code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
151
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = "โ–" lowercase__ = {"vocab_file": "spiece.model"} lowercase__ = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } lowercase__ = { "google/reformer-crime-and-punishment": 524288, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowercase_ : Dict , lowercase_ : Tuple="</s>" , lowercase_ : Dict="<unk>" , lowercase_ : Tuple=[] , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : List[str] , ) -> None: UpperCAmelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase : List[Any] = vocab_file UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase_ ( self : List[str] ) -> Dict[str, int]: UpperCAmelCase : int = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> str: UpperCAmelCase : Tuple = self.__dict__.copy() UpperCAmelCase : Union[str, Any] = None return state def __setstate__( self : Optional[Any] , lowercase_ : Any ) -> List[str]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase : Dict = {} UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : str ) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCAmelCase_ ( self : int , lowercase_ : Tuple ) -> Optional[int]: return self.sp_model.piece_to_id(lowercase_ ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[int] ) -> List[str]: if index < self.sp_model.get_piece_size(): UpperCAmelCase : Tuple = self.sp_model.IdToPiece(lowercase_ ) return token def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[int] ) -> Optional[int]: UpperCAmelCase : Dict = [] UpperCAmelCase : int = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token UpperCAmelCase : Any = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : int = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
151
1
from heapq import heappop, heappush import numpy as np def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = grid.shape SCREAMING_SNAKE_CASE_ = [-1, 1, 0, 0] SCREAMING_SNAKE_CASE_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = [(0, source)], set() SCREAMING_SNAKE_CASE_ = np.full((rows, cols), np.inf ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = np.empty((rows, cols), dtype=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = None while queue: ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = heappop(__lowerCamelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: SCREAMING_SNAKE_CASE_ = [] while (x, y) != source: path.append((x, y) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = predecessors[x, y] path.append(__lowerCamelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: SCREAMING_SNAKE_CASE_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__lowerCamelCase, (dist + 1, (nx, ny)) ) SCREAMING_SNAKE_CASE_ = dist + 1 SCREAMING_SNAKE_CASE_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
257
__UpperCAmelCase = "\n# Transformers ์„ค์น˜ ๋ฐฉ๋ฒ•\n! pip install transformers datasets\n# ๋งˆ์ง€๋ง‰ ๋ฆด๋ฆฌ์Šค ๋Œ€์‹  ์†Œ์Šค์—์„œ ์„ค์น˜ํ•˜๋ ค๋ฉด, ์œ„ ๋ช…๋ น์„ ์ฃผ์„์œผ๋กœ ๋ฐ”๊พธ๊ณ  ์•„๋ž˜ ๋ช…๋ น์„ ํ•ด์ œํ•˜์„ธ์š”.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __UpperCAmelCase = [{"type": "code", "content": INSTALL_CONTENT}] __UpperCAmelCase = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
257
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCAmelCase_ ( ) ->Optional[int]: lowerCamelCase__ : List[Any] ='https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' lowerCamelCase__ : Dict =Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert('RGB' ) return image def lowerCAmelCase_ ( snake_case_ : Any ) ->str: lowerCamelCase__ : Tuple =[] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : str ) ->Dict: lowerCamelCase__ : Union[str, Any] =dct.pop(snake_case_ ) lowerCamelCase__ : int =val def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : List[Any] ) ->Any: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCamelCase__ : str =state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) lowerCamelCase__ : Optional[int] =state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict lowerCamelCase__ : Dict =torch.cat((q_bias, torch.zeros_like(snake_case_ , requires_grad=snake_case_ ), v_bias) ) lowerCamelCase__ : Optional[int] =qkv_bias def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : List[str] ) ->Tuple: lowerCamelCase__ : int =3_6_4 if 'coco' in model_name else 2_2_4 lowerCamelCase__ : Tuple =BlipaVisionConfig(image_size=snake_case_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCamelCase__ : Any =OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=snake_case_ ).to_dict() elif "opt-6.7b" in model_name: lowerCamelCase__ : str =OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=snake_case_ ).to_dict() elif "t5-xl" in model_name: lowerCamelCase__ : Optional[int] =TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCamelCase__ : str =TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() lowerCamelCase__ : Union[str, Any] =BlipaConfig(vision_config=snake_case_ , text_config=snake_case_ ) return config, image_size @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Dict=None , snake_case_ : int=False ) ->Optional[int]: lowerCamelCase__ : Optional[int] =( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) lowerCamelCase__ : Any =tokenizer('\n' , add_special_tokens=snake_case_ ).input_ids[0] lowerCamelCase__ , lowerCamelCase__ : Dict =get_blipa_config(snake_case_ , eos_token_id=snake_case_ ) lowerCamelCase__ : Tuple =BlipaForConditionalGeneration(snake_case_ ).eval() lowerCamelCase__ : int ={ 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } lowerCamelCase__ , lowerCamelCase__ : Dict =model_name_to_original[model_name] # load original model print('Loading original model...' ) lowerCamelCase__ : Any ='cuda' if torch.cuda.is_available() else 'cpu' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple =load_model_and_preprocess( name=snake_case_ , model_type=snake_case_ , is_eval=snake_case_ , device=snake_case_ ) original_model.eval() print('Done!' ) # update state dict keys lowerCamelCase__ : List[str] =original_model.state_dict() lowerCamelCase__ : List[Any] =create_rename_keys(snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCamelCase__ : Any =state_dict.pop(snake_case_ ) if key.startswith('Qformer.bert' ): lowerCamelCase__ : str =key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: lowerCamelCase__ : int =key.replace('self' , 'attention' ) if "opt_proj" in key: lowerCamelCase__ : int =key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: lowerCamelCase__ : Dict =key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): lowerCamelCase__ : Optional[int] =key.replace('opt' , 'language' ) if key.startswith('t5' ): lowerCamelCase__ : Any =key.replace('t5' , 'language' ) lowerCamelCase__ : List[Any] =val # read in qv biases read_in_q_v_bias(snake_case_ , snake_case_ ) lowerCamelCase__ , lowerCamelCase__ : int =hf_model.load_state_dict(snake_case_ , strict=snake_case_ ) assert len(snake_case_ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCamelCase__ : Tuple =load_demo_image() lowerCamelCase__ : Optional[Any] =vis_processors['eval'](snake_case_ ).unsqueeze(0 ).to(snake_case_ ) lowerCamelCase__ : List[Any] =tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(snake_case_ ) # create processor lowerCamelCase__ : List[Any] =BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=snake_case_ , image_std=snake_case_ ) lowerCamelCase__ : int =BlipaProcessor(image_processor=snake_case_ , tokenizer=snake_case_ ) lowerCamelCase__ : str =processor(images=snake_case_ , return_tensors='pt' ).pixel_values.to(snake_case_ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case_ , snake_case_ ) original_model.to(snake_case_ ) hf_model.to(snake_case_ ) with torch.no_grad(): if "opt" in model_name: lowerCamelCase__ : Optional[int] =original_model({'image': original_pixel_values, 'text_input': ['']} ).logits lowerCamelCase__ : Optional[int] =hf_model(snake_case_ , snake_case_ ).logits else: lowerCamelCase__ : str =original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits lowerCamelCase__ : Dict =input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) lowerCamelCase__ : Optional[int] =hf_model(snake_case_ , snake_case_ , labels=snake_case_ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCamelCase__ : str =torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=snake_case_ ) assert torch.allclose(logits[0, :3, :3] , snake_case_ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCamelCase__ : List[str] =torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=snake_case_ ) else: # cast to same type lowerCamelCase__ : Dict =logits.dtype assert torch.allclose(original_logits.to(snake_case_ ) , snake_case_ , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) lowerCamelCase__ : int ='' lowerCamelCase__ : Optional[Any] =tokenizer(snake_case_ , return_tensors='pt' ).input_ids.to(snake_case_ ) lowerCamelCase__ : Dict =original_model.generate({'image': original_pixel_values} ) lowerCamelCase__ : Any =hf_model.generate( snake_case_ , snake_case_ , do_sample=snake_case_ , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , snake_case_ ) lowerCamelCase__ : str =input_ids.shape[1] lowerCamelCase__ : Optional[Any] =processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case_ ) lowerCamelCase__ : int =[text.strip() for text in output_text] print('HF generation:' , snake_case_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case_ ) hf_model.save_pretrained(snake_case_ ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() lowerCAmelCase = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) lowerCAmelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
126
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ = None def __init__( self :Dict , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :Any=None , lowerCamelCase_ :int=None , lowerCamelCase_ :List[str]="<unk>" , lowerCamelCase_ :List[Any]="<s>" , lowerCamelCase_ :str="</s>" , lowerCamelCase_ :Union[str, Any]="<pad>" , lowerCamelCase_ :Union[str, Any]=False , lowerCamelCase_ :Dict=False , **lowerCamelCase_ :List[Any] , ): """simple docstring""" super().__init__( lowerCamelCase_ , lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , unk_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCamelCase__ : List[str] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase_ ) != add_prefix_space: lowerCamelCase__ : str =getattr(lowerCamelCase_ , pre_tok_state.pop('type' ) ) lowerCamelCase__ : List[Any] =add_prefix_space lowerCamelCase__ : Optional[Any] =pre_tok_class(**lowerCamelCase_ ) lowerCamelCase__ : Any =add_prefix_space def UpperCAmelCase__ ( self :Optional[int] , *lowerCamelCase_ :List[str] , **lowerCamelCase_ :Optional[Any] ): """simple docstring""" lowerCamelCase__ : List[Any] =kwargs.get('is_split_into_words' , lowerCamelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._batch_encode_plus(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :int , *lowerCamelCase_ :Optional[Any] , **lowerCamelCase_ :Any ): """simple docstring""" lowerCamelCase__ : Optional[Any] =kwargs.get('is_split_into_words' , lowerCamelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._encode_plus(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ): """simple docstring""" lowerCamelCase__ : Optional[Any] =self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ ) def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :"Conversation" ): """simple docstring""" lowerCamelCase__ : Optional[int] =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) + [self.eos_token_id] ) if len(lowerCamelCase_ ) > self.model_max_length: lowerCamelCase__ : List[str] =input_ids[-self.model_max_length :] return input_ids
126
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Optional[int] = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 1_2_8, '''min_length''': 1_2, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 1_4_2, '''min_length''': 5_6, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 6_2, '''min_length''': 1_1, '''num_beams''': 6}, } } lowerCAmelCase : int = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 1_2_8, '''task_specific_params.summarization.min_length''': 1_2, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 1_4_2, '''task_specific_params.summarization_cnn.min_length''': 5_6, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 6_2, '''task_specific_params.summarization_xsum.min_length''': 1_1, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ ) , x.transpose() ) ) lowerCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = np.random.randn(3 , 4 ) lowerCAmelCase : Any = torch.tensor(UpperCamelCase_ ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ ) , transpose(UpperCamelCase_ ).numpy() ) ) lowerCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : Tuple = torch.tensor(UpperCamelCase_ ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ , axes=(1, 2, 0) ) , transpose(UpperCamelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = np.random.randn(3 , 4 ) lowerCAmelCase : str = tf.constant(UpperCamelCase_ ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ ) , transpose(UpperCamelCase_ ).numpy() ) ) lowerCAmelCase : Optional[Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : List[Any] = tf.constant(UpperCamelCase_ ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ , axes=(1, 2, 0) ) , transpose(UpperCamelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase : Union[str, Any] = jnp.array(UpperCamelCase_ ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ ) , np.asarray(transpose(UpperCamelCase_ ) ) ) ) lowerCAmelCase : Tuple = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : Dict = jnp.array(UpperCamelCase_ ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ , axes=(1, 2, 0) ) , np.asarray(transpose(UpperCamelCase_ , axes=(1, 2, 0) ) ) ) ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (4, 3) ) , np.reshape(UpperCamelCase_ , (4, 3) ) ) ) lowerCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (1_2, 5) ) , np.reshape(UpperCamelCase_ , (1_2, 5) ) ) ) @require_torch def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase : Optional[Any] = torch.tensor(UpperCamelCase_ ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (4, 3) ) , reshape(UpperCamelCase_ , (4, 3) ).numpy() ) ) lowerCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : Union[str, Any] = torch.tensor(UpperCamelCase_ ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (1_2, 5) ) , reshape(UpperCamelCase_ , (1_2, 5) ).numpy() ) ) @require_tf def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = np.random.randn(3 , 4 ) lowerCAmelCase : str = tf.constant(UpperCamelCase_ ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (4, 3) ) , reshape(UpperCamelCase_ , (4, 3) ).numpy() ) ) lowerCAmelCase : int = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : Tuple = tf.constant(UpperCamelCase_ ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (1_2, 5) ) , reshape(UpperCamelCase_ , (1_2, 5) ).numpy() ) ) @require_flax def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Dict = np.random.randn(3 , 4 ) lowerCAmelCase : Union[str, Any] = jnp.array(UpperCamelCase_ ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (4, 3) ) , np.asarray(reshape(UpperCamelCase_ , (4, 3) ) ) ) ) lowerCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : int = jnp.array(UpperCamelCase_ ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (1_2, 5) ) , np.asarray(reshape(UpperCamelCase_ , (1_2, 5) ) ) ) ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ ) , np.squeeze(UpperCamelCase_ ) ) ) lowerCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ , axis=2 ) , np.squeeze(UpperCamelCase_ , axis=2 ) ) ) @require_torch def lowerCamelCase__ ( self : int ): lowerCAmelCase : Any = np.random.randn(1 , 3 , 4 ) lowerCAmelCase : Union[str, Any] = torch.tensor(UpperCamelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ ) , squeeze(UpperCamelCase_ ).numpy() ) ) lowerCAmelCase : Dict = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase : Tuple = torch.tensor(UpperCamelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ , axis=2 ) , squeeze(UpperCamelCase_ , axis=2 ).numpy() ) ) @require_tf def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = np.random.randn(1 , 3 , 4 ) lowerCAmelCase : List[str] = tf.constant(UpperCamelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ ) , squeeze(UpperCamelCase_ ).numpy() ) ) lowerCAmelCase : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase : Optional[int] = tf.constant(UpperCamelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ , axis=2 ) , squeeze(UpperCamelCase_ , axis=2 ).numpy() ) ) @require_flax def lowerCamelCase__ ( self : Any ): lowerCAmelCase : int = np.random.randn(1 , 3 , 4 ) lowerCAmelCase : str = jnp.array(UpperCamelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ ) , np.asarray(squeeze(UpperCamelCase_ ) ) ) ) lowerCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase : str = jnp.array(UpperCamelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ , axis=2 ) , np.asarray(squeeze(UpperCamelCase_ , axis=2 ) ) ) ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase_ , axis=1 ) , np.expand_dims(UpperCamelCase_ , axis=1 ) ) ) @require_torch def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Any = np.random.randn(3 , 4 ) lowerCAmelCase : Any = torch.tensor(UpperCamelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase_ , axis=1 ) , expand_dims(UpperCamelCase_ , axis=1 ).numpy() ) ) @require_tf def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = np.random.randn(3 , 4 ) lowerCAmelCase : Optional[int] = tf.constant(UpperCamelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase_ , axis=1 ) , expand_dims(UpperCamelCase_ , axis=1 ).numpy() ) ) @require_flax def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Dict = np.random.randn(3 , 4 ) lowerCAmelCase : Tuple = jnp.array(UpperCamelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase_ , axis=1 ) , np.asarray(expand_dims(UpperCamelCase_ , axis=1 ) ) ) )
60
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __snake_case ( __UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ,): """simple docstring""" A_ , A_ = coefficient_matrix.shape A_ , A_ = constant_matrix.shape if rowsa != colsa: A_ = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if colsa != 1: A_ = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if rowsa != rowsa: A_ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(__UpperCamelCase ) if len(__UpperCamelCase ) != rowsa: A_ = ( "Number of initial values must be equal to number of rows in coefficient " f'''matrix but received {len(__UpperCamelCase )} and {rowsa}''' ) raise ValueError(__UpperCamelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) A_ = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) A_ , A_ = table.shape strictly_diagonally_dominant(__UpperCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__UpperCamelCase ): A_ = [] for row in range(__UpperCamelCase ): A_ = 0 for col in range(__UpperCamelCase ): if col == row: A_ = table[row][col] elif col == cols - 1: A_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A_ = (temp + val) / denom new_val.append(__UpperCamelCase ) A_ = new_val return [float(__UpperCamelCase ) for i in new_val] def __snake_case ( __UpperCamelCase : NDArray[floataa] ): """simple docstring""" A_ , A_ = table.shape A_ = True for i in range(0 ,__UpperCamelCase ): A_ = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
312
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase_ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''DPTFeatureExtractor'''] lowerCamelCase_ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCamelCase_ = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } lowerCamelCase_ = {'''bert_for_seq_generation''': 512} class UpperCamelCase_ (__A ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = [] __magic_name__ = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : Optional[Any]="</s>" , lowerCAmelCase_ : int="<unk>" , lowerCAmelCase_ : Tuple="<pad>" , lowerCAmelCase_ : Tuple="<::::>" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Union[str, Any] , ) -> None: UpperCAmelCase_ : int = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) UpperCAmelCase_ : List[str] = vocab_file UpperCAmelCase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: UpperCAmelCase_ : List[str] = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = self.__dict__.copy() UpperCAmelCase_ : List[Any] = None return state def __setstate__( self : Dict , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ : Any = {} UpperCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Optional[int] ) -> Dict: return self.sp_model.piece_to_id(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : int ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.sp_model.IdToPiece(lowerCAmelCase_ ) return token def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : List[Any] ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Tuple = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase_ ) + token UpperCAmelCase_ : Tuple = [] else: current_sub_tokens.append(lowerCAmelCase_ ) out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : Tuple = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , "wb" ) as fi: UpperCAmelCase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
253
0
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=1e-12 ): __SCREAMING_SNAKE_CASE : int = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(lowercase__ , axis=1 ) , a_min=lowercase__ ) ).T __SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(lowercase__ , axis=1 ) , a_min=lowercase__ ) ).T return jnp.matmul(lowercase__ , norm_emb_a.T ) class _lowercase ( nn.Module ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : CLIPConfig SCREAMING_SNAKE_CASE__ : jnp.dtype = jnp.floataa def __magic_name__( self :str ) -> Any: __SCREAMING_SNAKE_CASE : Tuple = FlaxCLIPVisionModule(self.config.vision_config ) __SCREAMING_SNAKE_CASE : str = nn.Dense(self.config.projection_dim , use_bias=lowerCAmelCase__ , dtype=self.dtype ) __SCREAMING_SNAKE_CASE : List[str] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __SCREAMING_SNAKE_CASE : Tuple = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __SCREAMING_SNAKE_CASE : str = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) __SCREAMING_SNAKE_CASE : Dict = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self :Any , lowerCAmelCase__ :str ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = self.vision_model(lowerCAmelCase__ )[1] __SCREAMING_SNAKE_CASE : Any = self.visual_projection(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = jax_cosine_distance(lowerCAmelCase__ , self.special_care_embeds ) __SCREAMING_SNAKE_CASE : Any = jax_cosine_distance(lowerCAmelCase__ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __SCREAMING_SNAKE_CASE : Tuple = 0.0 __SCREAMING_SNAKE_CASE : Any = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __SCREAMING_SNAKE_CASE : Optional[int] = jnp.round(lowerCAmelCase__ , 3 ) __SCREAMING_SNAKE_CASE : str = jnp.any(special_scores > 0 , axis=1 , keepdims=lowerCAmelCase__ ) # Use a lower threshold if an image has any special care concept __SCREAMING_SNAKE_CASE : int = is_special_care * 0.01 __SCREAMING_SNAKE_CASE : List[str] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __SCREAMING_SNAKE_CASE : Optional[int] = jnp.round(lowerCAmelCase__ , 3 ) __SCREAMING_SNAKE_CASE : int = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = CLIPConfig SCREAMING_SNAKE_CASE__ : int = '''clip_input''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxStableDiffusionSafetyCheckerModule def __init__( self :List[Any] , lowerCAmelCase__ :CLIPConfig , lowerCAmelCase__ :Optional[Tuple] = None , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :jnp.dtype = jnp.floataa , lowerCAmelCase__ :bool = True , **lowerCAmelCase__ :Optional[Any] , ) -> Optional[Any]: if input_shape is None: __SCREAMING_SNAKE_CASE : Optional[int] = (1, 224, 224, 3) __SCREAMING_SNAKE_CASE : int = self.module_class(config=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **lowerCAmelCase__ ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , input_shape=lowerCAmelCase__ , seed=lowerCAmelCase__ , dtype=lowerCAmelCase__ , _do_init=_do_init ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :jax.random.KeyArray , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :FrozenDict = None ) -> FrozenDict: # init input tensor __SCREAMING_SNAKE_CASE : Optional[int] = jax.random.normal(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = jax.random.split(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = {'''params''': params_rng, '''dropout''': dropout_rng} __SCREAMING_SNAKE_CASE : Dict = self.module.init(lowerCAmelCase__ , lowerCAmelCase__ )['''params'''] return random_params def __call__( self :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :dict = None , ) -> Tuple: __SCREAMING_SNAKE_CASE : List[str] = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(lowerCAmelCase__ , dtype=jnp.floataa ) , rngs={} , )
9
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = parent def __magic_name__( self :List[Any] ) -> Tuple: return {} def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __SCREAMING_SNAKE_CASE : str = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = MarkupLMFeatureExtractionTester(self ) @property def __magic_name__( self :Any ) -> Optional[Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def __magic_name__( self :Optional[int] ) -> Any: # Initialize feature_extractor __SCREAMING_SNAKE_CASE : int = self.feature_extraction_class() # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = get_html_strings()[0] __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : str = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __SCREAMING_SNAKE_CASE : List[str] = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ ) # Test batched __SCREAMING_SNAKE_CASE : Tuple = get_html_strings() __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : int = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __SCREAMING_SNAKE_CASE : str = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ )
9
1
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase (__lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = DDIMPipeline UpperCAmelCase_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCAmelCase_ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } UpperCAmelCase_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS UpperCAmelCase_ = False def A_ ( self : Optional[int] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = UNetaDModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) SCREAMING_SNAKE_CASE__ : int = DDIMScheduler() SCREAMING_SNAKE_CASE__ : str = {"unet": unet, "scheduler": scheduler} return components def A_ ( self : List[Any], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : str=0 ) -> Tuple: """simple docstring""" if str(_UpperCAmelCase ).startswith("mps" ): SCREAMING_SNAKE_CASE__ : int = torch.manual_seed(_UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def A_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = "cpu" SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[int] = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_inputs(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe(**_UpperCAmelCase ).images SCREAMING_SNAKE_CASE__ : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 3_2, 3_2, 3) ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase, 1E-3 ) def A_ ( self : Tuple ) -> str: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def A_ ( self : Any ) -> Dict: """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def A_ ( self : Dict ) -> str: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def A_ ( self : Tuple ) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): """simple docstring""" def A_ ( self : List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = "google/ddpm-cifar10-32" SCREAMING_SNAKE_CASE__ : Dict = UNetaDModel.from_pretrained(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = DDIMScheduler() SCREAMING_SNAKE_CASE__ : List[Any] = DDIMPipeline(unet=_UpperCAmelCase, scheduler=_UpperCAmelCase ) ddim.to(_UpperCAmelCase ) ddim.set_progress_bar_config(disable=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = ddim(generator=_UpperCAmelCase, eta=0.0, output_type="numpy" ).images SCREAMING_SNAKE_CASE__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) SCREAMING_SNAKE_CASE__ : Dict = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A_ ( self : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = "google/ddpm-ema-bedroom-256" SCREAMING_SNAKE_CASE__ : List[Any] = UNetaDModel.from_pretrained(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = DDIMScheduler.from_pretrained(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = DDIMPipeline(unet=_UpperCAmelCase, scheduler=_UpperCAmelCase ) ddpm.to(_UpperCAmelCase ) ddpm.set_progress_bar_config(disable=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = ddpm(generator=_UpperCAmelCase, output_type="numpy" ).images SCREAMING_SNAKE_CASE__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
191
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=13_37 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=13_37 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def _a ( SCREAMING_SNAKE_CASE__ : SplitDict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = split_dict._to_yaml_list() assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = SplitDict._from_yaml_list(SCREAMING_SNAKE_CASE__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump SCREAMING_SNAKE_CASE__ : str = None # the split name of split_dict takes over the name of the split info object SCREAMING_SNAKE_CASE__ : Union[str, Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=SCREAMING_SNAKE_CASE__ ), SplitInfo(dataset_name="my_dataset" )] ) def _a ( SCREAMING_SNAKE_CASE__ : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
191
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = { "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging A_ = logging.get_logger(__name__) class lowercase: '''simple docstring''' lowercase__ = 42 lowercase__ = None @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' raise NotImplementedError def UpperCamelCase_ ( self: Tuple, a_: int, a_: int, a_: str, **a_: Dict ): '''simple docstring''' raise NotImplementedError def UpperCamelCase_ ( self: Union[str, Any], a_: List[str] ): '''simple docstring''' raise NotImplementedError def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' if not self.is_available(): raise RuntimeError( f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def UpperCamelCase_ ( cls: Tuple ): '''simple docstring''' return f"`pip install {cls.pip_package or cls.name}`" class lowercase( __a ): '''simple docstring''' lowercase__ = "optuna" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_optuna_available() def UpperCamelCase_ ( self: Union[str, Any], a_: List[Any], a_: int, a_: str, **a_: List[str] ): '''simple docstring''' return run_hp_search_optuna(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Any ): '''simple docstring''' return default_hp_space_optuna(a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "ray" lowercase__ = "'ray[tune]'" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_ray_available() def UpperCamelCase_ ( self: int, a_: Optional[Any], a_: int, a_: str, **a_: List[Any] ): '''simple docstring''' return run_hp_search_ray(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: str, a_: Tuple ): '''simple docstring''' return default_hp_space_ray(a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "sigopt" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_sigopt_available() def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: str, **a_: int ): '''simple docstring''' return run_hp_search_sigopt(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: str, a_: List[str] ): '''simple docstring''' return default_hp_space_sigopt(a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "wandb" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_wandb_available() def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: str, **a_: Union[str, Any] ): '''simple docstring''' return run_hp_search_wandb(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: str, a_: Any ): '''simple docstring''' return default_hp_space_wandb(a_ ) A_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(snake_case__ ) > 0: _snake_case : Any = available_backends[0].name if len(snake_case__ ) > 1: logger.info( F"{len(snake_case__ )} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( F" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
64
0
"""simple docstring""" import fire from utils import calculate_rouge, save_json def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ) ->Dict: """simple docstring""" a_ = [x.strip() for x in open(UpperCAmelCase ).readlines()] a_ = [x.strip() for x in open(UpperCAmelCase ).readlines()][: len(UpperCAmelCase )] a_ = calculate_rouge(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) if save_path is not None: save_json(UpperCAmelCase , UpperCAmelCase , indent=UpperCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
303
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase)
303
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging snake_case_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( a ): def __init__( self : Any , _snake_case : WhisperForConditionalGeneration , _snake_case : WhisperProcessor , _snake_case : AutoencoderKL , _snake_case : CLIPTextModel , _snake_case : CLIPTokenizer , _snake_case : UNetaDConditionModel , _snake_case : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _snake_case : StableDiffusionSafetyChecker , _snake_case : CLIPImageProcessor , ): """simple docstring""" super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''') self.register_modules( speech_model=_snake_case , speech_processor=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , unet=_snake_case , scheduler=_snake_case , feature_extractor=_snake_case , ) def lowerCamelCase ( self : Optional[int] , _snake_case : Optional[Union[str, int]] = "auto"): """simple docstring""" if slice_size == "auto": UpperCAmelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" self.enable_attention_slicing(_snake_case) @torch.no_grad() def __call__( self : Optional[Any] , _snake_case : str , _snake_case : Optional[Any]=16000 , _snake_case : int = 512 , _snake_case : int = 512 , _snake_case : int = 50 , _snake_case : float = 7.5 , _snake_case : Optional[Union[str, List[str]]] = None , _snake_case : Optional[int] = 1 , _snake_case : float = 0.0 , _snake_case : Optional[torch.Generator] = None , _snake_case : Optional[torch.FloatTensor] = None , _snake_case : Optional[str] = "pil" , _snake_case : bool = True , _snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _snake_case : int = 1 , **_snake_case : str , ): """simple docstring""" UpperCAmelCase_ = self.speech_processor.feature_extractor( _snake_case , return_tensors='''pt''' , sampling_rate=_snake_case).input_features.to(self.device) UpperCAmelCase_ = self.speech_model.generate(_snake_case , max_length=480000) UpperCAmelCase_ = self.speech_processor.tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case , normalize=_snake_case)[ 0 ] if isinstance(_snake_case , _snake_case): UpperCAmelCase_ = 1 elif isinstance(_snake_case , _snake_case): UpperCAmelCase_ = len(_snake_case) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(_snake_case)}""") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_snake_case , _snake_case) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_snake_case)}.""") # get prompt text embeddings UpperCAmelCase_ = self.tokenizer( _snake_case , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""") UpperCAmelCase_ = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase_ = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = text_embeddings.shape UpperCAmelCase_ = text_embeddings.repeat(1 , _snake_case , 1) UpperCAmelCase_ = text_embeddings.view(bs_embed * num_images_per_prompt , _snake_case , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase_ = 42 if negative_prompt is None: UpperCAmelCase_ = [''''''] * batch_size elif type(_snake_case) is not type(_snake_case): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(_snake_case)} !=""" F""" {type(_snake_case)}.""") elif isinstance(_snake_case , _snake_case): UpperCAmelCase_ = [negative_prompt] elif batch_size != len(_snake_case): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(_snake_case)}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''') else: UpperCAmelCase_ = negative_prompt UpperCAmelCase_ = text_input_ids.shape[-1] UpperCAmelCase_ = self.tokenizer( _snake_case , padding='''max_length''' , max_length=_snake_case , truncation=_snake_case , return_tensors='''pt''' , ) UpperCAmelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ = uncond_embeddings.shape[1] UpperCAmelCase_ = uncond_embeddings.repeat(1 , _snake_case , 1) UpperCAmelCase_ = uncond_embeddings.view(batch_size * num_images_per_prompt , _snake_case , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase_ = torch.randn(_snake_case , generator=_snake_case , device='''cpu''' , dtype=_snake_case).to( self.device) else: UpperCAmelCase_ = torch.randn(_snake_case , generator=_snake_case , device=self.device , dtype=_snake_case) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""") UpperCAmelCase_ = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(_snake_case) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase_ = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (ฮท) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to ฮท in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase_ = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys()) UpperCAmelCase_ = {} if accepts_eta: UpperCAmelCase_ = eta for i, t in enumerate(self.progress_bar(_snake_case)): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ = torch.cat([latents] * 2) if do_classifier_free_guidance else latents UpperCAmelCase_ = self.scheduler.scale_model_input(_snake_case , _snake_case) # predict the noise residual UpperCAmelCase_ = self.unet(_snake_case , _snake_case , encoder_hidden_states=_snake_case).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ = noise_pred.chunk(2) UpperCAmelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_snake_case , _snake_case , _snake_case) UpperCAmelCase_ = 1 / 0.1_8_2_1_5 * latents UpperCAmelCase_ = self.vae.decode(_snake_case).sample UpperCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(_snake_case) if not return_dict: return image return StableDiffusionPipelineOutput(images=_snake_case , nsfw_content_detected=_snake_case)
51
'''simple docstring''' import datasets from .evaluate import evaluate SCREAMING_SNAKE_CASE__ = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' SCREAMING_SNAKE_CASE__ = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' SCREAMING_SNAKE_CASE__ = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def A__ ( self ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} UpperCamelCase = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] UpperCamelCase = evaluate(dataset=_SCREAMING_SNAKE_CASE , predictions=_SCREAMING_SNAKE_CASE ) return score
321
0
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __UpperCAmelCase = random.Random() def __lowerCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any]=1.0 , __magic_name__ : Any=None , __magic_name__ : int=None ): if rng is None: a__: str =global_rng a__: Dict =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : str , _a : Any , _a : Union[str, Any]=7 , _a : Any=4_0_0 , _a : Optional[int]=2_0_0_0 , _a : Tuple=1 , _a : str=0.0 , _a : Optional[Any]=1_6_0_0_0 , _a : List[str]=True , _a : Dict=8_0 , _a : List[str]=1_6 , _a : Union[str, Any]=6_4 , _a : Any="hann_window" , _a : Dict=8_0 , _a : int=7_6_0_0 , _a : List[str]=1e-10 , _a : int=True , ): a__: Tuple =parent a__: Optional[int] =batch_size a__: Dict =min_seq_length a__: Any =max_seq_length a__: Dict =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a__: str =feature_size a__: List[Any] =padding_value a__: Union[str, Any] =sampling_rate a__: List[str] =do_normalize a__: Any =num_mel_bins a__: Dict =hop_length a__: Optional[int] =win_length a__: List[Any] =win_function a__: int =fmin a__: List[str] =fmax a__: List[str] =mel_floor a__: str =return_attention_mask def _lowerCamelCase ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _lowerCamelCase ( self : str , _a : List[str]=False , _a : Optional[Any]=False ): def _flatten(_a : List[str] ): return list(itertools.chain(*_a ) ) if equal_length: a__: int =floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size a__: Any =[ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a__: Optional[int] =[np.asarray(_a ) for x in speech_inputs] return speech_inputs def _lowerCamelCase ( self : int , _a : Union[str, Any]=False , _a : str=False ): if equal_length: a__: Union[str, Any] =[floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a__: Optional[Any] =[ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a__: Optional[int] =[np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase__ ( _a , unittest.TestCase ): _lowerCAmelCase = SpeechTaFeatureExtractor def _lowerCamelCase ( self : Optional[Any] ): a__: List[str] =SpeechTaFeatureExtractionTester(self ) def _lowerCamelCase ( self : Optional[int] , _a : Union[str, Any] ): self.assertTrue(np.all(np.mean(_a , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a , axis=0 ) - 1 ) < 1e-3 ) ) def _lowerCamelCase ( self : Union[str, Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus a__: Union[str, Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a__: Union[str, Any] =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: Union[str, Any] =[np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input a__: Union[str, Any] =feat_extract(speech_inputs[0] , return_tensors="np" ).input_values a__: List[Any] =feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched a__: Tuple =feat_extract(_a , return_tensors="np" ).input_values a__: int =feat_extract(_a , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def _lowerCamelCase ( self : int ): a__: Optional[int] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__: Union[str, Any] =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: Tuple =["longest", "max_length", "do_not_pad"] a__: List[str] =[None, 1_6_0_0, None] for max_length, padding in zip(_a , _a ): a__: Optional[int] =feat_extract(_a , padding=_a , max_length=_a , return_tensors="np" ) a__: Optional[int] =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowerCamelCase ( self : Any ): a__: List[Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__: Tuple =range(8_0_0 , 1_4_0_0 , 2_0_0 ) a__: List[Any] =[floats_list((1, x) )[0] for x in lengths] a__: Optional[int] =["longest", "max_length", "do_not_pad"] a__: Optional[Any] =[None, 1_6_0_0, None] for max_length, padding in zip(_a , _a ): a__: List[Any] =feat_extract(_a , max_length=_a , padding=_a ) a__: Optional[Any] =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowerCamelCase ( self : str ): a__: List[str] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__: str =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: int =feat_extract( _a , truncation=_a , max_length=1_0_0_0 , padding="max_length" , return_tensors="np" ) a__: Any =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowerCamelCase ( self : Optional[int] ): a__: Optional[Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__: Dict =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: int =feat_extract( _a , truncation=_a , max_length=1_0_0_0 , padding="longest" , return_tensors="np" ) a__: int =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) a__: int =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: Tuple =feat_extract( _a , truncation=_a , max_length=2_0_0_0 , padding="longest" , return_tensors="np" ) a__: Optional[int] =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def _lowerCamelCase ( self : Any ): a__: List[Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__: Dict =np.random.rand(1_0_0 ).astype(np.floataa ) a__: str =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a__: int =feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) a__: int =feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _lowerCamelCase ( self : Any ): # Tests that all call wrap to encode_plus and batch_encode_plus a__: int =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a__: Optional[int] =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: Any =[np.asarray(_a ) for speech_input in speech_inputs] # Test feature size a__: Dict =feature_extractor(audio_target=_a , padding=_a , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input a__: Tuple =feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values a__: str =feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched a__: List[Any] =feature_extractor(_a , return_tensors="np" ).input_values a__: Union[str, Any] =feature_extractor(_a , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. a__: Optional[int] =[floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] a__: str =np.asarray(_a ) a__: int =feature_extractor(_a , return_tensors="np" ).input_values a__: int =feature_extractor(_a , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def _lowerCamelCase ( self : str ): a__: str =self.feat_extract_tester.prepare_inputs_for_target() a__: Dict =self.feature_extraction_class(**self.feat_extract_dict ) a__: int =feat_extract.model_input_names[0] a__: Optional[Any] =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_a ) == len(_a ) for x, y in zip(_a , processed_features[input_name] ) ) ) a__: Any =self.feat_extract_tester.prepare_inputs_for_target(equal_length=_a ) a__: List[str] =BatchFeature({input_name: speech_inputs} , tensor_type="np" ) a__: List[Any] =processed_features[input_name] if len(batch_features_input.shape ) < 3: a__: Tuple =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): a__: Tuple =self.feat_extract_tester.prepare_inputs_for_target(equal_length=_a ) a__: int =self.feature_extraction_class(**self.feat_extract_dict ) a__: Tuple =feat_extract.model_input_names[0] a__: Optional[int] =BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) a__: Optional[int] =processed_features[input_name] if len(batch_features_input.shape ) < 3: a__: Optional[Any] =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowerCamelCase ( self : str ): a__: List[Any] =self.feature_extraction_class(**self.feat_extract_dict ) a__: Tuple =self.feat_extract_tester.prepare_inputs_for_target() a__: Optional[int] =feat_extract.model_input_names[0] a__: Optional[int] =BatchFeature({input_name: speech_inputs} ) a__: Tuple =feat_extract.num_mel_bins # hack! a__: int =feat_extract.pad(_a , padding="longest" , return_tensors="np" )[input_name] a__: Dict =feat_extract.pad(_a , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowerCamelCase ( self : List[str] ): a__: Dict =self.feat_extract_dict a__: Optional[Any] =True a__: Any =self.feature_extraction_class(**_a ) a__: List[str] =self.feat_extract_tester.prepare_inputs_for_target() a__: Optional[Any] =[len(_a ) for x in speech_inputs] a__: Any =feat_extract.model_input_names[0] a__: Union[str, Any] =BatchFeature({input_name: speech_inputs} ) a__: List[Any] =feat_extract.num_mel_bins # hack! a__: Any =feat_extract.pad(_a , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , _a ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _a ) def _lowerCamelCase ( self : Any ): a__: Tuple =self.feat_extract_dict a__: Dict =True a__: Tuple =self.feature_extraction_class(**_a ) a__: str =self.feat_extract_tester.prepare_inputs_for_target() a__: List[str] =[len(_a ) for x in speech_inputs] a__: Optional[int] =feat_extract.model_input_names[0] a__: Optional[Any] =BatchFeature({input_name: speech_inputs} ) a__: List[str] =min(_a ) a__: Optional[int] =feat_extract.num_mel_bins # hack! a__: Optional[Any] =feat_extract.pad( _a , padding="max_length" , max_length=_a , truncation=_a , return_tensors="np" ) self.assertIn("attention_mask" , _a ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _lowerCamelCase ( self : List[str] , _a : List[str] ): from datasets import load_dataset a__: List[Any] =load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech a__: Union[str, Any] =ds.sort("id" ).select(range(_a ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self : Tuple ): # fmt: off a__: Optional[Any] =torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on a__: Tuple =self._load_datasamples(1 ) a__: Tuple =SpeechTaFeatureExtractor() a__: Any =feature_extractor(_a , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , _a , atol=1e-6 ) ) def _lowerCamelCase ( self : int ): # fmt: off a__: List[Any] =torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on a__: List[Any] =self._load_datasamples(1 ) a__: List[str] =SpeechTaFeatureExtractor() a__: Any =feature_extractor(audio_target=_a , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , _a , atol=1e-4 ) )
42
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase__ ( _a ): @require_torch def _lowerCamelCase ( self : Union[str, Any] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched a__: Dict ="\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " a__: Union[str, Any] ="\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " a__: Dict ="\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache a__: Tuple ="hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(_a ) BertModel.from_pretrained(_a ) BertTokenizer.from_pretrained(_a ) pipeline(task="fill-mask" , model=_a ) # baseline - just load from_pretrained with normal network a__: Optional[int] =[sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed a__: str =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__: Union[str, Any] ="1" a__: Any =subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _lowerCamelCase ( self : str ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched a__: Optional[int] ="\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " a__: Tuple ="\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " a__: List[Any] ="\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache a__: str ="hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(_a ) BertModel.from_pretrained(_a ) BertTokenizer.from_pretrained(_a ) pipeline(task="fill-mask" , model=_a ) # baseline - just load from_pretrained with normal network a__: Any =[sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed a__: Optional[Any] =self.get_env() a__: Union[str, Any] =subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _lowerCamelCase ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched a__: Tuple ="\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " a__: str ="\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " a__: int ="\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network a__: Union[str, Any] =[sys.executable, "-c", "\n".join([load, run] )] # should succeed a__: Optional[Any] =self.get_env() a__: Optional[Any] =subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # next emulate no network a__: int =[sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__: Tuple ="1" a__: Dict =subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): a__: Dict ="\nfrom transformers import pipeline\n " a__: Union[str, Any] ="\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " a__: List[str] ="\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " a__: Dict =self.get_env() a__: Optional[Any] ="1" a__: Dict =[sys.executable, "-c", "\n".join([load, mock, run] )] a__: Optional[int] =subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode" , result.stderr.decode().replace("\n" , "" ) , ) @require_torch def _lowerCamelCase ( self : Optional[int] ): a__: Optional[Any] ="\nfrom transformers import AutoModel\n " a__: str ="\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network a__: Tuple =[sys.executable, "-c", "\n".join([load, run] )] # should succeed a__: Any =self.get_env() a__: int =subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__: List[Any] ="1" a__: int =subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() )
42
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='trocr' __a =['past_key_values'] __a ={ 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : Optional[int] , __a : Any=5_02_65 , __a : Optional[int]=10_24 , __a : List[Any]=12 , __a : str=16 , __a : int=40_96 , __a : Optional[Any]="gelu" , __a : Union[str, Any]=5_12 , __a : Dict=0.1 , __a : List[str]=0.0 , __a : Union[str, Any]=0.0 , __a : Any=2 , __a : Union[str, Any]=0.02 , __a : Any=0.0 , __a : List[str]=True , __a : Optional[Any]=False , __a : Union[str, Any]=True , __a : Optional[Any]=True , __a : Any=1 , __a : List[Any]=0 , __a : Any=2 , **__a : Optional[Any] , ): _a = vocab_size _a = d_model _a = decoder_layers _a = decoder_attention_heads _a = decoder_ffn_dim _a = activation_function _a = max_position_embeddings _a = dropout _a = attention_dropout _a = activation_dropout _a = init_std _a = decoder_layerdrop _a = use_cache _a = scale_embedding _a = use_learned_position_embeddings _a = layernorm_embedding super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , )
63
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : Dict ) -> str: for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : int , lowercase : Tuple , lowercase : Optional[int] , lowercase : int=True ) -> Any: model.train() _a = model(lowercase ) _a = F.mse_loss(lowercase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowercase ) def _lowerCamelCase ( lowercase : int , lowercase : Tuple=False ) -> List[str]: set_seed(42 ) _a = RegressionModel() _a = deepcopy(lowercase ) _a = RegressionDataset(length=80 ) _a = DataLoader(lowercase , batch_size=16 ) model.to(accelerator.device ) if sched: _a = AdamW(params=model.parameters() , lr=1E-3 ) _a = AdamW(params=ddp_model.parameters() , lr=1E-3 ) _a = LambdaLR(lowercase , lr_lambda=lambda lowercase : epoch**0.65 ) _a = LambdaLR(lowercase , lr_lambda=lambda lowercase : epoch**0.65 ) # Make a copy of `model` if sched: _a , _a , _a , _a = accelerator.prepare(lowercase , lowercase , lowercase , lowercase ) else: _a , _a = accelerator.prepare(lowercase , lowercase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _lowerCamelCase ( lowercase : Optional[Any] ) -> Optional[int]: # Test when on a single CPU or GPU that the context manager does nothing _a , _a , _a = get_training_setup(lowercase ) # Use a single batch _a , _a = next(iter(lowercase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _a , _a = accelerator.gather((ddp_input, ddp_target) ) _a , _a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowercase , lowercase , lowercase , lowercase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowercase ): step_model(lowercase , lowercase , lowercase , lowercase ) else: # Sync grads step_model(lowercase , lowercase , lowercase , lowercase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowercase , lowercase , lowercase , lowercase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _a = ddp_input[torch.randperm(len(lowercase ) )] def _lowerCamelCase ( lowercase : Tuple ) -> Tuple: # Test on distributed setup that context manager behaves properly _a , _a , _a = get_training_setup(lowercase ) # Use a single batch _a , _a = next(iter(lowercase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _a , _a = accelerator.gather((ddp_input, ddp_target) ) _a , _a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowercase , lowercase , lowercase , lowercase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowercase ): step_model(lowercase , lowercase , lowercase , lowercase ) else: # Sync grads step_model(lowercase , lowercase , lowercase , lowercase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _a = ddp_input[torch.randperm(len(lowercase ) )] def _lowerCamelCase ( lowercase : List[Any]=False , lowercase : Optional[int]=False ) -> Any: _a = Accelerator( split_batches=lowercase , dispatch_batches=lowercase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _a , _a , _a = get_training_setup(lowercase ) for iteration, batch in enumerate(lowercase ): _a , _a = batch.values() # Gather the distributed inputs and targs for the base model _a , _a = accelerator.gather((ddp_input, ddp_target) ) _a , _a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowercase , lowercase , lowercase , lowercase , lowercase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowercase ): step_model(lowercase , lowercase , lowercase , lowercase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowercase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _a = ddp_input[torch.randperm(len(lowercase ) )] GradientState._reset_state() def _lowerCamelCase ( lowercase : int=False , lowercase : int=False ) -> Dict: _a = Accelerator( split_batches=lowercase , dispatch_batches=lowercase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _a , _a , _a , _a , _a , _a , _a = get_training_setup(lowercase , lowercase ) for iteration, batch in enumerate(lowercase ): _a , _a = batch.values() # Gather the distributed inputs and targs for the base model _a , _a = accelerator.gather((ddp_input, ddp_target) ) _a , _a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowercase , lowercase , lowercase , lowercase , lowercase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowercase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowercase ): step_model(lowercase , lowercase , lowercase , lowercase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' _a = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowercase )) if accelerator.num_processes > 1: check_model_parameters(lowercase , lowercase , lowercase , lowercase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def _lowerCamelCase ( ) -> Any: _a = Accelerator() _a = RegressionDataset(length=80 ) _a = DataLoader(lowercase , batch_size=16 ) _a = RegressionDataset(length=96 ) _a = DataLoader(lowercase , batch_size=16 ) _a , _a = accelerator.prepare(lowercase , lowercase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowercase ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowercase ) if iteration < len(lowercase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowercase ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowercase ) if batch_num < len(lowercase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _lowerCamelCase ( ) -> Optional[Any]: _a = Accelerator() _a = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(lowercase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(lowercase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation(lowercase , lowercase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation_with_opt_and_scheduler(lowercase , lowercase ) def _lowerCamelCase ( lowercase : Any ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
63
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a =logging.get_logger(__name__) if is_vision_available(): import PIL class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Union[str, Any] = ['pixel_values'] def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : int = True ,SCREAMING_SNAKE_CASE__ : Dict = None ,SCREAMING_SNAKE_CASE__ : List[Any] = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = True ,SCREAMING_SNAKE_CASE__ : Optional[Any] = None ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = True ,SCREAMING_SNAKE_CASE__ : str = 1 / 2_5_5 ,SCREAMING_SNAKE_CASE__ : Optional[int] = True ,SCREAMING_SNAKE_CASE__ : str = None ,SCREAMING_SNAKE_CASE__ : Tuple = None ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = True ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): super().__init__(**__lowerCAmelCase) __lowerCamelCase : Tuple = size if size is not None else {'shortest_edge': 2_2_4} __lowerCamelCase : str = get_size_dict(__lowerCAmelCase ,default_to_square=__lowerCAmelCase) __lowerCamelCase : Any = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCamelCase : str = get_size_dict(__lowerCAmelCase ,default_to_square=__lowerCAmelCase ,param_name='crop_size') __lowerCamelCase : List[str] = do_resize __lowerCamelCase : Any = size __lowerCamelCase : int = resample __lowerCamelCase : Optional[int] = do_center_crop __lowerCamelCase : Any = crop_size __lowerCamelCase : Optional[Any] = do_rescale __lowerCamelCase : Optional[Any] = rescale_factor __lowerCamelCase : Optional[Any] = do_normalize __lowerCamelCase : str = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCamelCase : Any = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCamelCase : List[Any] = do_convert_rgb def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : List[Any] = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ : Any = None ,**SCREAMING_SNAKE_CASE__ : int ,): __lowerCamelCase : Union[str, Any] = get_size_dict(__lowerCAmelCase ,default_to_square=__lowerCAmelCase) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") __lowerCamelCase : Optional[int] = get_resize_output_image_size(__lowerCAmelCase ,size=size['shortest_edge'] ,default_to_square=__lowerCAmelCase) return resize(__lowerCAmelCase ,size=__lowerCAmelCase ,resample=__lowerCAmelCase ,data_format=__lowerCAmelCase ,**__lowerCAmelCase) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Dict = None ,**SCREAMING_SNAKE_CASE__ : Optional[int] ,): __lowerCamelCase : Tuple = get_size_dict(__lowerCAmelCase) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}") return center_crop(__lowerCAmelCase ,size=(size['height'], size['width']) ,data_format=__lowerCAmelCase ,**__lowerCAmelCase) def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = None ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ,): return rescale(__lowerCAmelCase ,scale=__lowerCAmelCase ,data_format=__lowerCAmelCase ,**__lowerCAmelCase) def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Any = None ,**SCREAMING_SNAKE_CASE__ : Dict ,): return normalize(__lowerCAmelCase ,mean=__lowerCAmelCase ,std=__lowerCAmelCase ,data_format=__lowerCAmelCase ,**__lowerCAmelCase) def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = None ,SCREAMING_SNAKE_CASE__ : Any = None ,SCREAMING_SNAKE_CASE__ : List[Any] = None ,SCREAMING_SNAKE_CASE__ : Any = None ,SCREAMING_SNAKE_CASE__ : Optional[Any] = None ,SCREAMING_SNAKE_CASE__ : str = None ,SCREAMING_SNAKE_CASE__ : Any = None ,SCREAMING_SNAKE_CASE__ : List[str] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Any = None ,SCREAMING_SNAKE_CASE__ : str = None ,SCREAMING_SNAKE_CASE__ : Optional[Any] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE__ : Dict ,): __lowerCamelCase : Tuple = do_resize if do_resize is not None else self.do_resize __lowerCamelCase : Dict = size if size is not None else self.size __lowerCamelCase : Optional[int] = get_size_dict(__lowerCAmelCase ,param_name='size' ,default_to_square=__lowerCAmelCase) __lowerCamelCase : Any = resample if resample is not None else self.resample __lowerCamelCase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size __lowerCamelCase : Any = get_size_dict(__lowerCAmelCase ,param_name='crop_size' ,default_to_square=__lowerCAmelCase) __lowerCamelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase : Any = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase : Any = image_mean if image_mean is not None else self.image_mean __lowerCamelCase : List[Any] = image_std if image_std is not None else self.image_std __lowerCamelCase : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCamelCase : Union[str, Any] = make_list_of_images(__lowerCAmelCase) if not valid_images(__lowerCAmelCase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCamelCase : Optional[Any] = [convert_to_rgb(__lowerCAmelCase) for image in images] # All transformations expect numpy arrays. __lowerCamelCase : List[Any] = [to_numpy_array(__lowerCAmelCase) for image in images] if do_resize: __lowerCamelCase : int = [self.resize(image=__lowerCAmelCase ,size=__lowerCAmelCase ,resample=__lowerCAmelCase) for image in images] if do_center_crop: __lowerCamelCase : Any = [self.center_crop(image=__lowerCAmelCase ,size=__lowerCAmelCase) for image in images] if do_rescale: __lowerCamelCase : Union[str, Any] = [self.rescale(image=__lowerCAmelCase ,scale=__lowerCAmelCase) for image in images] if do_normalize: __lowerCamelCase : int = [self.normalize(image=__lowerCAmelCase ,mean=__lowerCAmelCase ,std=__lowerCAmelCase) for image in images] __lowerCamelCase : List[Any] = [to_channel_dimension_format(__lowerCAmelCase ,__lowerCAmelCase) for image in images] __lowerCamelCase : str = {'pixel_values': images} return BatchFeature(data=__lowerCAmelCase ,tensor_type=__lowerCAmelCase)
360
from ...configuration_utils import PretrainedConfig from ...utils import logging a =logging.get_logger(__name__) a ={ """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : str = '''vit_msn''' def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : int=7_6_8 ,SCREAMING_SNAKE_CASE__ : Optional[int]=1_2 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 ,SCREAMING_SNAKE_CASE__ : Tuple=3_0_7_2 ,SCREAMING_SNAKE_CASE__ : str="gelu" ,SCREAMING_SNAKE_CASE__ : Any=0.0 ,SCREAMING_SNAKE_CASE__ : str=0.0 ,SCREAMING_SNAKE_CASE__ : Any=0.02 ,SCREAMING_SNAKE_CASE__ : int=1E-06 ,SCREAMING_SNAKE_CASE__ : Optional[int]=2_2_4 ,SCREAMING_SNAKE_CASE__ : Dict=1_6 ,SCREAMING_SNAKE_CASE__ : int=3 ,SCREAMING_SNAKE_CASE__ : List[str]=True ,**SCREAMING_SNAKE_CASE__ : str ,): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : Tuple = num_hidden_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : str = attention_probs_dropout_prob __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : Tuple = image_size __lowerCamelCase : Union[str, Any] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : List[str] = qkv_bias
113
0
'''simple docstring''' __lowerCAmelCase = 'Input must be a string of 8 numbers plus letter' __lowerCAmelCase = 'TRWAGMYFPDXBNJZSQVHLCKE' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}""" raise TypeError(_SCREAMING_SNAKE_CASE ) _snake_case = spanish_id.replace("""-""" , """""" ).upper() if len(_SCREAMING_SNAKE_CASE ) != 9: raise ValueError(_SCREAMING_SNAKE_CASE ) try: _snake_case = int(spanish_id_clean[0:8] ) _snake_case = spanish_id_clean[8] except ValueError as ex: raise ValueError(_SCREAMING_SNAKE_CASE ) from ex if letter.isdigit(): raise ValueError(_SCREAMING_SNAKE_CASE ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
341
'''simple docstring''' import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = f"""class {class_name}(""" _snake_case = f"""{4 * " "}def {test_name}(""" _snake_case = f"""{8 * " "}{correct_line.split()[0]}""" _snake_case = f"""{16 * " "}{correct_line.split()[0]}""" _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = 0 _snake_case = 0 _snake_case = [] for line in lines: if line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )): _snake_case = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _snake_case = True if in_class and in_func and in_line: if ")" not in line: continue else: _snake_case = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) _snake_case = _snake_case = _snake_case = _snake_case = False else: new_lines.append(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: for line in new_lines: f.write(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if fail is not None: with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = {l.strip() for l in f.readlines()} else: _snake_case = None with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = defaultdict(_SCREAMING_SNAKE_CASE ) for line in correct_lines: _snake_case, _snake_case, _snake_case, _snake_case = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __lowerCAmelCase = parser.parse_args() main(args.correct_filename, args.fail_filename)
341
1
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> Optional[int]: return EnvironmentCommand() def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> Any: return EnvironmentCommand(args.accelerate_config_file ) class _lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def UpperCamelCase_ ( UpperCamelCase : ArgumentParser ): '''simple docstring''' _snake_case : Dict = parser.add_parser('env' ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( '--accelerate-config_file' , default=UpperCamelCase__ , help='The accelerate config file to use for the default values in the launching script.' , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self : str , UpperCamelCase : Any , *UpperCamelCase : Dict ): '''simple docstring''' _snake_case : Tuple = accelerate_config_file def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[str] = 'not installed' if is_safetensors_available(): import safetensors _snake_case : Dict = safetensors.__version__ elif importlib.util.find_spec('safetensors' ) is not None: import safetensors _snake_case : str = f"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" _snake_case : Tuple = 'not installed' _snake_case : Union[str, Any] = 'not found' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _snake_case : int = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): _snake_case : List[str] = load_config_from_file(self._accelerate_config_file ).to_dict() _snake_case : Any = ( '\n'.join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f"""\t{accelerate_config}""" ) _snake_case : Dict = 'not installed' _snake_case : List[Any] = 'NA' if is_torch_available(): import torch _snake_case : int = torch.__version__ _snake_case : Optional[int] = torch.cuda.is_available() _snake_case : Any = 'not installed' _snake_case : Any = 'NA' if is_tf_available(): import tensorflow as tf _snake_case : Any = tf.__version__ try: # deprecated in v2.1 _snake_case : Optional[int] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _snake_case : str = bool(tf.config.list_physical_devices('GPU' ) ) _snake_case : Optional[int] = 'not installed' _snake_case : Tuple = 'not installed' _snake_case : int = 'not installed' _snake_case : int = 'NA' if is_flax_available(): import flax import jax import jaxlib _snake_case : str = flax.__version__ _snake_case : Dict = jax.__version__ _snake_case : Any = jaxlib.__version__ _snake_case : List[Any] = jax.lib.xla_bridge.get_backend().platform _snake_case : Dict = { '`transformers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Huggingface_hub version': huggingface_hub.__version__, 'Safetensors version': f"""{safetensors_version}""", 'Accelerate version': f"""{accelerate_version}""", 'Accelerate config': f"""{accelerate_config_str}""", 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Tensorflow version (GPU?)': f"""{tf_version} ({tf_cuda_available})""", 'Flax version (CPU?/GPU?/TPU?)': f"""{flax_version} ({jax_backend})""", 'Jax version': f"""{jax_version}""", 'JaxLib version': f"""{jaxlib_version}""", 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def UpperCamelCase_ ( UpperCamelCase : Any ): '''simple docstring''' return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
369
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: int , lowerCAmelCase: List[Any] )-> Dict: # Initialise PyTorch model _snake_case : Dict = RemBertConfig.from_json_file(lowerCAmelCase ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase ) ) ) _snake_case : Optional[Any] = RemBertModel(lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase ) ) torch.save(model.state_dict() , lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
260
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCAmelCase_ : '''simple docstring''' _snake_case = LEDConfig _snake_case = {} _snake_case = '''gelu''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=False , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=20 , snake_case_=2 , snake_case_=1 , snake_case_=0 , snake_case_=4 , ) -> Any: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = eos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id __lowerCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __lowerCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __lowerCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A__ ( self ) -> int: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __lowerCAmelCase = prepare_led_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) __lowerCAmelCase = tf.concat( [tf.zeros_like(snake_case_ )[:, :-1], tf.ones_like(snake_case_ )[:, -1:]] , axis=-1 , ) __lowerCAmelCase = global_attention_mask return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> Optional[Any]: __lowerCAmelCase = TFLEDModel(config=snake_case_ ).get_decoder() __lowerCAmelCase = inputs_dict["""input_ids"""] __lowerCAmelCase = input_ids[:1, :] __lowerCAmelCase = inputs_dict["""attention_mask"""][:1, :] __lowerCAmelCase = 1 # first forward pass __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ )[0] __lowerCAmelCase = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1e-3 ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , ): if attention_mask is None: __lowerCAmelCase = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _snake_case = (TFLEDForConditionalGeneration,) if is_tf_available() else () _snake_case = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _snake_case = True _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Any: __lowerCAmelCase = TFLEDModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ ) def A__ ( self ) -> str: self.config_tester.run_common_tests() def A__ ( self ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = tf.zeros_like(inputs_dict["""attention_mask"""] ) __lowerCAmelCase = 2 __lowerCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , ) __lowerCAmelCase = True __lowerCAmelCase = self.model_tester.seq_length __lowerCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(snake_case_ ): __lowerCAmelCase = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(snake_case_ ): __lowerCAmelCase = [t.numpy() for t in outputs.encoder_attentions] __lowerCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" ) def A__ ( self ) -> int: pass def A__ ( self ) -> Tuple: # TODO: Head-masking not yet implement pass def lowercase (_lowerCAmelCase ): return tf.constant(_lowerCAmelCase , dtype=tf.intaa ) SCREAMING_SNAKE_CASE_ = 1E-4 @slow @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> str: __lowerCAmelCase = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led # change to intended input here __lowerCAmelCase = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __lowerCAmelCase = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __lowerCAmelCase = prepare_led_inputs_dict(model.config , snake_case_ , snake_case_ ) __lowerCAmelCase = model(**snake_case_ )[0] __lowerCAmelCase = (1, 1_024, 768) self.assertEqual(output.shape , snake_case_ ) # change to expected output here __lowerCAmelCase = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1e-3 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ) # change to intended input here __lowerCAmelCase = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __lowerCAmelCase = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __lowerCAmelCase = prepare_led_inputs_dict(model.config , snake_case_ , snake_case_ ) __lowerCAmelCase = model(**snake_case_ )[0] __lowerCAmelCase = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , snake_case_ ) # change to expected output here __lowerCAmelCase = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1e-3 , rtol=1e-3 )
301
"""simple docstring""" from math import pi, sqrt def lowercase (_lowerCAmelCase ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase (): assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = 1.0 while num: SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: ''')) print(F"gamma({num}) = {gamma(num)}") print('''\nEnter 0 to exit...''')
301
1
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def a__ ( __lowercase , __lowercase=None ) -> Optional[int]: _A = None if token is not None: _A = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} _A = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" _A = requests.get(__lowercase , headers=__lowercase ).json() _A = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _A = math.ceil((result["total_count"] - 100) / 100 ) for i in range(__lowercase ): _A = requests.get(url + f"""&page={i + 2}""" , headers=__lowercase ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def a__ ( __lowercase , __lowercase=None ) -> Dict: _A = None if token is not None: _A = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} _A = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" _A = requests.get(__lowercase , headers=__lowercase ).json() _A = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _A = math.ceil((result["total_count"] - 100) / 100 ) for i in range(__lowercase ): _A = requests.get(url + f"""&page={i + 2}""" , headers=__lowercase ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def a__ ( __lowercase , __lowercase , __lowercase , __lowercase ) -> int: _A = None if token is not None: _A = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} _A = requests.get(__lowercase , headers=__lowercase , allow_redirects=__lowercase ) _A = result.headers["Location"] _A = requests.get(__lowercase , allow_redirects=__lowercase ) _A = os.path.join(__lowercase , f"""{artifact_name}.zip""" ) with open(__lowercase , "wb" ) as fp: fp.write(response.content ) def a__ ( __lowercase , __lowercase=None ) -> List[Any]: _A = [] _A = [] _A = None with zipfile.ZipFile(__lowercase ) as z: for filename in z.namelist(): if not os.path.isdir(__lowercase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__lowercase ) as f: for line in f: _A = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _A = line[: line.index(": " )] _A = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _A = line[len("FAILED " ) :] failed_tests.append(__lowercase ) elif filename == "job_name.txt": _A = line if len(__lowercase ) != len(__lowercase ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(__lowercase )} for `errors` """ f"""and {len(__lowercase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" " problem." ) _A = None if job_name and job_links: _A = job_links.get(__lowercase , __lowercase ) # A list with elements of the form (line of error, error, failed test) _A = [x + [y] + [job_link] for x, y in zip(__lowercase , __lowercase )] return result def a__ ( __lowercase , __lowercase=None ) -> Union[str, Any]: _A = [] _A = [os.path.join(__lowercase , __lowercase ) for p in os.listdir(__lowercase ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(__lowercase , job_links=__lowercase ) ) return errors def a__ ( __lowercase , __lowercase=None ) -> Dict: _A = Counter() counter.update([x[1] for x in logs] ) _A = counter.most_common() _A = {} for error, count in counts: if error_filter is None or error not in error_filter: _A = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _A = dict(sorted(r.items() , key=lambda __lowercase : item[1]["count"] , reverse=__lowercase ) ) return r def a__ ( __lowercase ) -> str: _A = test.split("::" )[0] if test.startswith("tests/models/" ): _A = test.split("/" )[2] else: _A = None return test def a__ ( __lowercase , __lowercase=None ) -> int: _A = [(x[0], x[1], get_model(x[2] )) for x in logs] _A = [x for x in logs if x[2] is not None] _A = {x[2] for x in logs} _A = {} for test in tests: _A = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _A = counter.most_common() _A = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _A = sum(error_counts.values() ) if n_errors > 0: _A = {"count": n_errors, "errors": error_counts} _A = dict(sorted(r.items() , key=lambda __lowercase : item[1]["count"] , reverse=__lowercase ) ) return r def a__ ( __lowercase ) -> str: _A = "| no. | error | status |" _A = "|-:|:-|:-|" _A = [header, sep] for error in reduced_by_error: _A = reduced_by_error[error]["count"] _A = f"""| {count} | {error[:100]} | |""" lines.append(__lowercase ) return "\n".join(__lowercase ) def a__ ( __lowercase ) -> Optional[int]: _A = "| model | no. of errors | major error | count |" _A = "|-:|-:|-:|-:|" _A = [header, sep] for model in reduced_by_model: _A = reduced_by_model[model]["count"] _A , _A = list(reduced_by_model[model]["errors"].items() )[0] _A = f"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(__lowercase ) return "\n".join(__lowercase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") a_ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) a_ = get_job_links(args.workflow_run_id, token=args.token) a_ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: a_ = k.find(" / ") a_ = k[index + len(" / ") :] a_ = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) a_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) a_ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error a_ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors a_ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) a_ = reduce_by_error(errors) a_ = reduce_by_model(errors) a_ = make_github_table(reduced_by_error) a_ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
163
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class snake_case ( _UpperCamelCase): __UpperCamelCase = 'ctrl' __UpperCamelCase = ['past_key_values'] __UpperCamelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Tuple , a__ : Union[str, Any]=24_65_34 , a__ : int=2_56 , a__ : Any=12_80 , a__ : Optional[int]=81_92 , a__ : Union[str, Any]=48 , a__ : Optional[int]=16 , a__ : List[str]=0.1 , a__ : List[str]=0.1 , a__ : Optional[int]=1E-6 , a__ : Optional[int]=0.0_2 , a__ : Tuple=True , **a__ : List[Any] , ) -> Tuple: '''simple docstring''' _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = dff _A = resid_pdrop _A = embd_pdrop _A = layer_norm_epsilon _A = initializer_range _A = use_cache super().__init__(**a__ )
163
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _snake_case = {'tokenization_herbert': ['HerbertTokenizer']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['HerbertTokenizerFast'] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Dict = ['pixel_values'] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = True , **_UpperCamelCase , ): """simple docstring""" super().__init__(**_UpperCamelCase ) _lowercase : Dict = size if size is not None else {"shortest_edge": 224} _lowercase : List[Any] = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) _lowercase : Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowercase : Tuple = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name="crop_size" ) _lowercase : List[str] = do_resize _lowercase : Dict = size _lowercase : Any = resample _lowercase : int = do_center_crop _lowercase : Optional[Any] = crop_size _lowercase : Tuple = do_rescale _lowercase : Any = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowercase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD _lowercase : Optional[int] = do_convert_rgb def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : int = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowercase : List[str] = get_resize_output_image_size(_UpperCamelCase , size=size["shortest_edge"] , default_to_square=_UpperCamelCase ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : int = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size["height"], size["width"]) , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): """simple docstring""" _lowercase : Tuple = do_resize if do_resize is not None else self.do_resize _lowercase : Union[str, Any] = size if size is not None else self.size _lowercase : Optional[int] = get_size_dict(_UpperCamelCase , param_name="size" , default_to_square=_UpperCamelCase ) _lowercase : List[Any] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size _lowercase : Tuple = get_size_dict(_UpperCamelCase , param_name="crop_size" , default_to_square=_UpperCamelCase ) _lowercase : Any = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : Dict = image_std if image_std is not None else self.image_std _lowercase : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowercase : str = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowercase : List[Any] = [convert_to_rgb(_UpperCamelCase ) for image in images] # All transformations expect numpy arrays. _lowercase : List[Any] = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _lowercase : Optional[Any] = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _lowercase : Optional[int] = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _lowercase : Any = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _lowercase : List[Any] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _lowercase : List[Any] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _lowercase : Dict = {"pixel_values": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
250
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( __magic_name__ ): lowercase__ = FileLock(str(tmpdir / "foo.lock" ) ) lowercase__ = FileLock(str(tmpdir / "foo.lock" ) ) lowercase__ = 0.01 with locka.acquire(): with pytest.raises(__magic_name__ ): lowercase__ = time.time() locka.acquire(__magic_name__ ) assert time.time() - _start > timeout def _A ( __magic_name__ ): lowercase__ = "a" * 1000 + ".lock" lowercase__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(__magic_name__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 lowercase__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__magic_name__ ): locka.acquire(0 )
201
def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): if height >= 1: move_tower(height - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) move_disk(__magic_name__ , __magic_name__ ) move_tower(height - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) def _A ( __magic_name__ , __magic_name__ ): print("moving disk from" , __magic_name__ , "to" , __magic_name__ ) def _A ( ): lowercase__ = int(input("Height of hanoi: " ).strip() ) move_tower(__magic_name__ , "A" , "B" , "C" ) if __name__ == "__main__": main()
201
1
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _UpperCamelCase = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> List[Any]: '''simple docstring''' __snake_case : Optional[Any] = tokenizer __snake_case : Any = dataset __snake_case : Optional[int] = len(UpperCAmelCase__ ) if n_tasks is None else n_tasks __snake_case : List[Any] = n_copies def __iter__( self ) -> Tuple: '''simple docstring''' __snake_case : Any = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) __snake_case : Dict = self.tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : str = start_length __snake_case : List[str] = eof_strings __snake_case : str = tokenizer def __call__( self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' __snake_case : Dict = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __snake_case : List[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase__ ) def lowerCAmelCase__( lowercase : List[Any] ) -> int: __snake_case : List[str] = re.split("(%s)" % "|".join(UpperCamelCase_ ) , UpperCamelCase_ ) # last string should be "" return "".join(string_list[:-2] ) def lowerCAmelCase__( lowercase : Dict , lowercase : Dict , lowercase : Tuple , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : List[Any]=20 , **lowercase : int ) -> int: __snake_case : List[Any] = defaultdict(UpperCamelCase_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(UpperCamelCase_ ) ): with torch.no_grad(): __snake_case : Optional[Any] = batch["ids"].shape[-1] __snake_case : int = accelerator.unwrap_model(UpperCamelCase_ ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=UpperCamelCase_ , **UpperCamelCase_ ) # each task is generated batch_size times __snake_case : Dict = batch["task_id"].repeat(UpperCamelCase_ ) __snake_case : List[str] = accelerator.pad_across_processes( UpperCamelCase_ , dim=1 , pad_index=tokenizer.pad_token_id ) __snake_case , __snake_case : Tuple = accelerator.gather((generated_tokens, generated_tasks) ) __snake_case : Tuple = generated_tokens.cpu().numpy() __snake_case : int = generated_tasks.cpu().numpy() for task, generated_tokens in zip(UpperCamelCase_ , UpperCamelCase_ ): gen_token_dict[task].append(UpperCamelCase_ ) __snake_case : Dict = [[] for _ in range(UpperCamelCase_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __snake_case : Optional[int] = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) code_gens[task].append(remove_last_block(UpperCamelCase_ ) ) return code_gens def lowerCAmelCase__( ) -> Dict: __snake_case : Any = HfArgumentParser(UpperCamelCase_ ) __snake_case : Any = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __snake_case : Tuple = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __snake_case : Optional[int] = "false" if args.num_workers is None: __snake_case : Optional[int] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __snake_case : str = Accelerator() set_seed(args.seed , device_specific=UpperCamelCase_ ) # Load model and tokenizer __snake_case : str = AutoTokenizer.from_pretrained(args.model_ckpt ) __snake_case : Optional[Any] = tokenizer.eos_token __snake_case : Union[str, Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __snake_case : Dict = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , UpperCamelCase_ , UpperCamelCase_ )] ), } # Load evaluation dataset and metric __snake_case : Tuple = load_dataset("openai_humaneval" ) __snake_case : List[str] = load_metric("code_eval" ) __snake_case : List[str] = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) __snake_case : int = args.n_samples // args.batch_size __snake_case : Optional[int] = TokenizedDataset(UpperCamelCase_ , human_eval["test"] , n_copies=UpperCamelCase_ , n_tasks=UpperCamelCase_ ) # do not confuse args.batch_size, which is actually the num_return_sequences __snake_case : Any = DataLoader(UpperCamelCase_ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __snake_case : Dict = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception __snake_case , __snake_case : Tuple = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ ) __snake_case : Dict = complete_code( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , n_tasks=UpperCamelCase_ , batch_size=args.batch_size , **UpperCamelCase_ , ) if accelerator.is_main_process: __snake_case : List[Any] = [] for task in tqdm(range(UpperCamelCase_ ) ): __snake_case : Tuple = human_eval["test"][task]["test"] __snake_case : Optional[Any] = f"""check({human_eval["test"][task]["entry_point"]})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric __snake_case , __snake_case : int = code_eval_metric.compute( references=UpperCamelCase_ , predictions=UpperCamelCase_ , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
326
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, *, # begin keyword-only arguments UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ): __lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) __lowercase = len(self.symbols ) def __eq__( self : List[str], UpperCAmelCase__ : Dict ): return self.indices == other.indices def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ): return len(self.symbols ) def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ): return sym in self.indices @classmethod def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ): if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowercase ( self : Any, UpperCAmelCase__ : str ): return 0 def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): try: with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: __lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase ,__lowercase = line.rsplit(" ", 1 ) else: __lowercase = False __lowercase = int(UpperCAmelCase__ ) __lowercase = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _A ( UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items()) __lowercase = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowercase = d[k] # restore return da def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase_): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""") __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = chkpt["cfg"]["model"] # dicts __lowercase = os.path.join(UpperCamelCase_, "dict.txt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {dict_file} does not exist!""") __lowercase = Dictionary.load(UpperCamelCase_) __lowercase = rewrite_dict_keys(src_dict.indices) __lowercase = len(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"]) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase_, "bpecodes") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""") __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(UpperCamelCase_, UpperCamelCase_) # model config __lowercase = os.path.join(UpperCamelCase_, "config.json") __lowercase = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # tokenizer config __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) __lowercase = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # model __lowercase = chkpt["model"] # remove unneeded keys __lowercase = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase_, UpperCamelCase_) __lowercase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): __lowercase = model_state_dict.pop(UpperCamelCase_) else: __lowercase = model_state_dict.pop(UpperCamelCase_) __lowercase = BioGptConfig.from_pretrained(UpperCamelCase_) __lowercase = BioGptForCausalLM(UpperCamelCase_) # check that it loads ok model_new.load_state_dict(UpperCamelCase_) # save __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(UpperCamelCase_, UpperCamelCase_) print("Conversion is done!") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
17
0
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant โ„ (H bar), speed of light C, value of # Pi and the function _UpperCamelCase: Optional[Any] = 1.0_5_4_5_7_1_8_1_7e-3_4 # unit of โ„ : J * s _UpperCamelCase: Any = 3e8 # unit of c : m * s^-1 def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> dict[str, float]: '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: lowercase : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_40 * (distance) ** 4 ) return {"force": force} elif area == 0: lowercase : List[Any] = (2_40 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowercase : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
53
"""simple docstring""" def lowercase__ ( _UpperCAmelCase ) -> int: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowercase : List[Any] = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_UpperCAmelCase ) else: lowercase : str = sylvester(number - 1 ) lowercase : Union[str, Any] = num - 1 lowercase : List[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
53
1
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = '''''' for word_or_phrase in separated: if not isinstance(lowerCAmelCase__, lowerCAmelCase__): raise Exception('''join() accepts only strings to be joined''') joined += word_or_phrase + separator return joined.strip(lowerCAmelCase__) if __name__ == "__main__": from doctest import testmod testmod()
174
"""simple docstring""" def lowercase ( lowerCAmelCase__ : list ) -> bool: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(lowerCAmelCase__ ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(lowerCAmelCase__ ) == 1: return True __a = series[1] - series[0] for index in range(len(lowerCAmelCase__ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def lowercase ( lowerCAmelCase__ : list ) -> float: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(lowerCAmelCase__ ) == 0: raise ValueError('''Input list must be a non empty list''' ) __a = 0 for val in series: answer += val return answer / len(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : Optional[Any] = OrderedDict( [ ('audio-spectrogram-transformer', 'ASTFeatureExtractor'), ('beit', 'BeitFeatureExtractor'), ('chinese_clip', 'ChineseCLIPFeatureExtractor'), ('clap', 'ClapFeatureExtractor'), ('clip', 'CLIPFeatureExtractor'), ('clipseg', 'ViTFeatureExtractor'), ('conditional_detr', 'ConditionalDetrFeatureExtractor'), ('convnext', 'ConvNextFeatureExtractor'), ('cvt', 'ConvNextFeatureExtractor'), ('data2vec-audio', 'Wav2Vec2FeatureExtractor'), ('data2vec-vision', 'BeitFeatureExtractor'), ('deformable_detr', 'DeformableDetrFeatureExtractor'), ('deit', 'DeiTFeatureExtractor'), ('detr', 'DetrFeatureExtractor'), ('dinat', 'ViTFeatureExtractor'), ('donut-swin', 'DonutFeatureExtractor'), ('dpt', 'DPTFeatureExtractor'), ('encodec', 'EncodecFeatureExtractor'), ('flava', 'FlavaFeatureExtractor'), ('glpn', 'GLPNFeatureExtractor'), ('groupvit', 'CLIPFeatureExtractor'), ('hubert', 'Wav2Vec2FeatureExtractor'), ('imagegpt', 'ImageGPTFeatureExtractor'), ('layoutlmv2', 'LayoutLMv2FeatureExtractor'), ('layoutlmv3', 'LayoutLMv3FeatureExtractor'), ('levit', 'LevitFeatureExtractor'), ('maskformer', 'MaskFormerFeatureExtractor'), ('mctct', 'MCTCTFeatureExtractor'), ('mobilenet_v1', 'MobileNetV1FeatureExtractor'), ('mobilenet_v2', 'MobileNetV2FeatureExtractor'), ('mobilevit', 'MobileViTFeatureExtractor'), ('nat', 'ViTFeatureExtractor'), ('owlvit', 'OwlViTFeatureExtractor'), ('perceiver', 'PerceiverFeatureExtractor'), ('poolformer', 'PoolFormerFeatureExtractor'), ('regnet', 'ConvNextFeatureExtractor'), ('resnet', 'ConvNextFeatureExtractor'), ('segformer', 'SegformerFeatureExtractor'), ('sew', 'Wav2Vec2FeatureExtractor'), ('sew-d', 'Wav2Vec2FeatureExtractor'), ('speech_to_text', 'Speech2TextFeatureExtractor'), ('speecht5', 'SpeechT5FeatureExtractor'), ('swiftformer', 'ViTFeatureExtractor'), ('swin', 'ViTFeatureExtractor'), ('swinv2', 'ViTFeatureExtractor'), ('table-transformer', 'DetrFeatureExtractor'), ('timesformer', 'VideoMAEFeatureExtractor'), ('tvlt', 'TvltFeatureExtractor'), ('unispeech', 'Wav2Vec2FeatureExtractor'), ('unispeech-sat', 'Wav2Vec2FeatureExtractor'), ('van', 'ConvNextFeatureExtractor'), ('videomae', 'VideoMAEFeatureExtractor'), ('vilt', 'ViltFeatureExtractor'), ('vit', 'ViTFeatureExtractor'), ('vit_mae', 'ViTFeatureExtractor'), ('vit_msn', 'ViTFeatureExtractor'), ('wav2vec2', 'Wav2Vec2FeatureExtractor'), ('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'), ('wavlm', 'Wav2Vec2FeatureExtractor'), ('whisper', 'WhisperFeatureExtractor'), ('xclip', 'CLIPFeatureExtractor'), ('yolos', 'YolosFeatureExtractor'), ] ) _UpperCamelCase : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def snake_case (A_ :str ): '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a : Optional[int] = model_type_to_module_name(lowerCamelCase__ ) a : List[Any] = importlib.import_module(f'''.{module_name}''' , 'transformers.models' ) try: return getattr(lowerCamelCase__ , lowerCamelCase__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowerCamelCase__ , '__name__' , lowerCamelCase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a : str = importlib.import_module('transformers' ) if hasattr(lowerCamelCase__ , lowerCamelCase__ ): return getattr(lowerCamelCase__ , lowerCamelCase__ ) return None def snake_case (A_ :Union[str, os.PathLike] , A_ :Optional[Union[str, os.PathLike]] = None , A_ :bool = False , A_ :bool = False , A_ :Optional[Dict[str, str]] = None , A_ :Optional[Union[bool, str]] = None , A_ :Optional[str] = None , A_ :bool = False , **A_ :Optional[int] , ): '''simple docstring''' a : Dict = get_file_from_repo( lowerCamelCase__ , lowerCamelCase__ , cache_dir=lowerCamelCase__ , force_download=lowerCamelCase__ , resume_download=lowerCamelCase__ , proxies=lowerCamelCase__ , use_auth_token=lowerCamelCase__ , revision=lowerCamelCase__ , local_files_only=lowerCamelCase__ , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(lowerCamelCase__ , encoding='utf-8' ) as reader: return json.load(lowerCamelCase__ ) class snake_case : def __init__( self : Optional[int] ): '''simple docstring''' raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(A ) def lowerCamelCase__ ( cls : Union[str, Any] , A : List[str] , **A : int ): '''simple docstring''' a : str = kwargs.pop('config' , A ) a : Dict = kwargs.pop('trust_remote_code' , A ) a : List[str] = True a, a : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(A , **A ) a : List[Any] = config_dict.get('feature_extractor_type' , A ) a : Tuple = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): a : Union[str, Any] = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A ): a : List[str] = AutoConfig.from_pretrained(A , **A ) # It could be in `config.feature_extractor_type`` a : str = getattr(A , 'feature_extractor_type' , A ) if hasattr(A , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: a : Optional[int] = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: a : Any = feature_extractor_class_from_name(A ) a : Dict = feature_extractor_auto_map is not None a : int = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING a : str = resolve_trust_remote_code( A , A , A , A ) if has_remote_code and trust_remote_code: a : Any = get_class_from_dynamic_module( A , A , **A ) a : List[str] = kwargs.pop('code_revision' , A ) if os.path.isdir(A ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A ) in FEATURE_EXTRACTOR_MAPPING: a : Dict = FEATURE_EXTRACTOR_MAPPING[type(A )] return feature_extractor_class.from_dict(A , **A ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCamelCase__ ( A : List[str] , A : List[Any] ): '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(A , A )
350
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : int = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class snake_case ( UpperCAmelCase , unittest.TestCase ): __magic_name__ = BartphoTokenizer __magic_name__ = False __magic_name__ = True def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() a : Any = ['โ–This', 'โ–is', 'โ–a', 'โ–t', 'est'] a : List[Any] = dict(zip(A , range(len(A ) ) ) ) a : int = {'unk_token': '<unk>'} a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) a : Optional[int] = BartphoTokenizer(A , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : Dict , **A : str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **A ) def lowerCamelCase__ ( self : Optional[int] , A : Dict ): '''simple docstring''' a : Tuple = 'This is a lร  test' a : List[Any] = 'This is a<unk><unk> test' return input_text, output_text def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : Tuple = BartphoTokenizer(A , self.monolingual_vocab_file , **self.special_tokens_map ) a : int = 'This is a lร  test' a : int = 'โ–This โ–is โ–a โ–l ร  โ–t est'.split() a : str = tokenizer.tokenize(A ) self.assertListEqual(A , A ) a : Union[str, Any] = tokens + [tokenizer.unk_token] a : Dict = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
186
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger('transformers.models.speecht5') UpperCAmelCase_ = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } UpperCAmelCase_ = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } UpperCAmelCase_ = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } UpperCAmelCase_ = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } UpperCAmelCase_ = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } UpperCAmelCase_ = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } UpperCAmelCase_ = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } UpperCAmelCase_ = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } UpperCAmelCase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCAmelCase_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase_ = [] UpperCAmelCase_ = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] UpperCAmelCase_ = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] UpperCAmelCase_ = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] UpperCAmelCase_ = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def lowerCAmelCase_ ( __UpperCAmelCase: Dict , __UpperCAmelCase: Dict , __UpperCAmelCase: List[str] , __UpperCAmelCase: str , __UpperCAmelCase: int ) -> int: for attribute in key.split('''.''' ): UpperCamelCase__ : Optional[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCamelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCamelCase__ : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCamelCase__ : str = value elif weight_type == "weight_g": UpperCamelCase__ : Tuple = value elif weight_type == "weight_v": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "bias": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "running_mean": UpperCamelCase__ : List[Any] = value elif weight_type == "running_var": UpperCamelCase__ : Optional[Any] = value elif weight_type == "num_batches_tracked": UpperCamelCase__ : Dict = value else: UpperCamelCase__ : List[Any] = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Optional[Any] ) -> int: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCamelCase__ : Optional[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: Dict , __UpperCAmelCase: str ) -> int: UpperCamelCase__ : Optional[int] = [] if task == "s2t": UpperCamelCase__ : int = hf_model.speechta.encoder.prenet.feature_encoder UpperCamelCase__ : Optional[Any] = MAPPING_S2T UpperCamelCase__ : Optional[Any] = IGNORE_KEYS_S2T elif task == "t2s": UpperCamelCase__ : Any = None UpperCamelCase__ : Dict = MAPPING_T2S UpperCamelCase__ : str = IGNORE_KEYS_T2S elif task == "s2s": UpperCamelCase__ : Union[str, Any] = hf_model.speechta.encoder.prenet.feature_encoder UpperCamelCase__ : Tuple = MAPPING_S2S UpperCamelCase__ : Any = IGNORE_KEYS_S2S else: raise ValueError(f"Unsupported task: {task}" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(f"{name} was ignored" ) continue UpperCamelCase__ : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCamelCase__ : Optional[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: UpperCamelCase__ : Optional[int] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCamelCase__ : Tuple = True if "*" in mapped_key: UpperCamelCase__ : List[Any] = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCamelCase__ : Dict = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCamelCase__ : Optional[int] = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : List[Any] = 'bias' elif "weight" in name: UpperCamelCase__ : Optional[Any] = 'weight' elif "running_mean" in name: UpperCamelCase__ : Optional[Any] = 'running_mean' elif "running_var" in name: UpperCamelCase__ : Optional[Any] = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase__ : Union[str, Any] = 'num_batches_tracked' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"Unused weights: {unused_weights}" ) def lowerCAmelCase_ ( __UpperCAmelCase: List[str] , __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Dict , __UpperCAmelCase: Tuple ) -> List[Any]: UpperCamelCase__ : List[str] = full_name.split('''conv_layers.''' )[-1] UpperCamelCase__ : Optional[Any] = name.split('''.''' ) UpperCamelCase__ : str = int(items[0] ) UpperCamelCase__ : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCamelCase__ : Optional[int] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCamelCase__ : List[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) UpperCamelCase__ : List[str] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) UpperCamelCase__ : List[str] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] , __UpperCAmelCase: Dict , __UpperCAmelCase: int , __UpperCAmelCase: Optional[int]=None , __UpperCAmelCase: Any=None , __UpperCAmelCase: Tuple=None , ) -> List[Any]: if config_path is not None: UpperCamelCase__ : int = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCamelCase__ : int = SpeechTaConfig() if task == "s2t": UpperCamelCase__ : Dict = config.max_text_positions UpperCamelCase__ : Dict = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": UpperCamelCase__ : Any = 1876 UpperCamelCase__ : int = 600 UpperCamelCase__ : Dict = config.max_speech_positions UpperCamelCase__ : Any = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": UpperCamelCase__ : Dict = 1876 UpperCamelCase__ : str = config.max_speech_positions UpperCamelCase__ : str = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(f"Unknown task name: {task}" ) if vocab_path: UpperCamelCase__ : Union[str, Any] = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken('''<mask>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) UpperCamelCase__ : Dict = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) UpperCamelCase__ : str = SpeechTaFeatureExtractor() UpperCamelCase__ : Optional[int] = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCamelCase__ : List[Any] = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the ๐Ÿค— hub.' ) UpperCAmelCase_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
201
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : int = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Any = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowercase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
224
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
163
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a_ = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) a_ = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def a__ ( __lowercase , __lowercase , __lowercase ) -> Optional[Any]: _A = SavedModel() _A = [] with open(os.path.join(__lowercase , "utils" , "tf_ops" , "onnx.json" ) ) as f: _A = json.load(__lowercase )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__lowercase )] ) with open(__lowercase , "rb" ) as f: saved_model.ParseFromString(f.read() ) _A = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A = sorted(__lowercase ) _A = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__lowercase ) if strict and len(__lowercase ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(__lowercase ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*__lowercase , sep="\n" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) a_ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
163
1
import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCamelCase : Any = """ import os """ _lowerCamelCase : Optional[int] = """ def foo(): import os return False """ _lowerCamelCase : List[Any] = """ def foo(): def bar(): if True: import os return False return bar() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : Union[str, Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ _lowerCamelCase : str = """ import os try: import bar except: raise ValueError() """ _lowerCamelCase : Optional[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ _lowerCamelCase : Any = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _lowerCamelCase : Dict = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = os.path.join(lowercase_ , '''test_file.py''' ) with open(lowercase_ , '''w''' ) as _tmp_file: _tmp_file.write(lowercase_ ) A__ = get_imports(lowercase_ ) assert parsed_imports == ["os"]
14
"""simple docstring""" __lowercase = { """Pillow""": """Pillow<10.0.0""", """accelerate""": """accelerate>=0.20.3""", """av""": """av==9.2.0""", """beautifulsoup4""": """beautifulsoup4""", """black""": """black~=23.1""", """codecarbon""": """codecarbon==1.2.0""", """cookiecutter""": """cookiecutter==1.7.3""", """dataclasses""": """dataclasses""", """datasets""": """datasets!=2.5.0""", """decord""": """decord==0.6.0""", """deepspeed""": """deepspeed>=0.9.3""", """diffusers""": """diffusers""", """dill""": """dill<0.3.5""", """evaluate""": """evaluate>=0.2.0""", """fairscale""": """fairscale>0.3""", """faiss-cpu""": """faiss-cpu""", """fastapi""": """fastapi""", """filelock""": """filelock""", """flax""": """flax>=0.4.1,<=0.7.0""", """ftfy""": """ftfy""", """fugashi""": """fugashi>=1.0""", """GitPython""": """GitPython<3.1.19""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""", """importlib_metadata""": """importlib_metadata""", """ipadic""": """ipadic>=1.0.0,<2.0""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""", """jaxlib""": """jaxlib>=0.1.65,<=0.4.13""", """jieba""": """jieba""", """kenlm""": """kenlm""", """keras-nlp""": """keras-nlp>=0.3.1""", """librosa""": """librosa""", """nltk""": """nltk""", """natten""": """natten>=0.14.6""", """numpy""": """numpy>=1.17""", """onnxconverter-common""": """onnxconverter-common""", """onnxruntime-tools""": """onnxruntime-tools>=1.4.2""", """onnxruntime""": """onnxruntime>=1.4.0""", """opencv-python""": """opencv-python""", """optuna""": """optuna""", """optax""": """optax>=0.0.8,<=0.1.4""", """packaging""": """packaging>=20.0""", """parameterized""": """parameterized""", """phonemizer""": """phonemizer""", """protobuf""": """protobuf""", """psutil""": """psutil""", """pyyaml""": """pyyaml>=5.1""", """pydantic""": """pydantic<2""", """pytest""": """pytest>=7.2.0""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """python""": """python>=3.8.0""", """ray[tune]""": """ray[tune]""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """rhoknp""": """rhoknp>=1.1.0,<1.3.1""", """rjieba""": """rjieba""", """rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""", """ruff""": """ruff>=0.0.241,<=0.0.259""", """sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""", """sacremoses""": """sacremoses""", """safetensors""": """safetensors>=0.3.1""", """sagemaker""": """sagemaker>=2.31.0""", """scikit-learn""": """scikit-learn""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """sigopt""": """sigopt""", """starlette""": """starlette""", """sudachipy""": """sudachipy>=0.6.6""", """sudachidict_core""": """sudachidict_core>=20220729""", """tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""", """tensorflow""": """tensorflow>=2.6,<2.14""", """tensorflow-text""": """tensorflow-text<2.14""", """tf2onnx""": """tf2onnx""", """timeout-decorator""": """timeout-decorator""", """timm""": """timm""", """tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""", """torch""": """torch>=1.9,!=1.12.0""", """torchaudio""": """torchaudio""", """torchvision""": """torchvision""", """pyctcdecode""": """pyctcdecode>=0.4.0""", """tqdm""": """tqdm>=4.27""", """unidic""": """unidic>=1.0.2""", """unidic_lite""": """unidic_lite>=1.0.7""", """urllib3""": """urllib3<2.0.0""", """uvicorn""": """uvicorn""", }
40
0
"""simple docstring""" import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class __lowerCAmelCase ( unittest.TestCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=56 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=7 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=4 , __UpperCAmelCase="block_sparse" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=3 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_attention_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_choices __UpperCamelCase = rescale_embeddings __UpperCamelCase = attention_type __UpperCamelCase = use_bias __UpperCamelCase = block_size __UpperCamelCase = num_random_blocks def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_attention_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ): '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = model_class(__UpperCAmelCase ) @jax.jit def model_jitted(__UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ): return model(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , **__UpperCAmelCase ) with self.subTest('JIT Enabled' ): __UpperCamelCase = model_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __UpperCamelCase = model_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1E-5 , __UpperCAmelCase="outputs" , __UpperCAmelCase=None ): '''simple docstring''' if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
365
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : Dict = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "wavlm" def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=320 , __UpperCAmelCase=800 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.0_5 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=(512, 512, 512, 512, 1500) , __UpperCAmelCase=(5, 3, 3, 1, 1) , __UpperCAmelCase=(1, 2, 3, 1, 1) , __UpperCAmelCase=512 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) __UpperCamelCase = hidden_size __UpperCamelCase = feat_extract_norm __UpperCamelCase = feat_extract_activation __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = conv_bias __UpperCamelCase = num_buckets __UpperCamelCase = max_bucket_distance __UpperCamelCase = num_conv_pos_embeddings __UpperCamelCase = num_conv_pos_embedding_groups __UpperCamelCase = len(self.conv_dim ) __UpperCamelCase = num_hidden_layers __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = feat_proj_dropout __UpperCamelCase = final_dropout __UpperCamelCase = layerdrop __UpperCamelCase = layer_norm_eps __UpperCamelCase = initializer_range __UpperCamelCase = num_ctc_classes __UpperCamelCase = vocab_size __UpperCamelCase = do_stable_layer_norm __UpperCamelCase = use_weighted_layer_sum __UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations __UpperCamelCase = num_codevectors_per_group __UpperCamelCase = num_codevector_groups __UpperCamelCase = contrastive_logits_temperature __UpperCamelCase = num_negatives __UpperCamelCase = codevector_dim __UpperCamelCase = proj_codevector_dim __UpperCamelCase = diversity_loss_weight # ctc loss __UpperCamelCase = ctc_loss_reduction __UpperCamelCase = ctc_zero_infinity # adapter __UpperCamelCase = add_adapter __UpperCamelCase = adapter_kernel_size __UpperCamelCase = adapter_stride __UpperCamelCase = num_adapter_layers __UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
263
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""ViTFeatureExtractor"""] lowerCamelCase__ = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
212
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class A__ ( __magic_name__ ): lowercase = 'gptj' lowercase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[Any] , a : Dict=50_400 , a : Union[str, Any]=2_048 , a : List[str]=4_096 , a : Any=28 , a : Optional[Any]=16 , a : Optional[Any]=64 , a : int=None , a : Any="gelu_new" , a : Union[str, Any]=0.0 , a : List[Any]=0.0 , a : List[Any]=0.0 , a : Optional[Any]=1E-5 , a : Optional[int]=0.0_2 , a : int=True , a : str=50_256 , a : str=50_256 , a : Any=False , **a : Dict , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = vocab_size lowerCAmelCase__ : List[Any] = n_positions lowerCAmelCase__ : str = n_embd lowerCAmelCase__ : str = n_layer lowerCAmelCase__ : str = n_head lowerCAmelCase__ : Dict = n_inner lowerCAmelCase__ : Union[str, Any] = rotary_dim lowerCAmelCase__ : Optional[int] = activation_function lowerCAmelCase__ : Any = resid_pdrop lowerCAmelCase__ : int = embd_pdrop lowerCAmelCase__ : int = attn_pdrop lowerCAmelCase__ : List[Any] = layer_norm_epsilon lowerCAmelCase__ : str = initializer_range lowerCAmelCase__ : Dict = use_cache lowerCAmelCase__ : str = bos_token_id lowerCAmelCase__ : int = eos_token_id super().__init__( bos_token_id=a , eos_token_id=a , tie_word_embeddings=a , **a ) class A__ ( __magic_name__ ): def __init__( self : str , a : PretrainedConfig , a : str = "default" , a : List[PatchingSpec] = None , a : bool = False , ): '''simple docstring''' super().__init__(a , task=a , patching_specs=a , use_past=a ) if not getattr(self._config , 'pad_token_id' , a ): # TODO: how to do that better? lowerCAmelCase__ : int = 0 @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Dict = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(a , direction='inputs' ) lowerCAmelCase__ : Optional[Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: lowerCAmelCase__ : Tuple = {0: 'batch', 1: 'sequence'} return common_inputs @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return self._config.n_layer @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return self._config.n_head def _lowerCamelCase ( self : Tuple , a : PreTrainedTokenizer , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ): '''simple docstring''' lowerCAmelCase__ : Tuple = super(a , self ).generate_dummy_inputs( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ : Optional[int] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCAmelCase__ , lowerCAmelCase__ : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCAmelCase__ : Optional[int] = seqlen + 2 lowerCAmelCase__ : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase__ : Tuple = [ (torch.zeros(a ), torch.zeros(a )) for _ in range(self.num_layers ) ] lowerCAmelCase__ : Any = common_inputs['attention_mask'] if self.use_past: lowerCAmelCase__ : List[str] = ordered_inputs['attention_mask'].dtype lowerCAmelCase__ : Optional[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(a , a , dtype=a )] , dim=1 ) return ordered_inputs @property def _lowerCamelCase ( self : int ): '''simple docstring''' return 13
212
1
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _lowerCamelCase( ) -> Union[str, Any]: '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase= '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , _UpperCamelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _lowerCamelCase( ) -> int: '''simple docstring''' assert _test_patching.open is open __lowercase= '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , _UpperCamelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _lowerCamelCase( ) -> Dict: '''simple docstring''' __lowercase= '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , _UpperCamelCase ): pass def _lowerCamelCase( ) -> List[Any]: '''simple docstring''' __lowercase= '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , _UpperCamelCase ) is None with patch_submodule(_test_patching , 'len' , _UpperCamelCase ): assert _test_patching.len is mock assert _test_patching.len is len def _lowerCamelCase( ) -> Optional[Any]: '''simple docstring''' __lowercase= '__test_patch_submodule_start_and_stop_mock__' __lowercase= patch_submodule(_test_patching , 'open' , _UpperCamelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _lowerCamelCase( ) -> Union[str, Any]: '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase= '__test_patch_submodule_successive_join__' __lowercase= '__test_patch_submodule_successive_dirname__' __lowercase= '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.rename' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.path.join' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _lowerCamelCase( ) -> int: '''simple docstring''' __lowercase= '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , _UpperCamelCase ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , _UpperCamelCase ): pass
368
def _lowerCamelCase( lowercase__ = 1_0_0_0 ) -> int: '''simple docstring''' __lowercase= 2**power __lowercase= str(lowercase__ ) __lowercase= list(lowercase__ ) __lowercase= 0 for i in list_num: sum_of_num += int(lowercase__ ) return sum_of_num if __name__ == "__main__": lowerCAmelCase = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) lowerCAmelCase = solution(power) print('''Sum of the digits is: ''', result)
304
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __lowerCAmelCase = logging.get_logger(__name__) class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : str = 'upernet' def __init__( self : List[Any] ,_UpperCAmelCase : str=None ,_UpperCAmelCase : List[Any]=512 ,_UpperCAmelCase : int=0.02 ,_UpperCAmelCase : int=[1, 2, 3, 6] ,_UpperCAmelCase : int=True ,_UpperCAmelCase : Dict=0.4 ,_UpperCAmelCase : Optional[int]=384 ,_UpperCAmelCase : Optional[Any]=256 ,_UpperCAmelCase : List[Any]=1 ,_UpperCAmelCase : List[Any]=False ,_UpperCAmelCase : Tuple=255 ,**_UpperCAmelCase : int ,): super().__init__(**_UpperCAmelCase ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _a : List[str] = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : List[Any] = backbone_config.get('model_type' ) _a : List[str] = CONFIG_MAPPING[backbone_model_type] _a : Optional[int] = config_class.from_dict(_UpperCAmelCase ) _a : Optional[int] = backbone_config _a : Union[str, Any] = hidden_size _a : str = initializer_range _a : Any = pool_scales _a : str = use_auxiliary_head _a : Tuple = auxiliary_loss_weight _a : Optional[Any] = auxiliary_in_channels _a : Union[str, Any] = auxiliary_channels _a : List[str] = auxiliary_num_convs _a : List[str] = auxiliary_concat_input _a : Any = loss_ignore_index def __lowercase ( self : Optional[int] ): _a : int = copy.deepcopy(self.__dict__ ) _a : List[Any] = self.backbone_config.to_dict() _a : Dict = self.__class__.model_type return output
89
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCAmelCase__ = logging.get_logger(__name__) enable_full_determinism() class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : Optional[int] = UNetaDModel _snake_case : List[str] = 'sample' @property def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (32, 32) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] ).to(__lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase_ ( self : List[Any] ): return (3, 32, 32) @property def lowerCAmelCase_ ( self : Optional[Any] ): return (3, 32, 32) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : int = UNetaDModel _snake_case : Optional[Any] = 'sample' @property def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = 4 _UpperCAmelCase = 4 _UpperCAmelCase = (32, 32) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] ).to(__lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase_ ( self : Optional[Any] ): return (4, 32, 32) @property def lowerCAmelCase_ ( self : Dict ): return (4, 32, 32) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__lowerCAmelCase ) _UpperCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase ) model.to(__lowerCAmelCase ) _UpperCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def lowerCAmelCase_ ( self : str ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase ) model_accelerate.to(__lowerCAmelCase ) model_accelerate.eval() _UpperCAmelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) _UpperCAmelCase = noise.to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] * noise.shape[0] ).to(__lowerCAmelCase ) _UpperCAmelCase = model_accelerate(__lowerCAmelCase , __lowerCAmelCase )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase , low_cpu_mem_usage=__lowerCAmelCase ) model_normal_load.to(__lowerCAmelCase ) model_normal_load.eval() _UpperCAmelCase = model_normal_load(__lowerCAmelCase , __lowerCAmelCase )["""sample"""] assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-3 ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(__lowerCAmelCase ) _UpperCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _UpperCAmelCase = noise.to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] * noise.shape[0] ).to(__lowerCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ).sample _UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-3 ) ) class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : Optional[Any] = UNetaDModel _snake_case : str = 'sample' @property def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : str=(32, 32) ): _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase_ ( self : Any ): return (3, 32, 32) @property def lowerCAmelCase_ ( self : Union[str, Any] ): return (3, 32, 32) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1e-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict @slow def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__lowerCAmelCase ) _UpperCAmelCase = self.dummy_input _UpperCAmelCase = floats_tensor((4, 3) + (256, 256) ).to(__lowerCAmelCase ) _UpperCAmelCase = noise _UpperCAmelCase = model(**__lowerCAmelCase ) assert image is not None, "Make sure output is not None" @slow def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(__lowerCAmelCase ) _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (256, 256) _UpperCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor(batch_size * [1e-4] ).to(__lowerCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ).sample _UpperCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -10_980.7_129, -20_028.8_535, 8_148.2_822, 2_342.2_905, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-2 ) ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(__lowerCAmelCase ) _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (32, 32) _UpperCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor(batch_size * [1e-4] ).to(__lowerCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ).sample _UpperCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-2 ) ) def lowerCAmelCase_ ( self : List[str] ): # not required for this model pass
289
0
from __future__ import annotations from decimal import Decimal from numpy import array def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: A: List[str] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(A__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix A: Any = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements A: int = [[0.0, 0.0], [0.0, 0.0]] A: int = matrix[1][1], matrix[0][0] A: Tuple = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(A__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(A__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule A: Any = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix A: str = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] A: str = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) A: Dict = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) A: Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) A: List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) A: Tuple = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) A: Any = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) A: Optional[Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) A: List[Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) A: Tuple = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) A: List[Any] = array(A__ ) for i in range(3 ): for j in range(3 ): A: Union[str, Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix A: int = array(A__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(A__ ) # Calculate the inverse of the matrix return [[float(d(A__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
351
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } UpperCamelCase = { '''camembert-base''': 512, } UpperCamelCase = '''โ–''' class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : str = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : int = CamembertTokenizer def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="</s>" , SCREAMING_SNAKE_CASE_ : int="<s>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE_ : str="<pad>" , SCREAMING_SNAKE_CASE_ : List[str]="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=["<s>NOTUSED", "</s>NOTUSED"] , **SCREAMING_SNAKE_CASE_ : Any , ) -> Any: '''simple docstring''' A: Tuple = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Any = vocab_file A: Any = False if not self.vocab_file else True def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: List[str] = [self.cls_token_id] A: List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A: List[str] = [self.sep_token_id] A: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: Dict = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
334
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class a_ ( lowerCamelCase ): lowercase = """funnel""" lowercase = { """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", } def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=[4, 4, 4] , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1e-9 , _SCREAMING_SNAKE_CASE="mean" , _SCREAMING_SNAKE_CASE="relative_shift" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = block_sizes UpperCamelCase = [1] * len(_SCREAMING_SNAKE_CASE ) if block_repeats is None else block_repeats assert len(_SCREAMING_SNAKE_CASE ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." UpperCamelCase = num_decoder_layers UpperCamelCase = d_model UpperCamelCase = n_head UpperCamelCase = d_head UpperCamelCase = d_inner UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = initializer_range UpperCamelCase = initializer_std UpperCamelCase = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." UpperCamelCase = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." UpperCamelCase = attention_type UpperCamelCase = separate_cls UpperCamelCase = truncate_seq UpperCamelCase = pool_q_only super().__init__(**_SCREAMING_SNAKE_CASE ) @property def A__ ( self ) -> List[str]: """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def A__ ( self ) -> Any: """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
321
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: UpperCamelCase = 1.5 UpperCamelCase = int(factor * num_class_images ) UpperCamelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 ) os.makedirs(F"{class_data_dir}/images" , exist_ok=__UpperCamelCase ) if len(list(Path(F"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: UpperCamelCase = client.query(text=__UpperCamelCase ) if len(__UpperCamelCase ) >= factor * num_class_images or num_images > 1E4: break else: UpperCamelCase = int(factor * num_images ) UpperCamelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 , ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = tqdm(desc="""downloading real regularization images""" , total=__UpperCamelCase ) with open(F"{class_data_dir}/caption.txt" , """w""" ) as fa, open(F"{class_data_dir}/urls.txt" , """w""" ) as fa, open( F"{class_data_dir}/images.txt" , """w""" ) as fa: while total < num_class_images: UpperCamelCase = class_images[count] count += 1 try: UpperCamelCase = requests.get(images["""url"""] ) if img.status_code == 200: UpperCamelCase = Image.open(BytesIO(img.content ) ) with open(F"{class_data_dir}/images/{total}.jpg" , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F"{class_data_dir}/images/{total}.jpg" + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowercase__ ( )-> str: UpperCamelCase = argparse.ArgumentParser("""""" , add_help=__UpperCamelCase ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=__UpperCamelCase ) return parser.parse_args() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
321
1
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A__ ( __magic_name__ , unittest.TestCase ): lowercase = BertTokenizer lowercase = BertTokenizerFast lowercase = True lowercase = True lowercase = filter_non_english def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().setUp() lowerCAmelCase__ : Union[str, Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCAmelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _lowerCamelCase ( self : Union[str, Any] , a : int ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'UNwant\u00E9d,running' lowerCAmelCase__ : int = 'unwanted, running' return input_text, output_text def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : str = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ : Optional[int] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(a , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [9, 6, 7, 12, 10, 11] ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase__ : Optional[Any] = self.get_tokenizer() lowerCAmelCase__ : List[str] = self.get_rust_tokenizer() lowerCAmelCase__ : Union[str, Any] = 'UNwant\u00E9d,running' lowerCAmelCase__ : List[Any] = tokenizer.tokenize(a ) lowerCAmelCase__ : int = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowerCAmelCase__ : Optional[int] = tokenizer.encode(a , add_special_tokens=a ) lowerCAmelCase__ : Dict = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) lowerCAmelCase__ : str = self.get_rust_tokenizer() lowerCAmelCase__ : Optional[Any] = tokenizer.encode(a ) lowerCAmelCase__ : str = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) # With lower casing lowerCAmelCase__ : int = self.get_tokenizer(do_lower_case=a ) lowerCAmelCase__ : List[str] = self.get_rust_tokenizer(do_lower_case=a ) lowerCAmelCase__ : Dict = 'UNwant\u00E9d,running' lowerCAmelCase__ : Dict = tokenizer.tokenize(a ) lowerCAmelCase__ : Optional[int] = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowerCAmelCase__ : List[Any] = tokenizer.encode(a , add_special_tokens=a ) lowerCAmelCase__ : Optional[int] = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) lowerCAmelCase__ : str = self.get_rust_tokenizer() lowerCAmelCase__ : Any = tokenizer.encode(a ) lowerCAmelCase__ : Optional[Any] = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = BasicTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(' \tHรคLLo!how \n Are yoU? ' ) , ['hรคllo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(' \tHรคLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : str = BasicTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(' \tHรคLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : str = BasicTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(' \tHรคLLo!how \n Are yoU? ' ) , ['HรคLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(' \tHรคLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = BasicTokenizer(do_lower_case=a , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = BasicTokenizer() lowerCAmelCase__ : Tuple = 'a\n\'ll !!to?\'d of, can\'t.' lowerCAmelCase__ : Optional[Any] = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(a ) , a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCAmelCase__ : Dict = {} for i, token in enumerate(a ): lowerCAmelCase__ : Union[str, Any] = i lowerCAmelCase__ : Optional[Any] = WordpieceTokenizer(vocab=a , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = self.get_tokenizer() lowerCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(a ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(a ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained('bert-base-uncased' ) lowerCAmelCase__ : List[Any] = tokenizer.encode('sequence builders' , add_special_tokens=a ) lowerCAmelCase__ : Optional[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=a ) lowerCAmelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(a ) lowerCAmelCase__ : Dict = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : Optional[int] = f'''A, naรฏve {tokenizer_r.mask_token} AllenNLP sentence.''' lowerCAmelCase__ : List[Any] = tokenizer_r.encode_plus( a , return_attention_mask=a , return_token_type_ids=a , return_offsets_mapping=a , add_special_tokens=a , ) lowerCAmelCase__ : Tuple = tokenizer_r.do_lower_case if hasattr(a , 'do_lower_case' ) else False lowerCAmelCase__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##รฏ'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = ['็š„', 'ไบบ', 'ๆœ‰'] lowerCAmelCase__ : Optional[Any] = ''.join(a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase__ : str = True lowerCAmelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : List[str] = tokenizer_p.encode(a , add_special_tokens=a ) lowerCAmelCase__ : Dict = tokenizer_r.encode(a , add_special_tokens=a ) lowerCAmelCase__ : str = tokenizer_r.convert_ids_to_tokens(a ) lowerCAmelCase__ : Tuple = tokenizer_p.convert_ids_to_tokens(a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(a , a ) self.assertListEqual(a , a ) lowerCAmelCase__ : Any = False lowerCAmelCase__ : Any = self.rust_tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : Any = self.tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : int = tokenizer_r.encode(a , add_special_tokens=a ) lowerCAmelCase__ : Optional[Any] = tokenizer_p.encode(a , add_special_tokens=a ) lowerCAmelCase__ : Tuple = tokenizer_r.convert_ids_to_tokens(a ) lowerCAmelCase__ : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(a ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase__ : Optional[int] = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(a ) ] self.assertListEqual(a , a ) self.assertListEqual(a , a )
353
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase : Optional[Any] = getLogger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = 8, lowerCamelCase = 1_0_2_4, lowerCamelCase="val", lowerCamelCase=None, lowerCamelCase=False, lowerCamelCase="summarization", lowerCamelCase=None, lowerCamelCase=1, lowerCamelCase = None, lowerCamelCase="", **lowerCamelCase, ): __lowerCAmelCase = str(lowerCAmelCase__) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''', rank=lowerCAmelCase__) __lowerCAmelCase = Path(lowerCAmelCase__) __lowerCAmelCase = save_dir.joinpath(F"""rank_{local_rank}_output.json""") torch.cuda.set_device(lowerCAmelCase__) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__).cuda() if fpaa: __lowerCAmelCase = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase__, lowerCAmelCase__) # update config with task specific params __lowerCAmelCase = generate_kwargs.pop('''num_beams''', model.config.num_beams) # AttributeError risk? if num_return_sequences > num_beams: __lowerCAmelCase = num_return_sequences __lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase__) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""") # if this is wrong, check config.model_type. if max_source_length is None: __lowerCAmelCase = tokenizer.model_max_length if prefix is None: __lowerCAmelCase = prefix or getattr(model.config, '''prefix''', '''''') or '''''' __lowerCAmelCase = SeqaSeqDataset( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, max_target_length=1_0_2_4, type_path=lowerCAmelCase__, n_obs=lowerCAmelCase__, prefix=lowerCAmelCase__, **lowerCAmelCase__, ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __lowerCAmelCase = ds.make_sortish_sampler(lowerCAmelCase__, distributed=lowerCAmelCase__, add_extra_examples=lowerCAmelCase__, shuffle=lowerCAmelCase__) __lowerCAmelCase = DataLoader(lowerCAmelCase__, sampler=lowerCAmelCase__, batch_size=lowerCAmelCase__, collate_fn=ds.collate_fn) __lowerCAmelCase = [] for batch in tqdm(lowerCAmelCase__): __lowerCAmelCase = model.generate( input_ids=batch['''input_ids'''].to(model.device), attention_mask=batch['''attention_mask'''].to(model.device), num_return_sequences=lowerCAmelCase__, num_beams=lowerCAmelCase__, **lowerCAmelCase__, ) __lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase__, skip_special_tokens=lowerCAmelCase__, clean_up_tokenization_spaces=lowerCAmelCase__) __lowerCAmelCase = batch['''ids'''] if num_return_sequences > 1: __lowerCAmelCase = chunks(lowerCAmelCase__, lowerCAmelCase__) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase__): results.append({'''pred''': pred, '''id''': ids[i].item()}) save_json(lowerCAmelCase__, lowerCAmelCase__) return results, sampler.num_replicas def __magic_name__( ): __lowerCAmelCase = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''') parser.add_argument('''--data_dir''', type=lowerCAmelCase__, help='''like cnn_dm/test.source''') parser.add_argument( '''--model_name''', type=lowerCAmelCase__, help='''like facebook/bart-large-cnn,t5-base, etc.''', default='''sshleifer/distilbart-xsum-12-3''', ) parser.add_argument('''--save_dir''', type=lowerCAmelCase__, help='''where to save''', default='''tmp_gen''') parser.add_argument('''--max_source_length''', type=lowerCAmelCase__, default=lowerCAmelCase__) parser.add_argument( '''--type_path''', type=lowerCAmelCase__, default='''test''', help='''which subset to evaluate typically train/val/test''') parser.add_argument('''--task''', type=lowerCAmelCase__, default='''summarization''', help='''used for task_specific_params + metrics''') parser.add_argument('''--bs''', type=lowerCAmelCase__, default=8, required=lowerCAmelCase__, help='''batch size''') parser.add_argument( '''--local_rank''', type=lowerCAmelCase__, default=-1, required=lowerCAmelCase__, help='''should be passed by distributed.launch''') parser.add_argument( '''--n_obs''', type=lowerCAmelCase__, default=lowerCAmelCase__, required=lowerCAmelCase__, help='''How many observations. Defaults to all.''') parser.add_argument( '''--num_return_sequences''', type=lowerCAmelCase__, default=1, required=lowerCAmelCase__, help='''How many sequences to return''') parser.add_argument( '''--sync_timeout''', type=lowerCAmelCase__, default=6_0_0, required=lowerCAmelCase__, help='''How long should master process wait for other processes to finish.''', ) parser.add_argument('''--src_lang''', type=lowerCAmelCase__, default=lowerCAmelCase__, required=lowerCAmelCase__) parser.add_argument('''--tgt_lang''', type=lowerCAmelCase__, default=lowerCAmelCase__, required=lowerCAmelCase__) parser.add_argument( '''--prefix''', type=lowerCAmelCase__, required=lowerCAmelCase__, default=lowerCAmelCase__, help='''will be added to the begininng of src examples''') parser.add_argument('''--fp16''', action='''store_true''') parser.add_argument('''--debug''', action='''store_true''') __lowerCAmelCase = time.time() __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase__) if generate_kwargs and args.local_rank <= 0: print(F"""parsed the following generate kwargs: {generate_kwargs}""") __lowerCAmelCase = Path(args.save_dir + '''_tmp''') Path(lowerCAmelCase__).mkdir(exist_ok=lowerCAmelCase__) # this handles locking. __lowerCAmelCase = list(json_save_dir.glob('''rank_*.json''')) if intermediate_files: raise ValueError(F"""Found files at {json_save_dir} please move or remove them.""") # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __lowerCAmelCase = {} if args.src_lang is not None: __lowerCAmelCase = args.src_lang if args.tgt_lang is not None: __lowerCAmelCase = args.tgt_lang Path(args.save_dir).mkdir(exist_ok=lowerCAmelCase__) __lowerCAmelCase , __lowerCAmelCase = eval_data_dir( args.data_dir, lowerCAmelCase__, args.model_name, type_path=args.type_path, bs=args.bs, fpaa=args.fpaa, task=args.task, local_rank=args.local_rank, n_obs=args.n_obs, max_source_length=args.max_source_length, num_return_sequences=args.num_return_sequences, prefix=args.prefix, dataset_kwargs=lowerCAmelCase__, **lowerCAmelCase__, ) if args.local_rank <= 0: __lowerCAmelCase = Path(args.save_dir) save_dir.mkdir(exist_ok=lowerCAmelCase__) __lowerCAmelCase = gather_results_from_each_node(lowerCAmelCase__, lowerCAmelCase__, args.sync_timeout) __lowerCAmelCase = combine_partial_results(lowerCAmelCase__) if args.num_return_sequences > 1: __lowerCAmelCase = save_dir.joinpath('''pseudolabel_results.json''') print(F"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""") save_json(lowerCAmelCase__, lowerCAmelCase__) return __lowerCAmelCase = Path(args.data_dir).joinpath(args.type_path + '''.target''') with open(lowerCAmelCase__) as f: __lowerCAmelCase = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase__)] # Calculate metrics, save metrics, and save _generations.txt __lowerCAmelCase = '''translation''' in args.task __lowerCAmelCase = calculate_bleu if calc_bleu else calculate_rouge __lowerCAmelCase = '''bleu''' if calc_bleu else '''rouge''' __lowerCAmelCase = score_fn(lowerCAmelCase__, lowerCAmelCase__) __lowerCAmelCase = len(lowerCAmelCase__) __lowerCAmelCase = time.time() - start_time __lowerCAmelCase = round(runtime / metrics['''n_obs'''], 4) __lowerCAmelCase = num_replicas # TODO(@stas00): add whatever metadata to metrics __lowerCAmelCase = save_dir.joinpath(F"""{args.type_path}_{metric_name}.json""") save_json(lowerCAmelCase__, lowerCAmelCase__, indent=lowerCAmelCase__) print(lowerCAmelCase__) write_txt_file(lowerCAmelCase__, save_dir.joinpath(F"""{args.type_path}_generations.txt""")) if args.debug: write_txt_file(lowerCAmelCase__, save_dir.joinpath(F"""{args.type_path}.target""")) else: shutil.rmtree(lowerCAmelCase__) def __magic_name__( lowerCamelCase): __lowerCAmelCase = [] for partial_result in partial_results: records.extend(lowerCAmelCase__) __lowerCAmelCase = sorted(lowerCAmelCase__, key=lambda lowerCamelCase: x["id"]) __lowerCAmelCase = [x['''pred'''] for x in records] return preds def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = time.time() logger.info('''waiting for all nodes to finish''') __lowerCAmelCase = None while (time.time() - start_wait) < timeout: __lowerCAmelCase = list(save_dir.glob('''rank_*.json''')) if len(lowerCAmelCase__) < num_replicas: continue try: # make sure all json files are fully saved __lowerCAmelCase = lmap(lowerCAmelCase__, lowerCAmelCase__) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''') # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
174
"""simple docstring""" import argparse import json import subprocess def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = ( f'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) lowercase = subprocess.run(lowerCAmelCase__ , shell=lowerCAmelCase__ , stdout=subprocess.PIPE ) lowercase = output.stdout.decode("""utf-8""" ) lowercase = json.loads(lowerCAmelCase__ ) lowercase = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(lowerCAmelCase__ ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) > 0: lowercase = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] ) -> Tuple: '''simple docstring''' return values.split(""",""" ) __lowerCAmelCase : str =argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) __lowerCAmelCase : str =parser.parse_args() get_runner_status(args.target_runners, args.token)
197
0
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class __snake_case (unittest.TestCase ): def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Tuple=56 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : int=99 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Optional[int]="gelu_new" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Dict="block_sparse" , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Dict=False , _UpperCAmelCase : int=2 , _UpperCAmelCase : Optional[int]=3 , ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : str = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Tuple = seq_length _lowerCAmelCase : Any = is_training _lowerCAmelCase : Union[str, Any] = use_attention_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Dict = use_labels _lowerCAmelCase : Tuple = vocab_size _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : Dict = type_sequence_label_size _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Union[str, Any] = num_choices _lowerCAmelCase : List[Any] = rescale_embeddings _lowerCAmelCase : str = attention_type _lowerCAmelCase : Any = use_bias _lowerCAmelCase : str = block_size _lowerCAmelCase : Union[str, Any] = num_random_blocks def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Any = None if self.use_token_type_ids: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : int = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Dict = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = config_and_inputs _lowerCAmelCase : Union[str, Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class __snake_case (_a , unittest.TestCase ): lowerCAmelCase__ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: '''simple docstring''' _lowerCAmelCase : Any = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: '''simple docstring''' super().test_hidden_states_output() @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase : Tuple = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : List[str] = model_class(_UpperCAmelCase ) @jax.jit def model_jitted(_UpperCAmelCase : str , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : str ): return model(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , **_UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): _lowerCAmelCase : Union[str, Any] = model_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _lowerCAmelCase : List[Any] = model_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=1E-5 , _UpperCAmelCase : Optional[int]="outputs" , _UpperCAmelCase : Optional[int]=None ) -> Optional[int]: '''simple docstring''' if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
159
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __snake_case (_a ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = SMALL_MODEL_IDENTIFIER _lowerCAmelCase : str = """pt""" _lowerCAmelCase : List[Any] = """tf""" def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : int = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Optional[int] = TFAutoModel.from_pretrained(self.test_model , from_pt=_UpperCAmelCase ) model_tf.save_pretrained(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : int = """mock_framework""" # Framework provided - return whatever the user provides _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(self.test_model , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase ) _lowerCAmelCase : str = FeaturesManager.determine_framework(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase ) _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : List[str] = MagicMock(return_value=_UpperCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , _UpperCAmelCase ): _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_UpperCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase : str = MagicMock(return_value=_UpperCAmelCase ) with patch("""transformers.onnx.features.is_torch_available""" , _UpperCAmelCase ): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_UpperCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase : List[Any] = MagicMock(return_value=_UpperCAmelCase ) _lowerCAmelCase : Tuple = MagicMock(return_value=_UpperCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , _UpperCAmelCase ), patch( """transformers.onnx.features.is_torch_available""" , _UpperCAmelCase ): _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_UpperCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase : List[str] = MagicMock(return_value=_UpperCAmelCase ) _lowerCAmelCase : List[Any] = MagicMock(return_value=_UpperCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , _UpperCAmelCase ), patch( """transformers.onnx.features.is_torch_available""" , _UpperCAmelCase ): with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model )
159
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : int = TextToVideoSDPipeline UpperCAmelCase__ : List[Any] = TEXT_TO_IMAGE_PARAMS UpperCAmelCase__ : int = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. UpperCAmelCase__ : Tuple = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def lowerCamelCase ( self : str): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(_snake_case) UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCAmelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowerCamelCase ( self : Union[str, Any] , _snake_case : Any , _snake_case : List[str]=0): """simple docstring""" if str(_snake_case).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_snake_case) else: UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(_snake_case) UpperCAmelCase_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = TextToVideoSDPipeline(**_snake_case) UpperCAmelCase_ = sd_pipe.to(_snake_case) sd_pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = '''np''' UpperCAmelCase_ = sd_pipe(**_snake_case).frames UpperCAmelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCAmelCase_ = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def lowerCamelCase ( self : Any): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_snake_case , expected_max_diff=3e-3) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase ( self : List[Any]): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_snake_case , expected_max_diff=1e-2) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''') def lowerCamelCase ( self : List[str]): """simple docstring""" pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''') def lowerCamelCase ( self : List[Any]): """simple docstring""" pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''') def lowerCamelCase ( self : Dict): """simple docstring""" pass def lowerCamelCase ( self : Tuple): """simple docstring""" return super().test_progress_bar() @slow @skip_mps class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''') UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''') UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) UpperCAmelCase_ = pipe.to('''cuda''') UpperCAmelCase_ = '''Spiderman is surfing''' UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = pipe(_snake_case , generator=_snake_case , num_inference_steps=25 , output_type='''pt''').frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5e-2 def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''') UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''') UpperCAmelCase_ = pipe.to('''cuda''') UpperCAmelCase_ = '''Spiderman is surfing''' UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = pipe(_snake_case , generator=_snake_case , num_inference_steps=2 , output_type='''pt''').frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5e-2
51
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __lowercase ( _a , _a , _a = "x" , _a = 10**-10 , _a = 1 , ): snake_case_ : Any = symbols(_a ) snake_case_ : int = lambdify(_a , _a ) snake_case_ : Optional[Any] = lambdify(_a , diff(_a , _a ) ) snake_case_ : Optional[Any] = starting_point while True: if diff_function(_a ) != 0: snake_case_ : Optional[int] = prev_guess - multiplicity * func(_a ) / diff_function( _a ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess snake_case_ : int = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(f'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f'{newton_raphson("exp(x) - 1", 10, precision=0.005)}', ) # Find root of cos(x) print(f'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
264
0
"""simple docstring""" import argparse import os import re import packaging.version _a : Optional[Any] = 'examples/' _a : int = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } _a : Any = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } _a : List[str] = 'README.md' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : Any ,_lowerCamelCase : Tuple ) -> Optional[Any]: with open(_lowerCamelCase ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: _lowerCAmelCase : str = f.read() _lowerCAmelCase : List[Any] = REPLACE_PATTERNS[pattern] _lowerCAmelCase : Union[str, Any] = replace.replace("""VERSION""" ,_lowerCamelCase ) _lowerCAmelCase : int = re_pattern.sub(_lowerCamelCase ,_lowerCamelCase ) with open(_lowerCamelCase ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.write(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Dict: for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ,pattern="""examples""" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : int=False ) -> Tuple: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: _lowerCAmelCase : Any = """๐Ÿค— Transformers currently provides the following architectures""" _lowerCAmelCase : List[Any] = """1. Want to contribute a new model?""" with open(_lowerCamelCase ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: _lowerCAmelCase : Optional[int] = f.readlines() # Find the start of the list. _lowerCAmelCase : int = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _lowerCAmelCase : Dict = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): _lowerCAmelCase : str = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" ,"""https://huggingface.co/docs/transformers/model_doc""" ,) index += 1 with open(_lowerCamelCase ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> int: with open(REPLACE_FILES["""init"""] ,"""r""" ) as f: _lowerCAmelCase : Optional[int] = f.read() _lowerCAmelCase : List[Any] = REPLACE_PATTERNS["""init"""][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple=False ) -> Tuple: _lowerCAmelCase : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: _lowerCAmelCase : List[str] = default_version.base_version elif patch: _lowerCAmelCase : int = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: _lowerCAmelCase : Tuple = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. _lowerCAmelCase : Any = input(f"Which version are you releasing? [{default_version}]" ) if len(_lowerCamelCase ) == 0: _lowerCAmelCase : Optional[Any] = default_version print(f"Updating version to {version}." ) global_version_update(_lowerCamelCase ,patch=_lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: _lowerCAmelCase : Dict = get_version() _lowerCAmelCase : List[Any] = f"{current_version.major}.{current_version.minor + 1}.0.dev0" _lowerCAmelCase : Optional[int] = current_version.base_version # Check with the user we got that right. _lowerCAmelCase : int = input(f"Which version are we developing now? [{dev_version}]" ) if len(_lowerCamelCase ) == 0: _lowerCAmelCase : List[str] = dev_version print(f"Updating version to {version}." ) global_version_update(_lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": _a : Any = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _a : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
357
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Any ,_lowerCamelCase : Optional[Any] ) -> str: _lowerCAmelCase : str = AutoConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : int = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase ) _lowerCAmelCase : Any = checkpoints.load_tax_checkpoint(_lowerCamelCase ) _lowerCAmelCase : Tuple = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""] if config.model_type == "t5": _lowerCAmelCase : Tuple = """SelfAttention""" if config.model_type == "longt5" and config.encoder_attention_type == "local": _lowerCAmelCase : Optional[Any] = """LocalSelfAttention""" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCAmelCase : Union[str, Any] = """TransientGlobalSelfAttention""" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): _lowerCAmelCase : Tuple = f"layers_{str(_lowerCamelCase )}" # Self-Attention _lowerCAmelCase : List[str] = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""] _lowerCAmelCase : str = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""] _lowerCAmelCase : str = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""] _lowerCAmelCase : Any = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCAmelCase : Dict = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""] # Layer Normalization _lowerCAmelCase : Any = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""] if split_mlp_wi: _lowerCAmelCase : List[str] = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] _lowerCAmelCase : int = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: _lowerCAmelCase : List[str] = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] _lowerCAmelCase : Tuple = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization _lowerCAmelCase : Tuple = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning _lowerCAmelCase : Any = flax_model.params["""encoder"""]["""block"""][str(_lowerCamelCase )]["""layer"""] _lowerCAmelCase : Any = tax_attention_key _lowerCAmelCase : str = tax_attention_out _lowerCAmelCase : Union[str, Any] = tax_attention_query _lowerCAmelCase : Optional[Any] = tax_attention_value _lowerCAmelCase : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCAmelCase : Any = tax_global_layer_norm if split_mlp_wi: _lowerCAmelCase : Dict = tax_mlp_wi_a _lowerCAmelCase : List[Any] = tax_mlp_wi_a else: _lowerCAmelCase : List[str] = tax_mlp_wi _lowerCAmelCase : str = tax_mlp_wo _lowerCAmelCase : Optional[Any] = tax_mlp_layer_norm _lowerCAmelCase : Any = flax_model_encoder_layer_block # Only for layer 0: _lowerCAmelCase : Union[str, Any] = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T _lowerCAmelCase : Optional[Any] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCAmelCase : List[str] = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T _lowerCAmelCase : Optional[int] = tax_encoder_global_rel_embedding # Assigning _lowerCAmelCase : Any = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""] _lowerCAmelCase : Any = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _lowerCAmelCase : Optional[int] = f"layers_{str(_lowerCamelCase )}" # Self-Attention _lowerCAmelCase : List[str] = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""] _lowerCAmelCase : int = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""] _lowerCAmelCase : List[Any] = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""] _lowerCAmelCase : str = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""] # Layer Normalization _lowerCAmelCase : Optional[Any] = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][ """scale""" ] # Encoder-Decoder-Attention _lowerCAmelCase : List[Any] = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""] _lowerCAmelCase : List[str] = tax_enc_dec_attention_module["""key"""]["""kernel"""] _lowerCAmelCase : List[Any] = tax_enc_dec_attention_module["""out"""]["""kernel"""] _lowerCAmelCase : List[str] = tax_enc_dec_attention_module["""query"""]["""kernel"""] _lowerCAmelCase : Dict = tax_enc_dec_attention_module["""value"""]["""kernel"""] # Layer Normalization _lowerCAmelCase : Any = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""] # MLP if split_mlp_wi: _lowerCAmelCase : Any = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] _lowerCAmelCase : List[str] = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: _lowerCAmelCase : Any = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] _lowerCAmelCase : Optional[int] = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization _lowerCAmelCase : Optional[int] = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning _lowerCAmelCase : str = flax_model.params["""decoder"""]["""block"""][str(_lowerCamelCase )]["""layer"""] _lowerCAmelCase : int = tax_attention_key _lowerCAmelCase : List[str] = tax_attention_out _lowerCAmelCase : Optional[Any] = tax_attention_query _lowerCAmelCase : Dict = tax_attention_value _lowerCAmelCase : str = tax_pre_attention_layer_norm _lowerCAmelCase : List[Any] = tax_enc_dec_attention_key _lowerCAmelCase : List[Any] = tax_enc_dec_attention_out _lowerCAmelCase : Tuple = tax_enc_dec_attention_query _lowerCAmelCase : Any = tax_enc_dec_attention_value _lowerCAmelCase : Dict = tax_cross_layer_norm if split_mlp_wi: _lowerCAmelCase : Dict = tax_mlp_wi_a _lowerCAmelCase : int = tax_mlp_wi_a else: _lowerCAmelCase : Optional[int] = tax_mlp_wi _lowerCAmelCase : Dict = tax_mlp_wo _lowerCAmelCase : List[Any] = txa_mlp_layer_norm _lowerCAmelCase : Optional[Any] = flax_model_decoder_layer_block # Decoder Normalization _lowerCAmelCase : Any = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""] _lowerCAmelCase : List[str] = txa_decoder_norm # Only for layer 0: _lowerCAmelCase : Optional[int] = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T _lowerCAmelCase : Union[str, Any] = tax_decoder_rel_embedding # Token Embeddings _lowerCAmelCase : Optional[int] = tax_model["""target"""]["""token_embedder"""]["""embedding"""] _lowerCAmelCase : Optional[int] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _lowerCAmelCase : Tuple = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""] flax_model.save_pretrained(_lowerCamelCase ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": _a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) _a : List[str] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
126
0
import random def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ = False ) -> dict: '''simple docstring''' __lowercase= {i: [] for i in range(lowercase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowercase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowercase__ ): for j in range(i + 1 , lowercase__ ): if random.random() < probability: graph[i].append(lowercase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowercase__ ) return graph def _lowerCamelCase( lowercase__ ) -> dict: '''simple docstring''' return { i: [j for j in range(lowercase__ ) if i != j] for i in range(lowercase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
295
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class A ( A_ , unittest.TestCase ): UpperCamelCase_ : Any =PriorTransformer UpperCamelCase_ : List[str] ='''hidden_states''' @property def _A (self ): __lowercase= 4 __lowercase= 8 __lowercase= 7 __lowercase= floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _A (self , lowerCAmelCase=0 ): torch.manual_seed(lowerCAmelCase ) __lowercase= 4 __lowercase= 8 __lowercase= 7 __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _A (self ): return (4, 8) @property def _A (self ): return (4, 8) def _A (self ): __lowercase= { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } __lowercase= self.dummy_input return init_dict, inputs_dict def _A (self ): __lowercase, __lowercase= PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowerCAmelCase ) __lowercase= model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _A (self ): __lowercase, __lowercase= self.prepare_init_args_and_inputs_for_common() __lowercase= self.model_class(**lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , lowerCAmelCase ) def _A (self ): __lowercase= PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) __lowercase= model.to(lowerCAmelCase ) if hasattr(lowerCAmelCase , 'set_default_attn_processor' ): model.set_default_attn_processor() __lowercase= self.get_dummy_seed_input() with torch.no_grad(): __lowercase= model(**lowerCAmelCase )[0] __lowercase= output[0, :5].flatten().cpu() print(lowerCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __lowercase= torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1E-2 ) ) @slow class A ( unittest.TestCase ): def _A (self , lowerCAmelCase=1 , lowerCAmelCase=7_6_8 , lowerCAmelCase=7_7 , lowerCAmelCase=0 ): torch.manual_seed(lowerCAmelCase ) __lowercase= batch_size __lowercase= embedding_dim __lowercase= num_embeddings __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [3_7, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(lowerCAmelCase ) __lowercase= self.get_dummy_seed_input(seed=lowerCAmelCase ) with torch.no_grad(): __lowercase= model(**lowerCAmelCase )[0] assert list(sample.shape ) == [1, 7_6_8] __lowercase= sample[0, :8].flatten().cpu() print(lowerCAmelCase ) __lowercase= torch.tensor(lowerCAmelCase ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1E-3 )
295
1
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase ( lowercase : list[int] , lowercase : int , lowercase : int , lowercase : int ) -> None: """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): snake_case ,snake_case : List[str] = array[indexa], array[indexa] def __lowerCAmelCase ( lowercase : list[int] , lowercase : int , lowercase : int , lowercase : int ) -> None: """simple docstring""" if length > 1: snake_case : Optional[int] = int(length / 2 ) for i in range(lowercase , low + middle ): comp_and_swap(lowercase , lowercase , i + middle , lowercase ) bitonic_merge(lowercase , lowercase , lowercase , lowercase ) bitonic_merge(lowercase , low + middle , lowercase , lowercase ) def __lowerCAmelCase ( lowercase : list[int] , lowercase : int , lowercase : int , lowercase : int ) -> None: """simple docstring""" if length > 1: snake_case : Optional[Any] = int(length / 2 ) bitonic_sort(lowercase , lowercase , lowercase , 1 ) bitonic_sort(lowercase , low + middle , lowercase , 0 ) bitonic_merge(lowercase , lowercase , lowercase , lowercase ) if __name__ == "__main__": __snake_case = input("""Enter numbers separated by a comma:\n""").strip() __snake_case = [int(item.strip()) for item in user_input.split(""",""")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("""\nSorted array in ascending order is: """, end="""""") print(*unsorted, sep=""", """) bitonic_merge(unsorted, 0, len(unsorted), 0) print("""Sorted array in descending order is: """, end="""""") print(*unsorted, sep=""", """)
112
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) __snake_case = logging.getLogger(__name__) if __name__ == "__main__": __snake_case = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30522, type=int) __snake_case = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, """rb""") as fp: __snake_case = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") __snake_case = Counter() for tk_ids in data: counter.update(tk_ids) __snake_case = [0] * args.vocab_size for k, v in counter.items(): __snake_case = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
112
1
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : List[Any] ): snake_case__ : str = tempfile.mkdtemp() snake_case__ : Tuple = 5 # Realm tok snake_case__ : Union[str, Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] snake_case__ : Optional[int] = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) snake_case__ : Union[str, Any] = os.path.join(snake_case_ , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) snake_case__ : List[Any] = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) def lowerCamelCase ( self : List[str] ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def lowerCamelCase ( self : str ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self : int ): snake_case__ : List[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def lowerCamelCase ( self : int ): snake_case__ : str = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def lowerCamelCase ( self : List[str] ): snake_case__ : str = np.array( [ b"""This is the first record""", b"""This is the second record""", b"""This is the third record""", b"""This is the fourth record""", b"""This is the fifth record""", b"""This is a longer longer longer record""", ] , dtype=snake_case_ , ) return block_records def lowerCamelCase ( self : int ): snake_case__ : Dict = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def lowerCamelCase ( self : int ): snake_case__ : Tuple = self.get_config() snake_case__ : Any = self.get_dummy_retriever() snake_case__ : str = retriever.tokenizer snake_case__ : Optional[int] = np.array([0, 3] , dtype="""long""" ) snake_case__ : List[Any] = tokenizer(["""Test question"""] ).input_ids snake_case__ : List[str] = tokenizer( ["""the fourth"""] , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , ).input_ids snake_case__ : List[Any] = config.reader_seq_len snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = retriever( snake_case_ , snake_case_ , answer_ids=snake_case_ , max_length=snake_case_ , return_tensors="""np""" ) self.assertEqual(len(snake_case_ ) , 2 ) self.assertEqual(len(snake_case_ ) , 2 ) self.assertEqual(len(snake_case_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : List[str] = self.get_config() snake_case__ : List[str] = self.get_dummy_retriever() snake_case__ : str = retriever.tokenizer snake_case__ : List[Any] = np.array([0, 3, 5] , dtype="""long""" ) snake_case__ : Union[str, Any] = tokenizer(["""Test question"""] ).input_ids snake_case__ : Optional[int] = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , ).input_ids snake_case__ : Any = config.reader_seq_len snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = retriever( snake_case_ , snake_case_ , answer_ids=snake_case_ , max_length=snake_case_ , return_tensors="""np""" ) self.assertEqual([False, True, True] , snake_case_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , snake_case_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : List[str] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path snake_case__ : Union[str, Any] = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: snake_case__ : Tuple = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) snake_case__ : List[str] = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" )
35
"""simple docstring""" from collections.abc import Sequence def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_)) def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' __lowercase = 0.0 for coeff in reversed(UpperCamelCase_): __lowercase = result * x + coeff return result if __name__ == "__main__": _a = (0.0, 0.0, 5.0, 9.3, 7.0) _a = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
0
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class __A ( UpperCamelCase__ ): def __init__(self : Optional[Any] , *__a : Optional[int] , **__a : Any ): super().__init__(*__lowerCamelCase , **__lowerCamelCase ) UpperCAmelCase_ = {} def _lowercase (self : Dict , __a : str , *__a : Any , **__a : Dict ): UpperCAmelCase_ = super().add_tokens(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" " `placeholder_token` that is not already in the tokenizer." ) def _lowercase (self : List[str] , __a : List[str] , *__a : List[str] , __a : List[str]=1 , **__a : Tuple ): UpperCAmelCase_ = [] if num_vec_per_token == 1: self.try_adding_tokens(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) output.append(__lowerCamelCase ) else: UpperCAmelCase_ = [] for i in range(__lowerCamelCase ): UpperCAmelCase_ = placeholder_token + f"""_{i}""" self.try_adding_tokens(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) output.append(__lowerCamelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""" ) UpperCAmelCase_ = output def _lowercase (self : Union[str, Any] , __a : Optional[Any] , __a : Tuple=False , __a : Any=1.0 ): if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCAmelCase_ = [] for i in range(len(__lowerCamelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__lowerCamelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: UpperCAmelCase_ = self.token_map[placeholder_token] UpperCAmelCase_ = tokens[: 1 + int(len(__lowerCamelCase ) * prop_tokens_to_load )] if vector_shuffle: UpperCAmelCase_ = copy.copy(__lowerCamelCase ) random.shuffle(__lowerCamelCase ) UpperCAmelCase_ = text.replace(__lowerCamelCase , " ".join(__lowerCamelCase ) ) return text def __call__(self : List[Any] , __a : Union[str, Any] , *__a : int , __a : Optional[Any]=False , __a : str=1.0 , **__a : Dict ): return super().__call__( self.replace_placeholder_tokens_in_text( __lowerCamelCase , vector_shuffle=__lowerCamelCase , prop_tokens_to_load=__lowerCamelCase ) , *__lowerCamelCase , **__lowerCamelCase , ) def _lowercase (self : Any , __a : List[Any] , *__a : List[Any] , __a : str=False , __a : Dict=1.0 , **__a : List[str] ): return super().encode( self.replace_placeholder_tokens_in_text( __lowerCamelCase , vector_shuffle=__lowerCamelCase , prop_tokens_to_load=__lowerCamelCase ) , *__lowerCamelCase , **__lowerCamelCase , )
367
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ = 0.01 with locka.acquire(): with pytest.raises(snake_case_ ): UpperCAmelCase_ = time.time() locka.acquire(snake_case_ ) assert time.time() - _start > timeout def lowerCAmelCase_ ( snake_case_ : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = "a" * 10_00 + ".lock" UpperCAmelCase_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(snake_case_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 UpperCAmelCase_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case_ ): locka.acquire(0 )
106
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__(self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.02 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = image_size _a = num_channels _a = num_stages _a = hidden_sizes _a = depths _a = is_training _a = use_labels _a = intermediate_size _a = hidden_act _a = num_labels _a = initializer_range _a = out_features _a = out_indices _a = scope def a__ (self ) -> Any: """simple docstring""" _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.num_labels ) _a = self.get_config() return config, pixel_values, labels def a__ (self ) -> Any: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a__ (self , A , A , A ) -> List[str]: """simple docstring""" _a = ConvNextVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _a = model(SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ (self , A , A , A ) -> int: """simple docstring""" _a = ConvNextVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _a = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ (self , A , A , A ) -> List[Any]: """simple docstring""" _a = ConvNextVaBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _a = model(SCREAMING_SNAKE_CASE_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _a = None _a = ConvNextVaBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _a = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ (self ) -> int: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class __A ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __lowerCamelCase : List[str] = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[Any] = False __lowerCamelCase : List[str] = False __lowerCamelCase : str = False __lowerCamelCase : Union[str, Any] = False def a__ (self ) -> str: """simple docstring""" _a = ConvNextVaModelTester(self ) _a = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def a__ (self ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ (self ) -> List[Any]: """simple docstring""" return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def a__ (self ) -> Any: """simple docstring""" pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def a__ (self ) -> str: """simple docstring""" pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def a__ (self ) -> List[Any]: """simple docstring""" pass def a__ (self ) -> Dict: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a , _a = self.model_tester.prepare_config_and_inputs_with_labels() _a = True if model_class.__name__ in [ *get_values(SCREAMING_SNAKE_CASE_ ), *get_values(SCREAMING_SNAKE_CASE_ ), ]: continue _a = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() _a = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) _a = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def a__ (self ) -> Dict: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a , _a = self.model_tester.prepare_config_and_inputs_with_labels() _a = False _a = True if ( model_class.__name__ in [*get_values(SCREAMING_SNAKE_CASE_ ), *get_values(SCREAMING_SNAKE_CASE_ )] or not model_class.supports_gradient_checkpointing ): continue _a = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.gradient_checkpointing_enable() model.train() _a = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) _a = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(SCREAMING_SNAKE_CASE_ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def a__ (self ) -> List[str]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def a__ (self ) -> List[str]: """simple docstring""" def check_hidden_states_output(A , A , A ): _a = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a__ (self ) -> Dict: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def a__ (self ) -> int: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = ConvNextVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase (): """simple docstring""" _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def a__ (self ) -> int: """simple docstring""" _a = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(SCREAMING_SNAKE_CASE_ ) _a = self.default_image_processor _a = prepare_img() _a = preprocessor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): _a = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits _a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) _a = torch.tensor([0.9996, 0.1966, -0.4386] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
211
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE_=[2, 2, 3, 2] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE_=[2, 3, 4] , SCREAMING_SNAKE_CASE_=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = num_channels UpperCamelCase__ = num_stages UpperCamelCase__ = hidden_sizes UpperCamelCase__ = depths UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = num_labels UpperCamelCase__ = initializer_range UpperCamelCase__ = out_features UpperCamelCase__ = out_indices UpperCamelCase__ = scope def UpperCAmelCase_ (self ): UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ (self ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = ConvNextVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = ConvNextVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = ConvNextVaBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase__ = None UpperCamelCase__ = ConvNextVaBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __A( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def UpperCAmelCase_ (self ): UpperCamelCase__ = ConvNextVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase_ (self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ (self ): return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def UpperCAmelCase_ (self ): pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def UpperCAmelCase_ (self ): pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_with_labels() UpperCamelCase__ = True if model_class.__name__ in [ *get_values(SCREAMING_SNAKE_CASE_ ), *get_values(SCREAMING_SNAKE_CASE_ ), ]: continue UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def UpperCAmelCase_ (self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_with_labels() UpperCamelCase__ = False UpperCamelCase__ = True if ( model_class.__name__ in [*get_values(SCREAMING_SNAKE_CASE_ ), *get_values(SCREAMING_SNAKE_CASE_ )] or not model_class.supports_gradient_checkpointing ): continue UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.gradient_checkpointing_enable() model.train() UpperCamelCase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCAmelCase_ (self ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = ConvNextVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ (self ): return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = preprocessor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor([0.9996, 0.1966, -0.4386] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
244
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase_ (lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase__ ,'''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowercase__ ,'''neck_hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowercase__ ,'''num_attention_heads''' ) ) class lowercase_ : """simple docstring""" def __init__( self : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[str]=1_3 ,lowercase__ : Union[str, Any]=3_2 ,lowercase__ : Tuple=2 ,lowercase__ : str=3 ,lowercase__ : List[str]=6_4_0 ,lowercase__ : str=4 ,lowercase__ : Any="silu" ,lowercase__ : Any=3 ,lowercase__ : Any=3_2 ,lowercase__ : Dict=0.1 ,lowercase__ : List[str]=0.1 ,lowercase__ : Optional[Any]=0.1 ,lowercase__ : str=0.0_2 ,lowercase__ : Tuple=True ,lowercase__ : int=True ,lowercase__ : Dict=1_0 ,lowercase__ : str=None ,): __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = last_hidden_size __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = conv_kernel_size __lowercase = output_stride __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = classifier_dropout_prob __lowercase = use_labels __lowercase = is_training __lowercase = num_labels __lowercase = initializer_range __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE ( self : int ): return MobileViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = MobileViTModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_labels __lowercase = MobileViTForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : List[Any] ): __lowercase = self.num_labels __lowercase = MobileViTForSemanticSegmentation(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) __lowercase = model(lowercase__ ,labels=lowercase__ ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = False def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = MobileViTModelTester(self ) __lowercase = MobileViTConfigTester(self ,config_class=lowercase__ ,has_text_modality=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViT does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @unittest.skip(reason='''MobileViT does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): pass @unittest.skip(reason='''MobileViT does not output attentions''' ) def SCREAMING_SNAKE_CASE ( self : str ): pass def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): def check_hidden_states_output(lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : int ): __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = outputs.hidden_states __lowercase = 5 self.assertEqual(len(lowercase__ ) ,lowercase__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowercase = 2 for i in range(len(lowercase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2 ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : str ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = MobileViTModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _A ( ): """simple docstring""" __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self : str ): return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(lowercase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowercase__ ) # verify the logits __lowercase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) __lowercase = model.to(lowercase__ ) __lowercase = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) __lowercase = prepare_img() __lowercase = image_processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowercase__ ) __lowercase = outputs.logits # verify the logits __lowercase = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape ,lowercase__ ) __lowercase = torch.tensor( [ [[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]], [[-1_0.6_8_6_9, -1_0.3_2_5_0, -1_0.3_4_7_1], [-1_0.4_2_2_8, -9.9_8_6_8, -9.7_1_3_2], [-1_1.0_4_0_5, -1_1.0_2_2_1, -1_0.7_3_1_8]], [[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]], ] ,device=lowercase__ ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) __lowercase = model.to(lowercase__ ) __lowercase = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) __lowercase = prepare_img() __lowercase = image_processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowercase__ ) __lowercase = outputs.logits.detach().cpu() __lowercase = image_processor.post_process_semantic_segmentation(outputs=lowercase__ ,target_sizes=[(5_0, 6_0)] ) __lowercase = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape ,lowercase__ ) __lowercase = image_processor.post_process_semantic_segmentation(outputs=lowercase__ ) __lowercase = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape ,lowercase__ )
367
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 'luke' def __init__( self : int ,lowercase__ : Tuple=5_0_2_6_7 ,lowercase__ : str=5_0_0_0_0_0 ,lowercase__ : Union[str, Any]=7_6_8 ,lowercase__ : Any=2_5_6 ,lowercase__ : int=1_2 ,lowercase__ : Dict=1_2 ,lowercase__ : List[Any]=3_0_7_2 ,lowercase__ : Dict="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : List[Any]=5_1_2 ,lowercase__ : Tuple=2 ,lowercase__ : Any=0.0_2 ,lowercase__ : Tuple=1e-1_2 ,lowercase__ : Optional[int]=True ,lowercase__ : Optional[int]=None ,lowercase__ : Tuple=1 ,lowercase__ : int=0 ,lowercase__ : Tuple=2 ,**lowercase__ : Dict ,): super().__init__(pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) __lowercase = vocab_size __lowercase = entity_vocab_size __lowercase = hidden_size __lowercase = entity_emb_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = use_entity_aware_attention __lowercase = classifier_dropout
52
0
from dataclasses import dataclass, field from typing import Optional @dataclass class __lowerCAmelCase : UpperCamelCase__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) UpperCamelCase__ = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) UpperCamelCase__ = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) UpperCamelCase__ = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) UpperCamelCase__ = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) UpperCamelCase__ = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) UpperCamelCase__ = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) UpperCamelCase__ = field( default=10000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) UpperCamelCase__ = field(default=2e-4 , metadata={'''help''': '''Learning rate fo training.'''} ) UpperCamelCase__ = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) UpperCamelCase__ = field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) UpperCamelCase__ = field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) UpperCamelCase__ = field( default=__magic_name__ , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) UpperCamelCase__ = field(default=50000 , metadata={'''help''': '''Maximum number of training steps.'''} ) UpperCamelCase__ = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) UpperCamelCase__ = field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) UpperCamelCase__ = field(default=1 , metadata={'''help''': '''Training seed.'''} ) UpperCamelCase__ = field( default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) UpperCamelCase__ = field( default=__magic_name__ , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) UpperCamelCase__ = field(default=__magic_name__ , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class __lowerCAmelCase : UpperCamelCase__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) UpperCamelCase__ = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) UpperCamelCase__ = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) UpperCamelCase__ = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) UpperCamelCase__ = field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) UpperCamelCase__ = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class __lowerCAmelCase : UpperCamelCase__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) UpperCamelCase__ = field(default=__magic_name__ , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) UpperCamelCase__ = field( default=__magic_name__ , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) UpperCamelCase__ = field( default=__magic_name__ , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) UpperCamelCase__ = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) UpperCamelCase__ = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) UpperCamelCase__ = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) UpperCamelCase__ = field(default=0.9_5 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) UpperCamelCase__ = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) UpperCamelCase__ = field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) UpperCamelCase__ = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) UpperCamelCase__ = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) UpperCamelCase__ = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) UpperCamelCase__ = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class __lowerCAmelCase : UpperCamelCase__ = field( default=__magic_name__ , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) UpperCamelCase__ = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) UpperCamelCase__ = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) UpperCamelCase__ = field( default=100000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) UpperCamelCase__ = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) UpperCamelCase__ = field( default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) UpperCamelCase__ = field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) UpperCamelCase__ = field( default=0.2_5 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) UpperCamelCase__ = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) UpperCamelCase__ = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) UpperCamelCase__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) UpperCamelCase__ = field( default=__magic_name__ , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) UpperCamelCase__ = field( default=0.8_5 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class __lowerCAmelCase : UpperCamelCase__ = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) UpperCamelCase__ = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) UpperCamelCase__ = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) UpperCamelCase__ = field(default=200000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) UpperCamelCase__ = field( default=32768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) UpperCamelCase__ = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) UpperCamelCase__ = field(default=__magic_name__ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class __lowerCAmelCase : UpperCamelCase__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) UpperCamelCase__ = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) UpperCamelCase__ = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) UpperCamelCase__ = field(default=__magic_name__ , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class __lowerCAmelCase : UpperCamelCase__ = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) UpperCamelCase__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) UpperCamelCase__ = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) UpperCamelCase__ = field(default=__magic_name__ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
228
from math import pi, sqrt def __A ( __lowerCamelCase ) -> float: if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(__lowerCamelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(__lowerCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __A ( ) -> None: assert gamma(0.5 ) == sqrt(__lowerCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __UpperCamelCase : str = 1.0 while num: __UpperCamelCase : Dict = float(input("Gamma of: ")) print(F'gamma({num}) = {gamma(num)}') print("\nEnter 0 to exit...")
228
1
def UpperCamelCase_( _snake_case : list ): """simple docstring""" if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] __a =[] def generate(_snake_case : int , _snake_case : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __a =arr[k - 1], arr[i] else: # k is odd __a =arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": _lowerCAmelCase : Dict = input("Enter numbers separated by a comma:\n").strip() _lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(heaps(arr))
354
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Any , __lowercase : Union[str, "sqlalchemy.sql.Selectable"] , __lowercase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __lowercase : Optional[Features] = None , __lowercase : str = None , __lowercase : bool = False , **__lowercase : Union[str, Any] , ): """simple docstring""" super().__init__(features=__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase , **__lowercase ) snake_case_ = Sql( cache_dir=__lowercase , features=__lowercase , sql=__lowercase , con=__lowercase , **__lowercase , ) def snake_case__ ( self : List[str] ): """simple docstring""" snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None self.builder.download_and_prepare( download_config=__lowercase , download_mode=__lowercase , verification_mode=__lowercase , base_path=__lowercase , ) # Build dataset for splits snake_case_ = self.builder.as_dataset( split="train" , verification_mode=__lowercase , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , __lowercase : Dataset , __lowercase : str , __lowercase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , **__lowercase : List[Any] , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0." ) snake_case_ = dataset snake_case_ = name snake_case_ = con snake_case_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE snake_case_ = num_proc snake_case_ = to_sql_kwargs def snake_case__ ( self : int ): """simple docstring""" snake_case_ = self.to_sql_kwargs.pop("sql" , __lowercase ) snake_case_ = self.to_sql_kwargs.pop("con" , __lowercase ) snake_case_ = self.to_sql_kwargs.pop("index" , __lowercase ) snake_case_ = self._write(index=__lowercase , **self.to_sql_kwargs ) return written def snake_case__ ( self : Any , __lowercase : str ): """simple docstring""" snake_case_ , snake_case_ , snake_case_ = args snake_case_ = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs snake_case_ = query_table( table=self.dataset.data , key=slice(__lowercase , offset + self.batch_size ) , indices=self.dataset._indices , ) snake_case_ = batch.to_pandas() snake_case_ = df.to_sql(self.name , self.con , index=__lowercase , **__lowercase ) return num_rows or len(__lowercase ) def snake_case__ ( self : Dict , __lowercase : List[Any] , **__lowercase : Dict ): """simple docstring""" snake_case_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: snake_case_ , snake_case_ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __lowercase , __lowercase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
187
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase__ ( _A , _A , _A , _A , _A=True , _A="pt" ): '''simple docstring''' snake_case_ = {"add_prefix_space": True} if isinstance(_A , _A ) and not line.startswith(" " ) else {} snake_case_ = padding_side return tokenizer( [line] , max_length=_A , padding="max_length" if pad_to_max_length else None , truncation=_A , return_tensors=_A , add_special_tokens=_A , **_A , ) def lowerCamelCase__ ( _A , _A , _A=None , ): '''simple docstring''' snake_case_ = input_ids.ne(_A ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : int , __lowercase : List[Any] , __lowercase : Tuple , __lowercase : List[Any] , __lowercase : str , __lowercase : Tuple="train" , __lowercase : List[str]=None , __lowercase : List[Any]=None , __lowercase : Optional[Any]=None , __lowercase : Union[str, Any]="" , ): """simple docstring""" super().__init__() snake_case_ = Path(__lowercase ).joinpath(type_path + ".source" ) snake_case_ = Path(__lowercase ).joinpath(type_path + ".target" ) snake_case_ = self.get_char_lens(self.src_file ) snake_case_ = max_source_length snake_case_ = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" snake_case_ = tokenizer snake_case_ = prefix if n_obs is not None: snake_case_ = self.src_lens[:n_obs] snake_case_ = src_lang snake_case_ = tgt_lang def __len__( self : List[Any] ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : List[Any] , __lowercase : Dict ): """simple docstring""" snake_case_ = index + 1 # linecache starts at 1 snake_case_ = self.prefix + linecache.getline(str(self.src_file ) , __lowercase ).rstrip("\n" ) snake_case_ = linecache.getline(str(self.tgt_file ) , __lowercase ).rstrip("\n" ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __lowercase ) else self.tokenizer ) snake_case_ = self.tokenizer.generator if isinstance(self.tokenizer , __lowercase ) else self.tokenizer snake_case_ = encode_line(__lowercase , __lowercase , self.max_source_length , "right" ) snake_case_ = encode_line(__lowercase , __lowercase , self.max_target_length , "right" ) snake_case_ = source_inputs["input_ids"].squeeze() snake_case_ = target_inputs["input_ids"].squeeze() snake_case_ = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case__ ( __lowercase : Optional[int] ): """simple docstring""" return [len(__lowercase ) for x in Path(__lowercase ).open().readlines()] def snake_case__ ( self : Dict , __lowercase : Union[str, Any] ): """simple docstring""" snake_case_ = torch.stack([x["input_ids"] for x in batch] ) snake_case_ = torch.stack([x["attention_mask"] for x in batch] ) snake_case_ = torch.stack([x["decoder_input_ids"] for x in batch] ) snake_case_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) snake_case_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) snake_case_ = trim_batch(__lowercase , __lowercase ) snake_case_ , snake_case_ = trim_batch(__lowercase , __lowercase , attention_mask=__lowercase ) snake_case_ = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowercase__ : str = getLogger(__name__) def lowerCamelCase__ ( _A ): '''simple docstring''' return list(itertools.chain.from_iterable(_A ) ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = get_git_info() save_json(_A , os.path.join(_A , "git_log.json" ) ) def lowerCamelCase__ ( _A , _A , _A=4 , **_A ): '''simple docstring''' with open(_A , "w" ) as f: json.dump(_A , _A , indent=_A , **_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' with open(_A ) as f: return json.load(_A ) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = git.Repo(search_parent_directories=_A ) snake_case_ = { "repo_id": str(_A ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return list(map(_A , _A ) ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' with open(_A , "wb" ) as f: return pickle.dump(_A , _A ) def lowerCamelCase__ ( _A ): '''simple docstring''' def remove_articles(_A ): return re.sub(R"\b(a|an|the)\b" , " " , _A ) def white_space_fix(_A ): return " ".join(text.split() ) def remove_punc(_A ): snake_case_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_A ) ) ) ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = normalize_answer(_A ).split() snake_case_ = normalize_answer(_A ).split() snake_case_ = Counter(_A ) & Counter(_A ) snake_case_ = sum(common.values() ) if num_same == 0: return 0 snake_case_ = 1.0 * num_same / len(_A ) snake_case_ = 1.0 * num_same / len(_A ) snake_case_ = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return normalize_answer(_A ) == normalize_answer(_A ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' assert len(_A ) == len(_A ) snake_case_ = 0 for hypo, pred in zip(_A , _A ): em += exact_match_score(_A , _A ) if len(_A ) > 0: em /= len(_A ) return {"em": em} def lowerCamelCase__ ( _A ): '''simple docstring''' return model_prefix.startswith("rag" ) def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ = "dropout_rate" for p in extra_params: if getattr(_A , _A , _A ): if not hasattr(_A , _A ) and not hasattr(_A , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(_A ) ) delattr(_A , _A ) continue snake_case_ = p if hasattr(_A , _A ) else equivalent_param[p] setattr(_A , _A , getattr(_A , _A ) ) delattr(_A , _A ) return hparams, config
187
1
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def A ( _lowerCamelCase , _lowerCamelCase="shi-labs/oneformer_demo" ): '''simple docstring''' with open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) as f: _lowerCAmelCase : int = json.load(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = {} _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Union[str, Any] = [] for key, info in class_info.items(): _lowerCAmelCase : Union[str, Any] = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(_lowerCamelCase ) ) _lowerCAmelCase : Dict = thing_ids _lowerCAmelCase : str = class_names return metadata class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=7, __a=3, __a=30, __a=400, __a=None, __a=True, __a=True, __a=[0.5, 0.5, 0.5], __a=[0.5, 0.5, 0.5], __a=10, __a=False, __a=255, __a="shi-labs/oneformer_demo", __a="ade20k_panoptic.json", __a=10, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : List[str] = min_resolution _lowerCAmelCase : Optional[Any] = max_resolution _lowerCAmelCase : List[Any] = do_resize _lowerCAmelCase : int = {"shortest_edge": 32, "longest_edge": 1333} if size is None else size _lowerCAmelCase : List[str] = do_normalize _lowerCAmelCase : Optional[Any] = image_mean _lowerCAmelCase : List[Any] = image_std _lowerCAmelCase : Optional[int] = class_info_file _lowerCAmelCase : Any = prepare_metadata(__a, __a) _lowerCAmelCase : Optional[int] = num_text _lowerCAmelCase : int = repo_path # for the post_process_functions _lowerCAmelCase : Union[str, Any] = 2 _lowerCAmelCase : Tuple = 10 _lowerCAmelCase : Tuple = 10 _lowerCAmelCase : str = 3 _lowerCAmelCase : int = 4 _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : Tuple = do_reduce_labels _lowerCAmelCase : Optional[int] = ignore_index def snake_case__ ( self): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def snake_case__ ( self, __a, __a=False): '''simple docstring''' if not batched: _lowerCAmelCase : Optional[int] = image_inputs[0] if isinstance(__a, Image.Image): _lowerCAmelCase , _lowerCAmelCase : Tuple = image.size else: _lowerCAmelCase , _lowerCAmelCase : Any = image.shape[1], image.shape[2] if w < h: _lowerCAmelCase : str = int(self.size["shortest_edge"] * h / w) _lowerCAmelCase : int = self.size["shortest_edge"] elif w > h: _lowerCAmelCase : str = self.size["shortest_edge"] _lowerCAmelCase : int = int(self.size["shortest_edge"] * w / h) else: _lowerCAmelCase : Tuple = self.size["shortest_edge"] _lowerCAmelCase : Tuple = self.size["shortest_edge"] else: _lowerCAmelCase : Optional[Any] = [] for image in image_inputs: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) _lowerCAmelCase : List[str] = max(__a, key=lambda __a: item[0])[0] _lowerCAmelCase : List[Any] = max(__a, key=lambda __a: item[1])[1] return expected_height, expected_width def snake_case__ ( self): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1)), masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width)), ) @require_torch @require_vision class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string lowerCamelCase__ = image_processing_class def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = OneFormerImageProcessorTester(self) @property def snake_case__ ( self): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a, "image_mean")) self.assertTrue(hasattr(__a, "image_std")) self.assertTrue(hasattr(__a, "do_normalize")) self.assertTrue(hasattr(__a, "do_resize")) self.assertTrue(hasattr(__a, "size")) self.assertTrue(hasattr(__a, "ignore_index")) self.assertTrue(hasattr(__a, "class_info_file")) self.assertTrue(hasattr(__a, "num_text")) self.assertTrue(hasattr(__a, "repo_path")) self.assertTrue(hasattr(__a, "metadata")) self.assertTrue(hasattr(__a, "do_reduce_labels")) def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCAmelCase : List[str] = prepare_image_inputs(self.image_processing_tester, equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a, Image.Image) # Test not batched input _lowerCAmelCase : str = image_processor(image_inputs[0], ["semantic"], return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.image_processing_tester.get_expected_values(__a) self.assertEqual( encoded_images.shape, (1, self.image_processing_tester.num_channels, expected_height, expected_width), ) # Test batched _lowerCAmelCase , _lowerCAmelCase : List[str] = self.image_processing_tester.get_expected_values(__a, batched=__a) _lowerCAmelCase : Tuple = image_processor( __a, ["semantic"] * len(__a), return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowerCAmelCase : Tuple = prepare_image_inputs(self.image_processing_tester, equal_resolution=__a, numpify=__a) for image in image_inputs: self.assertIsInstance(__a, np.ndarray) # Test not batched input _lowerCAmelCase : List[str] = image_processor(image_inputs[0], ["semantic"], return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.image_processing_tester.get_expected_values(__a) self.assertEqual( encoded_images.shape, (1, self.image_processing_tester.num_channels, expected_height, expected_width), ) # Test batched _lowerCAmelCase , _lowerCAmelCase : Any = self.image_processing_tester.get_expected_values(__a, batched=__a) _lowerCAmelCase : int = image_processor( __a, ["semantic"] * len(__a), return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowerCAmelCase : str = prepare_image_inputs(self.image_processing_tester, equal_resolution=__a, torchify=__a) for image in image_inputs: self.assertIsInstance(__a, torch.Tensor) # Test not batched input _lowerCAmelCase : int = image_processor(image_inputs[0], ["semantic"], return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Dict = self.image_processing_tester.get_expected_values(__a) self.assertEqual( encoded_images.shape, (1, self.image_processing_tester.num_channels, expected_height, expected_width), ) # Test batched _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.image_processing_tester.get_expected_values(__a, batched=__a) _lowerCAmelCase : Tuple = image_processor( __a, ["semantic"] * len(__a), return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ), ) def snake_case__ ( self, __a=False, __a=False, __a="np"): '''simple docstring''' _lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict) # prepare image and target _lowerCAmelCase : List[str] = self.image_processing_tester.num_labels _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : List[str] = None _lowerCAmelCase : int = prepare_image_inputs(self.image_processing_tester, equal_resolution=__a) if with_segmentation_maps: _lowerCAmelCase : Optional[int] = num_labels if is_instance_map: _lowerCAmelCase : Tuple = list(range(__a)) * 2 _lowerCAmelCase : Tuple = dict(enumerate(__a)) _lowerCAmelCase : Union[str, Any] = [ np.random.randint(0, high * 2, (img.size[1], img.size[0])).astype(np.uinta) for img in image_inputs ] if segmentation_type == "pil": _lowerCAmelCase : str = [Image.fromarray(__a) for annotation in annotations] _lowerCAmelCase : List[Any] = image_processor( __a, ["semantic"] * len(__a), __a, return_tensors="pt", instance_id_to_semantic_id=__a, pad_and_return_pixel_mask=__a, ) return inputs def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' def common(__a=False, __a=None): _lowerCAmelCase : Optional[int] = self.comm_get_image_processor_inputs( with_segmentation_maps=__a, is_instance_map=__a, segmentation_type=__a) _lowerCAmelCase : Optional[int] = inputs["mask_labels"] _lowerCAmelCase : Optional[int] = inputs["class_labels"] _lowerCAmelCase : Union[str, Any] = inputs["pixel_values"] _lowerCAmelCase : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(__a, __a, __a): self.assertEqual(mask_label.shape[0], class_label.shape[0]) # this ensure padding has happened self.assertEqual(mask_label.shape[1:], pixel_values.shape[2:]) self.assertEqual(len(__a), self.image_processing_tester.num_text) common() common(is_instance_map=__a) common(is_instance_map=__a, segmentation_type="pil") common(is_instance_map=__a, segmentation_type="pil") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = np.zeros((20, 50)) _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : Dict = binary_mask_to_rle(__a) self.assertEqual(len(__a), 4) self.assertEqual(rle[0], 21) self.assertEqual(rle[1], 45) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes, max_seq_length=77, task_seq_length=77, class_info_file="ade20k_panoptic.json", num_text=self.image_processing_tester.num_text, repo_path="shi-labs/oneformer_demo", ) _lowerCAmelCase : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() _lowerCAmelCase : Optional[Any] = fature_extractor.post_process_semantic_segmentation(__a) self.assertEqual(len(__a), self.image_processing_tester.batch_size) self.assertEqual( segmentation[0].shape, ( self.image_processing_tester.height, self.image_processing_tester.width, ), ) _lowerCAmelCase : Tuple = [(1, 4) for i in range(self.image_processing_tester.batch_size)] _lowerCAmelCase : Optional[int] = fature_extractor.post_process_semantic_segmentation(__a, target_sizes=__a) self.assertEqual(segmentation[0].shape, target_sizes[0]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes, max_seq_length=77, task_seq_length=77, class_info_file="ade20k_panoptic.json", num_text=self.image_processing_tester.num_text, repo_path="shi-labs/oneformer_demo", ) _lowerCAmelCase : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() _lowerCAmelCase : List[str] = image_processor.post_process_instance_segmentation(__a, threshold=0) self.assertTrue(len(__a) == self.image_processing_tester.batch_size) for el in segmentation: self.assertTrue("segmentation" in el) self.assertTrue("segments_info" in el) self.assertEqual(type(el["segments_info"]), __a) self.assertEqual( el["segmentation"].shape, (self.image_processing_tester.height, self.image_processing_tester.width)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes, max_seq_length=77, task_seq_length=77, class_info_file="ade20k_panoptic.json", num_text=self.image_processing_tester.num_text, repo_path="shi-labs/oneformer_demo", ) _lowerCAmelCase : Dict = self.image_processing_tester.get_fake_oneformer_outputs() _lowerCAmelCase : Union[str, Any] = image_processor.post_process_panoptic_segmentation(__a, threshold=0) self.assertTrue(len(__a) == self.image_processing_tester.batch_size) for el in segmentation: self.assertTrue("segmentation" in el) self.assertTrue("segments_info" in el) self.assertEqual(type(el["segments_info"]), __a) self.assertEqual( el["segmentation"].shape, (self.image_processing_tester.height, self.image_processing_tester.width))
300
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
1
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument a = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def _snake_case ( _snake_case : Union[str, Any] ) -> List[str]: '''simple docstring''' _A = list(s_dict.keys() ) for key in keys: _A = R'.*/layers_(\d+)' _A = key if re.match(_snake_case , _snake_case ): _A = re.sub(R'layers_(\d+)' , R'block/\1/layer' , _snake_case ) _A = R'(encoder|decoder)\/' if re.match(_snake_case , _snake_case ): _A = re.match(_snake_case , _snake_case ).groups() if groups[0] == "encoder": _A = re.sub(R'/mlp/' , R'/1/mlp/' , _snake_case ) _A = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , _snake_case ) elif groups[0] == "decoder": _A = re.sub(R'/mlp/' , R'/2/mlp/' , _snake_case ) _A = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , _snake_case ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _A = new_key.replace(_snake_case , _snake_case ) print(F'''{key} -> {new_key}''' ) _A = s_dict.pop(_snake_case ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _A = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _A = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _A = s_dict[key].shape[0] _A = s_dict[key] for idx in range(_snake_case ): _A = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/" , "nested fstring" )}''' ) s_dict.pop(_snake_case ) return s_dict a = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def _snake_case ( _snake_case : List[Any] , _snake_case : Tuple ) -> Any: '''simple docstring''' import regex as re with open(_snake_case , 'r' ) as f: _A = f.read() _A = re.findall(R'(.*) = ([0-9.]*)' , _snake_case ) _A = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _A = float(_snake_case ) if '.' in value else int(_snake_case ) _A = re.findall(R'(.*activations) = \(\'(.*)\',\)' , _snake_case )[0] _A = str(activation[1] ) _A = num_experts _A = SwitchTransformersConfig(**_snake_case ) return config def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] , _snake_case : List[Any]=None , _snake_case : Optional[Any]="./" , _snake_case : List[str]=8 ) -> int: '''simple docstring''' print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) _A = checkpoints.load_tax_checkpoint(_snake_case ) if gin_file is not None: _A = convert_gin_to_config(_snake_case , _snake_case ) else: _A = SwitchTransformersConfig.from_pretrained(_snake_case ) _A = SwitchTransformersForConditionalGeneration(_snake_case ) _A = flax_params['target'] _A = flatten_dict(_snake_case , sep='/' ) _A = rename_keys(_snake_case ) _A = unflatten_dict(_snake_case , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_snake_case , _snake_case ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(_snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') a = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
315
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
315
1
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1e-12 ) ->str: """simple docstring""" lowerCAmelCase__ :Tuple = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_SCREAMING_SNAKE_CASE , axis=1 ) , a_min=_SCREAMING_SNAKE_CASE ) ).T lowerCAmelCase__ :int = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_SCREAMING_SNAKE_CASE , axis=1 ) , a_min=_SCREAMING_SNAKE_CASE ) ).T return jnp.matmul(_SCREAMING_SNAKE_CASE , norm_emb_a.T ) class _lowerCAmelCase ( nn.Module ): """simple docstring""" __magic_name__ :CLIPConfig __magic_name__ :jnp.dtype = jnp.floataa def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = FlaxCLIPVisionModule(self.config.vision_config ) lowerCAmelCase__ :str = nn.Dense(self.config.projection_dim , use_bias=__UpperCAmelCase , dtype=self.dtype ) lowerCAmelCase__ :Optional[Any] = self.param('concept_embeds' , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) lowerCAmelCase__ :Optional[int] = self.param( 'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowerCAmelCase__ :Any = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (1_7,) ) lowerCAmelCase__ :List[Any] = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,) ) def __call__( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.vision_model(__UpperCAmelCase )[1] lowerCAmelCase__ :Optional[int] = self.visual_projection(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = jax_cosine_distance(__UpperCAmelCase , self.special_care_embeds ) lowerCAmelCase__ :Tuple = jax_cosine_distance(__UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowerCAmelCase__ :Dict = 0.0 lowerCAmelCase__ :List[str] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowerCAmelCase__ :Optional[Any] = jnp.round(__UpperCAmelCase , 3 ) lowerCAmelCase__ :Tuple = jnp.any(special_scores > 0 , axis=1 , keepdims=__UpperCAmelCase ) # Use a lower threshold if an image has any special care concept lowerCAmelCase__ :List[Any] = is_special_care * 0.01 lowerCAmelCase__ :Union[str, Any] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowerCAmelCase__ :Any = jnp.round(__UpperCAmelCase , 3 ) lowerCAmelCase__ :Tuple = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Tuple = CLIPConfig __magic_name__ :Tuple = """clip_input""" __magic_name__ :str = FlaxStableDiffusionSafetyCheckerModule def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = jnp.floataa , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' if input_shape is None: lowerCAmelCase__ :Dict = (1, 2_2_4, 2_2_4, 3) lowerCAmelCase__ :Any = self.module_class(config=__UpperCAmelCase , dtype=__UpperCAmelCase , **__UpperCAmelCase ) super().__init__(__UpperCAmelCase , __UpperCAmelCase , input_shape=__UpperCAmelCase , seed=__UpperCAmelCase , dtype=__UpperCAmelCase , _do_init=_do_init ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :str = jax.random.normal(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = jax.random.split(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = {'params': params_rng, 'dropout': dropout_rng} lowerCAmelCase__ :Optional[int] = self.module.init(__UpperCAmelCase , __UpperCAmelCase )['params'] return random_params def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = jnp.transpose(__UpperCAmelCase , (0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params} , jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) , rngs={} , )
254
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) ->str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path lowerCAmelCase__ :Optional[int] = quote(_SCREAMING_SNAKE_CASE ) return hfh.hf_hub_url(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' , revision=_SCREAMING_SNAKE_CASE )
254
1
def lowerCamelCase__ ( _a , _a): def get_matched_characters(_a , _a) -> str: SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : List[Any] = min(len(_stra) , len(_stra)) // 2 for i, l in enumerate(_stra): SCREAMING_SNAKE_CASE : Dict = int(max(0 , i - limit)) SCREAMING_SNAKE_CASE : int = int(min(i + limit + 1 , len(_stra))) if l in _stra[left:right]: matched.append(__lowerCAmelCase) SCREAMING_SNAKE_CASE : List[str] = f"{_stra[0:_stra.index(__lowerCAmelCase)]} {_stra[_stra.index(__lowerCAmelCase) + 1:]}" return "".join(__lowerCAmelCase) # matching characters SCREAMING_SNAKE_CASE : Optional[Any] = get_matched_characters(__lowerCAmelCase , __lowerCAmelCase) SCREAMING_SNAKE_CASE : Union[str, Any] = get_matched_characters(__lowerCAmelCase , __lowerCAmelCase) SCREAMING_SNAKE_CASE : Optional[int] = len(__lowerCAmelCase) # transposition SCREAMING_SNAKE_CASE : Tuple = ( len([(ca, ca) for ca, ca in zip(__lowerCAmelCase , __lowerCAmelCase) if ca != ca]) // 2 ) if not match_count: SCREAMING_SNAKE_CASE : Any = 0.0 else: SCREAMING_SNAKE_CASE : Optional[int] = ( 1 / 3 * ( match_count / len(__lowerCAmelCase) + match_count / len(__lowerCAmelCase) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters SCREAMING_SNAKE_CASE : Optional[int] = 0 for ca, ca in zip(stra[:4] , stra[:4]): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
76
'''simple docstring''' from __future__ import annotations lowerCamelCase__ = 'Muhammad Umer Farooq' lowerCamelCase__ = 'MIT' lowerCamelCase__ = '1.0.0' lowerCamelCase__ = 'Muhammad Umer Farooq' lowerCamelCase__ = '[email protected]' lowerCamelCase__ = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : str ) ->None: '''simple docstring''' super().__init__() _UpperCAmelCase : list[str] = [] _UpperCAmelCase : List[str] = domain def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : list[tuple[str, str | None]] ) ->None: '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _UpperCAmelCase : Dict = parse.urljoin(self.domain , lowerCamelCase__ ) self.urls.append(lowerCamelCase__ ) def __lowerCAmelCase (__lowerCAmelCase ): return ".".join(get_sub_domain_name(__lowerCAmelCase ).split("." )[-2:] ) def __lowerCAmelCase (__lowerCAmelCase ): return parse.urlparse(__lowerCAmelCase ).netloc def __lowerCAmelCase (__lowerCAmelCase = "https://github.com" ): _UpperCAmelCase : List[str] = get_domain_name(__lowerCAmelCase ) # Initialize the parser _UpperCAmelCase : int = Parser(__lowerCAmelCase ) try: # Open URL _UpperCAmelCase : Any = requests.get(__lowerCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _UpperCAmelCase : Any = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _UpperCAmelCase : List[str] = requests.get(__lowerCAmelCase ) # Get the valid email. _UpperCAmelCase : Optional[int] = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__lowerCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = emails_from_url('https://github.com') print(F'''{len(emails)} emails found:''') print('\n'.join(sorted(emails)))
234
0
"""simple docstring""" def __lowerCAmelCase ( lowercase : list ) -> Dict: """simple docstring""" snake_case : Dict = len(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: snake_case ,snake_case : Union[str, Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": __snake_case = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
367
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCAmelCase ( lowercase : List[str] , lowercase : int , lowercase : Dict , lowercase : Dict , lowercase : int ) -> int: """simple docstring""" with open(lowercase ) as metadata_file: snake_case : str = json.load(lowercase ) snake_case : Optional[Any] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path snake_case : Tuple = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file snake_case : Optional[Any] = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] snake_case : Dict = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks snake_case : Tuple = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) snake_case : str = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: snake_case : str = json.load(lowercase ) snake_case : List[str] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) snake_case : Dict = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens snake_case : Tuple = tokenizer.convert_tokens_to_ids(["@"] )[0] snake_case : str = tokenizer.convert_tokens_to_ids(["#"] )[0] snake_case : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] snake_case : str = word_emb[ent_init_index].unsqueeze(0 ) snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: snake_case : Tuple = state_dict[bias_name] snake_case : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) snake_case : Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case : Optional[int] = F'encoder.layer.{layer_index}.attention.self.' snake_case : Optional[Any] = state_dict[prefix + matrix_name] snake_case : Optional[Any] = state_dict[prefix + matrix_name] snake_case : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case : List[Any] = state_dict["entity_embeddings.entity_embeddings.weight"] snake_case : str = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) snake_case : Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' snake_case : Optional[int] = state_dict["entity_predictions.bias"] snake_case : Optional[int] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) snake_case : Union[str, Any] = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) snake_case : Tuple = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): snake_case : Any = state_dict[key] else: snake_case : Tuple = state_dict[key] snake_case ,snake_case : Optional[Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs snake_case : Optional[Any] = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) snake_case : List[str] = "ISO 639-3 uses the code fas for the dialects spoken across Iran and ใ‚ขใƒ•ใ‚ฌใƒ‹ใ‚นใ‚ฟใƒณ (Afghanistan)." snake_case : str = (0, 9) snake_case : Union[str, Any] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) snake_case : int = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : int = torch.Size((1, 33, 768) ) snake_case : str = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : Any = torch.Size((1, 1, 768) ) snake_case : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction snake_case : List[str] = MLukeTokenizer.from_pretrained(lowercase ) snake_case : List[Any] = "Tokyo is the capital of <mask>." snake_case : Optional[Any] = (24, 30) snake_case : List[str] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) snake_case : Any = model(**lowercase ) snake_case : int = encoding["input_ids"][0].tolist() snake_case : str = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) snake_case : Tuple = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) snake_case : Tuple = outputs.entity_logits[0][0].argmax().item() snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> Dict: """simple docstring""" snake_case : Tuple = ["[MASK]", "[PAD]", "[UNK]"] snake_case : Optional[Any] = [json.loads(lowercase ) for line in open(lowercase )] snake_case : Any = {} for entry in data: snake_case : Union[str, Any] = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: snake_case : Union[str, Any] = entity_id break snake_case : Dict = F'{language}:{entity_name}' snake_case : str = entity_id return new_mapping if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) __snake_case = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
112
0
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ) -> Union[str, Any]: lowerCAmelCase__ : Union[str, Any] = [] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: self.events.append("""on_init_end""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> int: self.events.append("""on_train_begin""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: self.events.append("""on_train_end""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: self.events.append("""on_epoch_begin""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: self.events.append("""on_epoch_end""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: self.events.append("""on_step_begin""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: self.events.append("""on_step_end""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: self.events.append("""on_evaluate""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> int: self.events.append("""on_predict""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: self.events.append("""on_save""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: self.events.append("""on_log""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: self.events.append("""on_prediction_step""" ) @require_torch class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : int = tempfile.mkdtemp() def UpperCAmelCase_ ( self ) -> Tuple: shutil.rmtree(self.output_dir ) def UpperCAmelCase_ ( self ,__UpperCAmelCase=0 ,__UpperCAmelCase=0 ,__UpperCAmelCase=64 ,__UpperCAmelCase=64 ,__UpperCAmelCase=None ,__UpperCAmelCase=False ,**__UpperCAmelCase ) -> Optional[int]: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowerCAmelCase__ : Tuple = RegressionDataset(length=__UpperCAmelCase ) lowerCAmelCase__ : Tuple = RegressionDataset(length=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = RegressionModelConfig(a=__UpperCAmelCase ,b=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = RegressionPreTrainedModel(__UpperCAmelCase ) lowerCAmelCase__ : int = TrainingArguments(self.output_dir ,disable_tqdm=__UpperCAmelCase ,report_to=[] ,**__UpperCAmelCase ) return Trainer( __UpperCAmelCase ,__UpperCAmelCase ,train_dataset=__UpperCAmelCase ,eval_dataset=__UpperCAmelCase ,callbacks=__UpperCAmelCase ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: self.assertEqual(len(__UpperCAmelCase ) ,len(__UpperCAmelCase ) ) # Order doesn't matter lowerCAmelCase__ : Optional[int] = sorted(__UpperCAmelCase ,key=lambda __UpperCAmelCase : cb.__name__ if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else cb.__class__.__name__ ) lowerCAmelCase__ : Optional[int] = sorted(__UpperCAmelCase ,key=lambda __UpperCAmelCase : cb.__name__ if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else cb.__class__.__name__ ) for cba, cba in zip(__UpperCAmelCase ,__UpperCAmelCase ): if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) and isinstance(__UpperCAmelCase ,__UpperCAmelCase ): self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) elif isinstance(__UpperCAmelCase ,__UpperCAmelCase ) and not isinstance(__UpperCAmelCase ,__UpperCAmelCase ): self.assertEqual(__UpperCAmelCase ,cba.__class__ ) elif not isinstance(__UpperCAmelCase ,__UpperCAmelCase ) and isinstance(__UpperCAmelCase ,__UpperCAmelCase ): self.assertEqual(cba.__class__ ,__UpperCAmelCase ) else: self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Union[str, Any]: lowerCAmelCase__ : Any = ["""on_init_end""", """on_train_begin"""] lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : Tuple = len(trainer.get_eval_dataloader() ) lowerCAmelCase__ : Optional[int] = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(__UpperCAmelCase ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : Any = self.get_trainer() lowerCAmelCase__ : Tuple = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,__UpperCAmelCase ) # Callbacks passed at init are added to the default callbacks lowerCAmelCase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(__UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,__UpperCAmelCase ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowerCAmelCase__ : Tuple = self.get_trainer(disable_tqdm=__UpperCAmelCase ) lowerCAmelCase__ : int = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Optional[int] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowerCAmelCase__ : List[Any] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(__UpperCAmelCase ) expected_callbacks.remove(__UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = self.get_trainer() lowerCAmelCase__ : Optional[int] = trainer.pop_callback(__UpperCAmelCase ) self.assertEqual(cb.__class__ ,__UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,__UpperCAmelCase ) trainer.add_callback(__UpperCAmelCase ) expected_callbacks.insert(0 ,__UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,__UpperCAmelCase ) # We can also add, pop, or remove by instance lowerCAmelCase__ : Optional[int] = self.get_trainer() lowerCAmelCase__ : Any = trainer.callback_handler.callbacks[0] trainer.remove_callback(__UpperCAmelCase ) expected_callbacks.remove(__UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = self.get_trainer() lowerCAmelCase__ : Dict = trainer.callback_handler.callbacks[0] lowerCAmelCase__ : List[Any] = trainer.pop_callback(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,__UpperCAmelCase ) trainer.add_callback(__UpperCAmelCase ) expected_callbacks.insert(0 ,__UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" ,category=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowerCAmelCase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase ,self.get_expected_events(__UpperCAmelCase ) ) # Independent log/save/eval lowerCAmelCase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() lowerCAmelCase__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase ,self.get_expected_events(__UpperCAmelCase ) ) lowerCAmelCase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() lowerCAmelCase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase ,self.get_expected_events(__UpperCAmelCase ) ) lowerCAmelCase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy="""steps""" ) trainer.train() lowerCAmelCase__ : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase ,self.get_expected_events(__UpperCAmelCase ) ) lowerCAmelCase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy="""epoch""" ) trainer.train() lowerCAmelCase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase ,self.get_expected_events(__UpperCAmelCase ) ) # A bit of everything lowerCAmelCase__ : List[str] = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=10 ,eval_steps=5 ,evaluation_strategy="""steps""" ,) trainer.train() lowerCAmelCase__ : Optional[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__UpperCAmelCase ,self.get_expected_events(__UpperCAmelCase ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: lowerCAmelCase__ : Union[str, Any] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(__UpperCAmelCase ) in warn_mock.call_args[0][0]
37
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowerCAmelCase_: '''simple docstring''' def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]: return None class lowerCAmelCase_: '''simple docstring''' def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: return None class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def UpperCAmelCase_ ( self ) -> int: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCAmelCase ,"""tf""" ,12 ,**__UpperCAmelCase ) @require_torch @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCAmelCase ,"""pt""" ,12 ,**__UpperCAmelCase ) @require_torch @slow def UpperCAmelCase_ ( self ) -> Any: from transformers import BertModel lowerCAmelCase__ : Optional[int] = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(__UpperCAmelCase ) ) vocab_file.flush() lowerCAmelCase__ : Dict = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCAmelCase__ : Tuple = BertModel(BertConfig(vocab_size=len(__UpperCAmelCase ) ) ) model.save_pretrained(__UpperCAmelCase ) self._test_export(__UpperCAmelCase ,"""pt""" ,12 ,__UpperCAmelCase ) @require_tf @slow def UpperCAmelCase_ ( self ) -> List[str]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCAmelCase__ : Dict = self._test_export(__UpperCAmelCase ,"""tf""" ,12 ,**__UpperCAmelCase ) lowerCAmelCase__ : List[str] = quantize(Path(__UpperCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def UpperCAmelCase_ ( self ) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCAmelCase__ : Any = self._test_export(__UpperCAmelCase ,"""pt""" ,12 ,**__UpperCAmelCase ) lowerCAmelCase__ : Dict = quantize(__UpperCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> Optional[Any]: try: # Compute path with TemporaryDirectory() as tempdir: lowerCAmelCase__ : Optional[int] = Path(__UpperCAmelCase ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) return path except Exception as e: self.fail(__UpperCAmelCase ) @require_torch @require_tokenizers @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: from transformers import BertModel lowerCAmelCase__ : List[Any] = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowerCAmelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__UpperCAmelCase ,__UpperCAmelCase ,"""pt""" ) @require_tf @require_tokenizers @slow def UpperCAmelCase_ ( self ) -> Optional[int]: from transformers import TFBertModel lowerCAmelCase__ : int = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowerCAmelCase__ : Optional[int] = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__UpperCAmelCase ,__UpperCAmelCase ,"""tf""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Any = FeatureExtractionPipeline(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : List[str] = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = infer_shapes(__UpperCAmelCase ,__UpperCAmelCase ) # Assert all variables are present self.assertEqual(len(__UpperCAmelCase ) ,len(__UpperCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCAmelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] ,{0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] ,{0: """batch"""} ) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : List[str] = ["""input_ids""", """attention_mask""", """token_type_ids"""] lowerCAmelCase__ : Union[str, Any] = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = ensure_valid_input(FuncContiguousArgs() ,__UpperCAmelCase ,__UpperCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCAmelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCAmelCase ) ,set(__UpperCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCAmelCase ,(tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCAmelCase__ , lowerCAmelCase__ : int = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCAmelCase ,__UpperCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCAmelCase ) ,1 ) self.assertEqual(len(__UpperCAmelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] ,"""input_ids""" ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : Dict = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) ,"""-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" ,generated.as_posix() )
37
1
def __UpperCamelCase ( _A : float ) ->float: """simple docstring""" return 10 - x * x def __UpperCamelCase ( _A : float , _A : float ) ->float: """simple docstring""" # Bolzano theory in order to find if there is a root between a and b if equation(_A ) * equation(_A ) >= 0: raise ValueError("""Wrong space!""" ) lowerCamelCase_ =a while (b - a) >= 0.0_1: # Find middle point lowerCamelCase_ =(a + b) / 2 # Check if middle point is root if equation(_A ) == 0.0: break # Decide the side to repeat the steps if equation(_A ) * equation(_A ) < 0: lowerCamelCase_ =c else: lowerCamelCase_ =c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
49
from string import ascii_uppercase __A : int = {str(ord(c) - 55): c for c in ascii_uppercase} def __UpperCamelCase ( _A : int , _A : int ) ->str: """simple docstring""" if isinstance(_A , _A ): raise TypeError("""int() can't convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(_A , _A ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if isinstance(_A , _A ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 36: raise ValueError("""base must be <= 36""" ) lowerCamelCase_ ="""""" lowerCamelCase_ =0 lowerCamelCase_ =0 while div != 1: lowerCamelCase_ , lowerCamelCase_ =divmod(_A , _A ) if base >= 11 and 9 < mod < 36: lowerCamelCase_ =ALPHABET_VALUES[str(_A )] else: lowerCamelCase_ =str(_A ) new_value += actual_value lowerCamelCase_ =num // base lowerCamelCase_ =div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_A ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(10_00): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
49
1
from __future__ import annotations def UpperCAmelCase_( a__ ): """simple docstring""" for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__lowercase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__lowercase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
313
'''simple docstring''' class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : list[int] ): '''simple docstring''' _A = len(__UpperCAmelCase ) _A = [0] * len_array if len_array > 0: _A = array[0] for i in range(1 , __UpperCAmelCase ): _A = self.prefix_sum[i - 1] + array[i] def lowerCAmelCase ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : int ): '''simple docstring''' _A = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCAmelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
79
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] = DiTPipeline a_ : Optional[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS a_ : Dict = PipelineTesterMixin.required_optional_params - { """latents""", """num_images_per_prompt""", """callback""", """callback_steps""", } a_ : int = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS a_ : List[Any] = False def lowerCamelCase ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCAmelCase_ : Any = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a_ , activation_fn="gelu-approximate" , num_embeds_ada_norm=10_00 , norm_type="ada_norm_zero" , norm_elementwise_affine=a_ , ) lowerCAmelCase_ : Optional[Any] = AutoencoderKL() lowerCAmelCase_ : Optional[int] = DDIMScheduler() lowerCAmelCase_ : Optional[int] = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowerCamelCase ( self : List[str] , a_ : List[Any] , a_ : str=0 ): if str(a_ ).startswith("mps" ): lowerCAmelCase_ : Union[str, Any] = torch.manual_seed(a_ ) else: lowerCAmelCase_ : Any = torch.Generator(device=a_ ).manual_seed(a_ ) lowerCAmelCase_ : int = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : str = "cpu" lowerCAmelCase_ : Optional[int] = self.get_dummy_components() lowerCAmelCase_ : Any = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Optional[int] = self.get_dummy_inputs(a_ ) lowerCAmelCase_ : Union[str, Any] = pipe(**a_ ).images lowerCAmelCase_ : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) lowerCAmelCase_ : Any = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) lowerCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a_ , 1e-3 ) def lowerCamelCase ( self : int ): self._test_inference_batch_single_identical(relax_max_difference=a_ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCamelCase ( self : List[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Tuple = torch.manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) lowerCAmelCase_ : int = ["vase", "umbrella", "white shark", "white wolf"] lowerCAmelCase_ : Union[str, Any] = pipe.get_label_ids(a_ ) lowerCAmelCase_ : int = pipe(a_ , generator=a_ , num_inference_steps=40 , output_type="np" ).images for word, image in zip(a_ , a_ ): lowerCAmelCase_ : Union[str, Any] = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : List[Any] = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) lowerCAmelCase_ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) lowerCAmelCase_ : List[Any] = ["vase", "umbrella"] lowerCAmelCase_ : Optional[Any] = pipe.get_label_ids(a_ ) lowerCAmelCase_ : List[str] = torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = pipe(a_ , generator=a_ , num_inference_steps=25 , output_type="np" ).images for word, image in zip(a_ , a_ ): lowerCAmelCase_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
161
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowercase__ = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } lowercase__ = {"""facebook/blenderbot-3B""": 128} class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Dict = VOCAB_FILES_NAMES a_ : Tuple = PRETRAINED_VOCAB_FILES_MAP a_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[int] = ["""input_ids""", """attention_mask"""] a_ : int = BlenderbotTokenizer def __init__( self : Optional[Any] , a_ : Union[str, Any]=None , a_ : Any=None , a_ : int=None , a_ : str="replace" , a_ : Tuple="<s>" , a_ : Optional[int]="</s>" , a_ : Union[str, Any]="</s>" , a_ : Union[str, Any]="<s>" , a_ : Optional[Any]="<unk>" , a_ : str="<pad>" , a_ : List[Any]="<mask>" , a_ : Tuple=False , a_ : Dict=True , **a_ : str , ): super().__init__( a_ , a_ , tokenizer_file=a_ , errors=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , add_prefix_space=a_ , trim_offsets=a_ , **a_ , ) lowerCAmelCase_ : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a_ ) != add_prefix_space: lowerCAmelCase_ : str = getattr(a_ , pre_tok_state.pop("type" ) ) lowerCAmelCase_ : int = add_prefix_space lowerCAmelCase_ : List[Any] = pre_tok_class(**a_ ) lowerCAmelCase_ : Any = add_prefix_space lowerCAmelCase_ : str = "post_processor" lowerCAmelCase_ : str = getattr(self.backend_tokenizer , a_ , a_ ) if tokenizer_component_instance: lowerCAmelCase_ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase_ : Dict = tuple(state["sep"] ) if "cls" in state: lowerCAmelCase_ : Optional[int] = tuple(state["cls"] ) lowerCAmelCase_ : Optional[int] = False if state.get("add_prefix_space" , a_ ) != add_prefix_space: lowerCAmelCase_ : List[str] = add_prefix_space lowerCAmelCase_ : Any = True if state.get("trim_offsets" , a_ ) != trim_offsets: lowerCAmelCase_ : int = trim_offsets lowerCAmelCase_ : List[str] = True if changes_to_apply: lowerCAmelCase_ : Optional[Any] = getattr(a_ , state.pop("type" ) ) lowerCAmelCase_ : Tuple = component_class(**a_ ) setattr(self.backend_tokenizer , a_ , a_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase ( self : int ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase ( self : int , a_ : List[Any] ): lowerCAmelCase_ : Optional[Any] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else value lowerCAmelCase_ : Tuple = value def lowerCamelCase ( self : int , *a_ : List[str] , **a_ : Optional[int] ): lowerCAmelCase_ : Tuple = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_ , **a_ ) def lowerCamelCase ( self : str , *a_ : Union[str, Any] , **a_ : List[str] ): lowerCAmelCase_ : Tuple = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*a_ , **a_ ) def lowerCamelCase ( self : int , a_ : str , a_ : Optional[str] = None ): lowerCAmelCase_ : str = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ ) def lowerCamelCase ( self : int , a_ : List[int] , a_ : Optional[List[int]] = None ): lowerCAmelCase_ : Optional[int] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase ( self : Union[str, Any] , a_ : "Conversation" ): lowerCAmelCase_ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(a_ ) lowerCAmelCase_ : Tuple = " ".join(a_ ) lowerCAmelCase_ : Any = self.encode(a_ ) if len(a_ ) > self.model_max_length: lowerCAmelCase_ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
161
1
from __future__ import annotations _A = tuple[int, int, int] _A = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase _A = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- _A = "EGZWVONAHDCLFQMSIPJBYUKXTR" _A = "FOBHMDKEXQNRAULPGSJVTYICZW" _A = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- _A = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- _A = "RMDJXFUWGISLHVTCQNKYPBEZOA" _A = "SGLCPQWZHKXAREONTFBVIYJUDM" _A = "HVSICLTYKQUBXDWAJZOMFGPREN" _A = "RZWQHFMVDBKICJLNTUXAGYPSOE" _A = "LFKIJODBEGAMQPXVUHYSTCZRWN" _A = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def lowerCamelCase__ ( __lowerCAmelCase : RotorPositionT , __lowerCAmelCase : RotorSelectionT , __lowerCAmelCase : str ): """simple docstring""" if (unique_rotsel := len(set(__lowerCAmelCase ) )) < 3: lowerCAmelCase_ = F"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(__lowerCAmelCase ) # Checks if rotor positions are valid lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = rotpos if not 0 < rotorposa <= len(__lowerCAmelCase ): lowerCAmelCase_ = F"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(__lowerCAmelCase ) if not 0 < rotorposa <= len(__lowerCAmelCase ): lowerCAmelCase_ = F"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(__lowerCAmelCase ) if not 0 < rotorposa <= len(__lowerCAmelCase ): lowerCAmelCase_ = F"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(__lowerCAmelCase ) # Validates string and returns dict lowerCAmelCase_ = _plugboard(__lowerCAmelCase ) return rotpos, rotsel, pbdict def lowerCamelCase__ ( __lowerCAmelCase : str ): """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCAmelCase_ = F"""Plugboard setting isn't type string ({type(__lowerCAmelCase )})""" raise TypeError(__lowerCAmelCase ) elif len(__lowerCAmelCase ) % 2 != 0: lowerCAmelCase_ = F"""Odd number of symbols ({len(__lowerCAmelCase )})""" raise Exception(__lowerCAmelCase ) elif pbstring == "": return {} pbstring.replace(" " , "" ) # Checks if all characters are unique lowerCAmelCase_ = set() for i in pbstring: if i not in abc: lowerCAmelCase_ = F"""'{i}' not in list of symbols""" raise Exception(__lowerCAmelCase ) elif i in tmppbl: lowerCAmelCase_ = F"""Duplicate symbol ({i})""" raise Exception(__lowerCAmelCase ) else: tmppbl.add(__lowerCAmelCase ) del tmppbl # Created the dictionary lowerCAmelCase_ = {} for j in range(0 , len(__lowerCAmelCase ) - 1 , 2 ): lowerCAmelCase_ = pbstring[j + 1] lowerCAmelCase_ = pbstring[j] return pb def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : RotorPositionT , __lowerCAmelCase : RotorSelectionT = (rotora, rotora, rotora) , __lowerCAmelCase : str = "" , ): """simple docstring""" lowerCAmelCase_ = text.upper() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = _validator( __lowerCAmelCase , __lowerCAmelCase , plugb.upper() ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = rotor_position lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowerCAmelCase_ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowerCAmelCase_ = plugboard[symbol] # rotor ra -------------------------- lowerCAmelCase_ = abc.index(__lowerCAmelCase ) + rotorposa lowerCAmelCase_ = rotora[index % len(__lowerCAmelCase )] # rotor rb -------------------------- lowerCAmelCase_ = abc.index(__lowerCAmelCase ) + rotorposa lowerCAmelCase_ = rotora[index % len(__lowerCAmelCase )] # rotor rc -------------------------- lowerCAmelCase_ = abc.index(__lowerCAmelCase ) + rotorposa lowerCAmelCase_ = rotora[index % len(__lowerCAmelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowerCAmelCase_ = reflector[symbol] # 2nd rotors lowerCAmelCase_ = abc[rotora.index(__lowerCAmelCase ) - rotorposa] lowerCAmelCase_ = abc[rotora.index(__lowerCAmelCase ) - rotorposa] lowerCAmelCase_ = abc[rotora.index(__lowerCAmelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowerCAmelCase_ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(__lowerCAmelCase ): lowerCAmelCase_ = 0 rotorposa += 1 if rotorposa >= len(__lowerCAmelCase ): lowerCAmelCase_ = 0 rotorposa += 1 if rotorposa >= len(__lowerCAmelCase ): lowerCAmelCase_ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(__lowerCAmelCase ) return "".join(__lowerCAmelCase ) if __name__ == "__main__": _A = "This is my Python script that emulates the Enigma machine from WWII." _A = (1, 1, 1) _A = "pictures" _A = (rotora, rotora, rotora) _A = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
231
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __a , unittest.TestCase ): _lowercase =CLIPTokenizer _lowercase =CLIPTokenizerFast _lowercase =True _lowercase ={} _lowercase =False def __a ( self ) -> Dict: super().setUp() # fmt: off lowerCAmelCase_ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCAmelCase_ = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) lowerCAmelCase_ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] lowerCAmelCase_ = {"unk_token": "<unk>"} lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_UpperCamelCase ) ) def __a ( self , **_UpperCamelCase ) -> Any: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __a ( self , **_UpperCamelCase ) -> int: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __a ( self , _UpperCamelCase ) -> List[str]: lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = "lower newer" return input_text, output_text def __a ( self ) -> List[Any]: lowerCAmelCase_ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] lowerCAmelCase_ = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = tokens + [tokenizer.unk_token] lowerCAmelCase_ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase ) @require_ftfy def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = "A\n'll 11p223RFโ˜†ho!!to?'d'd''d of a cat to-$''d." lowerCAmelCase_ = tokenizer_s.tokenize(_UpperCamelCase ) lowerCAmelCase_ = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCAmelCase_ = "xa\u0303y" + " " + "x\xe3y" lowerCAmelCase_ = tokenizer_s.tokenize(_UpperCamelCase ) lowerCAmelCase_ = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) # Test that the tokenization is identical on unicode of space type lowerCAmelCase_ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCAmelCase_ = tokenizer_s.tokenize(_UpperCamelCase ) lowerCAmelCase_ = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) # Test that the tokenization is identical on unicode of line break type lowerCAmelCase_ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "โ€ฆ" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCAmelCase_ = tokenizer_s.tokenize(_UpperCamelCase ) lowerCAmelCase_ = tokenizer_r.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __a ( self ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase_ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase_ = f"""{text_of_1_token} {text_of_1_token}""" lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , ) lowerCAmelCase_ = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) lowerCAmelCase_ = f""" {text}""" lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , ) lowerCAmelCase_ = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ) + 1, 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) def __a ( self ) -> Optional[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_UpperCamelCase ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def __a ( self ) -> str: super().test_tokenization_python_rust_equals() def __a ( self ) -> Any: # CLIP always lower cases letters pass
231
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCAmelCase = get_logger(__name__) def lowerCamelCase (a_ :Any , a_ :Optional[int] , a_ :str , a_ :Optional[Any] , a_ :List[str]=0) -> Optional[Any]: os.makedirs(a_ , exist_ok=a_) with FSDP.state_dict_type( a_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config): lowercase :List[Any] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase :str = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" lowercase :Tuple = os.path.join(a_ , a_) if accelerator.process_index == 0: logger.info(F"""Saving model to {output_model_file}""") torch.save(a_ , a_) logger.info(F"""Model saved to {output_model_file}""") elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase :Union[str, Any] = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) lowercase :List[str] = os.path.join(a_ , a_) logger.info(F"""Saving model to {output_model_file}""") torch.save(a_ , a_) logger.info(F"""Model saved to {output_model_file}""") elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase :int = os.path.join(a_ , F"""{MODEL_NAME}_{model_index}""") os.makedirs(a_ , exist_ok=a_) logger.info(F"""Saving model to {ckpt_dir}""") lowercase :Optional[int] = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=a_ , storage_writer=dist_cp.FileSystemWriter(a_) , planner=DefaultSavePlanner() , ) logger.info(F"""Model saved to {ckpt_dir}""") def lowerCamelCase (a_ :Any , a_ :str , a_ :Union[str, Any] , a_ :int , a_ :int=0) -> Tuple: accelerator.wait_for_everyone() with FSDP.state_dict_type( a_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(a_) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''') return lowercase :List[Any] = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" lowercase :List[Any] = os.path.join(a_ , a_) logger.info(F"""Loading model from {input_model_file}""") lowercase :str = torch.load(a_) logger.info(F"""Model loaded from {input_model_file}""") elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase :int = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) lowercase :Dict = os.path.join(a_ , a_) logger.info(F"""Loading model from {input_model_file}""") lowercase :Dict = torch.load(a_) logger.info(F"""Model loaded from {input_model_file}""") elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase :Any = ( os.path.join(a_ , F"""{MODEL_NAME}_{model_index}""") if F"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading model from {ckpt_dir}""") lowercase :Union[str, Any] = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=a_ , storage_reader=dist_cp.FileSystemReader(a_) , planner=DefaultLoadPlanner() , ) lowercase :Tuple = state_dict['''model'''] logger.info(F"""Model loaded from {ckpt_dir}""") model.load_state_dict(a_) def lowerCamelCase (a_ :Tuple , a_ :int , a_ :Any , a_ :List[str] , a_ :Optional[Any] , a_ :List[str]=0) -> List[Any]: os.makedirs(a_ , exist_ok=a_) with FSDP.state_dict_type( a_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config): lowercase :int = FSDP.optim_state_dict(a_ , a_) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowercase :Optional[Any] = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) lowercase :Tuple = os.path.join(a_ , a_) logger.info(F"""Saving Optimizer state to {output_optimizer_file}""") torch.save(a_ , a_) logger.info(F"""Optimizer state saved in {output_optimizer_file}""") else: lowercase :List[str] = os.path.join(a_ , F"""{OPTIMIZER_NAME}_{optimizer_index}""") os.makedirs(a_ , exist_ok=a_) logger.info(F"""Saving Optimizer state to {ckpt_dir}""") dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(a_) , planner=DefaultSavePlanner() , ) logger.info(F"""Optimizer state saved in {ckpt_dir}""") def lowerCamelCase (a_ :List[Any] , a_ :Tuple , a_ :Optional[int] , a_ :Any , a_ :List[Any] , a_ :str=0) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( a_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase :Optional[int] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowercase :Any = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) lowercase :List[Any] = os.path.join(a_ , a_) logger.info(F"""Loading Optimizer state from {input_optimizer_file}""") lowercase :Union[str, Any] = torch.load(a_) logger.info(F"""Optimizer state loaded from {input_optimizer_file}""") else: lowercase :Optional[int] = ( os.path.join(a_ , F"""{OPTIMIZER_NAME}_{optimizer_index}""") if F"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading Optimizer from {ckpt_dir}""") lowercase :str = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(a_) , ) lowercase :Union[str, Any] = optim_state['''optimizer'''] logger.info(F"""Optimizer loaded from {ckpt_dir}""") lowercase :str = FSDP.optim_state_dict_to_load(a_ , a_ , a_) optimizer.load_state_dict(a_)
351
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def lowerCamelCase (a_ :str) -> YolosConfig: lowercase :Union[str, Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowercase :List[str] = 192 lowercase :List[str] = 768 lowercase :int = 12 lowercase :str = 3 lowercase :List[Any] = [800, 1333] lowercase :Any = False elif yolos_name == "yolos_s_dWr": lowercase :List[str] = 330 lowercase :List[Any] = 14 lowercase :int = 6 lowercase :List[Any] = 1320 elif "yolos_s" in yolos_name: lowercase :int = 384 lowercase :Union[str, Any] = 1536 lowercase :int = 12 lowercase :str = 6 elif "yolos_b" in yolos_name: lowercase :Dict = [800, 1344] lowercase :List[str] = 91 lowercase :List[Any] = '''huggingface/label-files''' lowercase :Union[str, Any] = '''coco-detection-id2label.json''' lowercase :int = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowercase :List[Any] = {int(a_): v for k, v in idalabel.items()} lowercase :Dict = idalabel lowercase :Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase (a_ :dict , a_ :YolosConfig , a_ :bool = False) -> Optional[int]: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase :Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""") lowercase :List[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""") # next, add query, keys and values (in that order) to the state dict lowercase :int = in_proj_weight[: config.hidden_size, :] lowercase :List[str] = in_proj_bias[: config.hidden_size] lowercase :Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase :int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase :Any = in_proj_weight[-config.hidden_size :, :] lowercase :Union[str, Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase (a_ :str) -> str: if "backbone" in name: lowercase :Optional[int] = name.replace('''backbone''' , '''vit''') if "cls_token" in name: lowercase :List[Any] = name.replace('''cls_token''' , '''embeddings.cls_token''') if "det_token" in name: lowercase :int = name.replace('''det_token''' , '''embeddings.detection_tokens''') if "mid_pos_embed" in name: lowercase :List[Any] = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''') if "pos_embed" in name: lowercase :List[str] = name.replace('''pos_embed''' , '''embeddings.position_embeddings''') if "patch_embed.proj" in name: lowercase :Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''') if "blocks" in name: lowercase :Any = name.replace('''blocks''' , '''encoder.layer''') if "attn.proj" in name: lowercase :Dict = name.replace('''attn.proj''' , '''attention.output.dense''') if "attn" in name: lowercase :Tuple = name.replace('''attn''' , '''attention.self''') if "norm1" in name: lowercase :List[Any] = name.replace('''norm1''' , '''layernorm_before''') if "norm2" in name: lowercase :List[Any] = name.replace('''norm2''' , '''layernorm_after''') if "mlp.fc1" in name: lowercase :Union[str, Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''') if "mlp.fc2" in name: lowercase :Dict = name.replace('''mlp.fc2''' , '''output.dense''') if "class_embed" in name: lowercase :Dict = name.replace('''class_embed''' , '''class_labels_classifier''') if "bbox_embed" in name: lowercase :Dict = name.replace('''bbox_embed''' , '''bbox_predictor''') if "vit.norm" in name: lowercase :Dict = name.replace('''vit.norm''' , '''vit.layernorm''') return name def lowerCamelCase (a_ :dict , a_ :YolosForObjectDetection) -> dict: for key in orig_state_dict.copy().keys(): lowercase :List[Any] = orig_state_dict.pop(a_) if "qkv" in key: lowercase :str = key.split('''.''') lowercase :List[str] = int(key_split[2]) lowercase :List[str] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowercase :List[Any] = val[:dim, :] lowercase :Optional[int] = val[ dim : dim * 2, : ] lowercase :Any = val[-dim:, :] else: lowercase :List[str] = val[:dim] lowercase :Union[str, Any] = val[dim : dim * 2] lowercase :List[Any] = val[-dim:] else: lowercase :List[str] = val return orig_state_dict def lowerCamelCase () -> torch.Tensor: lowercase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase :Dict = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def lowerCamelCase (a_ :str , a_ :str , a_ :str , a_ :bool = False) -> List[Any]: lowercase :Union[str, Any] = get_yolos_config(a_) # load original state_dict lowercase :List[str] = torch.load(a_ , map_location='''cpu''')['''model'''] # load ๐Ÿค— model lowercase :Tuple = YolosForObjectDetection(a_) model.eval() lowercase :Dict = convert_state_dict(a_ , a_) model.load_state_dict(a_) # Check outputs on an image, prepared by YolosImageProcessor lowercase :Tuple = 800 if yolos_name != '''yolos_ti''' else 512 lowercase :Dict = YolosImageProcessor(format='''coco_detection''' , size=a_) lowercase :Optional[int] = image_processor(images=prepare_img() , return_tensors='''pt''') lowercase :List[Any] = model(**a_) lowercase , lowercase :Dict = outputs.logits, outputs.pred_boxes lowercase , lowercase :int = None, None if yolos_name == "yolos_ti": lowercase :Dict = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]]) lowercase :Dict = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]]) elif yolos_name == "yolos_s_200_pre": lowercase :Union[str, Any] = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]]) lowercase :List[str] = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]]) elif yolos_name == "yolos_s_300_pre": lowercase :int = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]]) lowercase :Optional[Any] = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]]) elif yolos_name == "yolos_s_dWr": lowercase :int = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]]) lowercase :Dict = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]]) elif yolos_name == "yolos_base": lowercase :Dict = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]]) lowercase :Tuple = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]]) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""") assert torch.allclose(logits[0, :3, :3] , a_ , atol=1E-4) assert torch.allclose(pred_boxes[0, :3, :3] , a_ , atol=1E-4) Path(a_).mkdir(exist_ok=a_) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""") model.save_pretrained(a_) print(F"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(a_) if push_to_hub: lowercase :Optional[int] = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''') lowercase :Optional[Any] = model_mapping[yolos_name] image_processor.push_to_hub(a_ , organization='''hustvl''') model.push_to_hub(a_ , organization='''hustvl''') if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the ๐Ÿค— hub.''' ) UpperCAmelCase = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
172
0
'''simple docstring''' from math import ceil def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = list(range(0 , __lowerCAmelCase ) ) _UpperCAmelCase : int = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _UpperCAmelCase : Optional[int] = [] for i in device_map_blocks: if device_map_blocks.count(__lowerCAmelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__lowerCAmelCase ) # Missing blocks _UpperCAmelCase : str = [i for i in blocks if i not in device_map_blocks] _UpperCAmelCase : int = [i for i in device_map_blocks if i not in blocks] if len(__lowerCAmelCase ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(__lowerCAmelCase ) ) if len(__lowerCAmelCase ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(__lowerCAmelCase ) ) if len(__lowerCAmelCase ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : str = list(range(__lowerCAmelCase ) ) _UpperCAmelCase : List[Any] = int(ceil(n_layers / len(__lowerCAmelCase ) ) ) _UpperCAmelCase : str = [layers[i : i + n_blocks] for i in range(0 , __lowerCAmelCase , __lowerCAmelCase )] return dict(zip(__lowerCAmelCase , __lowerCAmelCase ) )
234
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tmp_path / "cache" _UpperCAmelCase : int = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : Union[str, Any] = TextDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_text_dataset(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = tmp_path / "cache" _UpperCAmelCase : Any = {"text": "string"} _UpperCAmelCase : Optional[Any] = features.copy() if features else default_expected_features _UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Union[str, Any] = TextDatasetReader(__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_text_dataset(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = tmp_path / "cache" _UpperCAmelCase : Dict = {"text": "string"} _UpperCAmelCase : Union[str, Any] = TextDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , split=__lowerCAmelCase ).read() _check_text_dataset(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if issubclass(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = text_path elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = [text_path] _UpperCAmelCase : List[Any] = tmp_path / "cache" _UpperCAmelCase : Union[str, Any] = {"text": "string"} _UpperCAmelCase : Optional[int] = TextDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_text_dataset(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=("train",) ): assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) for split in splits: _UpperCAmelCase : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = tmp_path / "cache" _UpperCAmelCase : Tuple = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : Any = TextDatasetReader({"train": text_path} , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_text_datasetdict(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _UpperCAmelCase : List[Any] = {"text": "string"} _UpperCAmelCase : List[str] = features.copy() if features else default_expected_features _UpperCAmelCase : Optional[int] = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Tuple = TextDatasetReader({"train": text_path} , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_text_datasetdict(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if split: _UpperCAmelCase : int = {split: text_path} else: _UpperCAmelCase : Tuple = "train" _UpperCAmelCase : List[str] = {"train": text_path, "test": text_path} _UpperCAmelCase : Optional[Any] = tmp_path / "cache" _UpperCAmelCase : Optional[int] = {"text": "string"} _UpperCAmelCase : int = TextDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_text_datasetdict(__lowerCAmelCase , __lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
234
1
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self : Tuple , A : str , A : Optional[Any]=1_3 , A : Union[str, Any]=7 , A : int=True , A : int=True , A : List[Any]=True , A : Optional[Any]=True , A : Optional[Any]=9_9 , A : Optional[int]=1_6 , A : Optional[Any]=3_6 , A : Optional[Any]=6 , A : List[Any]=6 , A : Optional[int]=6 , A : Dict=3_7 , A : Optional[Any]="gelu" , A : Tuple=0.1 , A : Any=0.1 , A : str=5_1_2 , A : int=1_6 , A : List[Any]=2 , A : Dict=0.02 , A : Union[str, Any]=3 , A : str=4 , A : List[Any]=None , ): _UpperCAmelCase : Tuple = parent _UpperCAmelCase : Optional[int] = batch_size _UpperCAmelCase : Union[str, Any] = seq_length _UpperCAmelCase : str = is_training _UpperCAmelCase : Union[str, Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_token_type_ids _UpperCAmelCase : Any = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : List[Any] = embedding_size _UpperCAmelCase : Dict = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_hidden_groups _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : List[str] = type_vocab_size _UpperCAmelCase : Optional[Any] = type_sequence_label_size _UpperCAmelCase : str = initializer_range _UpperCAmelCase : List[str] = num_labels _UpperCAmelCase : str = num_choices _UpperCAmelCase : Any = scope def snake_case_ ( self : int ): _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : List[Any] = None if self.use_input_mask: _UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Any = None if self.use_token_type_ids: _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Dict = None _UpperCAmelCase : Optional[Any] = None if self.use_labels: _UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self : Tuple ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def snake_case_ ( self : Dict , A : int , A : Optional[int] , A : Dict , A : int , A : Tuple , A : Dict , A : List[Any] ): _UpperCAmelCase : Optional[int] = AlbertModel(config=A ) model.to(A ) model.eval() _UpperCAmelCase : int = model(A , attention_mask=A , token_type_ids=A ) _UpperCAmelCase : List[Any] = model(A , token_type_ids=A ) _UpperCAmelCase : Any = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self : List[str] , A : Optional[int] , A : Union[str, Any] , A : Optional[Any] , A : int , A : str , A : List[str] , A : Optional[int] ): _UpperCAmelCase : Dict = AlbertForPreTraining(config=A ) model.to(A ) model.eval() _UpperCAmelCase : Optional[int] = model( A , attention_mask=A , token_type_ids=A , labels=A , sentence_order_label=A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def snake_case_ ( self : Optional[int] , A : List[Any] , A : Dict , A : Any , A : Any , A : Optional[int] , A : Optional[Any] , A : Dict ): _UpperCAmelCase : str = AlbertForMaskedLM(config=A ) model.to(A ) model.eval() _UpperCAmelCase : List[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self : Tuple , A : Optional[int] , A : Dict , A : List[Any] , A : Any , A : str , A : Optional[Any] , A : List[Any] ): _UpperCAmelCase : int = AlbertForQuestionAnswering(config=A ) model.to(A ) model.eval() _UpperCAmelCase : Tuple = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self : Dict , A : Optional[int] , A : List[str] , A : Dict , A : str , A : List[Any] , A : int , A : Optional[Any] ): _UpperCAmelCase : int = self.num_labels _UpperCAmelCase : str = AlbertForSequenceClassification(A ) model.to(A ) model.eval() _UpperCAmelCase : Tuple = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self : Union[str, Any] , A : int , A : Optional[int] , A : int , A : List[Any] , A : Any , A : Tuple , A : Dict ): _UpperCAmelCase : Dict = self.num_labels _UpperCAmelCase : List[str] = AlbertForTokenClassification(config=A ) model.to(A ) model.eval() _UpperCAmelCase : Any = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self : Dict , A : int , A : int , A : Tuple , A : Any , A : str , A : Optional[int] , A : Optional[Any] ): _UpperCAmelCase : Dict = self.num_choices _UpperCAmelCase : Any = AlbertForMultipleChoice(config=A ) model.to(A ) model.eval() _UpperCAmelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Any = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : int = config_and_inputs _UpperCAmelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : int = True def snake_case_ ( self : str , A : Tuple , A : int , A : Optional[Any]=False ): _UpperCAmelCase : List[Any] = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class in get_values(A ): _UpperCAmelCase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A ) _UpperCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def snake_case_ ( self : Tuple ): _UpperCAmelCase : List[Any] = AlbertModelTester(self ) _UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=3_7 ) def snake_case_ ( self : Optional[int] ): self.config_tester.run_common_tests() def snake_case_ ( self : int ): _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A ) def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def snake_case_ ( self : Any ): _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def snake_case_ ( self : Tuple ): _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) @slow def snake_case_ ( self : Union[str, Any] ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : int = AlbertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase : Optional[int] = AlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : str = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _UpperCAmelCase : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(A , attention_mask=A )[0] _UpperCAmelCase : int = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , A ) _UpperCAmelCase : List[str] = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A , atol=1e-4 ) )
202
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict=28_123 ) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i _UpperCAmelCase : Any = set() _UpperCAmelCase : List[str] = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(SCREAMING_SNAKE_CASE__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
202
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = inspect.getfile(accelerate.test_utils ) __SCREAMING_SNAKE_CASE : str = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) __SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def UpperCAmelCase__ ( self : str ): """simple docstring""" print(F'''Found {torch.cuda.device_count()} devices.''' ) __SCREAMING_SNAKE_CASE : str = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase__ ( self : str ): """simple docstring""" print(F'''Found {torch.cuda.device_count()} devices.''' ) __SCREAMING_SNAKE_CASE : Any = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase__ ( self : Any ): """simple docstring""" print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) __SCREAMING_SNAKE_CASE : Tuple = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(_A , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = Accelerator() lowercase_ = (accelerator.state.process_index + 2, 10) lowercase_ = torch.randint(0, 10, shape).to(accelerator.device) lowercase_ = """""" lowercase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
303
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[Any] , _A : TransformeraDModel , _A : AutoencoderKL , _A : KarrasDiffusionSchedulers , _A : Optional[Dict[int, str]] = None , ): """simple docstring""" super().__init__() self.register_modules(transformer=_A , vae=_A , scheduler=_A ) # create a imagenet -> id dictionary for easier use __SCREAMING_SNAKE_CASE : Optional[int] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = int(_A ) __SCREAMING_SNAKE_CASE : List[str] = dict(sorted(self.labels.items() ) ) def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, List[str]] ): """simple docstring""" if not isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Union[str, Any] = list(_A ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Dict , _A : List[int] , _A : float = 4.0 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : int = 50 , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = len(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.transformer.config.sample_size __SCREAMING_SNAKE_CASE : List[Any] = self.transformer.config.in_channels __SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_A , device=self.device , dtype=self.transformer.dtype , ) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(_A , device=self.device ).reshape(-1 ) __SCREAMING_SNAKE_CASE : Any = torch.tensor([1000] * batch_size , device=self.device ) __SCREAMING_SNAKE_CASE : Any = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input[: len(_A ) // 2] __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half, half] , dim=0 ) __SCREAMING_SNAKE_CASE : int = self.scheduler.scale_model_input(_A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = t if not torch.is_tensor(_A ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __SCREAMING_SNAKE_CASE : Any = latent_model_input.device.type == '''mps''' if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = torch.floataa if is_mps else torch.floataa else: __SCREAMING_SNAKE_CASE : int = torch.intaa if is_mps else torch.intaa __SCREAMING_SNAKE_CASE : int = torch.tensor([timesteps] , dtype=_A , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE : Optional[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __SCREAMING_SNAKE_CASE : Optional[int] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __SCREAMING_SNAKE_CASE : Union[str, Any] = self.transformer( _A , timestep=_A , class_labels=_A ).sample # perform guidance if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = torch.split(_A , len(_A ) // 2 , dim=0 ) __SCREAMING_SNAKE_CASE : str = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half_eps, half_eps] , dim=0 ) __SCREAMING_SNAKE_CASE : List[str] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = torch.split(_A , _A , dim=1 ) else: __SCREAMING_SNAKE_CASE : List[Any] = noise_pred # compute previous image: x_t -> x_t-1 __SCREAMING_SNAKE_CASE : str = self.scheduler.step(_A , _A , _A ).prev_sample if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = latent_model_input.chunk(2 , dim=0 ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input __SCREAMING_SNAKE_CASE : List[Any] = 1 / self.vae.config.scaling_factor * latents __SCREAMING_SNAKE_CASE : List[str] = self.vae.decode(_A ).sample __SCREAMING_SNAKE_CASE : Any = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : int = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : str = self.numpy_to_pil(_A ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_A )
303
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = MgpstrTokenizer SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Any = {} SCREAMING_SNAKE_CASE__ :Tuple = False def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: super().setUp() # fmt: off _UpperCamelCase : Optional[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _UpperCamelCase : Any = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__a : Optional[int] ) -> Any: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Tuple ) -> int: _UpperCamelCase : List[str] = "tester" _UpperCamelCase : int = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: pass def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: _UpperCamelCase : int = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : Dict = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _UpperCamelCase : int = tokenizer.encode([special_token] , add_special_tokens=__a ) self.assertEqual(len(__a ) , 1 ) _UpperCamelCase : Union[str, Any] = tokenizer.decode(__a , skip_special_tokens=__a ) self.assertTrue(special_token not in decoded ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: _UpperCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : Dict = self.get_input_output_texts(__a ) _UpperCamelCase : List[str] = tokenizer.tokenize(__a ) _UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(__a ) _UpperCamelCase : List[Any] = tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : List[str] = tokenizer.convert_ids_to_tokens(__a ) self.assertNotEqual(len(__a ) , 0 ) _UpperCamelCase : Union[str, Any] = tokenizer.decode(__a ) self.assertIsInstance(__a , __a ) self.assertEqual(text_a.replace(" " , "" ) , __a ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> str: pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: pass
360
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase__ = {"UserAgent": UserAgent().random} def lowercase__ ( lowercase_ ) -> dict: """simple docstring""" _UpperCamelCase : str = script.contents[0] _UpperCamelCase : Any = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : str ) -> Tuple: _UpperCamelCase : List[str] = F'''https://www.instagram.com/{username}/''' _UpperCamelCase : Optional[Any] = self.get_json() def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> dict: _UpperCamelCase : int = requests.get(self.url , headers=__a ).text _UpperCamelCase : Union[str, Any] = BeautifulSoup(__a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : List[Any] ) -> str: return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : str ) -> str: return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: return self.user_data["username"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["full_name"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return self.user_data["biography"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.user_data["business_email"] @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.user_data["external_url"] @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.user_data["edge_followed_by"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.user_data["edge_follow"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["profile_pic_url_hd"] @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: return self.user_data["is_verified"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> bool: return self.user_data["is_private"] def lowercase__ ( lowercase_ = "github" ) -> None: """simple docstring""" import os if os.environ.get("CI" ): return # test failing on GitHub Actions _UpperCamelCase : Union[str, Any] = InstagramUser(lowercase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,lowercase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = InstagramUser("github") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
310
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase_ = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
'''simple docstring''' from __future__ import annotations def lowercase__( __UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [True] * limit SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[Any] = True for i in range(3 ,int(limit**0.5 + 1 ) ,2 ): SCREAMING_SNAKE_CASE : Any = i * 2 while index < limit: SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : List[Any] = index + i SCREAMING_SNAKE_CASE : Tuple = [2] for i in range(3 ,__UpperCamelCase ,2 ): if is_prime[i]: primes.append(__UpperCamelCase ) return primes def lowercase__( __UpperCamelCase: int = 1_00_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = prime_sieve(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : Dict = 0 for i in range(len(__UpperCamelCase ) ): for j in range(i + length ,len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE : Optional[int] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: SCREAMING_SNAKE_CASE : Dict = j - i SCREAMING_SNAKE_CASE : Optional[Any] = sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
251
1
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int = 5_0 ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"{solution() = }")
320
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } UpperCAmelCase : List[str] = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = EfficientNetConfig() __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""hidden_dim"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""width_coef"""] __UpperCAmelCase : str = CONFIG_MAP[model_name]["""depth_coef"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""dropout_rate"""] __UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""] __UpperCAmelCase : int = """huggingface/label-files""" __UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json""" __UpperCAmelCase : str = 1_0_0_0 __UpperCAmelCase : Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Dict = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCamelCase ( _UpperCamelCase : Any ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : List[str] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_UpperCamelCase , ) return preprocessor def lowerCamelCase ( _UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __UpperCAmelCase : str = sorted(set(_UpperCamelCase ) ) __UpperCAmelCase : Optional[int] = len(_UpperCamelCase ) __UpperCAmelCase : Any = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )} __UpperCAmelCase : Any = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __UpperCAmelCase : List[str] = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __UpperCAmelCase : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: __UpperCAmelCase : Optional[Any] = """efficientnet.""" + item[1] __UpperCAmelCase : Tuple = """classifier.weight""" __UpperCAmelCase : Optional[int] = """classifier.bias""" return key_mapping def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue __UpperCAmelCase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: __UpperCAmelCase : int = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __UpperCAmelCase : Optional[Any] = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __UpperCAmelCase : List[str] = torch.from_numpy(np.transpose(_UpperCamelCase ) ) else: __UpperCAmelCase : Tuple = torch.from_numpy(_UpperCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCamelCase ) @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = model_classes[model_name]( include_top=_UpperCamelCase , weights="""imagenet""" , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , ) __UpperCAmelCase : List[str] = original_model.trainable_variables __UpperCAmelCase : List[Any] = original_model.non_trainable_variables __UpperCAmelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __UpperCAmelCase : int = param.numpy() __UpperCAmelCase : Dict = list(tf_params.keys() ) # Load HuggingFace model __UpperCAmelCase : Optional[Any] = get_efficientnet_config(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(_UpperCamelCase ).eval() __UpperCAmelCase : Any = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __UpperCAmelCase : Tuple = rename_keys(_UpperCamelCase ) replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Initialize preprocessor and preprocess input image __UpperCAmelCase : List[Any] = convert_image_processor(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = hf_model(**_UpperCamelCase ) __UpperCAmelCase : Any = outputs.logits.detach().numpy() # Original model inference __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : str = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __UpperCAmelCase : Optional[Any] = image.img_to_array(_UpperCamelCase ) __UpperCAmelCase : Tuple = np.expand_dims(_UpperCamelCase , axis=0 ) __UpperCAmelCase : str = original_model.predict(_UpperCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCamelCase ): os.mkdir(_UpperCamelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCamelCase ) preprocessor.save_pretrained(_UpperCamelCase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) __UpperCAmelCase : List[str] = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_UpperCamelCase ) hf_model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') UpperCAmelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
320
1
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } __lowerCamelCase = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : int ): for attribute in key.split("." ): snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : Union[str, Any] = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Optional[Any] = value elif weight_type == "weight_g": snake_case : str = value elif weight_type == "weight_v": snake_case : Dict = value elif weight_type == "bias": snake_case : Dict = value else: snake_case : Tuple = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Any ): snake_case : List[Any] = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : str = hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case : Tuple = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: snake_case : Dict = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Dict = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : int = "weight_g" elif "weight_v" in name: snake_case : Dict = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : List[Any] = "weight" else: snake_case : List[str] = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Any ): snake_case : Dict = full_name.split("conv_layers." )[-1] snake_case : List[Any] = name.split("." ) snake_case : Tuple = int(items[0] ) snake_case : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]=None ): # load the pre-trained checkpoints snake_case : Optional[int] = torch.load(__lowerCamelCase ) snake_case : List[Any] = WavLMConfigOrig(checkpoint["cfg"] ) snake_case : Optional[int] = WavLMOrig(__lowerCamelCase ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: snake_case : str = WavLMConfig.from_pretrained(__lowerCamelCase ) else: snake_case : Optional[int] = WavLMConfig() snake_case : Any = WavLMModel(__lowerCamelCase ) recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavlm.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCamelCase = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
59
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = ['model.decoder.embed_positions.weights'] def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if "emb" in name: A_ : Tuple = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: A_ : Optional[int] = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: A_ : Optional[Any] = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: A_ : int = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: A_ : Optional[int] = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: A_ : Any = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: A_ : Any = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: A_ : Dict = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: A_ : Tuple = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: A_ : Union[str, Any] = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: A_ : Tuple = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = list(state_dict.keys() ) A_ : List[Any] = {} for key in keys: A_ : List[str] = state_dict.pop(_UpperCAmelCase ) A_ : Tuple = rename_keys(_UpperCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj A_ : Any = val[:hidden_size, :] A_ : Optional[int] = val[hidden_size : 2 * hidden_size, :] A_ : Union[str, Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: A_ : List[str] = val else: A_ : int = val return state_dict, enc_dec_proj_state_dict def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if checkpoint == "small": # default config values A_ : Optional[Any] = 1024 A_ : Tuple = 24 A_ : int = 16 elif checkpoint == "medium": A_ : Any = 1536 A_ : Union[str, Any] = 48 A_ : List[Any] = 24 elif checkpoint == "large": A_ : Optional[int] = 2048 A_ : Optional[int] = 48 A_ : Tuple = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) A_ : Tuple = MusicgenDecoderConfig( hidden_size=_UpperCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , ) return config @torch.no_grad() def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="cpu" ): """simple docstring""" A_ : Any = MusicGen.get_pretrained(_UpperCAmelCase , device=_UpperCAmelCase ) A_ : str = decoder_config_from_checkpoint(_UpperCAmelCase ) A_ : Optional[int] = fairseq_model.lm.state_dict() A_ , A_ : str = rename_state_dict( _UpperCAmelCase , hidden_size=decoder_config.hidden_size ) A_ : List[str] = TaEncoderModel.from_pretrained('''t5-base''' ) A_ : Tuple = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) A_ : Union[str, Any] = MusicgenForCausalLM(_UpperCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection A_ , A_ : Tuple = decoder.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(_UpperCAmelCase ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model A_ : Tuple = MusicgenForConditionalGeneration(text_encoder=_UpperCAmelCase , audio_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_UpperCAmelCase ) # check we can do a forward pass A_ : List[str] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) A_ : Union[str, Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): A_ : Tuple = model(input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor A_ : str = AutoTokenizer.from_pretrained('''t5-base''' ) A_ : int = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) A_ : Optional[int] = MusicgenProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # set the appropriate bos/pad token ids A_ : Tuple = 2048 A_ : Union[str, Any] = 2048 # set other default generation config params A_ : Union[str, Any] = int(30 * audio_encoder.config.frame_rate ) A_ : List[str] = True A_ : List[str] = 3.0 if pytorch_dump_folder is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(_UpperCAmelCase ) processor.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the ๐Ÿค— hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
167
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _a : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""",__SCREAMING_SNAKE_CASE,) super().__init__(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
46
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : int = logging.get_logger(__name__) _a : List[str] = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""decision_transformer""" a : List[Any] =["""past_key_values"""] a : Dict ={ """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=17,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=1_28,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=10_24,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="relu",__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = state_dim __lowerCAmelCase = act_dim __lowerCAmelCase = hidden_size __lowerCAmelCase = max_ep_len __lowerCAmelCase = action_tanh __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = scale_attn_weights __lowerCAmelCase = use_cache __lowerCAmelCase = scale_attn_by_inverse_layer_idx __lowerCAmelCase = reorder_and_upcast_attn __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
46
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } UpperCAmelCase__ = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Dict: """simple docstring""" for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowercase ='''lm_head''' _lowercase =getattr(__snake_case , __snake_case ) if weight_type is not None: _lowercase =getattr(__snake_case , __snake_case ).shape else: _lowercase =hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _lowercase =value elif weight_type == "weight_g": _lowercase =value elif weight_type == "weight_v": _lowercase =value elif weight_type == "bias": _lowercase =value else: _lowercase =value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> List[Any]: """simple docstring""" _lowercase =[] _lowercase =fairseq_model.state_dict() _lowercase =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowercase =False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _lowercase =True else: for key, mapped_key in MAPPING.items(): _lowercase ='''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowercase =True if "*" in mapped_key: _lowercase =name.split(__snake_case )[0].split('''.''' )[-2] _lowercase =mapped_key.replace('''*''' , __snake_case ) if "weight_g" in name: _lowercase ='''weight_g''' elif "weight_v" in name: _lowercase ='''weight_v''' elif "bias" in name: _lowercase ='''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowercase ='''weight''' else: _lowercase =None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F"Unused weights: {unused_weights}" ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Optional[int]: """simple docstring""" _lowercase =full_name.split('''conv_layers.''' )[-1] _lowercase =name.split('''.''' ) _lowercase =int(items[0] ) _lowercase =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowercase =value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowercase =value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _lowercase =value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _lowercase =value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__snake_case ) @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=None , __snake_case=None , __snake_case=True ) -> List[Any]: """simple docstring""" if config_path is not None: _lowercase =UniSpeechConfig.from_pretrained(__snake_case ) else: _lowercase =UniSpeechConfig() if is_finetuned: if dict_path: _lowercase =Dictionary.load_from_json(__snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowercase =target_dict.pad_index _lowercase =target_dict.bos_index _lowercase =target_dict.eos_index _lowercase =len(target_dict.symbols ) _lowercase =os.path.join(__snake_case , '''vocab.json''' ) if not os.path.isdir(__snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__snake_case ) ) return os.makedirs(__snake_case , exist_ok=__snake_case ) _lowercase =target_dict.indices # fairseq has the <pad> and <s> switched _lowercase =42 _lowercase =43 with open(__snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__snake_case , __snake_case ) _lowercase =WavaVecaPhonemeCTCTokenizer( __snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__snake_case , ) _lowercase =True if config.feat_extract_norm == '''layer''' else False _lowercase =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) _lowercase =WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) processor.save_pretrained(__snake_case ) _lowercase =UniSpeechForCTC(__snake_case ) else: _lowercase =UniSpeechForPreTraining(__snake_case ) if is_finetuned: _lowercase , _lowercase , _lowercase =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowercase , _lowercase , _lowercase =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowercase =model[0].eval() recursively_load_weights(__snake_case , __snake_case , __snake_case ) hf_unispeech.save_pretrained(__snake_case ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
5
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase__ ( a ) -> int: _A: int = filter(lambda a : p.requires_grad , model.parameters() ) _A: Dict = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ : str = logging.getLogger(__name__) def lowerCamelCase__ ( a , a ) -> Dict: if metric == "rouge2": _A: Tuple = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _A: List[str] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _A: str = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) _A: List[str] = ModelCheckpoint( dirpath=a , filename=a , monitor=f"""val_{metric}""" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase__ ( a , a ) -> Optional[Any]: return EarlyStopping( monitor=f"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=a , verbose=a , ) class UpperCAmelCase ( pl.Callback ): '''simple docstring''' def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Union[str, Any] = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase_ ) @rank_zero_only def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule , lowerCAmelCase_ : str , lowerCAmelCase_ : Any=True ): """simple docstring""" logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _A: Tuple = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _A: Tuple = Path(pl_module.hparams.output_dir ) if type_path == "test": _A: List[str] = od / '''test_results.txt''' _A: Optional[int] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A: Any = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _A: Dict = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) with open(lowerCAmelCase_ , '''a+''' ) as writer: for key in sorted(lowerCAmelCase_ ): if key in ["log", "progress_bar", "preds"]: continue _A: Optional[int] = metrics[key] if isinstance(lowerCAmelCase_ , torch.Tensor ): _A: List[str] = val.item() _A: List[Any] = F"""{key}: {val:.6f}\n""" writer.write(lowerCAmelCase_ ) if not save_generations: return if "preds" in metrics: _A: Optional[int] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(lowerCAmelCase_ ) @rank_zero_only def __magic_name__ ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" try: _A: Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: _A: Any = pl_module.model.num_parameters() _A: Optional[int] = count_trainable_parameters(lowerCAmelCase_ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __magic_name__ ( self : List[str] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase_ , lowerCAmelCase_ , '''test''' ) @rank_zero_only def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
121
0
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def UpperCAmelCase ( a_ ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def UpperCAmelCase ( a_ , a_ ) -> XGBClassifier: """simple docstring""" A_ : List[Any] = XGBClassifier() classifier.fit(_lowercase , _lowercase ) return classifier def UpperCAmelCase ( ) -> None: """simple docstring""" A_ : List[str] = load_iris() A_ : Optional[int] = data_handling(_lowercase ) A_ : Tuple = train_test_split( _lowercase , _lowercase , test_size=0.25 ) A_ : List[Any] = iris["target_names"] # Create an XGBoost Classifier from the training data A_ : Dict = xgboost(_lowercase , _lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _lowercase , _lowercase , _lowercase , display_labels=_lowercase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
363
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=64 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=64 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ) -> Union[str, Any]: A_ : Tuple = parent A_ : Optional[Any] = batch_size A_ : Optional[Any] = seq_length A_ : List[str] = is_training A_ : str = use_input_mask A_ : List[str] = use_token_type_ids A_ : Tuple = use_labels A_ : List[str] = vocab_size A_ : Optional[Any] = hidden_size A_ : Any = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : Optional[int] = intermediate_size A_ : str = hidden_act A_ : Union[str, Any] = hidden_dropout_prob A_ : int = attention_probs_dropout_prob A_ : Dict = max_position_embeddings A_ : Dict = type_vocab_size A_ : Any = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : int = num_labels A_ : int = num_choices A_ : Optional[int] = scope def UpperCAmelCase_ ( self ) -> Optional[int]: return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Dict = None if self.use_input_mask: A_ : int = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Tuple = None A_ : Optional[int] = None A_ : Union[str, Any] = None if self.use_labels: A_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) A_ : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ) -> int: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : int = MPNetModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : str = MPNetForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Tuple = self.num_labels A_ : List[Any] = MPNetForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: A_ : int = self.num_choices A_ : Dict = MPNetForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : str = model( _lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: A_ : Optional[int] = self.num_labels A_ : Tuple = MPNetForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: A_ : int = self.prepare_config_and_inputs() ((A_) , (A_) , (A_) , (A_) , (A_) , (A_)) : Any = config_and_inputs A_ : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = True def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = MPNetModelTester(self ) A_ : int = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> int: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> int: A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*_lowerCamelCase ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self ) -> Tuple: A_ : int = MPNetModel.from_pretrained("""microsoft/mpnet-base""" ) A_ : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A_ : Tuple = model(_lowerCamelCase )[0] A_ : int = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowerCamelCase ) A_ : Any = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
164
0
'''simple docstring''' import argparse import struct import unittest class __UpperCamelCase : def __init__( self , __a ): '''simple docstring''' __a : Optional[Any] = data # Initialize hash values __a : Optional[int] = [ 0x6A_09_E6_67, 0xBB_67_AE_85, 0x3C_6E_F3_72, 0xA5_4F_F5_3A, 0x51_0E_52_7F, 0x9B_05_68_8C, 0x1F_83_D9_AB, 0x5B_E0_CD_19, ] # Initialize round constants __a : Union[str, Any] = [ 0x42_8A_2F_98, 0x71_37_44_91, 0xB5_C0_FB_CF, 0xE9_B5_DB_A5, 0x39_56_C2_5B, 0x59_F1_11_F1, 0x92_3F_82_A4, 0xAB_1C_5E_D5, 0xD8_07_AA_98, 0x12_83_5B_01, 0x24_31_85_BE, 0x55_0C_7D_C3, 0x72_BE_5D_74, 0x80_DE_B1_FE, 0x9B_DC_06_A7, 0xC1_9B_F1_74, 0xE4_9B_69_C1, 0xEF_BE_47_86, 0x0F_C1_9D_C6, 0x24_0C_A1_CC, 0x2D_E9_2C_6F, 0x4A_74_84_AA, 0x5C_B0_A9_DC, 0x76_F9_88_DA, 0x98_3E_51_52, 0xA8_31_C6_6D, 0xB0_03_27_C8, 0xBF_59_7F_C7, 0xC6_E0_0B_F3, 0xD5_A7_91_47, 0x06_CA_63_51, 0x14_29_29_67, 0x27_B7_0A_85, 0x2E_1B_21_38, 0x4D_2C_6D_FC, 0x53_38_0D_13, 0x65_0A_73_54, 0x76_6A_0A_BB, 0x81_C2_C9_2E, 0x92_72_2C_85, 0xA2_BF_E8_A1, 0xA8_1A_66_4B, 0xC2_4B_8B_70, 0xC7_6C_51_A3, 0xD1_92_E8_19, 0xD6_99_06_24, 0xF4_0E_35_85, 0x10_6A_A0_70, 0x19_A4_C1_16, 0x1E_37_6C_08, 0x27_48_77_4C, 0x34_B0_BC_B5, 0x39_1C_0C_B3, 0x4E_D8_AA_4A, 0x5B_9C_CA_4F, 0x68_2E_6F_F3, 0x74_8F_82_EE, 0x78_A5_63_6F, 0x84_C8_78_14, 0x8C_C7_02_08, 0x90_BE_FF_FA, 0xA4_50_6C_EB, 0xBE_F9_A3_F7, 0xC6_71_78_F2, ] __a : Optional[int] = self.preprocessing(self.data ) self.final_hash() @staticmethod def __UpperCAmelCase ( __a ): '''simple docstring''' __a : Optional[int] = b'\x80' + (b'\x00' * (63 - (len(__a ) + 8) % 64)) __a : Dict = struct.pack('>Q' , (len(__a ) * 8) ) return data + padding + big_endian_integer def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __a : Dict = list(struct.unpack('>16L' , __a ) ) # add 48 0-ed integers words += [0] * 48 __a : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __a : str = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __a : Union[str, Any] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __a : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression __a : Tuple = self.ror(__a , 6 ) ^ self.ror(__a , 11 ) ^ self.ror(__a , 25 ) __a : List[Any] = (e & f) ^ ((~e & 0xFF_FF_FF_FF) & g) __a : str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 __a : List[str] = self.ror(__a , 2 ) ^ self.ror(__a , 13 ) ^ self.ror(__a , 22 ) __a : List[Any] = (a & b) ^ (a & c) ^ (b & c) __a : int = (sa + maj) % 0x1_00_00_00_00 __a : Union[str, Any] = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) __a : Any = [a, b, c, d, e, f, g, h] # Modify final values __a : str = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] __a : Optional[Any] = ''.join([hex(__a )[2:].zfill(8 ) for value in self.hashes] ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' return 0xFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' import hashlib __a : Dict = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(__a ).hash , hashlib.shaaaa(__a ).hexdigest() ) def lowerCamelCase (): import doctest doctest.testmod() __a : Any = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) __a : Any = parser.parse_args() __a : int = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: __a : Optional[Any] = f.read() else: __a : Optional[int] = bytes(SCREAMING_SNAKE_CASE_ , 'utf-8' ) print(SHAaaa(SCREAMING_SNAKE_CASE_ ).hash ) if __name__ == "__main__": main()
27
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : str , a : Optional[Any] , a : int=13 , a : str=7 , a : str=True , a : List[str]=True , a : Optional[Any]=True , a : int=True , a : List[Any]=99 , a : List[Any]=32 , a : Tuple=5 , a : Any=4 , a : Optional[int]=37 , a : Tuple="gelu" , a : Any=0.1 , a : int=0.1 , a : List[Any]=128 , a : Union[str, Any]=32 , a : Union[str, Any]=16 , a : Dict=2 , a : List[Any]=0.0_2 , a : Optional[Any]=3 , a : List[Any]=4 , a : Optional[int]=None , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = parent lowerCAmelCase__ : Dict = batch_size lowerCAmelCase__ : Optional[Any] = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : Union[str, Any] = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Optional[Any] = vocab_size lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : Optional[int] = num_attention_heads lowerCAmelCase__ : List[Any] = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : Any = type_vocab_size lowerCAmelCase__ : Any = type_sequence_label_size lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : Dict = num_labels lowerCAmelCase__ : Any = num_choices lowerCAmelCase__ : Union[str, Any] = scope def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = None if self.use_input_mask: lowerCAmelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : Tuple = None if self.use_token_type_ids: lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Optional[int] = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCamelCase ( self : Optional[Any] , a : Optional[int] , a : Tuple , a : Optional[int] , a : List[Any] , a : Tuple , a : List[str] , a : Any ): '''simple docstring''' lowerCAmelCase__ : List[str] = NezhaModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , token_type_ids=a ) lowerCAmelCase__ : List[str] = model(a , token_type_ids=a ) lowerCAmelCase__ : Any = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self : List[Any] , a : Union[str, Any] , a : Dict , a : List[Any] , a : Optional[Any] , a : int , a : Tuple , a : List[Any] , a : Tuple , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Optional[int] = NezhaModel(a ) model.to(a ) model.eval() lowerCAmelCase__ : Any = model( a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , encoder_attention_mask=a , ) lowerCAmelCase__ : Dict = model( a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , ) lowerCAmelCase__ : List[str] = model(a , attention_mask=a , token_type_ids=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self : Tuple , a : Optional[Any] , a : List[Any] , a : str , a : List[str] , a : Tuple , a : List[Any] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = NezhaForMaskedLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : List[Any] , a : Optional[int] , a : List[Any] , a : int , a : List[str] , a : Union[str, Any] , a : int , a : Any ): '''simple docstring''' lowerCAmelCase__ : List[Any] = NezhaForNextSentencePrediction(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : int , a : Optional[int] , a : str , a : List[str] , a : int , a : Dict , a : Optional[Any] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = NezhaForPreTraining(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model( a , attention_mask=a , token_type_ids=a , labels=a , next_sentence_label=a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : List[str] , a : Any , a : Any , a : Union[str, Any] , a : Tuple , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = NezhaForQuestionAnswering(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model( a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Tuple , a : str , a : Union[str, Any] , a : Tuple , a : Optional[Any] , a : Dict , a : str , a : int ): '''simple docstring''' lowerCAmelCase__ : Any = self.num_labels lowerCAmelCase__ : Optional[Any] = NezhaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : List[str] , a : Dict , a : str , a : Optional[Any] , a : Optional[int] , a : List[str] , a : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : Dict = self.num_labels lowerCAmelCase__ : str = NezhaForTokenClassification(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Any = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : int , a : Tuple , a : List[Any] , a : Tuple , a : List[Any] , a : Optional[int] , a : Optional[int] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.num_choices lowerCAmelCase__ : Any = NezhaForMultipleChoice(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Any = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _lowerCamelCase ( self : str , a : Tuple , a : int , a : Dict=False ): '''simple docstring''' lowerCAmelCase__ : int = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class in get_values(a ): lowerCAmelCase__ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a ) lowerCAmelCase__ : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = NezhaModelTester(self ) lowerCAmelCase__ : Optional[int] = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase__ : str = None self.model_tester.create_and_check_model_as_decoder( a , a , a , a , a , a , a , a , a , ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[Any] = NezhaModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowerCAmelCase__ : Dict = True lowerCAmelCase__ : Any = model_class(config=a ) lowerCAmelCase__ : Union[str, Any] = self._prepare_for_class(a , a ) lowerCAmelCase__ : int = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'bert.pt' ) ) lowerCAmelCase__ : Any = torch.jit.load(os.path.join(a , 'bert.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : str = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) lowerCAmelCase__ : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a )[0] lowerCAmelCase__ : Union[str, Any] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , a ) lowerCAmelCase__ : Optional[int] = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1E-4 ) ) @slow def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) lowerCAmelCase__ : Optional[int] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase__ : Optional[int] = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a )[0] lowerCAmelCase__ : int = torch.Size((1, 6, 21_128) ) self.assertEqual(output.shape , a ) lowerCAmelCase__ : List[Any] = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1E-4 ) )
212
0
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Dict: '''simple docstring''' if index == r: for j in range(__lowerCAmelCase ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCAmelCase : Optional[Any] =arr[i] combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index + 1 , __lowerCAmelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Any: '''simple docstring''' UpperCAmelCase : str =[0] * r # Print all combination using temporary array 'data[]' combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 0 , __lowerCAmelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above __snake_case = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
78
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] = KandinskyVaaControlnetPipeline __lowerCamelCase : int = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase : Optional[int] = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase : Optional[Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowerCamelCase : Dict = False @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return 100 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any ={ '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase : List[Any] =UNetaDConditionModel(**snake_case__ ) return model @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any =VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =self.dummy_unet UpperCAmelCase : Tuple =self.dummy_movq UpperCAmelCase : Union[str, Any] =DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=snake_case__ , ) UpperCAmelCase : Tuple ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCAmelCase__ ( self , snake_case__ , snake_case__=0 ) -> Any: '''simple docstring''' UpperCAmelCase : str =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase : Tuple =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create hint UpperCAmelCase : Tuple =floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith('''mps''' ): UpperCAmelCase : Optional[int] =torch.manual_seed(snake_case__ ) else: UpperCAmelCase : int =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase : List[str] ={ '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] ='''cpu''' UpperCAmelCase : List[Any] =self.get_dummy_components() UpperCAmelCase : Tuple =self.pipeline_class(**snake_case__ ) UpperCAmelCase : Tuple =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Optional[int] =pipe(**self.get_dummy_inputs(snake_case__ ) ) UpperCAmelCase : str =output.images UpperCAmelCase : List[str] =pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] UpperCAmelCase : Union[str, Any] =image[0, -3:, -3:, -1] UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Union[str, Any] =np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) UpperCAmelCase : Tuple =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) UpperCAmelCase : int =torch.from_numpy(np.array(snake_case__ ) ).float() / 255.0 UpperCAmelCase : List[str] =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase : Dict =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) UpperCAmelCase : int =KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) UpperCAmelCase : str =pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : int ='''A robot, 4k photo''' UpperCAmelCase : int =torch.Generator(device='''cuda''' ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase : List[str] =pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase : List[str] =torch.Generator(device='''cuda''' ).manual_seed(0 ) UpperCAmelCase : Dict =pipeline( image_embeds=snake_case__ , negative_image_embeds=snake_case__ , hint=snake_case__ , generator=snake_case__ , num_inference_steps=100 , output_type='''np''' , ) UpperCAmelCase : List[Any] =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
78
1
import logging import os from .state import PartialState class _a ( logging.LoggerAdapter ): @staticmethod def lowerCamelCase_ ( UpperCamelCase_: Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: List[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) lowercase__ = kwargs.pop('''main_process_only''' , UpperCamelCase_ ) lowercase__ = kwargs.pop('''in_order''' , UpperCamelCase_ ) if self.isEnabledFor(UpperCamelCase_ ): if self._should_log(UpperCamelCase_ ): lowercase__ , lowercase__ = self.process(UpperCamelCase_ , UpperCamelCase_ ) self.logger.log(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) elif in_order: lowercase__ = PartialState() for i in range(state.num_processes ): if i == state.process_index: lowercase__ , lowercase__ = self.process(UpperCamelCase_ , UpperCamelCase_ ) self.logger.log(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) state.wait_for_everyone() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ): """simple docstring""" if log_level is None: lowercase__ = os.environ.get('''ACCELERATE_LOG_LEVEL''' , SCREAMING_SNAKE_CASE ) lowercase__ = logging.getLogger(SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
110
import socket def _a ( ): """simple docstring""" lowercase__ = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowercase__ = socket.gethostname() lowercase__ = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: lowercase__ = sock.recv(10_24 ) if not data: break out_file.write(SCREAMING_SNAKE_CASE ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
110
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Tuple = XLMRobertaTokenizer UpperCamelCase_ : Union[str, Any] = XLMRobertaTokenizerFast UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Union[str, Any] = True def _A ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : List[str] = XLMRobertaTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[int] = "<pad>" SCREAMING_SNAKE_CASE : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(UpperCAmelCase_ ) , 1002 ) def _A ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[str] = XLMRobertaTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCAmelCase_ , ["โ–This", "โ–is", "โ–a", "โ–t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsรฉ." ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "รฉ", ".", ] , ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def _A ( self : Union[str, Any] ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : List[Any] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-xlm-roberta", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : int = tokenizer_r.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Any = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : Any = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[str] = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[str] = tokenizer_r.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) @cached_property def _A ( self : Optional[Any] ): return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base" ) def _A ( self : str ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCAmelCase_ , f.name ) SCREAMING_SNAKE_CASE : Tuple = XLMRobertaTokenizer(f.name , keep_accents=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = pickle.dumps(UpperCAmelCase_ ) pickle.loads(UpperCAmelCase_ ) def _A ( self : str ): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE : str = self.get_tokenizer() SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : Dict = "I was born in 92000, and this is falsรฉ." SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : str = "Hello World!" SCREAMING_SNAKE_CASE : List[str] = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) ) @slow def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : List[str] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) SCREAMING_SNAKE_CASE : int = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) ) @slow def _A ( self : Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE : Tuple = {"input_ids": [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="xlm-roberta-base" , revision="d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3" , )
319
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys snake_case = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
319
1
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } __lowerCAmelCase : int ={ "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } __lowerCAmelCase : Optional[int] ={ "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def UpperCamelCase ( _lowerCamelCase : Tuple ): A__ = set() A__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ = char A__ = set(_lowerCamelCase ) return pairs class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = VOCAB_FILES_NAMES __lowercase = PRETRAINED_VOCAB_FILES_MAP __lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :Optional[int] , lowercase_ :Optional[Any] , lowercase_ :List[Any] , lowercase_ :str="<s>" , lowercase_ :Optional[Any]="</s>" , lowercase_ :Optional[Any]="</s>" , lowercase_ :Any="<s>" , lowercase_ :List[str]="<unk>" , lowercase_ :Any="<pad>" , lowercase_ :Tuple="<mask>" , **lowercase_ :Optional[int] , )-> List[Any]: super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) A__ = vocab_file A__ = merges_file A__ = {} A__ = 0 A__ = 1 A__ = 2 A__ = 3 self.add_from_file(lowercase_ ) A__ = {v: k for k, v in self.encoder.items()} with open(lowercase_ , encoding="utf-8" ) as merges_handle: A__ = merges_handle.read().split("\n" )[:-1] A__ = [tuple(merge.split()[:-1] ) for merge in merges] A__ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) A__ = {} def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None )-> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self :str , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None , lowercase_ :bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def UpperCAmelCase_ ( self :Any , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None )-> List[int]: A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase_ ( self :List[str] )-> str: return len(self.encoder ) def UpperCAmelCase_ ( self :Optional[int] )-> int: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Any )-> str: if token in self.cache: return self.cache[token] A__ = tuple(lowercase_ ) A__ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) A__ = get_pairs(lowercase_ ) if not pairs: return token while True: A__ = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break A__, A__ = bigram A__ = [] A__ = 0 while i < len(lowercase_ ): try: A__ = word.index(lowercase_ , lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ = tuple(lowercase_ ) A__ = new_word if len(lowercase_ ) == 1: break else: A__ = get_pairs(lowercase_ ) A__ = "@@ ".join(lowercase_ ) A__ = word[:-4] A__ = word return word def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :Any )-> Optional[int]: A__ = [] A__ = re.findall(R"\S+\n?" , lowercase_ ) for token in words: split_tokens.extend(list(self.bpe(lowercase_ ).split(" " ) ) ) return split_tokens def UpperCAmelCase_ ( self :Any , lowercase_ :Optional[Any] )-> str: return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self :Any , lowercase_ :Union[str, Any] )-> Tuple: return self.decoder.get(lowercase_ , self.unk_token ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :str )-> int: A__ = " ".join(lowercase_ ).replace("@@ " , "" ).strip() return out_string def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :str , lowercase_ :Optional[str] = None )-> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return A__ = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A__ = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowercase_ ): copyfile(self.merges_file , lowercase_ ) return out_vocab_file, out_merge_file def UpperCAmelCase_ ( self :Any , lowercase_ :Any )-> Any: if isinstance(lowercase_ , lowercase_ ): try: with open(lowercase_ , "r" , encoding="utf-8" ) as fd: self.add_from_file(lowercase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F"Incorrect encoding detected in {f}, please rebuild the dataset" ) return A__ = f.readlines() for lineTmp in lines: A__ = lineTmp.strip() A__ = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) A__ = line[:idx] A__ = len(self.encoder )
237
'''simple docstring''' from __future__ import annotations import time import numpy as np __lowerCAmelCase : Optional[Any] =[8, 5, 9, 7] __lowerCAmelCase : Optional[int] =[ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __lowerCAmelCase : List[Any] =[ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCAmelCase : def __init__( self :Optional[int] , lowercase_ :list[int] , lowercase_ :list[list[int]] , lowercase_ :list[list[int]] , )-> None: A__ = claim_vector A__ = allocated_resources_table A__ = maximum_claim_table def UpperCAmelCase_ ( self :Union[str, Any] )-> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCAmelCase_ ( self :Tuple )-> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCAmelCase_ ( self :Dict )-> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(lowercase_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCAmelCase_ ( self :Any )-> dict[int, list[int]]: return {self.__need().index(lowercase_ ): i for i in self.__need()} def UpperCAmelCase_ ( self :Tuple , **lowercase_ :List[str] )-> None: A__ = self.__need() A__ = self.__allocated_resources_table A__ = self.__available_resources() A__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: A__ = False for each_need in need_list: A__ = True for index, need in enumerate(lowercase_ ): if need > available_resources[index]: A__ = False break if execution: A__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: A__ = original_need_index print(F"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(lowercase_ ) # update available/freed resources stack A__ = np.array(lowercase_ ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(lowercase_ ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def UpperCAmelCase_ ( self :Optional[Any] )-> Tuple: print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( F"P{self.__allocated_resources_table.index(lowercase_ ) + 1}" + " ".join(F"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( F"P{self.__maximum_claim_table.index(lowercase_ ) + 1}" + " ".join(F"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(lowercase_ ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(lowercase_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
237
1
"""simple docstring""" import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __A = get_logger(__name__) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase = None ): lowercase__: Optional[Any] = ( os.path.join(_UpperCAmelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) lowercase__: Dict = Extractor def _snake_case ( self , _UpperCAmelCase ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" lowercase__: List[str] = os.path.abspath(_UpperCAmelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCAmelCase ) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): return force_extract or ( not os.path.isfile(_UpperCAmelCase ) and not (os.path.isdir(_UpperCAmelCase ) and os.listdir(_UpperCAmelCase )) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = False ): lowercase__: Tuple = self.extractor.infer_extractor_format(_UpperCAmelCase ) if not extractor_format: return input_path lowercase__: int = self._get_output_path(_UpperCAmelCase ) if self._do_extract(_UpperCAmelCase , _UpperCAmelCase ): self.extractor.extract(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return output_path class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @classmethod @abstractmethod def _snake_case ( cls , _UpperCAmelCase , **_UpperCAmelCase ): ... @staticmethod @abstractmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): ... class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[bytes] = [] @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): with open(_UpperCAmelCase , '''rb''' ) as f: return f.read(_UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase = b"" ): if not magic_number: lowercase__: Dict = max(len(_UpperCAmelCase ) for cls_magic_number in cls.magic_numbers ) try: lowercase__: Optional[int] = cls.read_magic_number(_UpperCAmelCase , _UpperCAmelCase ) except OSError: return False return any(magic_number.startswith(_UpperCAmelCase ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @classmethod def _snake_case ( cls , _UpperCAmelCase , **_UpperCAmelCase ): return tarfile.is_tarfile(_UpperCAmelCase ) @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): def resolved(_UpperCAmelCase ) -> str: return os.path.realpath(os.path.abspath(_UpperCAmelCase ) ) def badpath(_UpperCAmelCase , _UpperCAmelCase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ).startswith(_UpperCAmelCase ) def badlink(_UpperCAmelCase , _UpperCAmelCase ) -> bool: # Links are interpreted relative to the directory containing the link lowercase__: Tuple = resolved(os.path.join(_UpperCAmelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCAmelCase ) lowercase__: int = resolved(_UpperCAmelCase ) for finfo in members: if badpath(finfo.name , _UpperCAmelCase ): logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(_UpperCAmelCase , _UpperCAmelCase ): logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(_UpperCAmelCase , _UpperCAmelCase ): logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) lowercase__: str = tarfile.open(_UpperCAmelCase ) tar_file.extractall(_UpperCAmelCase , members=TarExtractor.safemembers(_UpperCAmelCase , _UpperCAmelCase ) ) tar_file.close() class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = [B"\x1F\x8B"] @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): with gzip.open(_UpperCAmelCase , '''rb''' ) as gzip_file: with open(_UpperCAmelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = [ B"PK\x03\x04", B"PK\x05\x06", # empty archive B"PK\x07\x08", # spanned archive ] @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase = b"" ): if super().is_extractable(_UpperCAmelCase , magic_number=_UpperCAmelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCAmelCase , '''rb''' ) as fp: lowercase__: Union[str, Any] = _EndRecData(_UpperCAmelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: lowercase__: int = fp.read(_UpperCAmelCase ) # CD is where we expect it to be if len(_UpperCAmelCase ) == sizeCentralDir: lowercase__: str = struct.unpack(_UpperCAmelCase , _UpperCAmelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with zipfile.ZipFile(_UpperCAmelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCAmelCase ) zip_file.close() class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = [B"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): with lzma.open(_UpperCAmelCase ) as compressed_file: with open(_UpperCAmelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[Any] = [B"Rar!\x1a\x07\x00", B"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) lowercase__: List[Any] = rarfile.RarFile(_UpperCAmelCase ) rf.extractall(_UpperCAmelCase ) rf.close() class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = [B"\x28\xb5\x2F\xFD"] @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd lowercase__: Tuple = zstd.ZstdDecompressor() with open(_UpperCAmelCase , '''rb''' ) as ifh, open(_UpperCAmelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCAmelCase , _UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = [B"\x42\x5A\x68"] @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): with bza.open(_UpperCAmelCase , '''rb''' ) as compressed_file: with open(_UpperCAmelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = [B"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with pyazr.SevenZipFile(_UpperCAmelCase , '''r''' ) as archive: archive.extractall(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = [B"\x04\x22\x4D\x18"] @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCAmelCase , '''rb''' ) as compressed_file: with open(_UpperCAmelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _snake_case ( cls ): return max( len(_UpperCAmelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCAmelCase , _UpperCAmelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): try: return MagicNumberBaseExtractor.read_magic_number(_UpperCAmelCase , magic_number_length=_UpperCAmelCase ) except OSError: return b"" @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase = False ): warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCAmelCase , ) lowercase__: List[str] = cls.infer_extractor_format(_UpperCAmelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _snake_case ( cls , _UpperCAmelCase ): # <Added version="2.4.0"/> lowercase__: int = cls._get_magic_number_max_length() lowercase__: List[Any] = cls._read_magic_number(_UpperCAmelCase , _UpperCAmelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCAmelCase , magic_number=_UpperCAmelCase ): return extractor_format @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = "deprecated" , ): os.makedirs(os.path.dirname(_UpperCAmelCase ) , exist_ok=_UpperCAmelCase ) # Prevent parallel extractions lowercase__: Optional[int] = str(Path(_UpperCAmelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCAmelCase ): shutil.rmtree(_UpperCAmelCase , ignore_errors=_UpperCAmelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCAmelCase , ) lowercase__: int = extractor if extractor != '''deprecated''' else extractor_format else: lowercase__: Union[str, Any] = cls.extractors[extractor_format] return extractor.extract(_UpperCAmelCase , _UpperCAmelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCAmelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCAmelCase ): return extractor.extract(_UpperCAmelCase , _UpperCAmelCase )
370
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "unispeech-sat" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Union[str, Any] = feat_extract_norm lowercase__: Any = feat_extract_activation lowercase__: List[Any] = list(_UpperCAmelCase ) lowercase__: Optional[int] = list(_UpperCAmelCase ) lowercase__: int = list(_UpperCAmelCase ) lowercase__: Any = conv_bias lowercase__: List[str] = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: int = len(self.conv_dim ) lowercase__: Dict = num_hidden_layers lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: Optional[Any] = num_attention_heads lowercase__: Union[str, Any] = hidden_dropout lowercase__: List[Any] = attention_dropout lowercase__: str = activation_dropout lowercase__: Optional[Any] = feat_proj_dropout lowercase__: Optional[int] = final_dropout lowercase__: Any = layerdrop lowercase__: int = layer_norm_eps lowercase__: Any = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[Any] = num_clusters lowercase__: Dict = do_stable_layer_norm lowercase__: List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: Dict = apply_spec_augment lowercase__: Union[str, Any] = mask_time_prob lowercase__: List[str] = mask_time_length lowercase__: Union[str, Any] = mask_time_min_masks lowercase__: str = mask_feature_prob lowercase__: Dict = mask_feature_length lowercase__: List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__: Tuple = num_codevectors_per_group lowercase__: Optional[Any] = num_codevector_groups lowercase__: int = contrastive_logits_temperature lowercase__: Any = feat_quantizer_dropout lowercase__: int = num_negatives lowercase__: Optional[Any] = codevector_dim lowercase__: int = proj_codevector_dim lowercase__: str = diversity_loss_weight # ctc loss lowercase__: int = ctc_loss_reduction lowercase__: Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = list(_UpperCAmelCase ) lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = xvector_output_dim @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
2
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __A = {"allegro/herbert-base-cased": 5_14} __A = {} class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = HerbertTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__="</s>" , **lowerCamelCase__ , ) -> str: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' __lowerCamelCase = [self.cls_token_id] __lowerCamelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' __lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
90
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A_ = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _snake_case : _A : str _A : Optional[str] = None _A : Optional[Union[str, int]] = None _A : Optional[Union[str, int]] = None _A : Optional[Union[str, int]] = None def __UpperCamelCase ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[str] = _str_to_version_tuple(self.version_str ) def __repr__( self : Optional[Any] ): return F'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def __UpperCamelCase ( self : List[Any] ): return self.major, self.minor, self.patch def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int ): if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): return Version(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): return other raise TypeError(F'''{other} (type {type(SCREAMING_SNAKE_CASE__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ): try: SCREAMING_SNAKE_CASE:List[str] = self._validate_operand(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ): SCREAMING_SNAKE_CASE:Tuple = self._validate_operand(SCREAMING_SNAKE_CASE__ ) return self.tuple < other.tuple def __hash__( self : Union[str, Any] ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __UpperCamelCase ( cls : str ,SCREAMING_SNAKE_CASE__ : str ): SCREAMING_SNAKE_CASE:str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __UpperCamelCase ( self : Tuple ): return self.version_str def A_ ( snake_case ): SCREAMING_SNAKE_CASE:int = _VERSION_REG.match(snake_case ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(snake_case ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def A_ ( snake_case ): return ".".join(str(snake_case ) for v in version_tuple )
139
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def _snake_case( SCREAMING_SNAKE_CASE__ = "" ) -> dict[str, float]: lowercase : Dict = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250""" lowercase : Tuple = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE__ ).text , """html.parser""" ) lowercase : Optional[Any] = soup.find_all("""td""" , attrs="""titleColumn""" ) lowercase : Union[str, Any] = soup.find_all("""td""" , class_="""ratingColumn imdbRating""" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) } def _snake_case( SCREAMING_SNAKE_CASE__ = "IMDb_Top_250_Movies.csv" ) -> None: lowercase : str = get_imdb_top_aaa_movies() with open(SCREAMING_SNAKE_CASE__ , """w""" , newline="""""" ) as out_file: lowercase : Tuple = csv.writer(SCREAMING_SNAKE_CASE__ ) writer.writerow(["""Movie title""", """IMDb rating"""] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
368
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _snake_case( ) -> tuple[list[int], int]: lowercase : List[Any] = [randint(-1_000 , 1_000 ) for i in range(10 )] lowercase : Tuple = randint(-5_000 , 5_000 ) return (arr, r) lowercase : List[Any] = make_dataset() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> tuple[int, ...]: for triplet in permutations(SCREAMING_SNAKE_CASE__ , 3 ): if sum(SCREAMING_SNAKE_CASE__ ) == target: return tuple(sorted(SCREAMING_SNAKE_CASE__ ) ) return (0, 0, 0) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> tuple[int, int, int]: arr.sort() lowercase : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(n - 1 ): lowercase , lowercase : Optional[Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _snake_case( ) -> tuple[float, float]: lowercase : Dict = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ lowercase : Tuple = """ triplet_sum1(*dataset) """ lowercase : int = """ triplet_sum2(*dataset) """ lowercase : str = repeat(setup=SCREAMING_SNAKE_CASE__ , stmt=SCREAMING_SNAKE_CASE__ , repeat=5 , number=10_000 ) lowercase : Dict = repeat(setup=SCREAMING_SNAKE_CASE__ , stmt=SCREAMING_SNAKE_CASE__ , repeat=5 , number=10_000 ) return (min(SCREAMING_SNAKE_CASE__ ), min(SCREAMING_SNAKE_CASE__ )) if __name__ == "__main__": from doctest import testmod testmod() lowercase : Union[str, Any] = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
285
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCamelCase__ = logging.get_logger(__name__) class A ( UpperCAmelCase_ ): def __init__(self : Any , *__UpperCAmelCase : Any , **__UpperCAmelCase : Tuple ) -> None: """simple docstring""" warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
65
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=13 , _SCREAMING_SNAKE_CASE: Tuple=7 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: str=False , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: int=99 , _SCREAMING_SNAKE_CASE: int=32 , _SCREAMING_SNAKE_CASE: List[str]=5 , _SCREAMING_SNAKE_CASE: Union[str, Any]=4 , _SCREAMING_SNAKE_CASE: int=64 , _SCREAMING_SNAKE_CASE: List[str]="gelu" , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: Any=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=512 , _SCREAMING_SNAKE_CASE: Tuple=16 , _SCREAMING_SNAKE_CASE: Any=2 , _SCREAMING_SNAKE_CASE: List[str]=0.02 , _SCREAMING_SNAKE_CASE: Tuple=3 , _SCREAMING_SNAKE_CASE: Optional[Any]=4 , _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: int=2 , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=2 , _SCREAMING_SNAKE_CASE: List[Any]=2 , _SCREAMING_SNAKE_CASE: int=4 , _SCREAMING_SNAKE_CASE: List[str]=1 , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = parent __lowerCAmelCase : Optional[Any] = batch_size __lowerCAmelCase : Union[str, Any] = seq_length __lowerCAmelCase : Optional[Any] = is_training __lowerCAmelCase : Optional[int] = use_input_mask __lowerCAmelCase : Dict = use_token_type_ids __lowerCAmelCase : Dict = use_labels __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : Tuple = hidden_size __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : Union[str, Any] = num_attention_heads __lowerCAmelCase : Tuple = intermediate_size __lowerCAmelCase : List[Any] = hidden_act __lowerCAmelCase : Optional[Any] = hidden_dropout_prob __lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob __lowerCAmelCase : Optional[int] = max_position_embeddings __lowerCAmelCase : Union[str, Any] = type_vocab_size __lowerCAmelCase : Optional[int] = type_sequence_label_size __lowerCAmelCase : Dict = initializer_range __lowerCAmelCase : Tuple = num_labels __lowerCAmelCase : Optional[Any] = num_choices __lowerCAmelCase : Union[str, Any] = scope __lowerCAmelCase : Optional[Any] = q_groups __lowerCAmelCase : Optional[int] = k_groups __lowerCAmelCase : Any = v_groups __lowerCAmelCase : int = post_attention_groups __lowerCAmelCase : List[str] = intermediate_groups __lowerCAmelCase : Optional[Any] = output_groups def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[str]: """simple docstring""" __lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length]) __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : List[Any] = None __lowerCAmelCase : str = None if self.use_labels: __lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices) __lowerCAmelCase : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Tuple) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = SqueezeBertModel(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Tuple) -> Dict: """simple docstring""" __lowerCAmelCase : int = SqueezeBertForMaskedLM(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> int: """simple docstring""" __lowerCAmelCase : str = SqueezeBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Union[str, Any] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Tuple) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.num_labels __lowerCAmelCase : Union[str, Any] = SqueezeBertForSequenceClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int]) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Dict = self.num_labels __lowerCAmelCase : Optional[int] = SqueezeBertForTokenClassification(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.num_choices __lowerCAmelCase : str = SqueezeBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : int = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase : str = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _SCREAMING_SNAKE_CASE ( self: str) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)) : Union[str, Any] = config_and_inputs __lowerCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False def _SCREAMING_SNAKE_CASE ( self: Dict) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = SqueezeBertModelTester(self) __lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , dim=37) def _SCREAMING_SNAKE_CASE ( self: Any) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Any: """simple docstring""" __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> int: """simple docstring""" __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any) -> int: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> str: """simple docstring""" __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_SCREAMING_SNAKE_CASE) @slow def _SCREAMING_SNAKE_CASE ( self: Any) -> Dict: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[Any] = SqueezeBertModel.from_pretrained(_SCREAMING_SNAKE_CASE) self.assertIsNotNone(_SCREAMING_SNAKE_CASE) @require_sentencepiece @require_tokenizers @require_torch class A__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self: int) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli") __lowerCAmelCase : List[Any] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]]) __lowerCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE)[0] __lowerCAmelCase : Any = torch.Size((1, 3)) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = torch.tensor([[0.6401, -0.0349, -0.6041]]) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-4))
269
0
'''simple docstring''' import math class UpperCamelCase_ : def __init__( self , A=0 ) -> Any: # a graph with Node 0,1,...,N-1 UpperCAmelCase : List[str] = n UpperCAmelCase : Any = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # adjacency matrix for weight UpperCAmelCase : int = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # dp[i][j] stores minimum distance from i to j def _lowercase( self , A , A , A ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = w def _lowercase( self ) -> List[Any]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): UpperCAmelCase : str = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def _lowercase( self , A , A ) -> List[str]: return self.dp[u][v] if __name__ == "__main__": a : int = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
356
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
0
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __a (UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :int = WavaVecaPhonemeCTCTokenizer _SCREAMING_SNAKE_CASE :Optional[Any] = False def _a ( self ) -> Any: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ : Optional[Any] = ( """<s> <pad> </s> <unk> n s t ษ™ l a i k d m ษ› ษพ e ษช p o ษ z รฐ f j v b ษน ส สŠ iห r w สŒ u ษก รฆ aษช สƒ h ษ” ษ‘ห """ """ล‹ ษš eษช ฮฒ uห y ษ‘ฬƒ oสŠ แตป eห ฮธ aสŠ ts oห ษ”ฬƒ ษฃ ษœ ษ‘ dส’ ษ™l x ษœห รง ส’ tสƒ ษ”ห ษ‘หษน ษ›ฬƒ สŽ ษ”หษน ส‹ aห ษ• ล“ รธ oหษน ษฒ yห """ """ส” iษ™ i5 s. tษ• ?? nสฒ ษ›ห ล“ฬƒ ษญ ษ”รธ ส‘ tสฒ ษจ ษ›ษน ts. rสฒ ษชษน ษญสฒ i.5 ษ”ษช q sสฒ u5 สŠษน iษœ a5 iษ›5 รธห ส• ja ษ™ษœ th ษ‘5 """ """oษช dสฒ ษ™5 tษ•h ts.h mสฒ ษฏ dส‘ vสฒ eฬž tสƒสฒ ei5 o5 onษก5 ษ‘u5 iษ‘5 ai5 aษชษš kh ษ™1 ส i2 ส‰ ฤง t[ aษชษ™ สฒ ju ษ™2 u2 oษœ """ """pห iษ›ษœ ou5 y5 uษœ tห uo5 d[ uoษœ tsh ษ‘ษœ ษต iฬช5 uei5 ษŸ aษœ ษ‘ษจ i.ษœ eสŠ o2 ษฬƒ รค pสฒ kสฒ nฬฉ ษ’ ph ษ‘u2 uษจ ษ™ษช ษซ ษฌ """ """yษœ bสฒ ษ‘2 sฬช aiษœ ฯ‡ ษฬƒสŠฬƒ 1 ษ™4 yรฆษœ a2 ษจห tฬช iouษœ uฬƒ onษกษœ aษจ iษ›2 ษ”ษจ ษ‘uษœ oฬž ei2 iou2 c kห y2 ษ– oe dหค yษ›ษœ """ """ษ™สŠ S ษกสฒ onษก2 u\" eiษœ สˆ ษฏแต iou5 dZ rฬฬŠ i.2 tS s^ ส yษ™5 iษ‘ษœ uษ™5 pf ษจu iษ‘2 ou2 ษ™r2 fสฒ ai2 rฬ uษ™ษœ ษณ ษ™ษจ """ """ua5 uษช ษฝ bห yu5 uo2 yษ›5 lฬฉ ษป ษ™rษœ ส‚ iฬช2 ouษœ uaษœ a. a.ห yรฆ5 dห rฬฉ ee ษชu ษ™r5 iฬช ษœ รฆi u: i.ห t^ o1 ษช^ """ """ai ueiษœ รฆห ษ›ษช eษ™ i. ษด ie ua2 ษ‘1 o4 tสƒห o: ษ‘: u1 N iฬช1 au yรฆ2 u. qห yษ™ษœ y: kสฐ tสƒสฐ iสŠ sx oฬƒ uo tสฐ """ """uai5 bสฐ u.ห uษ™2 สŠษ™ d^ sฬชห yiษœ dสฐ r. oe: i1 ษŸห yu2 nสฒสฒ iฬช4 uei2 tsสฒ ษธ iฬƒ ษ‘4 tฬชห eษ‘ u4 e: tsห สˆสฐ ษกสฐ """ """ษฏษฏ dส’สฒ ส‚สฒ X ษตห uaiษœ tษ•สฒ aฬƒ t^ห eฬƒห yษ›2 cห i.1 ษ›สŠ dหคdหค dส’ห i4 ษกห yi ษ•สฒ ษŸสฐ pสฐ dส‘สฒ yuษœ ua1 ua4 รฆiห ษษ """ """ui iou1 สŠห a1 iou4 cสฐ iษ›1 yษ™2 ษ–สฐ eฬƒ ส’สฒ รครค ษ™r4 iหห ษชห iษ‘1 ษ™r1 ล“ห รธi ษชuห cสฐcสฐ ษ™ห1 iห1 ลฉ kสฐห oฬžoฬž xสฒ """ """ou1 iษ›4 eฬžeฬž y1 dzห dสฒสฒ dสฐห ษฏแตษฏแต lห uo1 i.4 i: yษ›5สฒ a4""" ).split(""" """ ) SCREAMING_SNAKE_CASE__ : Any = dict(zip(_a , range(len(_a ) ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""} SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) def _a ( self , _a , _a=False , _a=20 , _a=5 ) -> Tuple[str, list]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=_a )) for i in range(len(_a ) )] SCREAMING_SNAKE_CASE__ : Any = list(filter(lambda _a : [t[0]] == tokenizer.encode(t[1] , do_phonemize=_a ) , _a ) ) if max_length is not None and len(_a ) > max_length: SCREAMING_SNAKE_CASE__ : int = toks[:max_length] if min_length is not None and len(_a ) < min_length and len(_a ) > 0: while len(_a ) < min_length: SCREAMING_SNAKE_CASE__ : Union[str, Any] = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE__ : Any = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) if " " not in output_txt and len(_a ) > 1: SCREAMING_SNAKE_CASE__ : str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_a ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_a ) ) if with_prefix_space: SCREAMING_SNAKE_CASE__ : Optional[int] = """ """ + output_txt SCREAMING_SNAKE_CASE__ : str = tokenizer.encode(_a , add_special_tokens=_a ) return output_txt, output_ids def _a ( self , **_a ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **_a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) SCREAMING_SNAKE_CASE__ : Any = tokenizer("""m xxx ษช""" , do_phonemize=_a ).input_ids self.assertEqual(_a , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer("""m aaa ษช ccc""" , do_phonemize=_a ).input_ids self.assertEqual(_a , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer("""maษช c""" , do_phonemize=_a ).input_ids self.assertEqual(_a , [3, 200] ) # mai should be <unk> (=3) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) SCREAMING_SNAKE_CASE__ : Dict = """Hello how are you""" SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.phonemize(_a , phonemizer_lang="""en-us""" ) self.assertEqual(_a , """h ษ™ l oสŠ h aสŠ ษ‘หษน j uห""" ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = """Hello how are you""" SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.phonemize(_a , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(_a ).input_ids , tokenizer(_a , do_phonemize=_a ).input_ids ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) SCREAMING_SNAKE_CASE__ : Any = """Hello how are you""" SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.phonemize(_a , phonemizer_lang="""en-us""" ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.decode(tokenizer(_a ).input_ids ) self.assertEqual(_a , _a ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.decode(sample_ids[0] ) SCREAMING_SNAKE_CASE__ : int = tokenizer.batch_decode(_a ) self.assertEqual(_a , batch_tokens[0] ) self.assertEqual(_a , ["""k s ษพ ษพ l ษญสฒ""", """j รฐ s j รฐ s oหษน"""] ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = """Hello how are you""" SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.phonemize(_a , phonemizer_lang="""en-us""" ) self.assertEqual(_a , """h ษ™ l oสŠ | h aสŠ | ษ‘หษน | j uห |""" ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = """Hello how are you""" SCREAMING_SNAKE_CASE__ : Dict = tokenizer.phonemize(_a , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(_a ).input_ids , tokenizer(_a , do_phonemize=_a ).input_ids ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off SCREAMING_SNAKE_CASE__ : Any = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.decode(sample_ids[0] ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.batch_decode(_a ) self.assertEqual(_a , batch_tokens[0] ) self.assertEqual(_a , ["""k s ษพ ษพ l ษญสฒ""", """j รฐ s j รฐ s oหษน"""] ) # decode with no word_del_token filter SCREAMING_SNAKE_CASE__ : Any = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.batch_decode(_a , filter_word_delimiter_token=_a ) self.assertEqual(_a , batch_tokens[0] ) self.assertEqual(_a , ["""k s ษพ | ษพ l | ษญสฒ""", """| j รฐ | s j รฐ s oหษน"""] ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) SCREAMING_SNAKE_CASE__ : Any = """Hello how are you""" SCREAMING_SNAKE_CASE__ : Any = tokenizer.phonemize(_a , phonemizer_lang="""en-us""" ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.decode(tokenizer(_a ).input_ids , filter_word_delimiter_token=_a ) self.assertEqual(_a , _a ) def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) SCREAMING_SNAKE_CASE__ : Tuple = """Hello how are you""" SCREAMING_SNAKE_CASE__ : str = tokenizer.phonemize(_a , phonemizer_lang="""en-us""" ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.decode(tokenizer(_a ).input_ids , filter_word_delimiter_token=_a ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip() , _a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token=_a ) SCREAMING_SNAKE_CASE__ : Any = """Hello how are you""" SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer(_a , phonemizer_lang="""en-us""" ).input_ids SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer(_a , phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(_a , _a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.decode(_a ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.decode(_a ) self.assertEqual(_a , """h ษ™ l oสŠ h aสŠ ษ‘หษน j uห""" ) self.assertEqual(_a , """ษ› l o h aสŠ a ส j u""" ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) SCREAMING_SNAKE_CASE__ : List[str] = """Hello how Are you""" SCREAMING_SNAKE_CASE__ : str = """hello how are you""" SCREAMING_SNAKE_CASE__ : Any = tokenizer(_a ).input_ids SCREAMING_SNAKE_CASE__ : Any = tokenizer(_a ).input_ids self.assertEqual(_a , _a ) def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off SCREAMING_SNAKE_CASE__ : List[str] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on SCREAMING_SNAKE_CASE__ : int = tokenizer.batch_decode(_a ) self.assertEqual(_a , ["""k s ษพ ษพ l ษญสฒ!?!? $$$""", """j รฐ s j รฐ s oหษน $$$"""] ) @staticmethod def _a ( _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [d[key] for d in offsets] return retrieved_list def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssษพษพ|ษพษพ<pad>ษพษพ|<pad>ษพlll|ษญสฒ -> k s ษพ ษพ | ษพ l | ษญสฒ" SCREAMING_SNAKE_CASE__ : Tuple = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.decode(_a , output_char_offsets=_a , filter_word_delimiter_token=_a ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(_a , _a ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) , ["""k""", """s""", """ษพ""", """ษพ""", """|""", """ษพ""", """l""", """|""", """ษญสฒ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """start_offset""" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """end_offset""" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(_a , _a ): self.assertTrue(isinstance(_a , _a ) ) self.assertTrue(isinstance(outputs_list[0] , _a ) ) # transform list to ModelOutput SCREAMING_SNAKE_CASE__ : List[Any] = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""] , outputs_batch_a["""text"""] ) def recursive_check(_a , _a ): if isinstance(_a , _a ): [recursive_check(_a , _a ) for la, la in zip(_a , _a )] self.assertEqual(_a , _a ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""] , outputs_batch_a["""char_offsets"""] ) # fmt: off SCREAMING_SNAKE_CASE__ : List[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char SCREAMING_SNAKE_CASE__ : int = tokenizer.batch_decode(_a , output_char_offsets=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = [tokenizer.decode(_a , output_char_offsets=_a ) for ids in sample_ids] check_list_tuples_equal(_a , _a ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def _a ( self ) -> Tuple: """simple docstring""" pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def _a ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def _a ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def _a ( self ) -> Optional[Any]: """simple docstring""" pass def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : Any = len(_a ) self.assertNotEqual(_a , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) SCREAMING_SNAKE_CASE__ : Tuple = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] SCREAMING_SNAKE_CASE__ : Dict = tokenizer.add_tokens(_a ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : str = len(_a ) self.assertNotEqual(_a , 0 ) self.assertEqual(_a , _a ) self.assertEqual(_a , len(_a ) ) self.assertEqual(_a , all_size + len(_a ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=_a ) self.assertGreaterEqual(len(_a ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) SCREAMING_SNAKE_CASE__ : Any = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.add_special_tokens(_a ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : List[Any] = len(_a ) self.assertNotEqual(_a , 0 ) self.assertEqual(_a , _a ) self.assertEqual(_a , len(_a ) ) self.assertEqual(_a , all_size_a + len(_a ) ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=_a ) self.assertGreaterEqual(len(_a ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def _a ( self ) -> str: """simple docstring""" pass @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def _a ( self ) -> Tuple: """simple docstring""" pass def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizers(fast=_a , do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE__ : Any = ["""รฐ""", """ษช""", """s""", """ษช""", """z""", """ษ""", """t""", """ษ›""", """k""", """s""", """t"""] SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.convert_tokens_to_string(_a ) self.assertIsInstance(output["""text"""] , _a )
132
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Generator[tuple[str, ...], None, None]: SCREAMING_SNAKE_CASE__ : List[Any] = iter(__lowerCAmelCase ) while True: SCREAMING_SNAKE_CASE__ : Optional[int] = tuple(itertools.islice(__lowerCAmelCase , __lowerCAmelCase ) ) if not chunk: return yield chunk def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : List[Any] = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) SCREAMING_SNAKE_CASE__ : Tuple = """""" if len(__lowerCAmelCase ) < 2: return dirty for i in range(len(__lowerCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__lowerCAmelCase ) & 1: clean += "X" return clean def _lowercase ( __lowerCAmelCase ) -> list[str]: # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) SCREAMING_SNAKE_CASE__ : str = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler SCREAMING_SNAKE_CASE__ : Optional[int] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__lowerCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__lowerCAmelCase ) return table def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Tuple = generate_table(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = prepare_input(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = divmod(table.index(__lowerCAmelCase ) , 5 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : str = generate_table(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = divmod(table.index(__lowerCAmelCase ) , 5 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
132
1
'''simple docstring''' import os def _A () -> Any: '''simple docstring''' _a = os.path.join(os.path.dirname(_lowercase ) , 'num.txt' ) with open(_lowercase ) as file_hand: return str(sum(int(_lowercase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
359
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _A (lowerCAmelCase__ :float , lowerCAmelCase__ :float , lowerCAmelCase__ :int ) -> float: '''simple docstring''' _a = x _a = y for step in range(lowerCAmelCase__ ): # noqa: B007 _a = a * a - b * b + x _a = 2 * a * b + y _a = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _A (lowerCAmelCase__ :float ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def _A (lowerCAmelCase__ :float ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def _A (lowerCAmelCase__ :int = 8_00 , lowerCAmelCase__ :int = 6_00 , lowerCAmelCase__ :float = -0.6 , lowerCAmelCase__ :float = 0 , lowerCAmelCase__ :float = 3.2 , lowerCAmelCase__ :int = 50 , lowerCAmelCase__ :bool = True , ) -> Image.Image: '''simple docstring''' _a = Image.new('RGB' , (image_width, image_height) ) _a = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates _a = figure_width / image_width * image_height _a = figure_center_x + (image_x / image_width - 0.5) * figure_width _a = figure_center_y + (image_y / image_height - 0.5) * figure_height _a = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _a = get_color_coded_rgb(lowerCAmelCase__ ) else: _a = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure a_ : Optional[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
104
0
'''simple docstring''' def A_ ( ): return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(__lowerCamelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'''{solution() = }''')
139
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : int = 1_00_00_00 ) -> int: _snake_case = limit + 1 _snake_case = [0] * limit for first_term in range(1 , __lowerCamelCase ): for n in range(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): _snake_case = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _snake_case = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"{solution() = }")
288
0
'''simple docstring''' import math def lowerCamelCase__ ( _A , _A ): a : int = len(_A ) a : Optional[int] = int(math.floor(math.sqrt(_A ) ) ) a : Any = 0 while arr[min(_A , _A ) - 1] < x: a : Any = step step += int(math.floor(math.sqrt(_A ) ) ) if prev >= n: return -1 while arr[prev] < x: a : Optional[Any] = prev + 1 if prev == min(_A , _A ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCAmelCase: Optional[Any] = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase: int = [int(item) for item in user_input.split(',')] lowerCAmelCase: Optional[Any] = int(input('Enter the number to be searched:\n')) lowerCAmelCase: Optional[int] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F"Number {x} is at index {res}")
96
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCamelCase__ ( _A , _A , _A=0 ): # Format the message. if name is None: a : Tuple = None else: a : Dict = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' a : Tuple = fmt.format(_A ) # Print and recurse (if needed). if isinstance(_A , _A ): if msg is not None: print(_A ) for k in val.keys(): recursive_print(_A , val[k] , spaces + 2 ) elif isinstance(_A , torch.Tensor ): print(_A , ':' , val.size() ) else: print(_A , ':' , _A ) def lowerCamelCase__ ( _A , _A , _A , _A , _A ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. a : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] a : List[Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] a : int = param.view(*_A ) a : List[str] = param.transpose(0 , 2 ) a : Union[str, Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] a : Union[str, Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] a : List[str] = param.view(*_A ) a : Union[str, Any] = param.transpose(0 , 1 ).contiguous() a : List[Any] = param.view(*_A ) return param def lowerCamelCase__ ( _A , _A , _A ): # The converted output model. a : Optional[Any] = {} # old versions did not store training args a : Dict = input_state_dict.get('args' , _A ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) a : Union[str, Any] = ds_args.padded_vocab_size a : str = ds_args.max_position_embeddings a : Dict = ds_args.hidden_size a : Union[str, Any] = ds_args.num_layers a : Dict = ds_args.num_attention_heads a : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. a : Any = config.n_head # The hidden_size per head. a : Tuple = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): a : Any = input_state_dict['checkpoint_version'] else: a : Any = 0.0 # The model. a : Optional[int] = input_state_dict['model'] # The language model. a : Optional[Any] = model['language_model'] # The embeddings. a : List[str] = lm['embedding'] # The word embeddings. a : List[Any] = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. a : Dict = word_embeddings[: config.vocab_size, :] a : int = word_embeddings # The position embeddings. a : Tuple = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] a : List[str] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" ) # Store the position embeddings. a : Optional[Any] = pos_embeddings # The transformer. a : Union[str, Any] = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. a : List[Any] = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. a : Optional[Any] = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. a : Tuple = layer_re.match(_A ) # Stop if that's not a layer if m is None: break # The index of the layer. a : Union[str, Any] = int(m.group(1 ) ) # The name of the operation. a : Optional[int] = m.group(2 ) # Is it a weight or a bias? a : Optional[int] = m.group(3 ) # The name of the layer. a : Any = f"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): a : str = 'ln_1' if op_name.startswith('input' ) else 'ln_2' a : Tuple = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. a : Dict = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _A , _A ) a : Optional[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. a : List[Any] = torch.tensor(-1E4 , dtype=torch.floataa ) a : List[str] = masked_bias a : Union[str, Any] = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. a : int = out_val.transpose(0 , 1 ).contiguous() # Store. a : int = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": a : str = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Store. No change of shape. a : List[str] = out_val # Transpose the weights. elif weight_or_bias == "weight": a : Tuple = megatron_to_transformers[op_name] a : List[str] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": a : Dict = megatron_to_transformers[op_name] a : Optional[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. a : str = transformer['final_layernorm.weight'] a : List[str] = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. a : Optional[int] = word_embeddings # It should be done! return output_state_dict def lowerCamelCase__ ( ): # Create the argument parser. a : Dict = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=_A , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=_A , help='An optional config json file describing the pre-trained model.' , ) a : Union[str, Any] = parser.parse_args() # Extract the basename. a : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: a : Union[str, Any] = torch.load(_A , map_location='cpu' ) else: a : Any = torch.load(args.path_to_checkpoint , map_location='cpu' ) a : List[Any] = input_state_dict.get('args' , _A ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: a : int = 'gelu_fast' elif ds_args.openai_gelu: a : Dict = 'gelu_new' else: a : Any = 'gelu' else: # in the very early days this used to be "gelu_new" a : Any = 'gelu_new' # Spell out all parameters in case the defaults change. a : Tuple = GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=_A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=_A , summary_activation=_A , summary_proj_to_labels=_A , summary_first_dropout=0.1 , scale_attn_weights=_A , use_cache=_A , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: a : str = GPTaConfig.from_json_file(args.config_file ) a : Any = ['GPT2LMHeadModel'] # Convert. print('Converting' ) a : Union[str, Any] = convert_megatron_checkpoint(_A , _A , _A ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_A , _A ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: a : Union[str, Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": a : Tuple = 'gpt2' elif tokenizer_type == "PretrainedFromHF": a : List[str] = ds_args.tokenizer_name_or_path else: raise ValueError(f"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: a : Optional[Any] = 'gpt2' a : Tuple = AutoTokenizer.from_pretrained(_A ) a : str = type(_A ).__name__ a : List[str] = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(_A ) # Save tokenizer based on args print(f"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(_A ) # Store the state_dict to file. a : Optional[int] = os.path.join(_A , 'pytorch_model.bin' ) print(f"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(_A , _A ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
96
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowercase ( lowerCAmelCase__ : str ) -> Optional[Any]: __a = '''huggingface/label-files''' __a = '''imagenet-1k-id2label.json''' __a = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) __a = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __a = {v: k for k, v in idalabel.items()} __a = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __a = BitConfig( conv_layer=lowerCAmelCase__ , num_labels=1000 , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , ) return config def lowercase ( lowerCAmelCase__ : Optional[Any] ) -> List[Any]: if "stem.conv" in name: __a = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: __a = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: __a = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): __a = '''bit.''' + name if "bit" not in name and "classifier" not in name: __a = '''bit.encoder.''' + name return name def lowercase ( ) -> List[Any]: __a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=False ) -> Dict: __a = get_config(lowerCAmelCase__ ) # load original model from timm __a = create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ) timm_model.eval() # load state_dict of original model __a = timm_model.state_dict() for key in state_dict.copy().keys(): __a = state_dict.pop(lowerCAmelCase__ ) __a = val.squeeze() if '''head''' in key else val # load HuggingFace model __a = BitForImageClassification(lowerCAmelCase__ ) model.eval() model.load_state_dict(lowerCAmelCase__ ) # create image processor __a = create_transform(**resolve_data_config({} , model=lowerCAmelCase__ ) ) __a = transform.transforms __a = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } __a = BitImageProcessor( do_resize=lowerCAmelCase__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __a = prepare_img() __a = transform(lowerCAmelCase__ ).unsqueeze(0 ) __a = processor(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) # verify logits with torch.no_grad(): __a = model(lowerCAmelCase__ ) __a = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) __a = timm_model(lowerCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) lowercase_ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
45
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowercase ( lowerCAmelCase__ : Namespace ) -> Tuple: return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowercase_ = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def __UpperCAmelCase ( _a ): __a = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=_a , required=_a , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=_a , required=_a , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=_a , required=_a , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=_a , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=_a , default=_a , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=_a ) def __init__( self , _a , _a , _a , _a , _a , *_a , ): __a = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(f'''Loading model {model_type}''' ) __a = model_type __a = tf_checkpoint __a = pytorch_dump_output __a = config __a = finetuning_task_name def __UpperCAmelCase ( self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) if "ckpt" in self._tf_checkpoint.lower(): __a = self._tf_checkpoint __a = '''''' else: __a = self._tf_checkpoint __a = '''''' convert_transfo_xl_checkpoint_to_pytorch( _a , self._config , self._pytorch_dump_output , _a ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
45
1
'''simple docstring''' import numpy # List of input, output pairs __snake_case : List[str] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __snake_case : List[str] = (((515, 22, 13), 555), ((61, 35, 49), 150)) __snake_case : int = [2, 4, 1, 5] __snake_case : str = len(train_data) __snake_case : Union[str, Any] = 0.009 def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : List[Any]="train" ) -> Tuple: return calculate_hypothesis_value(_UpperCamelCase, _UpperCamelCase ) - output( _UpperCamelCase, _UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> List[Any]: A_ = 0 for i in range(len(_UpperCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : List[Any] ) -> Dict: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : Optional[Any] ) -> List[Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _UpperCAmelCase ( _UpperCamelCase : Optional[Any], _UpperCamelCase : Any=m ) -> Union[str, Any]: A_ = 0 for i in range(_UpperCamelCase ): if index == -1: summation_value += _error(_UpperCamelCase ) else: summation_value += _error(_UpperCamelCase ) * train_data[i][0][index] return summation_value def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Union[str, Any]: A_ = summation_of_cost_derivative(_UpperCamelCase, _UpperCamelCase ) / m return cost_derivative_value def _UpperCAmelCase ( ) -> Any: global parameter_vector # Tune these values to set a tolerance value for predicted output A_ = 0.0_0_0_0_0_2 A_ = 0 A_ = 0 while True: j += 1 A_ = [0, 0, 0, 0] for i in range(0, len(_UpperCamelCase ) ): A_ = get_cost_derivative(i - 1 ) A_ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _UpperCamelCase, _UpperCamelCase, atol=_UpperCamelCase, rtol=_UpperCamelCase, ): break A_ = temp_parameter_vector print(('''Number of iterations:''', j) ) def _UpperCAmelCase ( ) -> str: for i in range(len(_UpperCamelCase ) ): print(('''Actual output value:''', output(_UpperCamelCase, '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(_UpperCamelCase, '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
371
'''simple docstring''' from statistics import mean, stdev def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = min(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min), _UpperCamelCase ) for x in data] def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = mean(_UpperCamelCase ) A_ = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma), _UpperCamelCase ) for x in data]
18
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : Tuple = logging.get_logger(__name__) a_ : Optional[int] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a ( _a ): _lowerCAmelCase = '''data2vec-vision''' def __init__( self , __magic_name__=7_68 , __magic_name__=12 , __magic_name__=12 , __magic_name__=30_72 , __magic_name__="gelu" , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.0_2 , __magic_name__=1e-12 , __magic_name__=2_24 , __magic_name__=16 , __magic_name__=3 , __magic_name__=False , __magic_name__=False , __magic_name__=False , __magic_name__=False , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=True , __magic_name__=[3, 5, 7, 11] , __magic_name__=[1, 2, 3, 6] , __magic_name__=True , __magic_name__=0.4 , __magic_name__=2_56 , __magic_name__=1 , __magic_name__=False , __magic_name__=2_55 , **__magic_name__ , ) -> int: super().__init__(**__magic_name__ ) _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = image_size _a = patch_size _a = num_channels _a = use_mask_token _a = use_absolute_position_embeddings _a = use_relative_position_bias _a = use_shared_relative_position_bias _a = layer_scale_init_value _a = drop_path_rate _a = use_mean_pooling # decode head attributes (semantic segmentation) _a = out_indices _a = pool_scales # auxiliary head attributes (semantic segmentation) _a = use_auxiliary_head _a = auxiliary_loss_weight _a = auxiliary_channels _a = auxiliary_num_convs _a = auxiliary_concat_input _a = semantic_loss_ignore_index class a ( _a ): _lowerCAmelCase = version.parse("""1.11""" ) @property def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCAmelCase ( self ) -> float: return 1e-4
168
from __future__ import annotations def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> tuple[float, list[float]]: """simple docstring""" snake_case_ : Dict = list(range(len(_UpperCamelCase ) ) ) snake_case_ : Dict = [v / w for v, w in zip(_UpperCamelCase , _UpperCamelCase )] index.sort(key=lambda _UpperCamelCase : ratio[i] , reverse=_UpperCamelCase ) snake_case_ : float = 0 snake_case_ : list[float] = [0] * len(_UpperCamelCase ) for i in index: if weight[i] <= capacity: snake_case_ : Dict = 1 max_value += value[i] capacity -= weight[i] else: snake_case_ : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
279
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["keras_nlp"] def __init__( self : Dict , *snake_case_ : Union[str, Any] , **snake_case_ : str ): requires_backends(self , ["""keras_nlp"""] )
43
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __a = logging.get_logger(__name__) __a = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __a = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __a = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __a = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __a = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __a = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __a = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __a = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __a = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __a = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __a = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __a = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class UpperCAmelCase_ : """simple docstring""" def __call__( self : str , snake_case_ : Optional[Any] , snake_case_ : Optional[str] = None , snake_case_ : Optional[str] = None , snake_case_ : Union[bool, str] = False , snake_case_ : Union[bool, str] = False , snake_case_ : Optional[int] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : Optional[bool] = None , **snake_case_ : Union[str, Any] , ): if titles is None and texts is None: return super().__call__( snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) elif titles is None or texts is None: snake_case__ : int = titles if texts is None else texts return super().__call__( snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) snake_case__ : List[str] = titles if not isinstance(snake_case_ , snake_case_ ) else [titles] snake_case__ : Union[str, Any] = texts if not isinstance(snake_case_ , snake_case_ ) else [texts] snake_case__ : Dict = len(snake_case_ ) snake_case__ : Union[str, Any] = questions if not isinstance(snake_case_ , snake_case_ ) else [questions] * n_passages if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f"There should be as many titles than texts but got {len(snake_case_ )} titles and {len(snake_case_ )} texts." ) snake_case__ : int = super().__call__(snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ )["""input_ids"""] snake_case__ : Any = super().__call__(snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ )["""input_ids"""] snake_case__ : Dict = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(snake_case_ , snake_case_ ) ] } if return_attention_mask is not False: snake_case__ : List[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case__ : Union[str, Any] = attention_mask return self.pad(snake_case_ , padding=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ ) def lowerCamelCase ( self : Optional[int] , snake_case_ : BatchEncoding , snake_case_ : DPRReaderOutput , snake_case_ : int = 16 , snake_case_ : int = 64 , snake_case_ : int = 4 , ): snake_case__ : Optional[int] = reader_input["""input_ids"""] snake_case__ , snake_case__ , snake_case__ : List[str] = reader_output[:3] snake_case__ : Union[str, Any] = len(snake_case_ ) snake_case__ : Tuple = sorted(range(snake_case_ ) , reverse=snake_case_ , key=relevance_logits.__getitem__ ) snake_case__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: snake_case__ : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case__ : Optional[Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case__ : int = sequence_ids.index(self.pad_token_id ) else: snake_case__ : int = len(snake_case_ ) snake_case__ : Optional[int] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=snake_case_ , top_spans=snake_case_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=snake_case_ , start_index=snake_case_ , end_index=snake_case_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(snake_case_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase ( self : str , snake_case_ : List[int] , snake_case_ : List[int] , snake_case_ : int , snake_case_ : int , ): snake_case__ : List[str] = [] for start_index, start_score in enumerate(snake_case_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case__ : Any = sorted(snake_case_ , key=lambda snake_case_ : x[1] , reverse=snake_case_ ) snake_case__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) snake_case__ : Union[str, Any] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(snake_case_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class UpperCAmelCase_ ( _a , _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = READER_PRETRAINED_VOCAB_FILES_MAP lowercase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = READER_PRETRAINED_INIT_CONFIGURATION lowercase = ["input_ids", "attention_mask"]
43
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) class _snake_case ( __lowerCamelCase ): lowerCamelCase__: str = """timm_backbone""" def __init__( self: Tuple , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Any=3 , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[Any]=None , **__lowerCamelCase: Dict , ) -> Optional[int]: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : int = backbone __UpperCAmelCase : int = num_channels __UpperCAmelCase : Optional[int] = features_only __UpperCAmelCase : Optional[Any] = use_pretrained_backbone __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Dict = out_indices if out_indices is not None else (-1,)
157
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : str = ["""pixel_values"""] def __init__( self , snake_case = True , snake_case = None , snake_case = PILImageResampling.BICUBIC , snake_case = True , snake_case = None , snake_case = True , snake_case = 1 / 255 , snake_case = True , snake_case = None , snake_case = None , snake_case = True , **snake_case , ): super().__init__(**snake_case ) lowercase = size if size is not None else {'shortest_edge': 224} lowercase = get_size_dict(snake_case , default_to_square=snake_case ) lowercase = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase = get_size_dict(snake_case , default_to_square=snake_case , param_name='crop_size' ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_center_crop lowercase = crop_size lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase = image_std if image_std is not None else OPENAI_CLIP_STD lowercase = do_convert_rgb def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = PILImageResampling.BICUBIC , snake_case = None , **snake_case , ): lowercase = get_size_dict(snake_case , default_to_square=snake_case ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase = get_resize_output_image_size(snake_case , size=size['shortest_edge'] , default_to_square=snake_case ) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = None , **snake_case , ): lowercase = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(snake_case , size=(size['height'], size['width']) , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = None , **snake_case , ): return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case = None , **snake_case , ): return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = ChannelDimension.FIRST , **snake_case , ): lowercase = do_resize if do_resize is not None else self.do_resize lowercase = size if size is not None else self.size lowercase = get_size_dict(snake_case , param_name='size' , default_to_square=snake_case ) lowercase = resample if resample is not None else self.resample lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(snake_case , param_name='crop_size' , default_to_square=snake_case ) lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase = [convert_to_rgb(snake_case ) for image in images] # All transformations expect numpy arrays. lowercase = [to_numpy_array(snake_case ) for image in images] if do_resize: lowercase = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] if do_center_crop: lowercase = [self.center_crop(image=snake_case , size=snake_case ) for image in images] if do_rescale: lowercase = [self.rescale(image=snake_case , scale=snake_case ) for image in images] if do_normalize: lowercase = [self.normalize(image=snake_case , mean=snake_case , std=snake_case ) for image in images] lowercase = [to_channel_dimension_format(snake_case , snake_case ) for image in images] lowercase = {'pixel_values': images} return BatchFeature(data=snake_case , tensor_type=snake_case )
195
0
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCAmelCase :int = logging.get_logger(__name__) class _lowerCamelCase : '''simple docstring''' A_ : str A_ : str = None @staticmethod def __lowerCAmelCase ( ) -> int: raise NotImplementedError def __lowerCAmelCase ( self : List[str] , _A : Optional[int] , _A : int , _A : str , **_A : Tuple ) -> Optional[Any]: raise NotImplementedError def __lowerCAmelCase ( self : Any , _A : str ) -> List[Any]: raise NotImplementedError def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: if not self.is_available(): raise RuntimeError( F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def __lowerCAmelCase ( cls : Any ) -> List[str]: return F'`pip install {cls.pip_package or cls.name}`' class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Optional[Any] = """optuna""" @staticmethod def __lowerCAmelCase ( ) -> Any: return is_optuna_available() def __lowerCAmelCase ( self : Tuple , _A : Tuple , _A : int , _A : str , **_A : Optional[int] ) -> int: return run_hp_search_optuna(_A , _A , _A , **_A ) def __lowerCAmelCase ( self : int , _A : Any ) -> str: return default_hp_space_optuna(_A ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : str = """ray""" A_ : Optional[int] = """'ray[tune]'""" @staticmethod def __lowerCAmelCase ( ) -> Any: return is_ray_available() def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : int , _A : str , **_A : Tuple ) -> Any: return run_hp_search_ray(_A , _A , _A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : List[str] ) -> List[str]: return default_hp_space_ray(_A ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Optional[Any] = """sigopt""" @staticmethod def __lowerCAmelCase ( ) -> Union[str, Any]: return is_sigopt_available() def __lowerCAmelCase ( self : Dict , _A : List[str] , _A : int , _A : str , **_A : Optional[Any] ) -> Any: return run_hp_search_sigopt(_A , _A , _A , **_A ) def __lowerCAmelCase ( self : List[Any] , _A : Optional[Any] ) -> Any: return default_hp_space_sigopt(_A ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : int = """wandb""" @staticmethod def __lowerCAmelCase ( ) -> Any: return is_wandb_available() def __lowerCAmelCase ( self : Union[str, Any] , _A : Optional[int] , _A : int , _A : str , **_A : Tuple ) -> Tuple: return run_hp_search_wandb(_A , _A , _A , **_A ) def __lowerCAmelCase ( self : int , _A : Optional[int] ) -> Union[str, Any]: return default_hp_space_wandb(_A ) lowerCAmelCase :int = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCamelCase ( ): """simple docstring""" __magic_name__ : List[str] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowerCAmelCase ) > 0: __magic_name__ : Union[str, Any] = available_backends[0].name if len(lowerCAmelCase ) > 1: logger.info( f'{len(lowerCAmelCase )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( f' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
275
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase :str = logging.get_logger(__name__) lowerCAmelCase :str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } lowerCAmelCase :List[str] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = {} with open(lowerCAmelCase , 'r' ) as file: for line_number, line in enumerate(lowerCAmelCase ): __magic_name__ : Optional[Any] = line.strip() if line: __magic_name__ : Optional[int] = line.split() __magic_name__ : Any = line_number __magic_name__ : Union[str, Any] = words[0] __magic_name__ : Dict = value return result def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" for attribute in key.split('.' ): __magic_name__ : Optional[Any] = getattr(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Tuple = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase ): __magic_name__ : Optional[Any] = PARAM_MAPPING[full_name.split('.' )[-1]] __magic_name__ : List[Any] = 'param' if weight_type is not None and weight_type != "param": __magic_name__ : List[str] = getattr(lowerCAmelCase , lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": __magic_name__ : Tuple = hf_pointer for attribute in hf_param_name.split('.' ): __magic_name__ : str = getattr(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Union[str, Any] = shape_pointer.shape # let's reduce dimension __magic_name__ : int = value[0] else: __magic_name__ : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __magic_name__ : Optional[Any] = value elif weight_type == "weight_g": __magic_name__ : List[str] = value elif weight_type == "weight_v": __magic_name__ : Optional[int] = value elif weight_type == "bias": __magic_name__ : Optional[Any] = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): __magic_name__ : Optional[int] = getattr(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : List[str] = value else: __magic_name__ : int = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" __magic_name__ : Optional[int] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase ): __magic_name__ : List[Any] = PARAM_MAPPING[full_name.split('.' )[-1]] __magic_name__ : Dict = 'param' if weight_type is not None and weight_type != "param": __magic_name__ : Union[str, Any] = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __magic_name__ : Optional[Any] = '.'.join([key, hf_param_name] ) else: __magic_name__ : int = key __magic_name__ : int = value if 'lm_head' in full_key else value[0] lowerCAmelCase :int = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple=None , lowerCAmelCase : Tuple=None ): """simple docstring""" __magic_name__ : Dict = False for key, mapped_key in MAPPING.items(): __magic_name__ : int = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __magic_name__ : Union[str, Any] = True if "*" in mapped_key: __magic_name__ : List[Any] = name.split(lowerCAmelCase )[0].split('.' )[-2] __magic_name__ : List[str] = mapped_key.replace('*' , lowerCAmelCase ) if "weight_g" in name: __magic_name__ : str = 'weight_g' elif "weight_v" in name: __magic_name__ : Optional[int] = 'weight_v' elif "bias" in name: __magic_name__ : int = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __magic_name__ : List[str] = 'weight' else: __magic_name__ : Any = None if hf_dict is not None: rename_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: set_recursively(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return is_used return is_used def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" __magic_name__ : Union[str, Any] = [] __magic_name__ : Any = fairseq_model.state_dict() __magic_name__ : Optional[int] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __magic_name__ : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) __magic_name__ : Optional[int] = True else: __magic_name__ : str = load_wavaveca_layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Any = full_name.split('conv_layers.' )[-1] __magic_name__ : int = name.split('.' ) __magic_name__ : Any = int(items[0] ) __magic_name__ : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __magic_name__ : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __magic_name__ : str = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __magic_name__ : Optional[int] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __magic_name__ : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict=None , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Any=False ): """simple docstring""" if config_path is not None: __magic_name__ : int = WavaVecaConfig.from_pretrained(lowerCAmelCase ) else: __magic_name__ : List[str] = WavaVecaConfig() if is_seq_class: __magic_name__ : Any = read_txt_into_dict(lowerCAmelCase ) __magic_name__ : Optional[Any] = idalabel __magic_name__ : Union[str, Any] = WavaVecaForSequenceClassification(lowerCAmelCase ) __magic_name__ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCAmelCase , return_attention_mask=lowerCAmelCase , ) feature_extractor.save_pretrained(lowerCAmelCase ) elif is_finetuned: if dict_path: __magic_name__ : str = Dictionary.load(lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __magic_name__ : Dict = target_dict.pad_index __magic_name__ : Union[str, Any] = target_dict.bos_index __magic_name__ : Union[str, Any] = target_dict.eos_index __magic_name__ : Union[str, Any] = len(target_dict.symbols ) __magic_name__ : Dict = os.path.join(lowerCAmelCase , 'vocab.json' ) if not os.path.isdir(lowerCAmelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCAmelCase ) ) return os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) __magic_name__ : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __magic_name__ : Any = 0 __magic_name__ : Optional[int] = 1 with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : List[str] = WavaVecaCTCTokenizer( lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCAmelCase , ) __magic_name__ : Tuple = True if config.feat_extract_norm == 'layer' else False __magic_name__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCAmelCase , return_attention_mask=lowerCAmelCase , ) __magic_name__ : List[Any] = WavaVecaProcessor(feature_extractor=lowerCAmelCase , tokenizer=lowerCAmelCase ) processor.save_pretrained(lowerCAmelCase ) __magic_name__ : Dict = WavaVecaForCTC(lowerCAmelCase ) else: __magic_name__ : Tuple = WavaVecaForPreTraining(lowerCAmelCase ) if is_finetuned or is_seq_class: __magic_name__ , __magic_name__ , __magic_name__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: __magic_name__ : Optional[Any] = argparse.Namespace(task='audio_pretraining' ) __magic_name__ : Dict = fairseq.tasks.setup_task(lowerCAmelCase ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase ) __magic_name__ : Any = model[0].eval() recursively_load_weights(lowerCAmelCase , lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :str = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) lowerCAmelCase :Dict = parser.parse_args() lowerCAmelCase :Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
275
1
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str: if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) lowerCAmelCase = '''''' while len(snake_case__ ) % 3 != 0: lowerCAmelCase = '''0''' + bin_string lowerCAmelCase = [ bin_string[index : index + 3] for index in range(len(snake_case__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowerCAmelCase = 0 for index, val in enumerate(snake_case__ ): oct_val += int(2 ** (2 - index) * int(snake_case__ ) ) oct_string += str(snake_case__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
338
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowercase__ : Dict = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowercase__ : Optional[int] = [0, 2_5, 5_0] lowercase__ : Union[str, Any] = [2_5, 5_0, 7_5] lowercase__ : int = fuzz.membership.trimf(X, abca) lowercase__ : Tuple = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowercase__ : List[str] = np.ones(7_5) lowercase__ : Any = np.zeros((7_5,)) # 1. Union = max(ยตA(x), ยตB(x)) lowercase__ : Union[str, Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(ยตA(x), ยตB(x)) lowercase__ : int = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(ยตA(x)) lowercase__ : Union[str, Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(ยตA(x),(1- ยตB(x))) lowercase__ : Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [ยตA(x) + ยตB(x) โ€“ (ยตA(x) * ยตB(x))] lowercase__ : Any = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (ยตA(x) * ยตB(x)) lowercase__ : str = young * middle_aged # 7. Bounded Sum = min[1,(ยตA(x), ยตB(x))] lowercase__ : Tuple = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(ยตA(x), ยตB(x))] lowercase__ : Tuple = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
338
1
import math def lowerCamelCase__ (__lowerCamelCase ): assert isinstance(__lowerCamelCase, __lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _SCREAMING_SNAKE_CASE : str = range(3, int(math.sqrt(__lowerCamelCase ) + 1 ), 2 ) return not any(not number % i for i in odd_numbers ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=1, **__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = factor * value _SCREAMING_SNAKE_CASE : List[Any] = value while not is_prime(__lowerCamelCase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1, **__lowerCamelCase ) return value
325
import numpy as np import datasets UpperCamelCase__ ='\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' UpperCamelCase__ ='\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' UpperCamelCase__ ='\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> int: # convert to numpy arrays _SCREAMING_SNAKE_CASE : Dict = np.array(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction _SCREAMING_SNAKE_CASE : Any = X - np.mean(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.cov(reference_distribution.T ) try: _SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: _SCREAMING_SNAKE_CASE : List[str] = np.linalg.pinv(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
325
1
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ = '''AutoImageProcessor''' UpperCAmelCase__ = '''AutoTokenizer''' def __init__( self : Union[str, Any] , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Union[str, Any]=None , **UpperCAmelCase__ : Optional[int]) ->Dict: '''simple docstring''' A__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase__ , ) A__ = kwargs.pop('''feature_extractor''') A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(UpperCAmelCase__ , UpperCAmelCase__) A__ = self.image_processor A__ = False def __call__( self : str , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Optional[Any]) ->Any: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase__ , **UpperCAmelCase__) A__ = kwargs.pop('''images''' , UpperCAmelCase__) A__ = kwargs.pop('''text''' , UpperCAmelCase__) if len(UpperCAmelCase__) > 0: A__ = args[0] A__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''') if images is not None: A__ = self.image_processor(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) if text is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) if text is None: return inputs elif images is None: return encodings else: A__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : Optional[Any]) ->str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Any) ->int: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__) @contextmanager def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''') A__ = True A__ = self.tokenizer yield A__ = self.image_processor A__ = False def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : int=None) ->List[Any]: '''simple docstring''' if added_vocab is None: A__ = self.tokenizer.get_added_vocab() A__ = {} while tokens: A__ = re.search(R'''<s_(.*?)>''' , UpperCAmelCase__ , re.IGNORECASE) if start_token is None: break A__ = start_token.group(1) A__ = re.search(Rf"""</s_{key}>""" , UpperCAmelCase__ , re.IGNORECASE) A__ = start_token.group() if end_token is None: A__ = tokens.replace(UpperCAmelCase__ , '''''') else: A__ = end_token.group() A__ = re.escape(UpperCAmelCase__) A__ = re.escape(UpperCAmelCase__) A__ = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , UpperCAmelCase__ , re.IGNORECASE) if content is not None: A__ = content.group(1).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node A__ = self.tokenajson(UpperCAmelCase__ , is_inner_value=UpperCAmelCase__ , added_vocab=UpperCAmelCase__) if value: if len(UpperCAmelCase__) == 1: A__ = value[0] A__ = value else: # leaf nodes A__ = [] for leaf in content.split(R'''<sep/>'''): A__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": A__ = leaf[1:-2] # for categorical special tokens output[key].append(UpperCAmelCase__) if len(output[key]) == 1: A__ = output[key][0] A__ = tokens[tokens.find(UpperCAmelCase__) + len(UpperCAmelCase__) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=UpperCAmelCase__ , added_vocab=UpperCAmelCase__) if len(UpperCAmelCase__): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase__ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Dict) ->Any: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase__ , ) return self.image_processor
14
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''encoder-decoder''' UpperCAmelCase__ = True def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A__ = kwargs.pop('''encoder''') A__ = encoder_config.pop('''model_type''') A__ = kwargs.pop('''decoder''') A__ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = True @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output
14
1
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , _lowerCamelCase=0.01 , _lowerCamelCase=1000 ): """simple docstring""" UpperCAmelCase__ : List[str] = p_stop UpperCAmelCase__ : Any = max_length def __iter__(self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : Tuple = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase__ : Dict = random.random() < self.p_stop class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=True ): """simple docstring""" UpperCAmelCase__ : int = [ BatchSamplerShard(_lowerCamelCase , 2 , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) for i in range(2 ) ] UpperCAmelCase__ : List[Any] = [list(_lowerCamelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_lowerCamelCase ) for shard in batch_sampler_shards] , [len(_lowerCamelCase ) for e in expected] ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : List[str] = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase__ : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase__ : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase__ : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is very small. UpperCAmelCase__ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase__ : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase__ : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) UpperCAmelCase__ : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. UpperCAmelCase__ : List[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase__ : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase__ : Optional[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase__ : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. UpperCAmelCase__ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Tuple = [[[0, 1]], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase__ : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase__ : List[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. UpperCAmelCase__ : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) UpperCAmelCase__ : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : Tuple = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase__ : List[str] = [BatchSamplerShard(_lowerCamelCase , 2 , _lowerCamelCase , even_batches=_lowerCamelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=False ): """simple docstring""" random.seed(_lowerCamelCase ) UpperCAmelCase__ : Tuple = list(_lowerCamelCase ) UpperCAmelCase__ : Any = [ IterableDatasetShard( _lowerCamelCase , batch_size=_lowerCamelCase , drop_last=_lowerCamelCase , num_processes=_lowerCamelCase , process_index=_lowerCamelCase , split_batches=_lowerCamelCase , ) for i in range(_lowerCamelCase ) ] UpperCAmelCase__ : List[Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_lowerCamelCase ) iterable_dataset_lists.append(list(_lowerCamelCase ) ) UpperCAmelCase__ : Union[str, Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase__ : str = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) self.assertTrue(len(_lowerCamelCase ) % shard_batch_size == 0 ) UpperCAmelCase__ : Union[str, Any] = [] for idx in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_lowerCamelCase ) < len(_lowerCamelCase ): reference += reference self.assertListEqual(_lowerCamelCase , reference[: len(_lowerCamelCase )] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = 42 UpperCAmelCase__ : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) # Edge case with a very small dataset UpperCAmelCase__ : str = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = BatchSampler(range(16 ) , batch_size=4 , drop_last=_lowerCamelCase ) UpperCAmelCase__ : int = SkipBatchSampler(_lowerCamelCase , 2 ) self.assertListEqual(list(_lowerCamelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : int = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase__ : int = skip_first_batches(_lowerCamelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _a (self ): """simple docstring""" Accelerator() UpperCAmelCase__ : Dict = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
166
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): """simple docstring""" super().__init__(*_lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase__ : List[str] = eval_examples UpperCAmelCase__ : List[Any] = post_process_function def _a (self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Tuple = gen_kwargs.copy() UpperCAmelCase__ : Optional[Any] = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) UpperCAmelCase__ : int = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) UpperCAmelCase__ : int = gen_kwargs UpperCAmelCase__ : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase__ : Tuple = self.get_eval_dataloader(_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase__ : List[str] = self.compute_metrics UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Optional[int] = time.time() UpperCAmelCase__ : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase__ : int = eval_loop( _lowerCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: UpperCAmelCase__ : Any = compute_metrics UpperCAmelCase__ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase__ : List[str] = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase__ : Tuple = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: UpperCAmelCase__ : List[str] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase__ : List[str] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = gen_kwargs.copy() UpperCAmelCase__ : List[Any] = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase__ : Any = self.compute_metrics UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : str = time.time() UpperCAmelCase__ : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase__ : List[str] = eval_loop( _lowerCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: UpperCAmelCase__ : int = compute_metrics UpperCAmelCase__ : Any = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase__ : Optional[Any] = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , """predict""" ) UpperCAmelCase__ : List[str] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase__ : str = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
166
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _UpperCamelCase = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _lowercase ( lowercase__ ): config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def _lowercase ( lowercase__ ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase__ ) def _lowercase ( lowercase__ ): from transformers.testing_utils import pytest_terminal_summary_main __lowerCAmelCase : int = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(lowercase__ , id=lowercase__ ) def _lowercase ( lowercase__ , lowercase__ ): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: __lowerCAmelCase : Optional[Any] = 0 # Doctest custom flag to ignore output. _UpperCamelCase = doctest.register_optionflag("IGNORE_RESULT") _UpperCamelCase = doctest.OutputChecker class __lowercase (_UpperCAmelCase ): def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->Union[str, Any]: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , A_ , A_ , A_ ) _UpperCamelCase = CustomOutputChecker _UpperCamelCase = HfDoctestModule _UpperCamelCase = HfDocTestParser
275
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _UpperCamelCase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _UpperCamelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _UpperCamelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : List[str] = len([g for position, g in enumerate(lowercase__ ) if g == main_target[position]] ) return (item, float(lowercase__ )) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : str = random.randint(0 , len(lowercase__ ) - 1 ) __lowerCAmelCase : int = parent_a[:random_slice] + parent_a[random_slice:] __lowerCAmelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : List[str] = list(lowercase__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __lowerCAmelCase : int = random.choice(lowercase__ ) return "".join(lowercase__ ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , ): __lowerCAmelCase : str = [] # Generate more children proportionally to the fitness score. __lowerCAmelCase : str = int(parent_a[1] * 1_0_0 ) + 1 __lowerCAmelCase : Optional[Any] = 1_0 if child_n >= 1_0 else child_n for _ in range(lowercase__ ): __lowerCAmelCase : List[Any] = population_score[random.randint(0 , lowercase__ )][0] __lowerCAmelCase, __lowerCAmelCase : Dict = crossover(parent_a[0] , lowercase__ ) # Append new string to the population list. pop.append(mutate(lowercase__ , lowercase__ ) ) pop.append(mutate(lowercase__ , lowercase__ ) ) return pop def _lowercase ( lowercase__ , lowercase__ , lowercase__ = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __lowerCAmelCase : int = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(lowercase__ ) # Verify that the target contains no genes besides the ones inside genes variable. __lowerCAmelCase : Any = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __lowerCAmelCase : List[str] = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(lowercase__ ) # Generate random starting population. __lowerCAmelCase : List[Any] = [] for _ in range(lowercase__ ): population.append(''''''.join([random.choice(lowercase__ ) for i in range(len(lowercase__ ) )] ) ) # Just some logs to know what the algorithms is doing. __lowerCAmelCase, __lowerCAmelCase : Tuple = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __lowerCAmelCase : Any = [evaluate(lowercase__ , lowercase__ ) for item in population] # Check if there is a matching evolution. __lowerCAmelCase : Union[str, Any] = sorted(lowercase__ , key=lambda lowercase__ : x[1] , reverse=lowercase__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __lowerCAmelCase : Tuple = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase__ ) # Normalize population score to be between 0 and 1. __lowerCAmelCase : List[Any] = [ (item, score / len(lowercase__ )) for item, score in population_score ] # This is selection for i in range(lowercase__ ): population.extend(select(population_score[int(lowercase__ )] , lowercase__ , lowercase__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase__ ) > N_POPULATION: break if __name__ == "__main__": _UpperCamelCase = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _UpperCamelCase = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'รจรฉรฒร โ‚ฌรน=)(&%$ยฃ/\\" ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = basic(target_str, genes_list) print( F"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
275
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = """โ–""" _SCREAMING_SNAKE_CASE : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _SCREAMING_SNAKE_CASE : Dict = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), } } _SCREAMING_SNAKE_CASE : Any = { """facebook/mbart-large-en-ro""": 1_0_2_4, """facebook/mbart-large-cc25""": 1_0_2_4, } # fmt: off _SCREAMING_SNAKE_CASE : Union[str, Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def __init__( self : Union[str, Any] , lowercase_ : Dict , lowercase_ : int="<s>" , lowercase_ : Optional[Any]="</s>" , lowercase_ : Optional[Any]="</s>" , lowercase_ : int="<s>" , lowercase_ : int="<unk>" , lowercase_ : int="<pad>" , lowercase_ : Any="<mask>" , lowercase_ : Union[str, Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[str]=None , lowercase_ : List[Any] = None , lowercase_ : str=None , **lowercase_ : Union[str, Any] , ): UpperCamelCase__ : Dict =AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token UpperCamelCase__ : Union[str, Any] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : int =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | 'โ–' | 's' | 'โ–de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | 'โ–' | 's' | 'โ–de' | '-' | 'โ–a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase__ : List[Any] ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase__ : Union[str, Any] =1 UpperCamelCase__ : Tuple =len(self.sp_model ) UpperCamelCase__ : Optional[int] ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_SCREAMING_SNAKE_CASE ) } UpperCamelCase__ : str ={v: k for k, v in self.lang_code_to_id.items()} UpperCamelCase__ : str =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCamelCase__ : int ={v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCamelCase__ : int =list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCamelCase__ : Optional[Any] =src_lang if src_lang is not None else '''en_XX''' UpperCamelCase__ : List[Any] =self.lang_code_to_id[self._src_lang] UpperCamelCase__ : Tuple =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[Any] ): UpperCamelCase__ : Tuple =self.__dict__.copy() UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : Union[str, Any] =self.sp_model.serialized_model_proto() return state def __setstate__( self : Any , lowercase_ : Any ): UpperCamelCase__ : List[Any] =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase__ : Optional[int] ={} UpperCamelCase__ : str =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _lowerCAmelCase ( self : Optional[Any] ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _lowerCAmelCase ( self : str ): return self._src_lang @src_lang.setter def _lowerCAmelCase ( self : Dict , lowercase_ : List[str] ): UpperCamelCase__ : str =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] = None , lowercase_ : Any = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str =[1] * len(self.prefix_tokens ) UpperCamelCase__ : Union[str, Any] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(_SCREAMING_SNAKE_CASE )) + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : int , lowercase_ : List[str] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] = None ): UpperCamelCase__ : Any =[self.sep_token_id] UpperCamelCase__ : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self : Tuple , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : int , lowercase_ : Tuple , **lowercase_ : List[Any] ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase__ : List[str] =src_lang UpperCamelCase__ : Any =self(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] =self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] =tgt_lang_id return inputs def _lowerCAmelCase ( self : Union[str, Any] ): UpperCamelCase__ : Any ={self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self : str , lowercase_ : str ): return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Tuple , lowercase_ : str ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase__ : Tuple =self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCAmelCase ( self : Dict , lowercase_ : Optional[Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowerCAmelCase ( self : Tuple , lowercase_ : Dict ): UpperCamelCase__ : int =''''''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowerCAmelCase ( self : Any , lowercase_ : List[Any] , lowercase_ : Dict = None ): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase__ : int =os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase__ : Optional[int] =self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _lowerCAmelCase ( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] = "en_XX" , lowercase_ : int = None , lowercase_ : str = "ro_RO" , **lowercase_ : Optional[Any] , ): UpperCamelCase__ : Optional[Any] =src_lang UpperCamelCase__ : List[Any] =tgt_lang return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Dict ): return self.set_src_lang_special_tokens(self.src_lang ) def _lowerCAmelCase ( self : Union[str, Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : List[Any] ): UpperCamelCase__ : Optional[int] =self.lang_code_to_id[src_lang] UpperCamelCase__ : int =[] UpperCamelCase__ : Any =[self.eos_token_id, self.cur_lang_code] def _lowerCAmelCase ( self : int , lowercase_ : str ): UpperCamelCase__ : Tuple =self.lang_code_to_id[lang] UpperCamelCase__ : Dict =[] UpperCamelCase__ : List[Any] =[self.eos_token_id, self.cur_lang_code]
371
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline _SCREAMING_SNAKE_CASE : Optional[int] = """path-to-your-trained-model""" _SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") _SCREAMING_SNAKE_CASE : Dict = """A photo of sks dog in a bucket""" _SCREAMING_SNAKE_CASE : Any = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
157
0
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : str = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class a ( _lowerCamelCase ): snake_case_ = "align_text_model" def __init__( self : Any , lowercase_ : str=3_0522 , lowercase_ : int=768 , lowercase_ : Tuple=12 , lowercase_ : int=12 , lowercase_ : Dict=3072 , lowercase_ : List[Any]="gelu" , lowercase_ : str=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Any=512 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.02 , lowercase_ : Union[str, Any]=1e-12 , lowercase_ : Optional[int]=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Tuple=True , **lowercase_ : List[str] , ): super().__init__(**lowercase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = pad_token_id @classmethod def A_ ( cls : int , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Tuple ): cls._set_token_in_kwargs(lowercase_ ) snake_case_ ,snake_case_ = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": snake_case_ = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase_ , **lowercase_ ) class a ( _lowerCamelCase ): snake_case_ = "align_vision_model" def __init__( self : Any , lowercase_ : int = 3 , lowercase_ : int = 600 , lowercase_ : float = 2.0 , lowercase_ : float = 3.1 , lowercase_ : int = 8 , lowercase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowercase_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowercase_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowercase_ : List[int] = [] , lowercase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowercase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowercase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowercase_ : float = 0.25 , lowercase_ : str = "swish" , lowercase_ : int = 2560 , lowercase_ : str = "mean" , lowercase_ : float = 0.02 , lowercase_ : float = 0.001 , lowercase_ : float = 0.99 , lowercase_ : float = 0.2 , **lowercase_ : Any , ): super().__init__(**lowercase_ ) snake_case_ = num_channels snake_case_ = image_size snake_case_ = width_coefficient snake_case_ = depth_coefficient snake_case_ = depth_divisor snake_case_ = kernel_sizes snake_case_ = in_channels snake_case_ = out_channels snake_case_ = depthwise_padding snake_case_ = strides snake_case_ = num_block_repeats snake_case_ = expand_ratios snake_case_ = squeeze_expansion_ratio snake_case_ = hidden_act snake_case_ = hidden_dim snake_case_ = pooling_type snake_case_ = initializer_range snake_case_ = batch_norm_eps snake_case_ = batch_norm_momentum snake_case_ = drop_connect_rate snake_case_ = sum(lowercase_ ) * 4 @classmethod def A_ ( cls : Optional[int] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ): cls._set_token_in_kwargs(lowercase_ ) snake_case_ ,snake_case_ = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": snake_case_ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase_ , **lowercase_ ) class a ( _lowerCamelCase ): snake_case_ = "align" snake_case_ = True def __init__( self : List[Any] , lowercase_ : int=None , lowercase_ : List[Any]=None , lowercase_ : Dict=640 , lowercase_ : Optional[int]=1.0 , lowercase_ : Any=0.02 , **lowercase_ : Optional[int] , ): super().__init__(**lowercase_ ) if text_config is None: snake_case_ = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: snake_case_ = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) snake_case_ = AlignTextConfig(**lowercase_ ) snake_case_ = AlignVisionConfig(**lowercase_ ) snake_case_ = projection_dim snake_case_ = temperature_init_value snake_case_ = initializer_range @classmethod def A_ ( cls : Optional[int] , lowercase_ : AlignTextConfig , lowercase_ : AlignVisionConfig , **lowercase_ : List[str] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def A_ ( self : Tuple ): snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.text_config.to_dict() snake_case_ = self.vision_config.to_dict() snake_case_ = self.__class__.model_type return output
56
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a ( _lowerCamelCase ): snake_case_ = 42 @flax_register_to_config class a ( nn.Module , _lowerCamelCase , _lowerCamelCase ): snake_case_ = 32 snake_case_ = 4 snake_case_ = 4 snake_case_ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) snake_case_ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") snake_case_ = False snake_case_ = (320, 640, 1_280, 1_280) snake_case_ = 2 snake_case_ = 8 snake_case_ = None snake_case_ = 1_280 snake_case_ = 0.0 snake_case_ = False snake_case_ = jnp.floataa snake_case_ = True snake_case_ = 0 snake_case_ = False def A_ ( self : Optional[int] , lowercase_ : jax.random.KeyArray ): # init input tensors snake_case_ = (1, self.in_channels, self.sample_size, self.sample_size) snake_case_ = jnp.zeros(lowercase_ , dtype=jnp.floataa ) snake_case_ = jnp.ones((1,) , dtype=jnp.intaa ) snake_case_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) snake_case_ ,snake_case_ = jax.random.split(lowercase_ ) snake_case_ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase_ , lowercase_ , lowercase_ , lowercase_ )["params"] def A_ ( self : List[str] ): snake_case_ = self.block_out_channels snake_case_ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. snake_case_ = self.num_attention_heads or self.attention_head_dim # input snake_case_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time snake_case_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) snake_case_ = FlaxTimestepEmbedding(lowercase_ , dtype=self.dtype ) snake_case_ = self.only_cross_attention if isinstance(lowercase_ , lowercase_ ): snake_case_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase_ , lowercase_ ): snake_case_ = (num_attention_heads,) * len(self.down_block_types ) # down snake_case_ = [] snake_case_ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): snake_case_ = output_channel snake_case_ = block_out_channels[i] snake_case_ = i == len(lowercase_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": snake_case_ = FlaxCrossAttnDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: snake_case_ = FlaxDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase_ ) snake_case_ = down_blocks # mid snake_case_ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up snake_case_ = [] snake_case_ = list(reversed(lowercase_ ) ) snake_case_ = list(reversed(lowercase_ ) ) snake_case_ = list(reversed(lowercase_ ) ) snake_case_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): snake_case_ = output_channel snake_case_ = reversed_block_out_channels[i] snake_case_ = reversed_block_out_channels[min(i + 1 , len(lowercase_ ) - 1 )] snake_case_ = i == len(lowercase_ ) - 1 if up_block_type == "CrossAttnUpBlock2D": snake_case_ = FlaxCrossAttnUpBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , prev_output_channel=lowercase_ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: snake_case_ = FlaxUpBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , prev_output_channel=lowercase_ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowercase_ ) snake_case_ = output_channel snake_case_ = up_blocks # out snake_case_ = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) snake_case_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Any , lowercase_ : int=None , lowercase_ : Any=None , lowercase_ : bool = True , lowercase_ : bool = False , ): # 1. time if not isinstance(lowercase_ , jnp.ndarray ): snake_case_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowercase_ , jnp.ndarray ) and len(timesteps.shape ) == 0: snake_case_ = timesteps.astype(dtype=jnp.floataa ) snake_case_ = jnp.expand_dims(lowercase_ , 0 ) snake_case_ = self.time_proj(lowercase_ ) snake_case_ = self.time_embedding(lowercase_ ) # 2. pre-process snake_case_ = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) snake_case_ = self.conv_in(lowercase_ ) # 3. down snake_case_ = (sample,) for down_block in self.down_blocks: if isinstance(lowercase_ , lowercase_ ): snake_case_ ,snake_case_ = down_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) else: snake_case_ ,snake_case_ = down_block(lowercase_ , lowercase_ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: snake_case_ = () for down_block_res_sample, down_block_additional_residual in zip( lowercase_ , lowercase_ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) snake_case_ = new_down_block_res_samples # 4. mid snake_case_ = self.mid_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: snake_case_ = down_block_res_samples[-(self.layers_per_block + 1) :] snake_case_ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowercase_ , lowercase_ ): snake_case_ = up_block( lowercase_ , temb=lowercase_ , encoder_hidden_states=lowercase_ , res_hidden_states_tuple=lowercase_ , deterministic=not train , ) else: snake_case_ = up_block(lowercase_ , temb=lowercase_ , res_hidden_states_tuple=lowercase_ , deterministic=not train ) # 6. post-process snake_case_ = self.conv_norm_out(lowercase_ ) snake_case_ = nn.silu(lowercase_ ) snake_case_ = self.conv_out(lowercase_ ) snake_case_ = jnp.transpose(lowercase_ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowercase_ )
56
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
179
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _snake_case : int = get_tests_dir('fixtures') _snake_case : Tuple = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _snake_case : Optional[int] = get_tests_dir('fixtures/dummy-config.json') class A ( unittest.TestCase ): def __lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" _a = 0 def __lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _a = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _a = AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _a = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _a = AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ).to_dict() config_dict.pop('''feature_extractor_type''' ) _a = WavaVecaFeatureExtractor(**lowerCAmelCase_ ) # save in new folder model_config.save_pretrained(lowerCAmelCase_ ) config.save_pretrained(lowerCAmelCase_ ) _a = AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ) # make sure private variable is not incorrectly saved _a = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): _a = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase_ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a = AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ , revision='''aaaaaa''' ) def __lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase_ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" with self.assertRaises(lowerCAmelCase_ ): _a = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase_ ): _a = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCAmelCase_ ) _a = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCAmelCase_ ) _a = AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" try: AutoConfig.register('''custom''' , lowerCAmelCase_ ) AutoFeatureExtractor.register(lowerCAmelCase_ , lowerCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase_ ): AutoFeatureExtractor.register(lowerCAmelCase_ , lowerCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API _a = CustomFeatureExtractor.from_pretrained(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCAmelCase_ ) _a = AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" class A ( _a ): lowercase_ = True try: AutoConfig.register('''custom''' , lowerCAmelCase_ ) AutoFeatureExtractor.register(lowerCAmelCase_ , lowerCAmelCase_ ) # If remote code is not set, the default is to use local _a = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _a = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _a = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(not hasattr(lowerCAmelCase_ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
179
1
"""simple docstring""" from typing import Any def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : dict , ): '''simple docstring''' _validation( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) # Creates data structures and fill initial step _UpperCAmelCase = {} _UpperCAmelCase = {} for state in states_space: _UpperCAmelCase = observations_space[0] _UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) _UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = observations_space[o] _UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _UpperCAmelCase = '''''' _UpperCAmelCase = -1 for k_state in states_space: _UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _UpperCAmelCase = probability _UpperCAmelCase = k_state # Update probabilities and pointers dicts _UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _UpperCAmelCase = arg_max # The final observation _UpperCAmelCase = observations_space[len(_SCREAMING_SNAKE_CASE ) - 1] # argmax for given final observation _UpperCAmelCase = '''''' _UpperCAmelCase = -1 for k_state in states_space: _UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: _UpperCAmelCase = probability _UpperCAmelCase = k_state _UpperCAmelCase = arg_max # Process pointers backwards _UpperCAmelCase = last_state _UpperCAmelCase = [] for o in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ): result.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' _validate_not_empty( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) _validate_lists(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _validate_dicts( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _validate_list(_SCREAMING_SNAKE_CASE , '''observations_space''' ) _validate_list(_SCREAMING_SNAKE_CASE , '''states_space''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if not isinstance(_object , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = f'{var_name} must be a list' raise ValueError(_SCREAMING_SNAKE_CASE ) else: for x in _object: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = f'{var_name} must be a list of strings' raise ValueError(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' _validate_dict(_SCREAMING_SNAKE_CASE , '''initial_probabilities''' , _SCREAMING_SNAKE_CASE ) _validate_nested_dict(_SCREAMING_SNAKE_CASE , '''transition_probabilities''' ) _validate_nested_dict(_SCREAMING_SNAKE_CASE , '''emission_probabilities''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _validate_dict(_object , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in _object.values(): _validate_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : type , _SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' if not isinstance(_object , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = f'{var_name} must be a dict' raise ValueError(_SCREAMING_SNAKE_CASE ) if not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in _object ): _UpperCAmelCase = f'{var_name} all keys must be strings' raise ValueError(_SCREAMING_SNAKE_CASE ) if not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in _object.values() ): _UpperCAmelCase = '''nested dictionary ''' if nested else '''''' _UpperCAmelCase = f'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
260
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : List[str] = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """poolformer""" def __init__( self : List[str] , __UpperCamelCase : int=3 , __UpperCamelCase : List[Any]=1_6 , __UpperCamelCase : str=1_6 , __UpperCamelCase : List[Any]=3 , __UpperCamelCase : int=4.0 , __UpperCamelCase : str=[2, 2, 6, 2] , __UpperCamelCase : Tuple=[6_4, 1_2_8, 3_2_0, 5_1_2] , __UpperCamelCase : int=[7, 3, 3, 3] , __UpperCamelCase : str=[4, 2, 2, 2] , __UpperCamelCase : Union[str, Any]=[2, 1, 1, 1] , __UpperCamelCase : List[str]=4 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : Any="gelu" , __UpperCamelCase : List[str]=True , __UpperCamelCase : Union[str, Any]=1e-5 , __UpperCamelCase : str=0.0_2 , **__UpperCamelCase : List[Any] , )->Dict: _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = stride _UpperCAmelCase = padding _UpperCAmelCase = pool_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = mlp_ratio _UpperCAmelCase = depths _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = num_encoder_blocks _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_layer_scale _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = initializer_range super().__init__(**__UpperCamelCase ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = version.parse("""1.11""") @property def lowercase__ ( self : Union[str, Any] )->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ ( self : Tuple )->float: return 2e-3
260
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _A = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __UpperCamelCase ( _A=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__UpperCAmelCase ) ) class A ( __UpperCAmelCase ): __snake_case = None __snake_case = None def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" with TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = dataset_module_factory(UpperCamelCase__, cache_dir=UpperCamelCase__ ) lowerCAmelCase_ = import_main_class(dataset_module.module_path, dataset=UpperCamelCase__ ) lowerCAmelCase_ = builder_cls( cache_dir=UpperCamelCase__, config_name=UpperCamelCase__, hash=dataset_module.hash, ) lowerCAmelCase_ = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=UpperCamelCase__ ).replace(os.sep, '''/''' ), config.DATASET_INFO_FILENAME, ] ) lowerCAmelCase_ = cached_path(UpperCamelCase__, cache_dir=UpperCamelCase__ ) self.assertTrue(os.path.exists(UpperCamelCase__ ) ) @pytest.mark.integration def __UpperCamelCase ( _A ): lowerCAmelCase_ = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple''' lowerCAmelCase_ = dataset_module_factory('''wikipedia''' , cache_dir=_A ) lowerCAmelCase_ = import_main_class(dataset_module.module_path ) lowerCAmelCase_ = builder_cls( cache_dir=_A , config_name='''20220301.frr''' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowerCAmelCase_ = None builder_instance.download_and_prepare() lowerCAmelCase_ = builder_instance.as_dataset() assert ds @pytest.mark.integration def __UpperCamelCase ( _A ): lowerCAmelCase_ = dataset_module_factory('''wikipedia''' , cache_dir=_A ) lowerCAmelCase_ = import_main_class(dataset_module.module_path , dataset=_A ) lowerCAmelCase_ = builder_cls( cache_dir=_A , config_name='''20220301.frr''' , hash=dataset_module.hash , ) lowerCAmelCase_ = builder_instance.as_streaming_dataset() assert ds assert isinstance(_A , _A ) assert "train" in ds assert isinstance(ds['''train'''] , _A ) assert next(iter(ds['''train'''] ) )
167
from abc import ABC, abstractmethod from argparse import ArgumentParser class A ( __UpperCAmelCase ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): """simple docstring""" raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" raise NotImplementedError()
167
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging A = logging.get_logger(__name__) A = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''trajectory_transformer''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _UpperCAmelCase=100 , _UpperCAmelCase=5 , _UpperCAmelCase=1 , _UpperCAmelCase=1 , _UpperCAmelCase=249 , _UpperCAmelCase=6 , _UpperCAmelCase=17 , _UpperCAmelCase=25 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=128 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0_0_0_6 , _UpperCAmelCase=512 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=1 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , **_UpperCAmelCase , ): __a : Optional[Any] = vocab_size __a : Union[str, Any] = action_weight __a : Union[str, Any] = reward_weight __a : List[Any] = value_weight __a : Tuple = max_position_embeddings __a : Dict = block_size __a : str = action_dim __a : str = observation_dim __a : Dict = transition_dim __a : List[str] = learning_rate __a : Dict = n_layer __a : List[Any] = n_head __a : Union[str, Any] = n_embd __a : Dict = embd_pdrop __a : List[str] = attn_pdrop __a : Any = resid_pdrop __a : Any = initializer_range __a : List[Any] = layer_norm_eps __a : Dict = kaiming_initializer_range __a : str = use_cache super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
160
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml A = NewType('''DataClass''', Any) A = NewType('''DataClassType''', Any) def __A ( a_ :List[str]) -> Tuple: if isinstance(a_ , a_): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""") def __A ( a_ :list) -> Callable[[str], Any]: __a : Any = {str(a_): choice for choice in choices} return lambda a_: str_to_choice.get(a_ , a_) def __A ( *, a_ :Union[str, List[str]] = None , a_ :str = None , a_ :Any = dataclasses.MISSING , a_ :Callable[[], Any] = dataclasses.MISSING , a_ :dict = None , **a_ :str , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __a : List[Any] = {} if aliases is not None: __a : Optional[Any] = aliases if help is not None: __a : int = help return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 42 def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ): # To make the default appear when using --help if "formatter_class" not in kwargs: __a : str = ArgumentDefaultsHelpFormatter super().__init__(**_UpperCAmelCase ) if dataclasses.is_dataclass(_UpperCAmelCase ): __a : int = [dataclass_types] __a : Optional[Any] = list(_UpperCAmelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_UpperCAmelCase ) @staticmethod def _lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = f"""--{field.name}""" __a : Optional[int] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _UpperCAmelCase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __a : Dict = kwargs.pop('''aliases''' , [] ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = [aliases] __a : Tuple = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(_UpperCAmelCase , '''UnionType''' ) and isinstance(_UpperCAmelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_UpperCAmelCase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f""" Problem encountered in field '{field.name}'.""" ) if type(_UpperCAmelCase ) not in field.type.__args__: # filter `str` in Union __a : List[str] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __a : List[str] = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __a : List[str] = ( field.type.__args__[0] if isinstance(_UpperCAmelCase , field.type.__args__[1] ) else field.type.__args__[1] ) __a : Optional[Any] = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __a : Optional[int] = {} if origin_type is Literal or (isinstance(field.type , _UpperCAmelCase ) and issubclass(field.type , _UpperCAmelCase )): if origin_type is Literal: __a : int = field.type.__args__ else: __a : List[str] = [x.value for x in field.type] __a : Any = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __a : Tuple = field.default else: __a : Optional[int] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __a : Any = copy(_UpperCAmelCase ) # Hack because type=bool in argparse does not behave as we want. __a : List[str] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __a : Union[str, Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __a : List[Any] = default # This tells argparse we accept 0 or 1 value after --field_name __a : Union[str, Any] = '''?''' # This is the value that will get picked if we do --field_name (without value) __a : List[Any] = True elif isclass(_UpperCAmelCase ) and issubclass(_UpperCAmelCase , _UpperCAmelCase ): __a : Dict = field.type.__args__[0] __a : Optional[int] = '''+''' if field.default_factory is not dataclasses.MISSING: __a : Union[str, Any] = field.default_factory() elif field.default is dataclasses.MISSING: __a : List[Any] = True else: __a : int = field.type if field.default is not dataclasses.MISSING: __a : Optional[Any] = field.default elif field.default_factory is not dataclasses.MISSING: __a : Optional[int] = field.default_factory() else: __a : Union[str, Any] = True parser.add_argument(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __a : Any = False parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): if hasattr(_UpperCAmelCase , '''_argument_group_name''' ): __a : Any = self.add_argument_group(dtype._argument_group_name ) else: __a : Optional[Any] = self try: __a : Dict[str, type] = get_type_hints(_UpperCAmelCase ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_UpperCAmelCase ): __a : Union[str, Any] = '''.'''.join(map(_UpperCAmelCase , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(_UpperCAmelCase ): if not field.init: continue __a : str = type_hints[field.name] self._parse_dataclass_field(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __a : int = [] if args_filename: args_files.append(Path(_UpperCAmelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __a : Optional[Any] = ArgumentParser() args_file_parser.add_argument(_UpperCAmelCase , type=_UpperCAmelCase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __a , __a : List[Any] = args_file_parser.parse_known_args(args=_UpperCAmelCase ) __a : Union[str, Any] = vars(_UpperCAmelCase ).get(args_file_flag.lstrip('''-''' ) , _UpperCAmelCase ) if cmd_args_file_paths: args_files.extend([Path(_UpperCAmelCase ) for p in cmd_args_file_paths] ) __a : Union[str, Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __a : Dict = file_args + args if args is not None else file_args + sys.argv[1:] __a , __a : str = self.parse_known_args(args=_UpperCAmelCase ) __a : Optional[int] = [] for dtype in self.dataclass_types: __a : Optional[int] = {f.name for f in dataclasses.fields(_UpperCAmelCase ) if f.init} __a : List[str] = {k: v for k, v in vars(_UpperCAmelCase ).items() if k in keys} for k in keys: delattr(_UpperCAmelCase , _UpperCAmelCase ) __a : int = dtype(**_UpperCAmelCase ) outputs.append(_UpperCAmelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_UpperCAmelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): __a : Tuple = set(args.keys() ) __a : List[str] = [] for dtype in self.dataclass_types: __a : Dict = {f.name for f in dataclasses.fields(_UpperCAmelCase ) if f.init} __a : Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __a : Tuple = dtype(**_UpperCAmelCase ) outputs.append(_UpperCAmelCase ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(_UpperCAmelCase )}""" ) return tuple(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): with open(Path(_UpperCAmelCase ) , encoding='''utf-8''' ) as open_json_file: __a : int = json.loads(open_json_file.read() ) __a : str = self.parse_dict(_UpperCAmelCase , allow_extra_keys=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): __a : Tuple = self.parse_dict(yaml.safe_load(Path(_UpperCAmelCase ).read_text() ) , allow_extra_keys=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
160
1
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =42 @flax_register_to_config class __SCREAMING_SNAKE_CASE (nn.Module , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" __a =32 __a =4 __a =4 __a =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __a =("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") __a =False __a =(320, 640, 1280, 1280) __a =2 __a =8 __a =None __a =1280 __a =0.0 __a =False __a =jnp.floataa __a =True __a =0 __a =False def UpperCamelCase__ ( self : Union[str, Any] , __a : jax.random.KeyArray ): # init input tensors _a = (1, self.in_channels, self.sample_size, self.sample_size) _a = jnp.zeros(__a , dtype=jnp.floataa ) _a = jnp.ones((1,) , dtype=jnp.intaa ) _a = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _a , _a = jax.random.split(__a ) _a = {"params": params_rng, "dropout": dropout_rng} return self.init(__a , __a , __a , __a )["params"] def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.block_out_channels _a = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _a = self.num_attention_heads or self.attention_head_dim # input _a = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _a = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _a = FlaxTimestepEmbedding(__a , dtype=self.dtype ) _a = self.only_cross_attention if isinstance(__a , __a ): _a = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__a , __a ): _a = (num_attention_heads,) * len(self.down_block_types ) # down _a = [] _a = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): _a = output_channel _a = block_out_channels[i] _a = i == len(__a ) - 1 if down_block_type == "CrossAttnDownBlock2D": _a = FlaxCrossAttnDownBlockaD( in_channels=__a , out_channels=__a , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _a = FlaxDownBlockaD( in_channels=__a , out_channels=__a , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__a ) _a = down_blocks # mid _a = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up _a = [] _a = list(reversed(__a ) ) _a = list(reversed(__a ) ) _a = list(reversed(__a ) ) _a = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): _a = output_channel _a = reversed_block_out_channels[i] _a = reversed_block_out_channels[min(i + 1 , len(__a ) - 1 )] _a = i == len(__a ) - 1 if up_block_type == "CrossAttnUpBlock2D": _a = FlaxCrossAttnUpBlockaD( in_channels=__a , out_channels=__a , prev_output_channel=__a , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _a = FlaxUpBlockaD( in_channels=__a , out_channels=__a , prev_output_channel=__a , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__a ) _a = output_channel _a = up_blocks # out _a = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _a = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[int] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Dict=None , __a : int=None , __a : bool = True , __a : bool = False , ): # 1. time if not isinstance(__a , jnp.ndarray ): _a = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__a , jnp.ndarray ) and len(timesteps.shape ) == 0: _a = timesteps.astype(dtype=jnp.floataa ) _a = jnp.expand_dims(__a , 0 ) _a = self.time_proj(__a ) _a = self.time_embedding(__a ) # 2. pre-process _a = jnp.transpose(__a , (0, 2, 3, 1) ) _a = self.conv_in(__a ) # 3. down _a = (sample,) for down_block in self.down_blocks: if isinstance(__a , __a ): _a , _a = down_block(__a , __a , __a , deterministic=not train ) else: _a , _a = down_block(__a , __a , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _a = () for down_block_res_sample, down_block_additional_residual in zip( __a , __a ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _a = new_down_block_res_samples # 4. mid _a = self.mid_block(__a , __a , __a , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _a = down_block_res_samples[-(self.layers_per_block + 1) :] _a = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__a , __a ): _a = up_block( __a , temb=__a , encoder_hidden_states=__a , res_hidden_states_tuple=__a , deterministic=not train , ) else: _a = up_block(__a , temb=__a , res_hidden_states_tuple=__a , deterministic=not train ) # 6. post-process _a = self.conv_norm_out(__a ) _a = nn.silu(__a ) _a = self.conv_out(__a ) _a = jnp.transpose(__a , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__a )
346
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: lowerCAmelCase_ : Union[str, Any] = None try: import msvcrt except ImportError: lowerCAmelCase_ : Tuple = None try: import fcntl except ImportError: lowerCAmelCase_ : Optional[int] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCAmelCase_ : Any = OSError # Data # ------------------------------------------------ lowerCAmelCase_ : Tuple = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] lowerCAmelCase_ : Optional[int] = '3.0.12' lowerCAmelCase_ : Tuple = None def _lowerCamelCase ( ) -> Optional[int]: global _logger _a = _logger or logging.getLogger(__name__ ) return _logger class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Dict , __a : Optional[Any] ): _a = lock_file return None def __str__( self : Any ): _a = f'The file lock \'{self.lock_file}\' could not be acquired.' return temp class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] , __a : Optional[int] ): _a = lock return None def __enter__( self : str ): return self.lock def __exit__( self : List[Any] , __a : List[Any] , __a : Union[str, Any] , __a : Dict ): self.lock.release() return None class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : Union[str, Any] , __a : Optional[int]=-1 , __a : Tuple=None ): _a = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long _a = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. _a = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _a = None # The default timeout value. _a = timeout # We use this lock primarily for the lock counter. _a = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _a = 0 return None @property def UpperCamelCase__ ( self : Optional[Any] ): return self._lock_file @property def UpperCamelCase__ ( self : List[Any] ): return self._timeout @timeout.setter def UpperCamelCase__ ( self : int , __a : List[Any] ): _a = float(__a ) return None def UpperCamelCase__ ( self : Dict ): raise NotImplementedError() def UpperCamelCase__ ( self : str ): raise NotImplementedError() @property def UpperCamelCase__ ( self : Optional[Any] ): return self._lock_file_fd is not None def UpperCamelCase__ ( self : int , __a : int=None , __a : Tuple=0.05 ): # Use the default timeout, if no timeout is provided. if timeout is None: _a = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _a = id(self ) _a = self._lock_file _a = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}' ) self._acquire() if self.is_locked: logger().debug(f'Lock {lock_id} acquired on {lock_filename}' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}' ) raise Timeout(self._lock_file ) else: logger().debug( f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _a = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def UpperCamelCase__ ( self : Union[str, Any] , __a : int=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _a = id(self ) _a = self._lock_file logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}' ) self._release() _a = 0 logger().debug(f'Lock {lock_id} released on {lock_filename}' ) return None def __enter__( self : List[Any] ): self.acquire() return self def __exit__( self : str , __a : str , __a : Dict , __a : Dict ): self.release() return None def __del__( self : int ): self.release(force=__a ) return None def UpperCamelCase__ ( self : Tuple , __a : str , __a : int ): _a = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: _a = os.path.dirname(__a ) _a = str(hash(__a ) ) _a = filename[: max_length - len(__a ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(__a , __a ) else: return path class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , __a : str , __a : List[Any]=-1 , __a : List[Any]=None ): from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) _a = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def UpperCamelCase__ ( self : int ): _a = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _a = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: _a = fd return None def UpperCamelCase__ ( self : Optional[Any] ): _a = self._lock_file_fd _a = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : List[str] , __a : Optional[Any] , __a : Union[str, Any]=-1 , __a : int=None ): _a = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def UpperCamelCase__ ( self : Any ): _a = os.O_RDWR | os.O_CREAT | os.O_TRUNC _a = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: _a = fd return None def UpperCamelCase__ ( self : Tuple ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _a = self._lock_file_fd _a = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def UpperCamelCase__ ( self : Union[str, Any] ): _a = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _a = os.open(self._lock_file , __a ) except OSError: pass else: _a = fd return None def UpperCamelCase__ ( self : Union[str, Any] ): os.close(self._lock_file_fd ) _a = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCAmelCase_ : str = None if msvcrt: lowerCAmelCase_ : List[str] = WindowsFileLock elif fcntl: lowerCAmelCase_ : List[str] = UnixFileLock else: lowerCAmelCase_ : int = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
346
1