerCAmelCase : Union[str, Any] = args[1:] if input_features is not None: lowerCAmelCase : Optional[Any] = self.feature_extractor.pad(snake_case__ , *snake_case__ , **snake_case__ ) if labels is not None: lowerCAmelCase : Any = self.tokenizer.pad(snake_case__ , **snake_case__ ) if labels is None: return input_features elif input_features is None: return labels else: lowerCAmelCase : Optional[Any] = labels["input_ids"] return input_features def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCAmelCase : List[str] = True lowerCAmelCase : Any = self.tokenizer yield lowerCAmelCase : Optional[Any] = self.feature_extractor lowerCAmelCase : List[Any] = False
133
"""simple docstring""" import baseaa def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return baseaa.baaencode(string.encode("utf-8" ) ) def a__ ( SCREAMING_SNAKE_CASE : bytes ): '''simple docstring''' return baseaa.baadecode(SCREAMING_SNAKE_CASE ).decode("utf-8" ) if __name__ == "__main__": lowerCAmelCase__ = '''Hello World!''' lowerCAmelCase__ = baseaa_encode(test) print(encoded) lowerCAmelCase__ = baseaa_decode(encoded) print(decoded)
133
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __magic_name__ = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" ) __magic_name__ = AutoTokenizer.from_pretrained("""google/mt5-small""" ) __magic_name__ = tokenizer("""Hello there""" , return_tensors="""tf""" ).input_ids __magic_name__ = tokenizer("""Hi I am""" , return_tensors="""tf""" ).input_ids __magic_name__ = model(UpperCamelCase__ , labels=UpperCamelCase__ ).loss __magic_name__ = -tf.math.reduce_mean(UpperCamelCase__ ).numpy() __magic_name__ = -21.228168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
88
'''simple docstring''' import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase = 13 , UpperCamelCase = 64 , UpperCamelCase = 2 , UpperCamelCase = 3 , UpperCamelCase = 3 , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = 128 , UpperCamelCase=[16, 32, 64, 128] , UpperCamelCase = 7 , UpperCamelCase = 4 , UpperCamelCase = 37 , UpperCamelCase = "gelu" , UpperCamelCase = 0.1 , UpperCamelCase = 0.1 , UpperCamelCase = 10 , UpperCamelCase = 0.02 , UpperCamelCase = 2 , UpperCamelCase = 1 , UpperCamelCase = 128 , UpperCamelCase = [2, 2, 2, 2] , UpperCamelCase = 2 , UpperCamelCase = 2 , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = encoder_stride lowerCamelCase_ = num_attention_outputs lowerCamelCase_ = embed_dim lowerCamelCase_ = embed_dim + 1 lowerCamelCase_ = resolution lowerCamelCase_ = depths lowerCamelCase_ = hidden_sizes lowerCamelCase_ = dim lowerCamelCase_ = mlp_expansion_ratio def snake_case ( self ): """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def snake_case ( self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerModel(config=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = TFEfficientFormerForImageClassification(UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , labels=UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = TFEfficientFormerForImageClassification(UpperCamelCase ) lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _lowerCamelCase = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerModelTester(self ) lowerCamelCase_ = ConfigTester( self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def snake_case ( self ): """simple docstring""" def check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) , training=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) if hasattr(self.model_tester , "encoder_seq_length" ): lowerCamelCase_ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: lowerCamelCase_ = seq_length * self.model_tester.chunk_length else: lowerCamelCase_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowerCamelCase_ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCamelCase , (list, tuple) ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "seq_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "decoder_seq_length" , UpperCamelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ): """simple docstring""" lowerCamelCase_ = super()._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFEfficientFormerModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True lowerCamelCase_ = getattr(self.model_tester , "seq_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "encoder_seq_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "key_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "chunk_length" , UpperCamelCase ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): lowerCamelCase_ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) , training=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) , training=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def snake_case ( self ): """simple docstring""" # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCamelCase_ = model_class(UpperCamelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCamelCase_ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCamelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCamelCase_ = model(UpperCamelCase ) self.assertTrue(outputs_dict is not None ) def __snake_case ( ): lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=UpperCamelCase , return_tensors="tf" ) # forward pass lowerCamelCase_ = model(**UpperCamelCase , training=UpperCamelCase ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCamelCase_ = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=UpperCamelCase , return_tensors="tf" ) # forward pass lowerCamelCase_ = model(**UpperCamelCase , training=UpperCamelCase ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCamelCase_ = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) )
55
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowercase , lowercase=3 , lowercase=32 , lowercase=3 , lowercase=10 , lowercase=[10, 20, 30, 40] , lowercase=[1, 1, 2, 1] , lowercase=True , lowercase=True , lowercase="relu" , lowercase=3 , lowercase=None , ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] = parent a__ : List[str] = batch_size a__ : Dict = image_size a__ : Any = num_channels a__ : Union[str, Any] = embeddings_size a__ : Dict = hidden_sizes a__ : List[str] = depths a__ : int = is_training a__ : Tuple = use_labels a__ : List[Any] = hidden_act a__ : Tuple = num_labels a__ : Optional[int] = scope a__ : str = len(lowercase) def __lowercase ( self) -> int: '''simple docstring''' a__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : List[str] = self.get_config() return config, pixel_values def __lowercase ( self) -> int: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __lowercase ( self , lowercase , lowercase) -> Optional[int]: '''simple docstring''' a__ : int = FlaxRegNetModel(config=lowercase) a__ : Tuple = model(lowercase) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowercase ( self , lowercase , lowercase) -> str: '''simple docstring''' a__ : Any = self.num_labels a__ : int = FlaxRegNetForImageClassification(config=lowercase) a__ : str = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : List[str] = self.prepare_config_and_inputs() a__ , a__ : Any = config_and_inputs a__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __A : Dict = False __A : str = False __A : Optional[int] = False def __lowercase ( self) -> None: '''simple docstring''' a__ : Dict = FlaxRegNetModelTester(self) a__ : Optional[int] = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase) def __lowercase ( self) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self) -> Optional[int]: '''simple docstring''' return def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase) @unittest.skip(reason='RegNet does not use inputs_embeds') def __lowercase ( self) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='RegNet does not support input and output embeddings') def __lowercase ( self) -> List[str]: '''simple docstring''' pass def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ , a__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Dict = model_class(lowercase) a__ : List[str] = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : List[str] = [*signature.parameters.keys()] a__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> str: '''simple docstring''' def check_hidden_states_output(lowercase , lowercase , lowercase): a__ : str = model_class(lowercase) a__ : str = model(**self._prepare_for_class(lowercase , lowercase)) a__ : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a__ : List[Any] = self.model_tester.num_stages self.assertEqual(len(lowercase) , expected_num_stages + 1) a__ , a__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = True check_hidden_states_output(lowercase , lowercase , lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : Optional[Any] = True check_hidden_states_output(lowercase , lowercase , lowercase) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ , a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): a__ : List[str] = self._prepare_for_class(lowercase , lowercase) a__ : str = model_class(lowercase) @jax.jit def model_jitted(lowercase , **lowercase): return model(pixel_values=lowercase , **lowercase) with self.subTest('JIT Enabled'): a__ : int = model_jitted(**lowercase).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): a__ : int = model_jitted(**lowercase).to_tuple() self.assertEqual(len(lowercase) , len(lowercase)) for jitted_output, output in zip(lowercase , lowercase): self.assertEqual(jitted_output.shape , output.shape) def A_ ( ) -> Dict: a__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self) -> Optional[Any]: '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/regnet-y-040') if is_vision_available() else None @slow def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040') a__ : Union[str, Any] = self.default_image_processor a__ : Optional[int] = prepare_img() a__ : List[str] = image_processor(images=lowercase , return_tensors='np') a__ : Dict = model(**lowercase) # verify the logits a__ : Optional[Any] = (1, 1000) self.assertEqual(outputs.logits.shape , lowercase) a__ : Tuple = jnp.array([-0.41_80, -1.50_51, -3.48_36]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4))
225
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase : Union[str, Any] = data_utils.TransfoXLTokenizer lowercase : Optional[int] = data_utils.TransfoXLCorpus lowercase : List[Any] = data_utils lowercase : Tuple = data_utils def A_ ( A__ , A__ , A__ , A__ ) -> Optional[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(A__ , 'rb' ) as fp: a__ : int = pickle.load(A__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) a__ : int = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) a__ : List[Any] = corpus.vocab.__dict__ torch.save(A__ , A__ ) a__ : Dict = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , A__ ) a__ : Optional[int] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(A__ , A__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model a__ : Union[str, Any] = os.path.abspath(A__ ) a__ : Optional[Any] = os.path.abspath(A__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": a__ : Dict = TransfoXLConfig() else: a__ : Dict = TransfoXLConfig.from_json_file(A__ ) print(F'Building PyTorch model from configuration: {config}' ) a__ : Optional[int] = TransfoXLLMHeadModel(A__ ) a__ : int = load_tf_weights_in_transfo_xl(A__ , A__ , A__ ) # Save pytorch-model a__ : Any = os.path.join(A__ , A__ ) a__ : Dict = os.path.join(A__ , A__ ) print(F'Save PyTorch model to {os.path.abspath(A__ )}' ) torch.save(model.state_dict() , A__ ) print(F'Save configuration file to {os.path.abspath(A__ )}' ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) lowercase : Any = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
225
1
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowercase__ ( __UpperCamelCase )-> List[str]: # picklable for multiprocessing return x.sum() def lowercase__ ( __UpperCamelCase )-> List[str]: # picklable for multiprocessing return i + 1 @dataclass class a_ : lowercase = 42 lowercase = 42 class a_ ( __UpperCAmelCase ): def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 1 UpperCamelCase = [1, 2] UpperCamelCase = {"""a""": 1, """b""": 2} UpperCamelCase = {"""a""": [1, 2], """b""": [3, 4]} UpperCamelCase = {"""a""": {"""1""": 1}, """b""": 2} UpperCamelCase = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 2 UpperCamelCase = [2, 3] UpperCamelCase = {"""a""": 2, """b""": 3} UpperCamelCase = {"""a""": [2, 3], """b""": [4, 5]} UpperCamelCase = {"""a""": {"""1""": 2}, """b""": 3} UpperCamelCase = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) UpperCamelCase = 2 self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) UpperCamelCase = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )} UpperCamelCase = {"""a""": 2, """b""": 0, """c""": 2} UpperCamelCase = { """a""": np.eye(2 ).astype(lowerCamelCase__ ), """b""": np.zeros(3 ).astype(lowerCamelCase__ ), """c""": np.ones(2 ).astype(lowerCamelCase__ ), } self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , map_numpy=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowerCamelCase__ , lowerCamelCase__ , map_numpy=lowerCamelCase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , map_numpy=lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowerCamelCase__ , lowerCamelCase__ , map_numpy=lowerCamelCase__ , num_proc=lowerCamelCase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(lowerCamelCase__ ): # can't pickle a local lambda map_nested(lambda _SCREAMING_SNAKE_CASE : x + 1 , lowerCamelCase__ , num_proc=lowerCamelCase__ ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = {"""a""": 1, """b""": 2} UpperCamelCase = {"""a""": 3, """b""": 4} UpperCamelCase = {"""a""": 5, """b""": 6} UpperCamelCase = sorted([("""a""", (1, 3, 5)), ("""b""", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ) , lowerCamelCase__ ) def A__ ( self ) -> List[Any]: """simple docstring""" class a_ : lowercase = """bar""" UpperCamelCase = Foo() self.assertEqual(foo.my_attr , """bar""" ) with temporary_assignment(lowerCamelCase__ , """my_attr""" , """BAR""" ): self.assertEqual(foo.my_attr , """BAR""" ) self.assertEqual(foo.my_attr , """bar""" ) @pytest.mark.parametrize( """iterable_length, num_proc, expected_num_proc""" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: with patch("""datasets.utils.py_utils._single_map_nested""" ) as mock_single_map_nested, patch( """datasets.parallel.parallel.Pool""" ) as mock_multiprocessing_pool: UpperCamelCase = {F"{i}": i for i in range(__UpperCamelCase )} UpperCamelCase = map_nested(lambda __UpperCamelCase : x + 10 , __UpperCamelCase , num_proc=__UpperCamelCase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class a_ ( __UpperCAmelCase ): @require_tf def A__ ( self ) -> Optional[int]: """simple docstring""" import tensorflow as tf from tensorflow.keras import layers UpperCamelCase = layers.Dense(2 ) def gen_random_output(): UpperCamelCase = tf.random.uniform((1, 3) ) return model(lowerCamelCase__ ).numpy() with temp_seed(42 , set_tensorflow=lowerCamelCase__ ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_tensorflow=lowerCamelCase__ ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(lowerCamelCase__ , lowerCamelCase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def A__ ( self ) -> List[Any]: """simple docstring""" import torch def gen_random_output(): UpperCamelCase = torch.nn.Linear(3 , 2 ) UpperCamelCase = torch.rand(1 , 3 ) return model(lowerCamelCase__ ).detach().numpy() with temp_seed(42 , set_pytorch=lowerCamelCase__ ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_pytorch=lowerCamelCase__ ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(lowerCamelCase__ , lowerCamelCase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def A__ ( self ) -> int: """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): UpperCamelCase = gen_random_output() with temp_seed(42 ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(lowerCamelCase__ , lowerCamelCase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("""input_data""" , [{}] ) def lowercase__ ( __UpperCamelCase )-> Dict: UpperCamelCase = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( """data, expected_output""" , [ ({}, []), ([], []), ("""foo""", ["""foo"""]), (["""foo""", """bar"""], ["""foo""", """bar"""]), ([["""foo""", """bar"""]], ["""foo""", """bar"""]), ([[["""foo"""], ["""bar"""]]], ["""foo""", """bar"""]), ([[["""foo"""], """bar"""]], ["""foo""", """bar"""]), ({"""a""": 1, """b""": 2}, [1, 2]), ({"""a""": [1, 2], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[[3], [4]]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, [4]]}, [1, 2, 3, 4]), ({"""a""": {"""1""": 1}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": [2]}, [1, 2]), ] , ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Dict: UpperCamelCase = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def lowercase__ ( )-> Any: UpperCamelCase = A(x=1 , y="""foobar""" ) UpperCamelCase = {"""x""": 1, """y""": """foobar"""} assert asdict(__UpperCamelCase ) == expected_output UpperCamelCase = {"""a""": {"""b""": A(x=10 , y="""foo""" )}, """c""": [A(x=20 , y="""bar""" )]} UpperCamelCase = {"""a""": {"""b""": {"""x""": 10, """y""": """foo"""}}, """c""": [{"""x""": 20, """y""": """bar"""}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 , y="""foo""" )] ) def lowercase__ ( __UpperCamelCase )-> List[Any]: return text.split() def lowercase__ ( __UpperCamelCase )-> List[Any]: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowercase__ ( )-> List[Any]: with Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(__UpperCamelCase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(__UpperCamelCase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCamelCase = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"""content""": """a"""}, {"""content""": """b"""}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count("""a""" ) == 2 assert out.count("""b""" ) == 2 assert len(__UpperCamelCase ) == 4
321
"""simple docstring""" import os import sys import unittest lowerCAmelCase__ : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCAmelCase__ : Tuple = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowerCAmelCase__ : Optional[Any] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class snake_case ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = get_test_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = get_test_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = {'BertModelTest': 'BertModelTester'} UpperCAmelCase__ = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = get_model_to_test_mapping(lowerCamelCase__ ) UpperCAmelCase__ = get_model_to_test_mapping(lowerCamelCase__ ) UpperCAmelCase__ = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } UpperCAmelCase__ = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = get_model_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = get_model_to_tester_mapping(lowerCamelCase__ ) UpperCAmelCase__ = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } UpperCAmelCase__ = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(get_test_info.to_json(lowerCamelCase__ ) ,lowerCamelCase__ )
98
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=10 , __UpperCAmelCase=18 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=None , ): '''simple docstring''' __UpperCamelCase = size if size is not None else {'shortest_edge': 18} __UpperCamelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = num_frames __UpperCamelCase = image_size __UpperCamelCase = min_resolution __UpperCamelCase = max_resolution __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = do_normalize __UpperCamelCase = image_mean __UpperCamelCase = image_std __UpperCamelCase = crop_size def UpperCAmelCase ( self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowercase = VivitImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = VivitImageProcessingTester(self ) @property def UpperCAmelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'size' ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) __UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __UpperCamelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for video in video_inputs: self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __UpperCamelCase = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for video in video_inputs: self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __UpperCamelCase = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for video in video_inputs: self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __UpperCamelCase = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
353
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin UpperCamelCase : List[Any] = False @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = StableDiffusionAttendAndExcitePipeline lowercase = False lowercase = TEXT_TO_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_BATCH_PARAMS.union({"token_indices"} ) lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__UpperCAmelCase , ) __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __UpperCamelCase = CLIPTextModel(__UpperCAmelCase ) __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = __UpperCamelCase = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 'cpu' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCamelCase = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCamelCase = pipe(**__UpperCAmelCase ).images __UpperCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) __UpperCamelCase = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) __UpperCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCAmelCase , 1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = torch.manual_seed(51 ) __UpperCamelCase = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=__UpperCAmelCase , torch_dtype=torch.floataa ) pipe.to('cuda' ) __UpperCamelCase = 'a painting of an elephant with glasses' __UpperCamelCase = [5, 7] __UpperCamelCase = pipe( prompt=__UpperCAmelCase , token_indices=__UpperCAmelCase , guidance_scale=7.5 , generator=__UpperCAmelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
263
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Tuple = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "transfo-xl" snake_case_ = ["mems"] snake_case_ = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int ,A : List[str]=26_77_35 ,A : Tuple=[2_00_00, 4_00_00, 20_00_00] ,A : int=10_24 ,A : Any=10_24 ,A : Dict=16 ,A : Union[str, Any]=64 ,A : Union[str, Any]=40_96 ,A : Union[str, Any]=4 ,A : Optional[Any]=False ,A : Any=18 ,A : Optional[int]=16_00 ,A : str=10_00 ,A : Optional[int]=True ,A : Dict=True ,A : Any=0 ,A : int=-1 ,A : str=True ,A : str=0.1 ,A : Dict=0.0 ,A : str=True ,A : Any="normal" ,A : List[str]=0.01 ,A : int=0.01 ,A : Optional[int]=0.02 ,A : int=1E-5 ,A : Optional[Any]=0 ,**A : Optional[int] ,): __A = vocab_size __A = [] self.cutoffs.extend(A ) if proj_share_all_but_first: __A = [False] + [True] * len(self.cutoffs ) else: __A = [False] + [False] * len(self.cutoffs ) __A = d_model __A = d_embed __A = d_head __A = d_inner __A = div_val __A = pre_lnorm __A = n_layer __A = n_head __A = mem_len __A = same_length __A = attn_type __A = clamp_len __A = sample_softmax __A = adaptive __A = dropout __A = dropatt __A = untie_r __A = init __A = init_range __A = proj_init_std __A = init_std __A = layer_norm_epsilon super().__init__(eos_token_id=A ,**A ) @property def UpperCamelCase_ ( self : List[str] ): # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def UpperCamelCase_ ( self : Any ,A : Optional[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
15
"""simple docstring""" __SCREAMING_SNAKE_CASE ={} def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase_ : Any = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase_ : Optional[int] = _calculate(days - 1 , __SCREAMING_SNAKE_CASE , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase_ : Any = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase_ : Dict = _calculate(days - 1 , __SCREAMING_SNAKE_CASE , 0 ) lowercase_ : str = state_late + state_absent + state_ontime lowercase_ : Tuple = prizestrings return prizestrings def lowercase__( __SCREAMING_SNAKE_CASE : int = 30 ): return _calculate(__SCREAMING_SNAKE_CASE , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
213
0
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class snake_case__ ( _lowerCAmelCase ): def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """num_encoder_blocks""" ) ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=64 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=[2, 2, 2, 2] , lowerCAmelCase__=[8, 4, 2, 1] , lowerCAmelCase__=[16, 32, 64, 1_28] , lowerCAmelCase__=[1, 4, 8, 16] , lowerCAmelCase__=[1, 2, 4, 8] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , ) -> str: __magic_name__ : Union[str, Any] = parent __magic_name__ : List[Any] = batch_size __magic_name__ : Optional[Any] = image_size __magic_name__ : str = num_channels __magic_name__ : Tuple = num_encoder_blocks __magic_name__ : Dict = sr_ratios __magic_name__ : Union[str, Any] = depths __magic_name__ : Tuple = hidden_sizes __magic_name__ : Dict = downsampling_rates __magic_name__ : Dict = num_attention_heads __magic_name__ : str = is_training __magic_name__ : List[str] = use_labels __magic_name__ : Tuple = hidden_act __magic_name__ : Optional[Any] = hidden_dropout_prob __magic_name__ : List[str] = attention_probs_dropout_prob __magic_name__ : Any = initializer_range __magic_name__ : Dict = num_labels __magic_name__ : Union[str, Any] = scope def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Union[str, Any] = None if self.use_labels: __magic_name__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __magic_name__ : Any = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : str = SegformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[str] = model(lowerCAmelCase__ ) __magic_name__ : Any = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Any = SegformerForSemanticSegmentation(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = 1 __magic_name__ : Union[str, Any] = SegformerForSemanticSegmentation(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertGreater(result.loss , 0.0 ) def __magic_name__ ( self ) -> Any: __magic_name__ : Any = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : int = config_and_inputs __magic_name__ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[int] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowercase__ : Tuple = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ : Any = True lowercase__ : Any = False lowercase__ : Dict = False lowercase__ : int = False def __magic_name__ ( self ) -> str: __magic_name__ : Optional[Any] = SegformerModelTester(self ) __magic_name__ : str = SegformerConfigTester(self , config_class=lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowerCAmelCase__ ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ ,__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = True for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : Optional[int] = False __magic_name__ : int = True __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions __magic_name__ : str = sum(self.model_tester.depths ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : List[Any] = True __magic_name__ : Dict = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Any = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # verify the first attentions (first block, first layer) __magic_name__ : str = (self.model_tester.image_size // 4) ** 2 __magic_name__ : List[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __magic_name__ : str = (self.model_tester.image_size // 32) ** 2 __magic_name__ : int = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __magic_name__ : Tuple = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : List[Any] = True __magic_name__ : Optional[int] = True __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Dict = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # verify the first attentions (first block, first layer) __magic_name__ : Tuple = (self.model_tester.image_size // 4) ** 2 __magic_name__ : Dict = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __magic_name__ ( self ) -> Dict: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.hidden_states __magic_name__ : Tuple = self.model_tester.num_encoder_blocks self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[int] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: if not self.model_tester.is_training: return __magic_name__ ,__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase__ ): continue __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() __magic_name__ : int = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = model(**lowerCAmelCase__ ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __magic_name__ ( self ) -> Any: pass @slow def __magic_name__ ( self ) -> List[Any]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = SegformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class snake_case__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Any: # only resize + normalize __magic_name__ : Tuple = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__ ) __magic_name__ : List[str] = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( lowerCAmelCase__ ) __magic_name__ : List[str] = prepare_img() __magic_name__ : Any = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ) __magic_name__ : Tuple = encoded_inputs.pixel_values.to(lowerCAmelCase__ ) with torch.no_grad(): __magic_name__ : List[Any] = model(lowerCAmelCase__ ) __magic_name__ : int = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : List[str] = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def __magic_name__ ( self ) -> Optional[Any]: # only resize + normalize __magic_name__ : List[str] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__ ) __magic_name__ : Any = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = prepare_img() __magic_name__ : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ) __magic_name__ : int = encoded_inputs.pixel_values.to(lowerCAmelCase__ ) with torch.no_grad(): __magic_name__ : Tuple = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : List[Any] = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1e-1 ) ) @slow def __magic_name__ ( self ) -> List[Any]: # only resize + normalize __magic_name__ : Optional[Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__ ) __magic_name__ : List[Any] = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( lowerCAmelCase__ ) __magic_name__ : Any = prepare_img() __magic_name__ : List[str] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ) __magic_name__ : Union[str, Any] = encoded_inputs.pixel_values.to(lowerCAmelCase__ ) with torch.no_grad(): __magic_name__ : List[str] = model(lowerCAmelCase__ ) __magic_name__ : Optional[int] = outputs.logits.detach().cpu() __magic_name__ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ , target_sizes=[(5_00, 3_00)] ) __magic_name__ : Tuple = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ ) __magic_name__ : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ ) __magic_name__ : List[str] = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ )
138
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __magic_name__: str = logging.getLogger(__name__) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : int = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""", type=_A, default="""data/dump.txt""", help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""", type=_A, default="""bert""", choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""", type=_A, default="""bert-base-uncased""", help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""", type=_A, default="""data/dump""", help="""The dump file prefix.""" ) __magic_name__ : Dict = parser.parse_args() logger.info(f'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": __magic_name__ : Tuple = BertTokenizer.from_pretrained(args.tokenizer_name ) __magic_name__ : List[Any] = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` __magic_name__ : Optional[int] = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": __magic_name__ : Optional[int] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __magic_name__ : List[Any] = tokenizer.special_tokens_map["""cls_token"""] # `<s>` __magic_name__ : Any = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": __magic_name__ : Any = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __magic_name__ : int = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` __magic_name__ : Optional[int] = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(f'Loading text from {args.file_path}' ) with open(args.file_path, """r""", encoding="""utf8""" ) as fp: __magic_name__ : Tuple = fp.readlines() logger.info("""Start encoding""" ) logger.info(f'{len(_A )} examples to process.' ) __magic_name__ : List[Any] = [] __magic_name__ : str = 0 __magic_name__ : str = 10000 __magic_name__ : Dict = time.time() for text in data: __magic_name__ : Tuple = f'{bos} {text.strip()} {sep}' __magic_name__ : Optional[int] = tokenizer.encode(_A, add_special_tokens=_A ) rslt.append(_A ) iter += 1 if iter % interval == 0: __magic_name__ : Union[str, Any] = time.time() logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) __magic_name__ : Any = time.time() logger.info("""Finished binarization""" ) logger.info(f'{len(_A )} examples processed.' ) __magic_name__ : Tuple = f'{args.dump_file}.{args.tokenizer_name}.pickle' __magic_name__ : Tuple = tokenizer.vocab_size if vocab_size < (1 << 16): __magic_name__ : Optional[int] = [np.uintaa(_A ) for d in rslt] else: __magic_name__ : str = [np.intaa(_A ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'Dump to {dp_file}' ) with open(_A, """wb""" ) as handle: pickle.dump(rslt_, _A, protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
138
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCAmelCase__ = Features({'''text''': Value('''string''' )} ) UpperCAmelCase__ = Features({'''labels''': ClassLabel} ) UpperCAmelCase__ = "text" UpperCAmelCase__ = "labels" def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[Any]) ->Dict: '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase__): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""") A__ = copy.deepcopy(self) A__ = self.label_schema.copy() A__ = features[self.label_column] A__ = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict[str, str]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
14
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __lowerCAmelCase = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class __magic_name__ ( unittest.TestCase ): def __lowercase ( self : str ,_UpperCAmelCase : Path ,_UpperCAmelCase : Union[str, None] = None ,_UpperCAmelCase : Union[List[str], None] = None ,_UpperCAmelCase : Union[str, List[str], None] = None ,_UpperCAmelCase : bool = True ,): _a : Dict = [file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase ,_UpperCAmelCase ) )] if identifier is not None: _a : str = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): for n_ in n_identifier: _a : int = [file for file in files if n_ not in file] else: _a : Optional[Any] = [file for file in files if n_identifier not in file] _a : Dict = ignore_files or [] ignore_files.append('__init__.py' ) _a : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' ,_UpperCAmelCase ) if only_modules: _a : Any = file.split('.' )[0] try: _a : Optional[int] = getattr(_UpperCAmelCase ,_UpperCAmelCase ) _a : Dict = doctest.DocTestSuite(_UpperCAmelCase ) _a : Optional[int] = unittest.TextTestRunner().run(_UpperCAmelCase ) self.assertIs(len(result.failures ) ,0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: _a : str = doctest.testfile(str('..' / directory / file ) ,optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed ,0 ) def __lowercase ( self : Union[str, Any] ): _a : Optional[Any] = Path('src/transformers' ) _a : Optional[Any] = 'modeling' _a : Union[str, Any] = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(_UpperCAmelCase ,identifier=_UpperCAmelCase ,ignore_files=_UpperCAmelCase ) def __lowercase ( self : int ): _a : str = Path('src/transformers' ) _a : List[str] = 'tokenization' self.analyze_directory(_UpperCAmelCase ,identifier=_UpperCAmelCase ) def __lowercase ( self : int ): _a : Any = Path('src/transformers' ) _a : str = 'configuration' self.analyze_directory(_UpperCAmelCase ,identifier=_UpperCAmelCase ) def __lowercase ( self : Dict ): _a : Tuple = Path('src/transformers' ) _a : Optional[int] = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(_UpperCAmelCase ,n_identifier=_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ): _a : Union[str, Any] = Path('docs/source' ) _a : List[str] = ['favicon.ico'] self.analyze_directory(_UpperCAmelCase ,ignore_files=_UpperCAmelCase ,only_modules=_UpperCAmelCase )
89
0
import functools def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # Validation if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not all(isinstance(_lowerCamelCase , _lowerCamelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(_lowerCamelCase ) != 3 or not all(isinstance(_lowerCamelCase , _lowerCamelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(_lowerCamelCase ) == 0: return 0 if min(_lowerCamelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(_lowerCamelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) lowerCamelCase__ : List[Any] = set(_lowerCamelCase ) @functools.cache def dynamic_programming(_lowerCamelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
43
_A = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _A = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict[int, list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[bool] ): __UpperCamelCase =True __UpperCamelCase =[] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) order.append(SCREAMING_SNAKE_CASE__ ) return order def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict[int, list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[bool] ): __UpperCamelCase =True __UpperCamelCase =[vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return component def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict[int, list[int]] ): __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) * [False] __UpperCamelCase ={vert: [] for vert in range(len(SCREAMING_SNAKE_CASE__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] for i, was_visited in enumerate(SCREAMING_SNAKE_CASE__ ): if not was_visited: order += topology_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) * [False] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =order[len(SCREAMING_SNAKE_CASE__ ) - i - 1] if not visited[vert]: __UpperCamelCase =find_components(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) components_list.append(SCREAMING_SNAKE_CASE__ ) return components_list
62
0
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCAmelCase ( _lowerCamelCase ): __lowercase : str = ["""image_processor""", """tokenizer"""] __lowercase : Dict = """BridgeTowerImageProcessor""" __lowercase : Optional[int] = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = True , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 0 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = True , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) # add pixel_values + pixel_mask _snake_case = self.image_processor( lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ , do_center_crop=lowerCAmelCase_ , **lowerCAmelCase_ ) encoding.update(lowerCAmelCase_ ) return encoding def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer.model_input_names _snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
358
'''simple docstring''' import random def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = False ) -> dict: _snake_case = {i: [] for i in range(__A )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(__A ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(__A ): for j in range(i + 1 , __A ): if random.random() < probability: graph[i].append(__A ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(__A ) return graph def SCREAMING_SNAKE_CASE__ ( __A ) -> dict: return { i: [j for j in range(__A ) if i != j] for i in range(__A ) } if __name__ == "__main__": import doctest doctest.testmod()
160
0
"""simple docstring""" import logging import os from .state import PartialState class UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def _lowercase ( UpperCAmelCase__ : Dict ) -> Optional[Any]: _a : Tuple = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : Union[str, Any] ) -> List[str]: if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) _a : Dict = kwargs.pop("""main_process_only""" , __UpperCAmelCase ) _a : str = kwargs.pop("""in_order""" , __UpperCAmelCase ) if self.isEnabledFor(__UpperCAmelCase ): if self._should_log(__UpperCAmelCase ): _a , _a : Optional[Any] = self.process(__UpperCAmelCase , __UpperCAmelCase ) self.logger.log(__UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) elif in_order: _a : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _a , _a : List[Any] = self.process(__UpperCAmelCase , __UpperCAmelCase ) self.logger.log(__UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) state.wait_for_everyone() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' if log_level is None: _a : List[str] = os.environ.get("""ACCELERATE_LOG_LEVEL""" , __A ) _a : Optional[Any] = logging.getLogger(__A ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__A , {} )
294
from __future__ import annotations from collections import deque class A : def __init__(self : Dict , __UpperCAmelCase : list[str] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(__UpperCAmelCase ) self.set_fail_transitions() def lowercase_ (self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : str ) -> int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowercase_ (self : Dict , __UpperCAmelCase : str ) -> None: """simple docstring""" UpperCAmelCase__ = 0 for character in keyword: UpperCAmelCase__ = self.find_next_state(__UpperCAmelCase , __UpperCAmelCase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase__ = len(self.adlist ) - 1 else: UpperCAmelCase__ = next_state self.adlist[current_state]["output"].append(__UpperCAmelCase ) def lowercase_ (self : Optional[int] ) -> None: """simple docstring""" UpperCAmelCase__ = deque() for node in self.adlist[0]["next_states"]: q.append(__UpperCAmelCase ) UpperCAmelCase__ = 0 while q: UpperCAmelCase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__UpperCAmelCase ) UpperCAmelCase__ = self.adlist[r]["fail_state"] while ( self.find_next_state(__UpperCAmelCase , self.adlist[child]["value"] ) is None and state != 0 ): UpperCAmelCase__ = self.adlist[state]["fail_state"] UpperCAmelCase__ = self.find_next_state( __UpperCAmelCase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase__ = 0 UpperCAmelCase__ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str ) -> dict[str, list[int]]: """simple docstring""" UpperCAmelCase__ = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase__ = 0 for i in range(len(__UpperCAmelCase ) ): while ( self.find_next_state(__UpperCAmelCase , string[i] ) is None and current_state != 0 ): UpperCAmelCase__ = self.adlist[current_state]["fail_state"] UpperCAmelCase__ = self.find_next_state(__UpperCAmelCase , string[i] ) if next_state is None: UpperCAmelCase__ = 0 else: UpperCAmelCase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase__ = [] result[key].append(i - len(__UpperCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
65
0
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class UpperCAmelCase ( unittest.TestCase ): def __init__( self :Optional[Any] , lowercase_ :str , lowercase_ :List[str]=2 , lowercase_ :Dict=56 , lowercase_ :int=True , lowercase_ :Optional[Any]=True , lowercase_ :Union[str, Any]=True , lowercase_ :List[Any]=True , lowercase_ :List[str]=99 , lowercase_ :List[str]=32 , lowercase_ :int=2 , lowercase_ :str=2 , lowercase_ :Any=7 , lowercase_ :Optional[int]="gelu_new" , lowercase_ :List[Any]=0.1 , lowercase_ :str=0.1 , lowercase_ :Optional[Any]=5_12 , lowercase_ :int=16 , lowercase_ :Any=2 , lowercase_ :Union[str, Any]=0.0_2 , lowercase_ :Optional[Any]=4 , lowercase_ :Tuple="block_sparse" , lowercase_ :Optional[Any]=True , lowercase_ :List[str]=False , lowercase_ :Any=2 , lowercase_ :str=3 , )-> List[str]: A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_attention_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_choices A__ = rescale_embeddings A__ = attention_type A__ = use_bias A__ = block_size A__ = num_random_blocks def UpperCAmelCase_ ( self :Optional[int] )-> List[Any]: A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_attention_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ ( self :Tuple )-> Dict: A__ = self.prepare_config_and_inputs() A__, A__, A__, A__ = config_and_inputs A__ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class UpperCAmelCase ( UpperCamelCase__ , unittest.TestCase ): __lowercase = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __lowercase = False __lowercase = False def UpperCAmelCase_ ( self :Optional[int] )-> Dict: A__ = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase_ ( self :Tuple )-> str: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase_ ( self :Optional[Any] )-> Union[str, Any]: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase_ ( self :str )-> int: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase_ ( self :Tuple )-> Union[str, Any]: super().test_hidden_states_output() @slow def UpperCAmelCase_ ( self :Any )-> Union[str, Any]: for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] )-> str: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase_ ( self :int )-> int: A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ = self._prepare_for_class(lowercase_ , lowercase_ ) A__ = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ :Optional[int] , lowercase_ :List[Any]=None , **lowercase_ :Tuple ): return model(input_ids=lowercase_ , attention_mask=lowercase_ , **lowercase_ ) with self.subTest("JIT Enabled" ): A__ = model_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): A__ = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Optional[Any] , lowercase_ :List[str] , lowercase_ :Any , lowercase_ :int=1E-5 , lowercase_ :Any="outputs" , lowercase_ :int=None )-> str: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
123
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] =logging.get_logger(__name__) def UpperCamelCase ( _lowerCamelCase : str ): A__ = torch.load(_lowerCamelCase , map_location="cpu" ) if "model" in sd.keys(): A__ = torch.load(_lowerCamelCase , map_location="cpu" )["model"] # pop unnecessary weights A__ = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCamelCase ) A__ = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A__ = sd.pop(_lowerCamelCase ) A__ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A__ = sd[key] # We split QKV in separate Q,K,V A__ = key.replace(".qkv_proj." , ".q_proj." ) A__ = key.replace(".qkv_proj." , ".k_proj." ) A__ = key.replace(".qkv_proj." , ".v_proj." ) A__ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A__, A__, A__ = torch.split(_lowerCamelCase , depth // 3 , dim=0 ) A__ = q A__ = k A__ = v del sd[key] return sd @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : Dict=None ): A__ = load_checkpoint(_lowerCamelCase ) if config is not None: A__ = OPTConfig.from_pretrained(_lowerCamelCase ) else: A__ = OPTConfig() A__ = OPTModel(_lowerCamelCase ).half().eval() model.load_state_dict(_lowerCamelCase ) # Check results Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") __lowerCAmelCase : List[Any] =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
123
1
def __UpperCAmelCase ( a_ = 10 , a_ = 22): snake_case_ = range(1 , a_) snake_case_ = range(1 , a_) return sum( 1 for power in powers for base in bases if len(str(base**power)) == power) if __name__ == "__main__": print(f'{solution(10, 22) = }')
178
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> int: snake_case_ = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) snake_case_ = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset snake_case_ = load_dataset('nielsr/rvlcdip-demo' ) snake_case_ = dataset['train'][0]['image'].convert('RGB' ) snake_case_ = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): snake_case_ = model(**a ) snake_case_ = outputs.logits snake_case_ = torch.Size((1, 16) ) self.assertEqual(logits.shape , a ) snake_case_ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1E-4 ) )
178
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['note_seq'] def __init__( self: List[Any] , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Tuple) -> List[str]: """simple docstring""" requires_backends(self , ["note_seq"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Optional[int] , *_SCREAMING_SNAKE_CASE: Tuple , **_SCREAMING_SNAKE_CASE: List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["note_seq"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Tuple , *_SCREAMING_SNAKE_CASE: Optional[Any] , **_SCREAMING_SNAKE_CASE: Optional[int]) -> Tuple: """simple docstring""" requires_backends(cls , ["note_seq"])
58
"""simple docstring""" import math def _lowercase ( __snake_case ) -> bool: __lowerCAmelCase : Optional[Any] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__snake_case ) def _lowercase ( __snake_case = 1 / 12_345 ) -> int: __lowerCAmelCase : str = 0 __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : Tuple = 3 while True: __lowerCAmelCase : Optional[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__snake_case ): __lowerCAmelCase : str = int(__snake_case ) total_partitions += 1 if check_partition_perfect(__snake_case ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__snake_case ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
58
1
"""simple docstring""" import random def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : Any ) -> Optional[Any]: _snake_case , _snake_case , _snake_case = [], [], [] for element in data: if element < pivot: less.append(UpperCamelCase__ ) elif element > pivot: greater.append(UpperCamelCase__ ) else: equal.append(UpperCamelCase__ ) return less, equal, greater def _UpperCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : List[str] ) -> Tuple: if index >= len(UpperCamelCase__ ) or index < 0: return None _snake_case = items[random.randint(0 , len(UpperCamelCase__ ) - 1 )] _snake_case = 0 _snake_case , _snake_case , _snake_case = _partition(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = len(UpperCamelCase__ ) _snake_case = len(UpperCamelCase__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(UpperCamelCase__ , UpperCamelCase__ ) # must be in larger else: return quick_select(UpperCamelCase__ , index - (m + count) )
288
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCamelCase__( __A ): lowerCAmelCase__ : List[Any] = 'time_series_transformer' lowerCAmelCase__ : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = "student_t" ,__UpperCAmelCase = "nll" ,__UpperCAmelCase = 1 ,__UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7] ,__UpperCAmelCase = "mean" ,__UpperCAmelCase = 0 ,__UpperCAmelCase = 0 ,__UpperCAmelCase = 0 ,__UpperCAmelCase = 0 ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = 32 ,__UpperCAmelCase = 32 ,__UpperCAmelCase = 2 ,__UpperCAmelCase = 2 ,__UpperCAmelCase = 2 ,__UpperCAmelCase = 2 ,__UpperCAmelCase = True ,__UpperCAmelCase = "gelu" ,__UpperCAmelCase = 64 ,__UpperCAmelCase = 0.1 ,__UpperCAmelCase = 0.1 ,__UpperCAmelCase = 0.1 ,__UpperCAmelCase = 0.1 ,__UpperCAmelCase = 0.1 ,__UpperCAmelCase = 1_00 ,__UpperCAmelCase = 0.0_2 ,__UpperCAmelCase=True ,**__UpperCAmelCase ,) -> List[str]: # time series specific configuration A__ = prediction_length A__ = context_length or prediction_length A__ = distribution_output A__ = loss A__ = input_size A__ = num_time_features A__ = lags_sequence A__ = scaling A__ = num_dynamic_real_features A__ = num_static_real_features A__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) A__ = cardinality else: A__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) A__ = embedding_dimension else: A__ = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] A__ = num_parallel_samples # Transformer architecture configuration A__ = input_size * len(__UpperCAmelCase ) + self._number_of_features A__ = d_model A__ = encoder_attention_heads A__ = decoder_attention_heads A__ = encoder_ffn_dim A__ = decoder_ffn_dim A__ = encoder_layers A__ = decoder_layers A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = activation_function A__ = init_std A__ = use_cache super().__init__(is_encoder_decoder=__UpperCAmelCase ,**__UpperCAmelCase ) @property def snake_case__ ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
221
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" lowerCamelCase__: str =FunnelConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) lowerCamelCase__: Optional[Any] =FunnelBaseModel(__a ) if base_model else FunnelModel(__a ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__a , __a , __a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
273
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : int , UpperCAmelCase_ : Distribution , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=0) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =1.0 if scale is None else scale lowerCamelCase__: List[Any] =0.0 if loc is None else loc super().__init__(UpperCAmelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCAmelCase_)]) @property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' return self.variance.sqrt() class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Callable[..., Tuple[torch.Tensor]] , **UpperCAmelCase_ : Dict) ->None: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Tuple =args_dim lowerCamelCase__: Any =nn.ModuleList([nn.Linear(UpperCAmelCase_ , UpperCAmelCase_) for dim in args_dim.values()]) lowerCamelCase__: Any =domain_map def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : torch.Tensor) ->Tuple[torch.Tensor]: '''simple docstring''' lowerCamelCase__: Any =[proj(UpperCAmelCase_) for proj in self.proj] return self.domain_map(*UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' super().__init__() lowerCamelCase__: Any =function def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[Any] , *UpperCAmelCase_ : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' return self.function(UpperCAmelCase_ , *UpperCAmelCase_) class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 def __init__(self : str , UpperCAmelCase_ : int = 1) ->None: '''simple docstring''' lowerCamelCase__: List[str] =dim lowerCamelCase__: int ={k: dim * self.args_dim[k] for k in self.args_dim} def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : str) ->Optional[Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCAmelCase_) else: return Independent(self.distribution_class(*UpperCAmelCase_) , 1) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , ) ->Distribution: '''simple docstring''' lowerCamelCase__: Optional[Any] =self._base_distribution(UpperCAmelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCAmelCase_ , loc=UpperCAmelCase_ , scale=UpperCAmelCase_ , event_dim=self.event_dim) @property def SCREAMING_SNAKE_CASE_ (self : int) ->Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->int: '''simple docstring''' return len(self.event_shape) @property def SCREAMING_SNAKE_CASE_ (self : Tuple) ->float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : int) ->nn.Module: '''simple docstring''' return ParameterProjection( in_features=UpperCAmelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def SCREAMING_SNAKE_CASE_ (self : Any , *UpperCAmelCase_ : torch.Tensor) ->Any: '''simple docstring''' raise NotImplementedError() @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : torch.Tensor) ->torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCAmelCase_) + 4.0)) / 2.0 class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = {"df": 1, "loc": 1, "scale": 1} lowercase_ = StudentT @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[int] , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor) ->Dict: '''simple docstring''' lowerCamelCase__: str =cls.squareplus(UpperCAmelCase_).clamp_min(torch.finfo(scale.dtype).eps) lowerCamelCase__: Any =2.0 + cls.squareplus(UpperCAmelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = {"loc": 1, "scale": 1} lowercase_ = Normal @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[Any] , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =cls.squareplus(UpperCAmelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = {"total_count": 1, "logits": 1} lowercase_ = NegativeBinomial @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[int] , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor) ->List[str]: '''simple docstring''' lowerCamelCase__: Tuple =cls.squareplus(UpperCAmelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Tuple) ->Distribution: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Any =distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCAmelCase_ , logits=UpperCAmelCase_) else: return Independent(self.distribution_class(total_count=UpperCAmelCase_ , logits=UpperCAmelCase_) , 1) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None) ->Distribution: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
273
1